
WebSphere Message Broker

Message Models
Version 6 Release 1

���





WebSphere Message Broker

Message Models
Version 6 Release 1

���



Note
Before you use this information and the product that it supports, read the information in the Notices appendix.

This edition applies to version 6, release 1, modification 0, fix pack 4 of IBM WebSphere Message Broker and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

About this topic collection. . . . . . . v

Part 1. Developing message models 1

Developing message models. . . . . . 3
Message modeling . . . . . . . . . . . . 3
Working with a message set project . . . . . . 81
Working with a message set . . . . . . . . . 82
Working with a message definition file . . . . . 93
Working with message model objects . . . . . . 96
Creating a multipart message . . . . . . . . 121
Linking from one message definition file to another 122
Working with a message category file . . . . . 123
Working with data structures . . . . . . . . 127
Generating documentation from message sets and
message flows . . . . . . . . . . . . . 141
Generating XML Schemas . . . . . . . . . 141
Generating a WSDL definition from a message set 144

Part 2. Reference . . . . . . . . . 147

Message model reference information 149

Message set preferences . . . . . . . . . . 149
Message set properties . . . . . . . . . . 151
Message definition file properties. . . . . . . 183
Message category properties . . . . . . . . 185
Message model object properties . . . . . . . 186
Deprecated message model object properties . . . 600
Additional MRM domain information . . . . . 729
Additional MIME domain information . . . . . 774
Additional IDOC domain information . . . . . 778
Message model task list errors that have a quick fix 782
Generated model representations . . . . . . . 784
Import formats . . . . . . . . . . . . . 789
Message model wizards . . . . . . . . . . 800

Part 3. Appendixes . . . . . . . . 821

Appendix. Notices for WebSphere
Message Broker . . . . . . . . . . 823
Trademarks in the WebSphere Message Broker
information center . . . . . . . . . . . . 825

Index . . . . . . . . . . . . . . . 827

© Copyright IBM Corp. 2000, 2009 iii



iv Message Models



About this topic collection

This PDF file has been created from the WebSphere Message Broker Version 6.1 (fix
pack 4 update, May 2009) information center topics. Always refer to the
WebSphere Message Broker online information center to access the most current
information. The information center is periodically updated on the document
update site and this PDF and others that you can download from that Web site
might not contain the most current information.

The topic content included in the PDF does not include the ″Related Links″
sections provided in the online topics. Links within the topic content itself are
included, but are active only if they link to another topic in the same PDF
collection. Links to topics outside this topic collection are also shown, but result in
a "file not found "error message. Use the online information to navigate freely
between topics.

Feedback: do not provide feedback on this PDF. Refer to the online information to
ensure that you have access to the most current information, and use the Feedback
link that appears at the end of each topic to report any errors or suggestions for
improvement. Using the Feedback link provides precise information about the
location of your comment.

The content of these topics is created for viewing online; you might find that the
formatting and presentation of some figures, tables, examples, and so on are not
optimized for the printed page. Text highlighting might also have a different
appearance.

© Copyright IBM Corp. 2000, 2009 v

ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs
ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs


vi Message Models



Part 1. Developing message models

Developing message models . . . . . . . . 3
Message modeling . . . . . . . . . . . . 3

Message modeling concepts . . . . . . . . 4
Why model messages? . . . . . . . . . . 6
Message domains and parsers . . . . . . . 7
The message model . . . . . . . . . . . 7
Physical formats in the MRM domain . . . . 39
Ways to create message definitions . . . . . 66
Generate model representations . . . . . . 77

Working with a message set project . . . . . . 81
Deleting a message set project . . . . . . . 81

Working with a message set . . . . . . . . . 82
Configuring message set preferences . . . . . 82
Opening an existing message set . . . . . . 82
Creating a message set . . . . . . . . . 83
Configuring logical properties: Message sets . . 85
Working with physical formats . . . . . . . 86
Observing 2007 U.S. changes to Daylight Saving
Time. . . . . . . . . . . . . . . . 91
Configuring documentation properties: Message
sets . . . . . . . . . . . . . . . . 92
Deleting a message set. . . . . . . . . . 92
Applying a Quick Fix to a task list error. . . . 93

Working with a message definition file . . . . . 93
Opening an existing message definition file. . . 93
Creating a message definition file . . . . . . 94
Deleting a message definition file . . . . . . 95

Working with message model objects . . . . . . 96
Adding message model objects . . . . . . . 96
Configuring message model objects . . . . . 107
Deleting objects . . . . . . . . . . . 120

Creating a multipart message . . . . . . . . 121
Linking from one message definition file to another 122

Include . . . . . . . . . . . . . . 122
Import . . . . . . . . . . . . . . 123

Working with a message category file . . . . . 123
Creating a message category file . . . . . . 123
Opening an existing message category file. . . 124
Adding a message to a message category . . . 125
Deleting a message from a message category 126
Viewing or configuring message category file
properties . . . . . . . . . . . . . 126
Deleting a message category file . . . . . . 126

Working with data structures . . . . . . . . 127
Importing file systems into the workbench . . 127
Importing from C . . . . . . . . . . . 129
Importing from COBOL copybooks . . . . . 131
Importing from IBM supplied messages . . . 133
Importing from WSDL . . . . . . . . . 134
Importing from XML DTD . . . . . . . . 136
Importing from XML Schema . . . . . . . 138

Generating documentation from message sets and
message flows . . . . . . . . . . . . . 141
Generating XML Schemas . . . . . . . . . 141

Generating XML Schemas . . . . . . . . 142
Generating an XML Schema . . . . . . . 143

Generating a WSDL definition from a message set 144

© Copyright IBM Corp. 2000, 2009 1



2 Message Models



Developing message models

This topic area describes the concepts behind message modeling, and the tasks that
are involved in working with message models.

If you are unfamiliar with message models, read the topics that describe the
concepts, starting with “Message modeling.” These topics explain why you need to
model messages, and describe the message modeling objects that you will use,
such as message sets and message definition files.

The WebSphere® Message Broker message model is based on XML Schema. For
more information about XML Schema, see XML Schema Part 0: Primer.

The tasks that are involved in developing message models are:
v “Working with a message set project” on page 81
v “Working with a message set” on page 82
v “Working with a message definition file” on page 93
v “Working with message model objects” on page 96
v “Creating a multipart message” on page 121
v “Linking from one message definition file to another” on page 122
v “Working with a message category file” on page 123
v “Working with data structures” on page 127
v “Generating documentation from message sets and message flows” on page 141

Tip: The workbench provides a set of toolbar icons that invoke wizards that you
can use to create many of the resources that are associated with message
models; for example, a new message set. Hold the mouse pointer over a
toolbar icon to see its function.

Notice that the workbench lets you open resource files with other editors.
However, use only the workbench to edit resource files that are associated with
message models because this editor correctly validates all changes that you make
to these files.

Message modeling
Much of the business world relies on the exchange of information between
applications. The information is contained in messages that have a defined
structure that is known and agreed by the sender and the receiver.

Applications typically use a combination of messages, including those that are
defined by the following structures or standards:
v C and COBOL data structures
v Industry standards such as SWIFT or EDIFACT
v XML DTD or Schema

You can model a wide variety of message formats so that they can be understood
by WebSphere Message Broker message flows.

© Copyright IBM Corp. 2000, 2009 3

http://www.w3.org/TR/xmlschema-0/


When the message format is known, the broker can parse an incoming message bit
stream and convert it into a logical message tree for manipulation by a message
flow. After the message has been processed by the message flow, the broker
converts the message tree back into a message bit stream.

The following topics together give an overview of Message modeling:
v “Message modeling concepts”
v “Why model messages?” on page 6
v “Message domains and parsers” on page 7
v “The message model” on page 7
v “Physical formats in the MRM domain” on page 39
v “Ways to create message definitions” on page 66
v “Generate model representations” on page 77

You can import either of the following samples to explore message set projects to
understand how the sample’s messages are modeled in different formats.
v Video Rental sample
v Comma Separated Value (CSV) sample

The following samples from the Samples Gallery also have message sets supplied:
v EDIFACT sample
v FIX sample
v SWIFT sample
v X12 sample

You can view samples only when you use the information center that is integrated
with the Message Broker Toolkit.

Message modeling concepts
Message modeling is a way of predefining the message formats that are used by
your applications.

When you have modeled your messages, WebSphere Message Broker can use your
message models to automatically parse and write your message formats.

When you model messages, you need to understand the following concepts:
v Message set projects

v Message sets

v Message definition files

v Web Services Description Language (WSDL) files

v Message categories

v Model importers

v Model editors

v Model generators

v Model validator

v Domains and parsers

4 Message Models

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.csv.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.edifact.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.fix.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.swift.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.x12.doc/doc/overview.htm


A message set project is a specialized project (container) in which you create and
maintain all the resources that are associated with exactly one message set.

A message set is a logical grouping of your messages and the objects that comprise
them (elements, types, groups). A message set contains the following files:
v Exactly one message set file
v Zero or more message definition files
v Zero or more WSDL files
v Zero or more message category files

Model
Validator

Message Category
Editor

WSDL editor

Message Definition
Editor

Message Set
Editor

.mxsd
files

.category
files

.wsdl
files

messageSet.mset
file

Importers

XML
DTD

Repository

Message Set

XML
Schema

COBOL
copybookC header WSDL EIS

Generators

Documentation
XML

Schema

XML
application

Message
Dictionary

WBIMB
broker

WSDL

Web Services
client

M
e

s
s
a

g
e

B
ro

k
e

rs
T
o

o
lk

it

Developing message models 5



The message set file provides message model information that is common to all the
messages in the message set. You can create this information using the message set
editor.

When you have created a message set, you typically import application message
formats described by XML DTD, XML Schema, WSDL files, C structures, COBOL
structures, or EIS systems, creating and populating message definition files. You can
then edit the logical structure of your messages, and create and edit physical
formats that describe the precise appearance of your message bit stream during
transmission, using the message definition editor. Alternatively, you can create an
empty message definition file and create your messages using just the editor.

When your message definition files are complete, you can then generate the
message set in a form that can be used by a broker, parser, or application. This
might be in one of the following forms:
v A message dictionary for deployment to a broker
v An XML Schema for use by an application to validate XML messages, or for

deployment to a broker
v Web Services Description Language (WSDL) for a Web services client, or for

deployment to a broker
v Documentation to give to programmers or business analysts

Messages can be optionally grouped into message categories for convenience . You
can add messages to message categories using the message category editor.

Each time you save a message set file, message definition file, or message category
file, the content is validated to ensure that the message model that you are creating
follows certain rules. There are rules for both the logical structure and the physical
formats. This ’model validation’ ensures the integrity of your model, but does not
necessarily prevent you from saving a message model file that is not valid.

WebSphere Message Broker supplies a range of parsers to parse and write message
formats. Each parser is suited to a particular class of messages (for example,
fixed-length binary, delimited text, or XML) known as a message domain. When you
create a message set, you specify which domains the message set supports. This
determines which parsers can be used when you parse and write messages that are
defined within that message set.

Why model messages?
WebSphere Message Broker supplies a range of parsers to parse and write message
formats. Some message formats are self-defining and can be parsed without
reference to a model. Most message formats, however, are not self-defining, and
the parser must have access to a predefined model that describes the message, if it
is to parse it correctly.

An example of a self-defining message format is XML. In XML the message itself
contains metadata as well as data values, enabling an XML parser to understand
an XML message even if no model is available.

Examples of messages that do not have a self-defining format are binary messages
that originate from a COBOL program, and from SWIFT formatted text messages.
Neither contain sufficient metadata to enable a parser to understand the messages.

6 Message Models



Even if your messages are self-defining and do not require modeling, there are still
advantages in modeling them:
v Runtime validation of messages. Without a model, a parser cannot check

whether input and output messages have the correct structure and data values.
v Enhanced parsing of XML messages. Although XML is self-defining, without a

model, all data values are treated as strings. If a model is used, the parser
knows the data type of data values, and can cast the data accordingly.

v Improved productivity when writing ESQL. When you are creating ESQL
programs for WebSphere Message Broker message flows, the ESQL editor can
use message models to provide code completion assistance.

v Drag-and-drop message maps. When you are creating message maps for
WebSphere Message Broker message flows, the Mapping editor uses the message
model to populate its source and target views. Without message models, you
cannot use the Mapping editor.

v Reuse of message models, in whole or in part, by creating new messages that
are based on existing messages.

v Generation of documentation.
v Provision of version control and access control for message models by storing

them in a central repository.

To make full use of the facilities that are offered by WebSphere Message Broker,
model your message formats.

To speed up the creation of message models, importers are provided that take
metadata such as C header files, COBOL copybooks, XML Schema and DTDs,
WSDL files, and EIS metadata, and create message models from that metadata.
Alternatively, IBM has predefined models for common industry standard message
formats such as SWIFT, EDIFACT, X12, FIX, HL7 and TLOG.

Message domains and parsers
WebSphere Message Broker supplies a range of parsers to parse and write message
formats.

A parser is invoked when the bit stream that represents an input message is
converted to the internal form that can be handled by the broker. The internal
form, a logical tree structure, is described in Logical tree structure. Similarly, a
parser is invoked to convert a logical tree back into a bit stream.

Each parser is suited to a particular class of messages (for example, fixed-length
binary, delimited text, or XML) known as a message domain.

When you create a message set, you specify which message domains the message
set supports. This determines which parsers are used when you parse and write
messages that are defined within that message set.

The parsers that are supplied with WebSphere Message Broker are described in
Parsers.

The message model
The message model consists of the following components.
v Message set projects
v Message sets

Developing message models 7



v Message definition files
v WSDL files
v Message categories

See “Message modeling concepts” on page 4 for a summary of these components,
and the relationship between them. See Related Concepts below for a detailed
description of each component.

The majority of your model content is described by message definition files. These
files use XML Schema to represent your messages. XML Schema is an international
standard that defines a language for describing the structure of XML documents. It
is ideally suited to describing the messages that flow between business
applications, and it is widely used in the business community for this purpose.
WebSphere Message Broker uses XML Schema to describe the structure of all kinds
of message format, not just XML.

Each message definition file describes both the logical structure of your messages,
and the physical formats that describe the appearance of your message bit stream
during transmission. If you are using the MRM or IDOC domains, you must
provide physical format information. This tells the parser exactly how to parse the
message bit stream. If you are not using the MRM or IDOC domains, physical
format information is not needed

To understand the different ways that you create and populate message definition
files, see “Ways to create message definitions” on page 66. See “Physical formats in
the MRM domain” on page 39 for a description of the physical formats that are
available to you.

Message set projects
A message set project is a specialized container in which you create and maintain all
the resources associated with one message set.

The content of a message set project is a single message set folder, the name of
which provides the name of the message set, and optionally, a single Adapters
folder, if the message set is modeling messages from EIS systems. You can create a
message set project using the following methods:
v The New Message Set wizard.
v The Quick Start wizards.

These restrictions apply to message set projects:
v A message set project must contain just one message set.
v A message set project cannot refer to any other message set.

Import either of the following samples from the Samples Gallery to see how
message set resources are stored in a message set project. The sample’s message
flow resources are stored separately in a Message Flow project.
v Video Rental sample
v Comma Separated Value (CSV) sample

You can view samples only when you use the information center that is integrated
with the Message Broker Toolkit.

Message sets overview
A message set is a container for grouping messages and associated message
resources (elements, types, groups).

8 Message Models

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.doc/doc/overview.htm
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.csv.doc/doc/overview.htm


A message set is a folder in a message set project that contains a messageSet.mset
file. The name of the folder is the name of the message set. A message set project
can contain just one message set.

When you create a new message set, a new message set project is automatically
created with a name that is the same as that of the message set.

You can base your new message set on an existing message set. In this case, all the
definitions in the existing message set are copied into the new message set.

When you have created your message set, you must specify the following key
properties:

Supported message domains
The message domains that are supported by the message set. The
supported domains determine what is generated for deployment to a
broker, and are used when parsing and writing the messages that are
defined within the message set.

Default message domain
The default domain of the message set.

Use namespaces
Indicates whether the message definitions that you create within the
message set are XML namespace aware.

Message set resources:

Resources within a message set are created as files, and are displayed under the
message set folder in the Broker Development view.
v Message set file messageSet.mset

There is always one, and only one, messageSet.mset file in a message set. This
file contains message model properties that are common to all the content of the
message set. It is also where you define the physical formats that you want for
this message set. These can be Custom Wire Format (CWF), Tagged Delimited
String Format (TDS), and XML Wire Format (XML).
The file is created for you when a new message set is created, and you
manipulate its content with the Message Set Editor.

v Message definition files that have the suffix .mxsd

You can have many message definition files in a message set. Each file contains
the logical model and the associated physical model, in XML Schema form, for a
group of related messages.

v WSDL files that have the suffix .wsdl

These files are used by the SOAP domain. You can have many WSDL files in a
message set.

v Message category files that have the suffix .category

These files are optional. You can have many message category files in a message
set. A message category provides another way of grouping your messages,
perhaps for documentation purposes, or to assist with generating Web Services
Description Language (WSDL) files.

When you have completed the resources in your message set, you can generate the
content of the message set in a form that can be used by a broker parser or an
application. This might be:
v a message dictionary for deployment to a broker

Developing message models 9



v XML Schema for use by an application building XML messages, or for
deployment to a broker

v Web Services Description Language (WSDL) for a web services client, or for
deployment to a broker

v documentation to give to programmers or business analysts

Message set identification:

A message set is identified by the name of the message set folder in the message
set.

When you need to refer to a message set from a message flow (for example, when
setting the Message Set property of an input node), use the message set name.

A message set also has a 13-character identifier that is guaranteed to be unique.
You can use this identifier, instead of the message set name, to refer to a message
set, but only if you are using the MRM or IDOC domains. Other domains do not
recognize the identifier.

A message set also has an alias. An alias can only be used with MRM multipart
messages.

Message set recommendations:

You can have as many message definition files as you want within one message
set, but you should limit your message sets to a few related message definition
files that share the same physical formats.

There are several reasons for this:
v Generation of a message dictionary and other representations is quicker.
v Generated documentation is more manageable.
v MRM physical formats apply to all objects within the message set.

Therefore, for example, if you are using the MRM domain and have an XML
message and an unrelated CWF message modeled in the same message set, CWF
physical format properties are present for all objects. But the CWF properties are
of no interest to the XML message and therefore take default values in those
objects. This can result in unwanted task list warnings.

v Recursion is not permitted for MRM CWF and TDS physical formats.
Therefore, if you are modeling XML messages that have a recursive structure,
you must ensure that recursive XML messages do not share a message set with
MRM CWF or TDS physical formats.

Message set version and keywords:

When you are developing a message set, you can define the version of the message
set and any other key information that must be associated with it.

After the message set has been deployed, the Configuration Manager can be used
to display the properties of the message set. These include the deployment and
modification dates and times (the default information that is displayed) and any
additional version or keyword information that you have set.

You can define information to give details of the message set that has been
deployed; therefore, you can check that it is the message set that you expect.

10 Message Models



Version

You can set the version of the message set in the Version property.

You can also define a default message set version in the Default version tag of the
message set preferences. All new message sets that are created after this has been
set have this default applied to the Version property at the message set level.

Keywords

Keywords must be defined in the Documentation property of the message set.
These follow certain rules to ensure that the information can be parsed. The
following is an example of what you can define in the Documentation property:

$MQSI Author=John Smith MQSI$

The following table contains the information that the Configuration Manager
shows:

Message set name

Deployment Time 28-Aug-2004 15:04

Modification Time 28-Aug-2004 14:27

Version v1.0

Author John Smith

In this display, the version information has been defined using the Version
property of the object. If the version information has not been defined using the
Version property, it is omitted from this display.

Restrictions within keywords

Do not use the following characters within keywords because they cause
unpredictable behavior:
^$.|\<>?+*=&[]

You can use these characters in the values that are associated with keywords; for
example:
v $MQSI RCSVER=$id$ MQSI$ is acceptable
v $MQSI $name=Fred MQSI$ is not acceptable

Message definition files
A message definition file contains the messages, elements, types and groups which
make up a message set.

Every message set requires at least one message definition file to describe its
messages. Message definition files use the XML Schema language to describe the
logical format of one or more messages. Extra information in the form of XML
Schema annotations is used to describe any physical formats that you define for the
messages.

Large message sets can contain several message definition files. This keeps the
individual files to a manageable size, making them faster and easier to work with.

Developing message models 11



Message definition files can be created using the Message Definition Editor, or can
be imported from a range of different file formats as described in “Importing from
other model representations to create message definitions” on page 67.

A message definition file can be associated with a namespace, so that all message
model objects that are declared within the file belong to that namespace.
Namespaces provide a means of avoiding name clashes among similarly named
global objects. They are described in detail in “Namespaces in the message model”
on page 33.

One message definition file can reuse message model objects that are defined in
another message definition file. XML Schema provides two mechanisms to do this:
import and include. For more information, see “Reusing message definition files”
on page 37.

XML Schema and the message model:

XML Schema is an international standard that defines a language for describing the
structure of XML documents.

The XML Schema language is ideally suited to describing the messages that flow
between business applications, and it is widely used in the business community for
this purpose.

WebSphere Message Broker uses XML Schema 1.0 to describe the logical structure
of messages. At a simple level, the types and elements in the message are modeled
using XML Schema types and elements. However, when the need arises, most of
the advanced modeling features of XML Schema are available for modeling
messages.

Some important restrictions and extensions of XML Schema exist. These are
documented in “Schema restrictions in the message model” and “Schema
extensions in the message model.”

Further information about XML Schema: For details about XML Schema, see XML
Schema Part 0: Primer on the World Wide Web Consortium (W3C) Web site.

Schema restrictions in the message model:

Some XML Schema 1.0 features are not supported in the message model.

Unsupported XML Schema features: The following feature is accepted, but not
supported, and causes validation errors if it is used in your message model:
v Redefines

Further information about XML Schema: For details about XML Schema, see XML
Schema Part 0: Primer on the World Wide Web Consortium (W3C) Web site.

Schema extensions in the message model:

The message model provides some facilities that are not specified in the XML
Schema 1.0 specification.

12 Message Models

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/


Messages: A message is a global element that represents an entire message (rather
than a structure within a message). Within a message definition file, a message is
represented by a special global element that carries the extra information required
by WebSphere Message Broker.

Composition: The message model adds the following compositions that are beyond
the XML Schema 1.0 specification:

message
A refinement of choice that is allowed to contain only a set of references to
messages within the same message set. Groups and complex types with
composition of message are used when modeling multipart messages.

orderedSet
A set of elements that must appear in the order that they are listed. Groups
are not allowed within an orderedSet. Elements can repeat, but duplicate
elements are not allowed.

unorderedSet
A set of elements that can appear in any order. Groups are not allowed
within an unorderedSet. Unlike an all group, elements within an
unorderedSet are allowed to repeat. However, duplicate elements are not
allowed.

Compositions orderedSet and unorderedSet allow message models that were
produced in earlier versions of the product to be supported.

Physical format information: If one or more physical formats are defined for a
message set, the XML Schema objects within the message set can hold extra
information about how they should be parsed and serialized.

Further information about XML Schema: For details about XML Schema, see XML
Schema Part 0: Primer on the World Wide Web Consortium (W3C) Web site.

Message model objects:

This is an introduction to the objects that make up a message model.

Message
A message describes the structure and content of a set of data that is
exchanged between applications that send and receive the data. A message
is a special kind of complex element.

Simple element
A simple element describes one or more named data fields in a message. It
is based on a simple type (for example, string, integer or float). A simple
element can repeat, and it can define a default or a fixed value.

Simple type
A simple type describes a class of data within a message. It describes the
type of data (for example, string, integer or float) and it can have value
constraints which place limits on the values of any simple elements based
on that simple type.

Complex element
A complex element describes a named complex structure within the message.
The content of a complex element is defined by a complex type. A complex
element can repeat.

Developing message models 13

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/


Complex type
A complex type describes a complex structure within a message. It contains
elements (simple or complex), attributes, and groups that are organized into a
tree-like hierarchy.

Group A group describes a list of elements with information about how those
elements can appear in a message. Groups can be ordered (sequence or
orderedSet), unordered (all or unorderedSet), or selective (choice or
message). A group can repeat.

Attribute
An attribute describes an XML attribute. Attributes are very similar to
simple elements, but they require special treatment when used with XML
messages. In messages that are not XML messages, attributes are typically
not used, but if they do appear they are treated exactly like a simple
element based on the same simple type.

Global and local objects: Most objects in the message model can be either global or
local. A global object must have a unique name, which is used to refer to the object
from one or more places in the message model. Local objects are defined and used
in only one place in the message model.

Make objects local unless they need to be used in more than one place. This
reduces the probability of name clashes among the global objects in the message
model, and makes the message set easier to work with.

Properties of message model objects: The properties of all message model objects are
listed on the ’properties’ pane of the message definition editor. The properties fall
into three categories:

Logical
The logical properties of an object relate to the format-independent
description of the object called the ’logical model’. Logical properties
describe what data the object contains without saying anything about how it
is written down.

Physical
The physical properties of an object describe how the object is written
down. These properties control the parsing and writing of the object. There
is one set of physical properties for an object for each physical format in
your message set.

Documentation
This field is present for all message model objects. It provides a standard
place for any description of the object that you might require. Text entered
here does not affect the processing of messages in any way.

Message model objects: messages:

A message describes the structure and content of a set of data that is passed from
one application to another.

A message consists of elements that are organized into a logical structure agreed
by the sending and receiving applications. This logical structure can be modeled
using the Message Definition editor, so that message data can be parsed into a
logical tree and manipulated easily by the broker.

14 Message Models



In the message model, a message is always based on a global element. The global
element’s complex type describes the contents of the global element, and therefore
describes all of the content of the message.

Multipart messages: If necessary, a message can contain other messages. This is
necessary for modeling certain large and complex messaging standards such as
SWIFT and EDIFACT. Such a message is known as a multipart message. The
contained messages are known as embedded messages.

Message identification: Messages are identified by their name or an alias. The alias
is an optional user-specified string that identifies the (multipart) message. The
name and alias of a message must be unique within a message set.

XML Schema model: In the message definition file, a message is modeled as an
XML Schema global element declaration. Extra information is provided by XML
Schema annotations on the element declaration.

Message model objects: elements:

An element is a named piece of information (a field) within a message, with a
meaning that is agreed by the applications that create and process the message.

An element has a specific meaning that is agreed by the applications that create
and process the message. For example, a message might include a string that your
applications have agreed is a ’Customer Name’. An element is always based on a
type, either simple or complex.

An element:
v Has a business meaning.
v Is an instantiation of a simple or complex type.
v Can be accessed by name from ESQL or Java in a message flow node.
v Is further defined by its type; for example, the type defines the range of values

that an element can have.
v Can be defined globally or locally.

Simple and complex elements: Elements can be simple or complex. A simple element
is a single, named piece of information such as ’Age’ or ’Customer Name’. A
simple element is based on a simple type that defines its content.

A complex element is a named structure that contains other elements. A complex
element named ’Customer Details’ might contain the simple elements ’Age’ and
’Customer Name’. A complex element can also contain other complex elements. A
complex element is based on a complex type that defines its content and structure.

Global and local elements: Elements can be global or local. A global element can be
used in several different messages, or even in several places within the same
message. It must be given a unique name by which it can be referenced. A local
element is defined in one position within one complex type or group, and is not
available for reuse elsewhere in the message model.

Optional and repeating elements: Elements can be defined as optional, mandatory,
and repeating, using the properties Min Occurs and Max Occurs. For further
information, see “Cardinality: optional, repeating and mandatory elements” on
page 30.

Developing message models 15



Default and fixed values: An element can be given a default value, so that if no
value is supplied by the message, the default value is used. Alternatively, a fixed
value can be defined, and the element always takes that value. The precise use of
default and fixed values is dependent on the message domain.

Value constraints: An element’s value can be constrained using value constraints
which define the range of legal values for the element. The value constraints are
actually associated with the simple type on which the element is based. For further
information, see “Message model objects: simple types” on page 17. The XML
Schema term for a value constraint is a facet.

Defining substitution groups: If you are modeling XML messages, an element can be
marked as a valid substitute for another element by using the substitution group
property on the element. In this way, groups of elements can be assembled where
any of the elements in the group can substitute for one element, the head element.
For further information, see “Substitution groups in the message model” on page
31.

Message model objects: types:

Types describe the data content of elements.

Simple types describe simple elements with data types such as string, integer or
dateTime.

Complex types describe complex elements - elements that contain a hierarchy of
other elements.

For more information, see:
v “Message model objects: simple types” on page 17
v “Message model objects: complex types”
v “Message model objects: type inheritance” on page 19

Message model objects: complex types:

A complex type describes the structure of one or more complex elements.

Complex types are an essential part of every message model because they define
the logical structure of the messages and elements in the model.

What is a complex type for?: Complex types define the structure of the messages
and elements in the message model. By combining elements, attributes, groups and
wild cards, almost any message structure can be modeled.

Contents of a complex type:

Elements

Most complex types contain some elements, and some contain a large
hierarchy of complex elements. The elements within a complex type are
always contained within a group. This group can be local to the complex
type, in which case the Message Definition Editor hides it from view. This
is the usual case.

Alternatively, the group that contains the elements can be a global group,
and this group defines the element content, the composition, and the
content validation for the complex type.

16 Message Models



If a complex type is derived from a simple type, it is not allowed to
contain any element content.

Attributes
If you are modeling XML messages, your complex types can contain
attributes. The attributes for a complex type can be local or global, and
they can be contained within an attribute group.

Groups
Groups allow sets of elements to be included in a complex type. The
members of the group are included as peers of the other elements. For
more information about their use, see “Message model objects: groups” on
page 20.

Wild cards
Complex types can contain wildcard elements, which allow unmodeled
elements to appear within any elements that are based on the complex
type. Any such elements must appear at the same position within the
message as the wild card. Complex types can also contain wildcard
attributes, which allow unmodeled attributes to appear within any
elements that are based on the complex type.

Global and local complex types: Complex types can be global or local. A global
complex type can be used as the basis for more than one complex element. It must
be given a unique name by which it can be referenced. A local complex type is
associated with a single complex element, and is not available for reuse elsewhere
in the message model. Local types do not have a name, and are displayed as
{Local complexType} by the message definition editor.

Composition: The composition of a complex type describes how the members of
the type are organized. For more information, see “Message model objects: groups”
on page 20.

Controlling validation of type content: The Content validation parameter on a complex
type specifies how strictly the contents of the type should be validated. For more
information, see “Message model objects: groups” on page 20.

Substitution settings: A complex type has parameters that control whether other
types can be derived from it (final) and whether other types can substitute for it
(block). For more information, see “Substitution groups in the message model” on
page 31 and “Message model objects: type inheritance” on page 19.

Message model objects: simple types:

A simple type is an abstract definition of an item of data such as a number, a string
or a date.

The purpose of a simple type is to define the content of one or more simple
elements. Simple types (and any elements that are based on simple types) cannot
contain attributes or child elements. Simple types stand in contrast to complex
types, which define the structure of an element, but typically do not define any
simple data.

Global and local simple types

Simple types can be global or local. A global simple type can be used as the basis
for more than one element. It must be given a unique name by which it can be
referenced. A local simple type is associated with a single element, and is not

Developing message models 17



available for reuse elsewhere in the message model. Local types do not have a
name.

Variations of simple types

Built-in

XML Schema defines a large number of simple types for you to use,
covering all the standard data types such as strings, integers, decimals, and
floats.

Restriction

You can define your own simple types by deriving from another simple
type (the base type) by restriction. A restriction type can have value
constraints applied to it.

A restriction type can derive from a built-in simple type or a user-defined
simple type.

List

A list type is a way of rendering a repeating simple value. The notation is
more compact than the notation for a repeating element, and offers a way
to have multi-valued attributes.

A list type can be based on a union type (see below). This can describe a
space-separated list of items in which each item can be based on any of the
simple types in the union.

A list of lists is not legal. The item type of a list cannot be a list itself, or
derived at any level from another list type, and results in a task list error
in the editor.

A list type can have the facets of minLength, maxLength and length
applied to it. These facets restrict the number of items in the list. To restrict
the values of each item in the list, facets should be applied to the item type
and not to the list itself. The message definition editor provides additional
support for enumeration and pattern facets directly on a List type, to
enable the import of any schema that uses them, but issues a warning that
enumeration and pattern facets are ignored by the broker.

Union

A union type is a union of two or more other simple types.

A union type allows a value to conform to any one of several different
simple types. The simple types that comprise a union type are known as
its member types. There is no upper limit on how many member types can
exist, but there must be at least one. A member type can be defined as a
built-in simple type, a user defined simple type, or a local simple type
defined anonymously within the union type.

A union type can also include list, union, and restricted simple types,
among its members.

MRM domain

The MRM parser does not apply value constraints until the data is in the logical
tree. This means that it is not possible to choose between two simple types that are
derived from the same fundamental type, but have different value constraints (for
example, an integer in the range 1-10 and an integer in the range 11-20). A warning
appears in the task list if this is attempted, and the parser ignores the value

18 Message Models



constraints when it resolves the union. The message definition editor provides
additional support for enumeration and pattern facets directly on a Union type, to
enable the import of any schema that uses them, but the editor issues a warning
that enumeration and pattern facets are ignored by the MRM parser.

Value constraints

Any value constraints that are applied to the derived type must further restrict the
base type (and any elements based on it). It is not valid for a derived type to
weaken or remove a value constraint that its base type has defined. If no value
constraints are applied to the derived type, the derived type is almost identical to
its base type, but it is treated as a restriction of the base type in situations where
that is relevant (type inheritance and element substitution).

Message model objects: type inheritance:

The XML Schema language allows a type definition to be based on another type
definition. In this way, a hierarchy of types can be constructed.

This topic outlines the concepts of type inheritance, and highlights some important
issues relating to substitution.

A full discussion of XML Schema type inheritance can be found on the World Wide
Web Consortium (W3C) Web site, or in numerous books about XML Schema.

Restriction and extension: A type is a restriction of its base type, if elements of the
derived type have a smaller range of valid values (or valid type members) than
elements of the base type.
v

For example, a restriction of a complex type might reduce the number of
occurrences of one of its type members, or might omit that type member
completely.

v

Similarly, a restriction of a simple type might lower the Max Inclusive facet
value, or raise the Min Inclusive facet value.

A type is an extension of its base type if elements of the derived type have a wider
range of valid values (or valid type members) than elements of the base type.
v

For example, an extension of a complex type might add type members that were
not present in the base type, or might allow a type member to repeat.

v

Similarly, an extension of a simple type must always be a complex type that is
based on the simple type; you cannot extend a simple type by widening its
range of valid values.

Special rules apply to the derivation of simple types. A simple type cannot extend
another simple type. This ensures that restrictions that are imposed by a simple
type cannot be removed by deriving another simple type from it.

However, a complex type can extend a simple type. This does not affect the range
of valid values of the simple type, but it does allow attributes to be added. The
result of extending a simple type is always a complex type that contains zero or
more attributes.

Developing message models 19

http://www.w3.org/
http://www.w3.org/


Controlling type inheritance: The final attribute on a complex type can take three
values, with the following effects:
v restriction: It is not valid to derive another complex type from this type by

restriction.
v extension: It is not valid to derive another complex type from this type by

extension.
v all: It is not valid to derive another complex type from this type by either

extension or restriction

Type inheritance and substitution: XML Schema provides two different substitution
mechanisms, both of which use type inheritance information to allow or disallow
substitutions.

Element substitution is controlled by substitution groups, and element substitution
can be blocked or allowed for extension and restriction by settings on either the
element itself or the element’s type.

Type substitution allows the type of the element to be defined within the instance
document, using the xsi:type attribute on the element, so that the element’s real
type is not known until the element has been partly parsed. This mechanism can
also be blocked or allowed based on the derivation method of the types involved.

Message model objects: groups:

A group is a list of elements that defines how those elements can appear in a
message.

Groups can be ordered (sequence or orderedSet) unordered (all or unorderedSet),
or selective (choice or message). Groups define the composition and content
validation of a set of type members.

What are groups for?: Groups can be used for any of the following purposes:
v To define the entire content of a complex type.

A complex type can refer to a global group that completely defines its content.
(If it does not, the content of the complex type is defined by an anonymous local
group, which is hidden within the Message Definition Editor.)

v To represent a common substructure within more than one type.
Two or more complex types can refer to the same global group, if they both
contain the same subset of elements.

v To change the composition midway through a complex type.
You might have a complex type that is a sequence of three members, but the
second member is a choice of two elements. To model this, a group with
composition set to choice can be inserted as the second member of the sequence.

Contents of a group: Groups can contain complex elements, simple elements,
wildcard elements and groups.

By combining these components, the structure of any message can be modelled.
Wildcard elements can be included to allow unmodelled elements to appear, thus
making the message model robust and flexible.

Global and local groups: Groups can be global or local.

20 Message Models



A global group can be used in more than one place in the message model. It
represents a structure that appears in more than one place in the message model. A
global group must be given a unique name by which it can be referenced.

A local group is defined in one position within one group, and is not available for
reuse elsewhere in the message model. Local groups do not have a name, and are
displayed using the group’s composition by the message definition editor.

Composition: In XML Schema, a group can have its composition set to sequence,
all, or choice.
v A sequence is a set of elements that must appear in the same order as they are

listed.
v An all group is a set of elements that can appear in any order, and cannot

repeat.
v A choice is a set of elements, only one of which can appear in any given

message.

The message model also allows other compositions: orderedSet, unorderedSet, and
message. For more information, see “Schema extensions in the message model” on
page 12.

Content validation: The Content validation property is applied only if the domain
is MRM or IDOC, and if validation is enabled.

Content validation determines how strictly the content of the group should be
validated. See “MRM content validation” on page 191 for more details.

Allowable values of the Content validation property are:

Closed
The contents of the group are validated strictly against the model. Only
elements that are defined as children of the group can appear as children.

Open Defined
Elements that are declared within the same message set can appear as
children of the group, even if they are not defined as children.

Open Any elements can appear as children of the group.

The Content validation property does not affect validation in the XMLNSC or
SOAP domains. Validation in these domains follows the rules of XML Schema 1.0.

Message model objects: attributes:

An attribute describes an XML attribute.

Attributes are provided to simplify the modeling of XML messages; if none of your
messages use the XML physical format, use simple elements instead.

Attributes and XML: The most common use for an attribute is to model an XML
attribute within an XML message. In this scenario, each attribute that can appear in
the XML message has a corresponding attribute in the logical message definition.

Attributes in other physical formats: Sometimes a message needs to be parsed as
XML, but written in another physical format (Custom Wire Format or Tagged
Delimited String Format). In this case, any attributes in the message are treated in
exactly the same way as simple elements with the same properties.

Developing message models 21



Global and local attributes: Attributes can be global or local.

A global attribute can be used in more than one place in the message model. It must
be given a unique name by which it can be referenced.

A local attribute is defined in one position within one complex type, and cannot be
used elsewhere in the message model.

Optional attributes: Attributes can be defined as optional, required or prohibited.
Attributes are not allowed to repeat. For further information, see “Cardinality:
optional, repeating and mandatory elements” on page 30.

Default and fixed values: An attribute can be given a default value so that, if the
attribute is missing from the message, the default is used. Alternatively, a fixed
value can be defined, and the attribute always takes that value. The precise use of
default and fixed values is domain dependent.

Value constraints: An attribute’s value can be constrained by using value constraints,
which define the range of legal values for the attribute. Value constraints are
associated with the simple type on which the attribute is based. For more details,
see “Message model objects: simple types” on page 17. In XML Schema, the term
for value constraint is facet.

Message model objects: wildcard elements:

A wildcard element represents an element that does not appear in the message
model, but which could appear at the same position as the wildcard element in the
message.

Wildcard elements provide a means of adding flexibility to the message model, so
that messages can be parsed even if they do not exactly match the message model.

Wildcard elements can only appear within a complex type or group with
Composition of sequence and Content Validation of closed. Wildcard elements
provide a similar capability to setting the Content Validation property of a complex
type or group to Open or Open Defined.

The Process Content and Namespace properties control the namespace to which
elements appearing in place of the wildcard element must belong.

MRM domain

If you enable validation in your message flow, and your message is in the
MRM domain, wildcard elements are validated against the model
according to the following rules:
v If Process Content is set to strict, only elements that are declared in the

same message set are allowed to appear in place of the wildcard
element.

v If Process Content is set to lax or skip, any element is allowed to appear
in place of the wildcard element.

If the broker is prior to WebSphere Message Broker Version 6.0, the
number of elements permitted to match against the wildcard element is
unpredictable (Min Occurs and Max Occurs are ignored).

Message model objects: wildcard attributes:

22 Message Models



A wildcard attribute allows unmodelled attributes to appear in a message.

The Process Content and Namespace properties control the namespace to which
attributes that appear in place of the wild card must belong.

MRM domain

If you enable validation in your message flow, and your message is in the
MRM domain, wildcard attributes are validated against the model
according to the following rules:
v If Process Content is set to strict, only attributes which are declared in

the same message set will be allowed to appear in place of the wildcard
attribute.

v If Process Content is set to lax or skip, any attribute will be allowed to
appear in place of the wildcard attribute.

Tip: If the namespace property is set to the namespace of the message set,
these rules are then similar to the behavior of the XMLNSC domain in
validating mode.

Message model objects: attribute groups:

An attribute group defines a set of attributes that can appear in a complex type.

An attribute group provides a way to include the same set of attributes in more
than one complex type, without duplicating the definitions.

For example, if most of the elements in your message model have the attributes
’amount’, ’currency’ and ’date’, these could be put into a single attribute group,
which is referenced by all the complex types that use them.

Message model objects: simple type value constraints:

Value constraints refine a simple type by defining limits on the values that it can
represent.

It is often useful to be able to constrain the values that an element or attribute can
take, perhaps to ensure that messages conform to business rules. This topic
describes how to add value constraints to a simple type, in order to constrain the
values of all elements or attributes that are based on that simple type.

The value constraints that are discussed here are modeled by XML Schema facets,
and are associated with a simple type.

Tip: If the message set is deployed to WebSphere Message Broker, elements and
attributes can be validated against value constraints, so that violations are
reported as errors or warnings. The XMLNSC domain uses all the different
types of value constraint when validating. The MRM domain uses a subset;
the restrictions are noted below.

Types of value constraint:

Length Constraints : Length, Min Length, Max Length
Using length constraints, the length of all elements based on the simple
type can be constrained, or even limited to a single value.

Developing message models 23



Length constraints can be applied to simple types that are derived from
xsd:hexBinary, xsd:base64Binary or xsd:string (including built in schema
types such as xsd:normalisedString).

Length constraints are inherited from ancestor types, and any length
constraints that are defined for a simple type must not relax the constraints
that are imposed by any of its ancestor types. For example, a type
’longString’ (Max Length=100) cannot be derived from a type ’shortString’
(Max Length=10).

Note: For the MRM domain, by default, Length value constraints are
converted to Max Length constraints when a message set is added
to a BAR file. This avoids WebSphere Message Broker raising
spurious validation errors for fixed-length data structures, where the
strings tend to be padded to fit a fixed-width field. If strict length
validation is required, this default can be changed in the message set
properties by changing the flag Broker treats Length facet as
MaxLength.

Range constraints : Min Inclusive, Max Inclusive, Min Exclusive, Max Exclusive
Range constraints specify the allowable range of values for all elements
that are based on the simple type. Inclusive constraints include the
specified endpoints in the allowed range, whereas exclusive constraints do
not. Range constraints can be applied to simple types that are numerical,
or that relate to calendar and time values. They cannot be applied to
strings, because the ordering of string values depends on the character set
that is used.

Range constraints are inherited from ancestor types, and any range
constraints that are defined for a simple type must not relax the constraints
that are imposed by any of its ancestor types. For example, a type
’largeNumber’ (Max Inclusive=100) cannot be derived from a type
’smallNumber’ (Max Inclusive=10).

Note: For the MRM domain, exclusive constraints cannot be applied to
non-integral types (float, decimal, double, dateTime, and so on).

Enumeration constraints
An enumeration constraint specifies a single allowed value for all elements
that are based on the simple type. A list of allowed values can be specified
by defining more than one enumeration constraint for the same simple
type. Enumeration constraints can be applied to all simple types.

Enumeration constraints are inherited from ancestor types, and any set of
enumeration constraints that are defined for a simple type must not
increase the range of allowed values. For example, a type ’AllColors’ (with
enumerations for all colors of the rainbow) cannot be derived from a type
’MonoColors’ (with enumerations for ’black’ and ’white’ only).

Precision constraints : Total Digits and Fraction Digits
Precision constraints relate only to decimal and integer values. They limit
the number of significant digits (total digits) and, for decimals, the number
of decimal places (fraction digits) for all elements that are based on the
simple type. Precision constraints can be applied to simple types that are
derived from xsd:decimal and xsd:integer.

Precision constraints are inherited from ancestor types, and any precision
constraints that are defined for a simple type must not relax the constraints

24 Message Models



that are imposed by any of its ancestor types. For example, a type
’veryPrecise’ (Fraction Digits=10) cannot be derived from a type
’notVeryPrecise’ (Fraction Digits=1).

Note: For the MRM domain, the broker applies these constraints only to
xsd:decimal and user types that are derived from it; precision
constraints that are applied to an integer simple type are ignored.

Pattern constraints
A pattern constraint is a regular expression that specifies a set of allowed
values for all elements that are based on the simple type. Multiple patterns
can be defined for the same simple type, allowing complex validation rules
to be expressed in logically separate parts. Each pattern constraint on a
simple type contributes to the set of allowed values for elements that are
based on the simple type. In other words, all the patterns are combined
using Boolean OR.

As with all value constraints, a simple type can inherit pattern constraints
from the simple type on which it is based. In this case, the set of pattern
constraints that are contributed by each ancestor type must be satisfied, as
well as the set that is contributed by the simple type itself. In other words,
the sets of pattern constraints from each level in the type hierarchy are
combined using Boolean AND.

Note: For the MRM domain, pattern constraints can be applied only to
simple types that are derived from xsd:string.

White space constraints
A white space constraint specifies how a parser should treat white space
for all elements that are based on the simple type.

Note: For the MRM domain, white space constraints are not applied.
Although the MRM physical formats allow white space to be
precisely controlled for each physical format that is defined for the
message, these physical properties are separate from the white space
constraint in the logical model, and are not used for validation
purposes.

Message model object identification:

Objects in the message model (elements, attributes, types, groups) are identified by
their name only.

This means that no two objects in the same scope are allowed to have the same
name. Name clashes can be avoided more easily if global objects are used only
when necessary. Local objects are not visible outside of the scope of their parent
object, so their names can be re-used without causing a name clash.

Namespaces
If namespaces are enabled for a message set, each message definition file
within the message set can specify a namespace. Namespaces are an XML
Schema mechanism for organizing groups of related objects into a named
’module’.

Global objects in different namespaces are allowed to share the same name.
Therefore, namespaces offer another means of avoiding name clashes
among global objects.

Developing message models 25



Valid names
Since the message model is based on the XML Schema language, the name
of every message model object must be a valid XML Schema identifier. For
information on what constitutes a valid XML Schema identifier, see XML
Schema Part 0: Primer.

For details about XML Schema, see XML Schema Part 0: Primer on the World Wide
Web Consortium (W3C) Web site.

Multipart messages:

A multipart message contains one or more other messages within its structure. The
contained message is sometimes referred to as an embedded message .

A multipart message must contain a group, or a complex type, with its
Composition property set to Message. This group or complex type can contain a
list of references to messages that are allowed to appear at that location in the
message structure, or it might be empty, allowing any message to appear. When a
message is parsed, only one message can appear in that position as an embedded
message.

Message envelopes: A common use of multipart messages is to define an outer
message with a fixed structure. This outer message is called the message envelope.
Within the message envelope a group or complex type is included, as described
above. Examples of message standards that can be modeled using this technique
are EDIFACT, X12, SWIFT, SOAP XML, SAP ALE IDoc, multipart MIME, and
RosettaNet.

Identifying the embedded message: When a multipart message is parsed, the parser
must be able to identify the embedded message; it might be any of the messages
that are referenced by the group or complex type, or it might be a message that is
not referenced by the group or complex type, perhaps from a different message set.
This is achieved using one of four techniques, Automatic, Message Identity, Message
Path, or Manual.

Automatic
Used when parsing XML messages, such as SOAP. The parser
automatically identifies and parses embedded messages using the tag in
the XML document.

Message Identity
Used by the MRM parser. See “Identifying an embedded message using a
Message Identity” on page 27.

Message Path
Used by the MRM parser. See “Identifying an embedded message using a
Message Path” on page 29.

Manual
Used by the MIME parser. The parser treats embedded messages as
BLOBs. If you want to parse the BLOB using another parser, you must do
so manually using ESQL, or Java, or a ResetContentDescriptor node.

Restrictions: Unless using the Manual identification technique, all embedded
messages must be of the same physical format as the outermost message, and have
the same character set and encoding.

26 Message Models

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/


When using the Automatic or Message Path identification techniques, all embedded
messages must be from the same message set as the multipart message.

Identifying an embedded message using a Message Identity:

This describes how you can identify an embedded message using the Message
Identity. Using the Message Identity to identify an embedded message is the
technique that replaces the use of the Message Key.

This technique is used by the MRM domain.

The Message Identity technique for identifying embedded messages is useful when
a multipart message has a format such as that shown in the diagram:

In this example, the Message Header and Message Trailer act as an envelope for
the message body. They typically have a fixed structure, although the Message
Body can be defined with many different structures.

A place holder for an embedded message is created by setting the Composition
property of the complex type or group of the Message Body element to Message.
This allows an embedded message to be added at this point within the outer
Message, creating a multipart message.

When using the Message Identity technique to parse such a multipart message, the
embedded message must be identified earlier in the Message Header using a
Message Identity element. This is a string element (or attribute) that precedes the
embedded message in the model and whose Interpret Value As property is set to
Message Identity.

When a multipart message is input to a message flow, the Message Identity
element should have a value that corresponds to either the Name or the Message
Alias of the next embedded message in the bit stream. This enables the MRM
parser to correctly identify the embedded message in the model.

For cases where the Message Identity element value does not match the Name of
the message, use the Message Alias property to specify this value. The MRM
parser tries to match on Name first, and if that fails, it tries to match on Message
Alias.

Once the MRM parser has encountered a Message Identity element, its value
applies to all embedded messages that are contained immediately within the
current message. This does not apply to embedded messages within embedded
messages; any embedded message must have its identity provided by a Message
Identity element within its immediate parent message.

If a second Message Identity element is encountered within the current message,
its value overrides any previously held. This enables different peer embedded
messages to exist within a given message.

Message Body

Message Identity

Message

Message Trailer

Message Header

Developing message models 27



Message Identity takes priority over Message Path. If both are specified then
Message Identity is used. You should only use one of these techniques for a given
multipart message.

Embedded messages defined in different message sets

By default, an embedded message is assumed to be defined within the same
message set as the current message. This can be overridden using a Message Set
Identity, which works in a very similar manner to a Message Identity.

An embedded message that is defined within a different message set must have its
message set identified earlier in the message using a Message Set Identity element.
This is a string element (or attribute) that precedes the embedded message in the
model and whose Interpret Value As property is set to Message Set Identity.

When a multipart message is input to a message flow, the Message Set Identity
element should have a value that corresponds to either the Identifier, Name, or
Message Set Alias of the message set that defines the next embedded message in
the bit stream. This enables the MRM parser to correctly identify the message set
to use.

If the Message Set Identity element value does not match the Identifier or Name of
the message set, use the Message Set Alias property to specify this value. The
MRM parser tries to match on Identifier first, then on Name, and finally on
Message Set Alias.

Once the MRM parser has encountered a Message Set Identity element, its value
applies to all embedded messages that are contained within the current message. It
also applies to embedded messages within embedded messages, unless an
embedded message also contains a Message Set Identity element.

If a second Message Set Identity element is encountered within the current
message, its value overrides any previously held. This enables peer embedded
messages to reside within different message sets.

The following example of an X12 message shows the use of both Message Identity
and Message Set Identity. The field that contains 004010X092 within the GS
segment on line 0002 holds the Message Set Identity as a Message Set Alias. The
207 on line 0003 in the ST segment is the Message Identity held as a Message
Alias. The embedded message is from line 0004 to 0015 inclusive.

Note: The line numbers and spaces at the beginning of each line are for illustrative
purposes only and do not exist in the actual message.

0001 ISA*00* *00* *30*12-3456789 *ZZ
*9876543-21 *000104*1820*U*00401*000000001*0*T*:!

0002 GS*HS*HOSP CLAIM*PAYER ADJDEPT*20000104*1820*1*X*004010X092!
0003 ST*270*1234!
0004 BHT*0022*13*10001234*19990501*1319!
0005 HL*1**20*1!
0006 NM1*PR*2*ABCCOMPANY*****PI*842610001!
0007 HL*2*1*21*1!
0008 NM1*1P*2*BONE AND JOINT CINIC*****SV*2000035!REF*N7*234899!
0009 N3*55*HIGH STREET!
0010 N4*SEATTLE*WA*98123!
0011 HL*3*2*22*0!TRN*1*93175-12547*9877281234!
0012 NM1*IL*1*SMITH*ROBERT*B***MI*11122333301!

28 Message Models



0013 REF*1L*599119!
0014 DMG*D8*19430519*M!
0015 DTP*472*RD8*19990501-19990515!EQ*30**FAM!SE*17*1234!
0016 GE*1*1!IEA*1*000000001!

Physical format considerations

Both Message Identity and Message Set Identity are applicable to all physical
formats. Versions of the TDS physical format prior to Version 6.0 included
embedded message identification by Message Key, which worked in a similar
manner to Message Identity. Message Key has been deprecated and is superseded
by Message Identity.

Identifying an embedded message using a Message Path:

The Message Path technique for identifying embedded messages is useful when
the multipart message contains no information about the identity of an embedded
message.

This technique is used by the MRM domain.

In the diagram, the Message Header and Message Trailer act as an envelope for the
message body. Typically, they have a fixed structure, but the Message Body can be
defined with many different structures.

A place holder for an embedded message is created by setting the Composition
property of the complex type or group of the Message Body element to Message.
This allows an embedded message to be added at this point within the outer
message, creating a multipart message.

When using the Message Path technique to parse such a multipart message, the
embedded message must be identified by a fixed path to the innermost message
from the outermost message. For this example, this would be:
Message/Message Body

If the path to the innermost message contains intermediate elements, these
intermediate elements must also be included in the path. In the following example,
these elements are shown in bold:
Message/Data1/Data12/Message Body

This technique can be used to identify nested embedded messages as well, by
simply extending the path. For example:
Message/Data1/Data12/Message Body/Data2/Inner Message

The path is specified using one or both of two properties, the Message Type
property of a WebSphere Message Broker input node (or MQRFH2 header) and the
Message Type Prefix property of the containing message set. These two properties
are combined to produce a final path that is used to locate embedded messages.

Message Body

Message

Message Trailer

Message Header

Developing message models 29



Message Identity takes priority over Message Path. If both are specified, Message
Identity is used. Use only one of these techniques for a given multipart message.

You cannot use the Message Path technique to identify multiple peer embedded
messages.

Embedded messages defined in different message sets

This option is not supported by the Message Path technique.

Physical format considerations

The Message Path technique is applicable to all physical formats.

Cardinality: optional, repeating and mandatory elements:

The number of occurrences of an element can be controlled using the properties
Min Occurs and Max Occurs. Using these properties, an element can be defined as
mandatory, optional or repeating.

Elements: A mandatory element has Min Occurs>= 1. A mandatory element must
occur at least once in an input message.

An optional element has Min Occurs = 0. An optional element can be omitted from
the input message.

A repeating element has Max Occurs> 1 or Max Occurs=-1, which indicates that an
unlimited number of repeats are allowed. A repeating element can occur more than
once in the input message, and all the occurrences must appear together without
any other elements between them.

If a complex type or a group contains two, or more, members that refer to the
same element, the second reference is a duplicate. This is different from a repeating
element, because the two references are typically separated by other members of
the type or group. In the input message, the second occurrence typically does not
appear immediately after the first occurrence. Duplicate element references are not
allowed within types and groups that have compositions of Choice, OrderedSet, or
UnorderedSet.

Attributes: The number of occurrences of an attribute can be controlled by setting
it to required, optional or prohibited.

A required attribute is similar to a mandatory element - it must occur in the input
message.

An optional attribute is similar to an optional element - it can be omitted from the
input message.

A prohibited attribute must not appear in the input message.

An attribute is not allowed to repeat, and duplicate attribute references are not
allowed within an attribute group.

Predefined and self-defining elements and messages:

30 Message Models



An instance element is predefined if it is possible for the parser to find a matching
element definition in the message model with an appropriate set of properties and
in the correct context. Otherwise, it is self-defining. Similarly, an entire message is
self-defining if no corresponding message is present in the message model.

Self-defining elements can only be used when the physical format of the message
is a tagged format such as XML or TDS. If your physical format is fixed-length (C
or COBOL records) or untagged delimited (for example, comma separated), you
must ensure that your message model defines every message and every element
that needs to be parsed.

If you have chosen not to model your messages, or if no message sets have been
deployed to the broker, all messages and elements are self-defining. In this
situation, you cannot use message definitions to influence the parsing and writing
of elements; the self-defining elements are parsed and written according to the
default behavior of the parser and writer.

Self-defining elements, and all elements within a self-defining message, are not
validated against value constraints, and any missing fields are not assigned default
or fixed values, and all data is assumed to be string type.

However, if an element can be matched against the message model, the parsing
and the writing of the element is guided by the logical and physical formats that
have been defined. This provides a range of benefits, all of which arise from the
information that is provided to the broker through the message model.

Substitution groups in the message model:

Substitution groups are an XML Schema feature that provides a way of substituting
one element for another in an XML message.

A substitution group is a list of global elements that can appear in place of another
global element, called the head element.

A substitution group is defined by setting the substitution group property on one
global element (the member element) to point at another global element (the head
element). This adds the member element to the substitution group of the head
element.

Tip: If your messages are never rendered as XML, or if you have a simple message
model, use a complex type or a group with Composition set to Choice,
instead of using substitution groups.

Elements

Head elements
A head element is simply an element that can be substituted. When a
message is parsed, one of its member elements can appear in place of the
head element without causing a validation error.

Abstract elements
An abstract element is a head element which must be substituted. The
’abstract’ attribute on the element indicates this. Typically, abstract
elements have other elements in their substitution group - otherwise they
are of little use. Wherever an abstract element appears in a message
definition, a member of its substitution group must appear instead.

Developing message models 31



Attributes

The block attribute on elements
The block attribute on an element limits the set of global elements that can
substitute for the element. The block attribute can take any subset of the
values restriction, extension, substitution, or all.
v If the block attribute contains restriction, an element that is based on a

restriction of the element’s type cannot substitute for the element.
v If the block attribute contains extension, an element that is based on an

extension of the element’s type cannot substitute for the element.
v If the block attribute contains substitution, an element that is a member

of the element’s substitution group cannot substitute for the element.
v If the block attribute contains all, all of the above limits apply.

The final attribute on elements
The final attribute on an element limits the set of global elements that can
be a member of the element’s substitution group. The final attribute can
take any subset of the values restriction, extension, or all.
v If the final attribute contains restriction, an element that is based on a

restriction of the element’s type cannot be in the substitution group of
the element.

v If the final attribute contains extension, an element that is based on an
extension of the element’s type cannot be in the substitution group of
the element.

v If the final attribute contains all, both of the above limits apply.

The block attribute on complex types
The block attribute on a complex type limits the set of other types that can
substitute for that type. The block attribute can take values restriction,
extension, or all. The meanings for these values are the same as those
shown for the block attribute on an element above. An element that is a
member of a substitution group can only substitute for the head element if
its type is compatible with the block attribute on the type of the head
element.

Default block and final attributes
A default for the block and final attributes can be set at the message
definition file level. If a default for one or both of these attributes has been
set and the relevant block or final attribute has not been set at the object
level, the default setting is used for that object. You can override the
default setting at the object level.

Message categories
Message category files have the suffix .category. These files are optional. You can
have many message category files in a message set.

A message category provides another way of grouping your messages, perhaps for
documentation or convenience purposes, or for assisting in the generation of Web
Services Description Language (WSDL) files.

A message set category file is created using the New Message Category File
wizard.

When you have created your message category file, you must specify one key
property.

32 Message Models



Message Category Kind
This indicates whether the message category is to participate in the
generation of WSDL files. See “Generate WSDL” on page 79.

You can then add messages to the message category file. If the message category is
to participate in WSDL generation, you should assign appropriate values to the
Role Name and Role Type properties of each member message.

Message category identification: The name of a message category is provided by
the name of the .category file. You can change the message category name by
renaming the file.

Namespaces in the message model
Namespaces provide a method to qualify object names.

XML instance documents and XML Schemas can use namespaces.

A single XML instance document can contain elements and attributes that are
defined for, and possibly used by, multiple applications. Two different elements or
attributes within the same document might require the same name. Individual
applications need to be able to recognize the elements and attributes that they are
designed to process. In circumstances such as this, the definitions can be
distinguished from each other by qualifying each element with a different
namespace. This avoids problems of name collision and mistaken recognition.

XML Schemas can define a target namespace. Global elements, attributes, groups
and types that are defined within an XML Schema are qualified by the target
namespace, if it has been defined. Optionally, local elements and attributes can also
be qualified by the target namespace. Therefore, namespaces assist in the
development of a library of XML Schemas that can be developed independently. If
the namespace name that is used for an XML Schema is unique, you do not have
to be concerned about name clashes with objects that are defined within other
XML Schemas.

The scope of a namespace extends beyond that of its containing document and is
identified by a Uniform Resource Identifier (URI). In order to serve its purpose, a
URI must be unique. You might be more familiar with the concept of a Universal
Resource Locator (URL). URIs often use the same syntax as URLs, but the URI
definition is broader than the specification of a URL. This is an example of a URI:
http://mycompany.com/xml_schema

A namespace prefix is declared as a shorthand for the full URI name and this is
used to qualify all elements that belong to that namespace. The prefix to be
substituted for a namespace in an XML instance document or XML Schema is
specified using an xmlns attribute. A default namespace can also be defined using
an xmlns attribute. If a default namespace is defined, any element or attribute with
no prefix is qualified with the default namespace. If no default namespace is
defined, any element or attribute with no prefix is not qualified by a namespace.

The message model
The message model provides the ability to support namespaces within
message sets. However, you can choose whether you want to enable or
disable namespaces for your message set. If you choose to disable
namespaces when you create your message set, you can enable namespaces
later. However, when you have enabled namespaces for a message set you
cannot disable namespaces.

Developing message models 33



A single message set which has namespaces enabled can contain a number
of different namespaces. Each namespace is represented by a different
Message Definition File. When you create a Message Definition File, you
can choose whether it is to have an associated namespace, or whether it is
be in the notarget namespace. If you choose to associate a namespace with
a Message Definition File, you must also choose a prefix.

If the Message Definition File has an associated namespace, the following
global objects are qualified with the namespace:
v Elements
v Attributes
v Simple Types
v Complex Types
v Groups
v Attribute Groups

Optionally, local elements and attributes can be qualified with the
namespace.

Objects that are defined within a Message Definition File can reference
objects in other Message Definition Files within the same message set. To
do this, import or include one Message Definition file within another
Message Definition File.

Message parsing and message flows
WebSphere Message Broker parsers that are namespace aware recognize
prefixed names in the XML messages that they parse, and internally map
these to the correct namespace. Elements and attributes can be either
qualified or not qualified with a namespace, as discussed in the message
model section.

If you are using XML format in the MRM domain, elements or attributes
are matched, based on the namespace in the dictionary when the parsed
message is matched against the dictionary that is generated from the
message model. Therefore, for an element or attribute in a message to
match with the dictionary, both its name and its namespace must match.

If you are using the DataObject domain, the SOAP domain, or the
XMLNSC domain (in validating mode), elements or attributes are matched,
based on the namespace in the XML Schema when the parsed message is
matched against the XML Schema that is generated from the message
model. Therefore, for an element or attribute in a message to match the
XML Schema, both its name and its namespace must match.

Support is provided that allows you to specify namespaces when writing
ESQL or Java. It is not necessary to write ESQL or Java that is namespace
aware if you are not using namespaces. However, if you decide to use
namespaces, your message definition files can target any namespace that
you choose, and it is necessary to write namespace-aware ESQL or Java.
The namespace in which an element resides is stored in the message tree
when parsed. This is a logical property and it is held regardless of the
physical wire format in which messages are parsed and written. Syntax has
been added to ESQL to make it easy to reference element’s namespaces
using defined prefixes. In Java, XPath expressions are used to reference
elements.

34 Message Models



Importing from other formats
The message model allows you to create Message Definition files from
other formats by importing them into the Message Broker Toolkit.
v If you import an XML DTD file, the Message Definition File that is

created is in the notarget namespace.
v If you import an XML Schema file, the target namespace of the created

Message Definition File depends on whether namespaces have been
enabled for the message set.
– If namespaces are enabled, the target namespace of the Message

Definition File that is created is the target namespace of the XML
Schema that is being imported.

– If namespaces are disabled for the message set, the created Message
Definition File is in the notarget namespace. This type of import does
not provide full namespace support. If you are using WebSphere
Message Broker, you do not have to write namespace-aware ESQL or
Java to process an XML message that is parsed against the dictionary
that is generated from this message model. For reasons why you
might want to do this, see “Importing XML Schema into message sets
with namespaces disabled” on page 69

v If you import a COBOL Copybook or a C Header file, the target
namespace of the created Message Definition File depends on whether
namespaces have been enabled for the message set.
– If namespaces are enabled, the target namespace of the Message

Definition File that is created is the notarget namespace. This default
namespace can be overridden by specifying a target namespace in the
New Message Definition File wizard. For reasons why you might
want to do this, see “Namespaces with MRM non-XML messages” on
page 36.

– If namespaces are disabled for the message set, the Message
Definition File that is created is in the notarget namespace

Further information about XML: On the World Wide Web Consortium (W3C)
Web site, see:
v Extensible Markup Language (XML)
v XML Schema Part 0: Primer
v Namespaces in XML

Namespaces with MRM XML messages:

The namespace that is associated with a message definition file is part of the
logical layer of the message model.

Therefore, it is not dependent on an XML Wire Format being present. However, if
you have an XML Wire Format, the namespace information from the logical layer
is used to populate some of the properties of the XML Wire Format. If namespaces
are enabled for a Message Set, in the XML Wire Format, a table of namespace
URI/prefix pairs is maintained. This table is initially populated with the
namespaces of all of the Message Definition Files with their prefixes when they
were created.

If your message set has namespaces enabled, the broker does not store the values
of any xmlns attributes in the tree when it parses an XML instance document. It
also does not store the values of any Schema Location and No Namespace Schema

Developing message models 35

http://www.w3.org/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/REC-xml-names/


Location attributes. When an XML document is written out, the broker regenerates
this information from the properties of the XML Wire Format of the message set.

The table of namespace URI/prefix pairs is used by the MRM Domain when it
outputs an XML message. Elements and attributes that are qualified by a
namespace are prefixed with the corresponding prefix from the table. The broker
also manages the output of the corresponding xmlns attributes that map the
prefixes to namespaces. You can choose whether xmlns attributes for all of the
entries in the namespace URI/prefix table are output at the start of the document,
or whether they are only output in the document when required.

If namespaces are enabled for a Message Set, in the XML Wire Format there is a
table of schema locations that map namespace URIs to file names. You can add
entries to this table and you can map a file name to the notarget namespace. If you
are using WebSphere Message Broker, this table is used to output schemaLocation
and No Namespace Schema Location attributes at the start of the XML document.

Namespaces with MRM non-XML messages:

The use of namespaces by WebSphere Message Broker is not necessarily limited to
XML message models.

There is one scenario where the use of namespaces by non-XML message models
can simplify the ESQL or Java code that you write. But before describing this
scenario, it is important to understand that the MRM parser, when parsing
messages that are defined in a Message Definition File that has a target namespace,
produces a logical message tree that contains both name and namespace
information. It does this regardless of the physical format of the message. For
non-XML (CWF or TDS) messages, the namespace is obtained from the Message
Definition file.

Consider a transformation scenario where a message from a COBOL application
requires to be transformed into namespace-aware XML; for example, a SOAP XML
message. The transform must map the logical message tree that was created for the
COBOL message to a logical message tree that matches the XML message. If the
COBOL message tree does not contain namespace information, each mapping from
a COBOL field to an XML element must set the namespace for the XML element.
However, if the COBOL message tree already contains the required namespace
information, this mapping is much simpler.

To enable the MRM parser to create namespace information in a message tree that
was created from a CWF or TDS message, you need to specify a target namespace
for the Message Definition File. This must be done as part of the Message
Definition File creation process; you cannot do this after the file has been created.
There are two ways to specify a target namespace. For each of these, make the
target namespace of the Message Definition File the same as the target namespace
of the XML message into which the non-XML message is being transformed.
v If you are creating your non-XML message model by hand in the message editor,

use the New Message Definition File wizard to specify a target namespace.
v If you are importing from COBOL or C, use the New Message Definition File

wizard, or the mqsicreatemsgdefs command options file, to specify a target
namespace.

When dealing with both the message tree for the non-XML message and the
message tree for the XML message, the ESQL or Java code that you write to
perform the transformation must be namespace aware.

36 Message Models



Specifying namespaces in the Message Type property:

When using the MRM domain, the Message Type property is used to specify the
name of the message.

The format of a simple message type is {namespace-uri}:name where name is the
name of the message, and namespace-uri. identifies the namespace. The namespace
must be the full URI specification and must be enclosed in braces.

The format {namespace-uri}name (that is, with no colon) is also valid. This
maintains compatibility with previous versions of the broker product.

If you omit {namespace-uri}, the first match for the name that is found in the
model is used. You can do this if namespaces are not enabled for the message set,
or if a name is unique within a message set. However, if a name is not unique, you
must specify the namespace to be sure that the correct match is made in the model.

The following are examples of message types:
v A simple message type for a message in a real target namespace:

{http://www.ibm.com/space}:name

v A simple message type for a message in the notarget namespace: {}:name
v A simple message type for a message in a message set that does not support

namespaces: name

When identifying an embedded message using a message path, a message type
path would be entered as A simple message type for a message in a real target
namespace: {http://www.ibm.com/space}:name

The same name can occur in more than one namespace. To specify that a name is
to be qualified with a specific namespace, the name must be prefixed with the
namespace within the Message Type.

For example a Message Type with a single name would be entered as:
{http://www.ibm.com/space}:id/.../{http://www.ibm.com/space}:name

Reusing message definition files:

One Message Definition File can reuse message model objects defined in another
Message Definition File.

There are two mechanisms that XML Schema provides to do this: import and
include. The namespaces of the two files determine which of import or include
should be used:

Target file has a target
namespace

Target file has notarget
namespace

Parent file has a target
namespace

xsd:import xsd:include1

Parent file has notarget
namespace

xsd:import xsd:include

Note: When a target namespace file includes a notarget namespace file, referencing
an object in the target file from the parent file causes the object to appear in
the namespace of the parent file.

Developing message models 37



When import or include are used, global objects from the target file can be used in
the parent file. For example, an element in the parent file can be given a complex
type defined in the target file.

The namespace of objects in the target file is preserved in the parent file, with the
exception noted in the previous table of a target namespace file that includes a
notarget namespace file. This exception is sometimes called the chameleon
namespace effect.

Chameleon namespaces have limited support when used with the MRM domain.
When referenced in the parent file, the objects in the target file appear in the
namespace of the parent file, but they are assigned default physical format
information. In other words, physical format information defined in the target file
is not available for use in the parent file. Only use Chameleon Namespaces in the
MRM domain to model XML messages if physical format information has not
changed from the default.

XML Schema provides a variation of xsd:include called xsd:redefine, which is not
supported by WebSphere Message Broker. Using xsd:redefine gives a task list error.
A Quick Fix is offered to convert occurrences of xsd:redefine into xsd:include.

Message model integrity
When you create your model, it is important that it is internally consistent and is
capable of being generated into the form that you want; for example, a message
dictionary or an XML Schema document.

To assist with this, whenever you save a message set file, it is validated as follows:

Logical validation
This validation ensures that the logical model is correct. For message
definition files, this involves ensuring that the rules of XML Schema have
been correctly followed.

Physical validation
This validation ensures that any physical formats that you have specified
for your model have been correctly populated. There is a set of checks for
each of the MRM domain physical formats - CWF, XML and TDS. This
ensures that the MRM parser can parse and write messages that conform
to your model.

Once validation has taken place, any errors or warnings are shown in the
task list. Double clicking on a task list entry opens the file and positions
the editor at the object in error. Organize the task list so that errors are
shown before warnings. In this way, errors are not hidden. The task list
provides a comprehensive filtering capability if you want to hide low
priority warnings, or warnings that you are know about and are
comfortable with.

The generation of a message dictionary or an XML Schema is prevented if
any errors are present. The presence of warnings alone does not prevent
generation, but high priority warnings must be reviewed because a model
that generates such warnings might be incomplete.

Where task list warnings or errors occur, these are listed in the Problems view of
the Broker Application Development perspective. While a majority of these require
you to manually investigate and resolve them, a number of warnings and errors
that meet specific criteria can be repaired using a quick fix process.

38 Message Models



Physical formats in the MRM domain
Each message definition file describes both the logical structure of your messages,
and the physical formats that describe the precise appearance of your message bit
stream during transmission.

If you are using the MRM domain or the IDOC domain, physical format
information must be provided, as it tells the parser exactly how to parse the
message bit stream.

You can think of a message as a packet of data that is sent from one place to
another. The sender and receiver of the message will have agreed the structure of
the message and what each field in the message means. This is the platform and
protocol independent logical structure.

The sender and receiver will have also agreed on the physical representation of the
message, how the data is physically laid out on the wire. For example, if you
define a message that conveys information about a debit of an individual’s bank
account, it can be represented in different physical forms (examples are XML, or a
fixed structure such as a COBOL copybook). The meaning and data is the same in
both cases: only the physical layout has changed.

If you are using the MRM domain, you can model a variety of different physical
representations using named physical formats.
v Use the Custom Wire Format (CWF) physical format to model fixed format

messages from applications that are written in C, COBOL, PL/1 and other
languages. This support includes the ability to create a message model directly
from a C header file or COBOL copybook.

v Use the Tagged Delimited String Format (TDS) physical format to model
formatted text messages, perhaps with field content identified by tags or
separated by specific delimiters or both. This support is rich enough to model
industry standards such as SWIFT, EDIFACT and X12.

v Use the XML physical format to model XML messages, including those that
exploit XML namespaces. This support includes the ability to create a message
model directly from an XML DTD or XML Schema file.

Different physical representations
The following example shows how a very simple logical message can have
different physical representations.

The logical model defines the structure and order of the message. In the following
example, the three fields are simple integers, and C follows B, which follows A:
int A;
int B;
int C;

v A typical Custom Wire Format representation for this logical message would be
12 bytes of data, with each of A, B and C occupying 4 bytes. Alternatively,
perhaps A is 4 bytes long, but B and C are only 2 bytes long. You supply the
precise physical information for each field in the message as CWF properties.

v TDS allows several different representations to be modeled. Each integer could
be preceded by a tag to identify it and a delimiter to terminate it, as follows:
{A_tag:xxxxxxxx;B_tag:xxxxxxxx;C_tag:xxxxxxxx}

An alternative might rely on the data being ordered so only the terminating
delimiter needs to be specified, as follows:

Developing message models 39



[xxxxxxxx;xxxxxxxx;xxxxxxxx]

You supply the precise identification regime as TDS properties.
v A typical XML representation of this model is as follows:

<Msg><A>xxxxxxxx</A><B>xxxxxxxx</B><C>xxxxxxxx</C></Msg>

where xxxxxxxx is the value of the integer represented as a string (XML deals
only with strings). An alternative representation might be:
<Msg A="xxxxxxxx" B="xxxxxxxx" C="xxxxxxxx"/>

where the values of the integers are stored as XML attributes rather than XML
elements. You supply the precise XML rendering for each field in the message as
XML properties.

This shows that the logical model is unchanged. It is constant, regardless of the
physical representation that you choose to model on top of it, using the physical
format support provided by the MRM domain. The MRM parser is able to
transform the message from the input physical representation to any number of
output representations, based on the physical format layers that you have defined.

Creating physical formats
When you have created your message set, you can create physical formats. You do
this using the Message Set Editor. When you next save the messageSet.mset file,
any new physical formats are added to all the objects in all the message definition
files in that message set.

The next time you edit an object in a message definition file, you see the physical
formats in the properties hierarchy pane of the Properties tab. If you click on a
physical format for an object, you are presented with a property sheet where you
can enter the information for that physical format for that object.

Not all objects have properties in all physical formats. For example:
v CWF properties only apply to local elements and attributes, and element and

attribute references.
v Complex types and groups only have TDS properties.
v Messages only have XML properties.

These differences occur because of the different nature of each physical format, and
are explained in more detail in the section for each physical format.

There is no limit to the number of physical formats you can create in a given
message set. However there are some recommendations that apply if you want to
mix physical formats of different kinds in the same message set.

Physical formats can be deleted if no longer required.

MRM Custom Wire Format
Custom Wire Format (CWF) is the physical representation of a message that is
composed of a number of fixed format data structures or elements, which are not
separated by delimiters.

Within a CWF messaging environment, it is not possible to distinguish one element
from the next without knowledge of the message structure. To correctly determine
the values of individual elements, the following information must be made
available to the message parser:

40 Message Models



v The order (this is defined in the logical properties)
v The length (can be specified in bytes, characters or character units)
v The cardinality (that is, the number of repeats)
v The type of data contained in each element (this is partly defined in the logical

properties but can be further qualified in the CWF physical format)
v A number of characteristics based upon the logical type of the data

A CWF physical format is typically used to describe messages which are mapped
to a C structure, a COBOL copybook or other programming language data
structure definition.

You can add more than one CWF physical format to a message set, but within that
message set, each physical format must have a unique name. When parsing a CWF
message using the MRM parser, the physical format name specifies the physical
properties that are to be used by the parser.

Adding a CWF physical format to a message set allows you to process input
messages and construct output messages in this format. Messages can be
transformed between CWF and the other physical representations (for example
TDS or XML). Note that while the other physical representations support
self-defining elements (that is elements which do not have a definition in the
logical model) within the MRM domain, the parsing of a CWF message does not.
Consequently, any such self-defining elements are discarded during the output of
messages in CWF format.

Custom wire format: Message model integrity:

When you save a message definition file, the definitions that it contains are
checked to ensure that they make sense and provide sufficient information about
the message. This action is called model validation.

The CWF physical format depends on fixed format data structures. Therefore, the
majority of tests that are applied to a CWF message confirm that each fragment of
a message - and therefore, the message as a whole - has a well-defined length.
Therefore, these tests examine properties such as Length, Length Reference and
Length Units.

Typically, one or other of Length and Length Reference must be set. If Length
Reference is set, it must refer to an element that is of simple type integer and that
appears earlier in the message than the current item.

Tests other than these tend to be both simple and obvious so that, for example, the
message set property First Day of Week has to be the name of a day in the week.

The fact that CWF relies on fixed format data structures also imposes some
limitations on the messages that can be represented:
v CWF cannot represent a message that includes the use of XML Schema wild

cards; this is a consequence of its inability to handle undefined content.
v CWF cannot represent a message that includes recursive definitions.
v CWF cannot represent a message that includes the use of substitution groups,

because there is no way to recognize the substituted element.

Custom wire format: NULL handling:

Developing message models 41



CWF supports the handling of explicit NULL values within messages, provided
that the logical nillable property of the element is set.

An explicit null is identified by a specific value that identifies an element as being
null.

The Boolean Null Value can be specified at the message set level, and applies to
the Boolean elements of all messages that are defined in that message set. The null
value of all other element types can be specified individually for each element.

CWF supports the representation of null values using the Encoding Null and
Encoding Null Value element properties. Together, this information controls how
null values are handled by the MRM parser.

The Encoding Null property can be set to one of four values:

NullLogicalValue

The Encoding Null Value property is interpreted as a logical value.
Therefore, if its value is set to 0, for example, both 0 and 0.00 are
interpreted as null values.

NullLiteralValue

The Encoding Null Value property is interpreted as a string value.
Therefore, the value of the element in the bit stream must match exactly
the value that is specified to be interpreted as a null value.

NullPadFill

This should be used for fixed length elements. On output, any element
with a null value is padded to the appropriate length with the specified
padding character.

NullLiteralFill

The Encoding Null Value property is interpreted as a single character
string value. Therefore, each character of the value of the element in the bit
stream must match exactly the character value specified to be interpreted
as a null value.

Custom wire format: Multipart messages:

The Custom Wire Format (CWF) supports both the Message Identity technique and
the Message Path technique of identifying embedded messages within a multipart
message.

Alternatively, you can resolve an embedded message by using ESQL or Java to
identify the message. The first message that you reference in this way is assumed
to be the selected message. This technique works in an identical manner to
unresolved choice handling.

Custom wire format: Data Conversion: The Custom Wire Format supports the
conversion of data to a different code page (for string simple types) or encoding
(for numeric simple types), or both.

A message set contains properties to enable the character (CCSID) and numeric
encoding (Byte Order / Float Format) information to be specified. If you generate a
message dictionary for deployment to a WebSphere Message Broker, then this

42 Message Models



information can be overridden using the appropriate fields of the WebSphere MQ
message header, or other transport header.

Custom wire format: relationship to the logical model:

There are some restrictions in relation to the logical model for messages that are
defined using the CWF.

Composition: A CWF message is always written with the elements in the sequence
that is specified in the logical message model definition. However, you do not
always have to specify the ESQL or Java that builds the elements in that sequence.
The following rules for coding ESQL are given for each value of the type
Composition property.

Sequence
You must build the output message to match the sequence of the elements
or groups in the message. You can normally do this using ESQL SET
statements to assign a value to each element or type. The first SET
statement sets the value of the first element or type in the message, the
second SET statement sets the value for the second element or type, and so
on. You can vary this sequence of statements using ESQL ATTACH,
CREATE, and MOVE statements.

If the elements or types have default values, and you do not build the
message in the correct sequence, those elements that are built out of
sequence contain their default values, not the values that you set. This is
because elements that are built out of sequence are assumed to be
self-defining and, for CWF, these are discarded when the message is
written to the bit stream.

Ordered Set
You must build the output message to match the sequence of the elements
in the message. You can normally do this using ESQL SET statements to
assign a value to each element. The first SET statement sets the value of
the first element in the message, the next SET statement sets the value for
the second element, and so on. You can vary this sequence of statements
using ESQL ATTACH, CREATE, and MOVE statements.

If the elements have default values, and you do not build the message in
the correct sequence, those elements that are built out of sequence contain
their default values, not the values that you set. This is because elements
that are built out of sequence are assumed to be self-defining and, for
CWF, these are discarded when the message is written to the bit stream.

Unordered Set
You can build elements of the output message in any sequence. On output,
the elements are written in the order that is specified in the logical
message model definition.

All You can build elements of the output message in any sequence. Each
element must only be present once (that is, it must not repeat). On output,
the elements are written in the order that is specified in the logical
message model definition.

Choice
A choice cannot be resolved purely from the data. The receiving program
must interpret the data and decide which option of the choice the message
instance contains. This process is known as unresolved choice handling. The
first reference in the application to any one of the choice elements resolves
the choice to the option that contains that element.

Developing message models 43



Message
Mechanisms for the resolution of embedded messages are discussed in the
“Custom wire format: Multipart messages” on page 42 topic.

Content validation: CWF is a fixed format, and all elements must be present in a
message. Therefore, content validation is ignored. On output, all elements must be
set explicitly (for example, using ESQL SET), set implicitly (using a tree copy
function), or must have a default value defined.

Default values: On output of a CWF message in the MRM domain, any element, or
occurrence of an element for which a value has not been set (either explicitly or
implicitly), inherits the element’s specified default value. If no default value has
been specified then an exception is thrown.

Min Occurs and Max Occurs: The logical properties Min Occurs and Max Occurs
specify the permitted number of occurrences of an element, or group, in a message.
These properties are used when parsing and writing messages, and when
validating the content of a message.

In CWF, Max Occurs occurrences are expected when parsing, and Max Occurs
occurrences are output when writing. Default values are used for missing elements,
and any excess elements are discarded.
v A varying number of occurrences (Min Occurs <> Max Occurs) is ignored, Max

Occurs is assumed.
v Optional occurrence (Min Occurs = 0) is ignored, Max Occurs is assumed.
v Always absent (Max Occurs = 0) is allowed.
v An unbounded number of occurrences (Max Occurs = -1) is allowed if the

element or group is the last child in its parent group, and the group is
terminated by the end of the message bit stream. On writing, the writer outputs
all occurrences in the message tree, if this number is less than Min Occurs then
additional default values are written.

These rules arise because, in a CWF message format, there are no tags or other
markup that can be used to determine the end of a variable number of repeats.

However this behavior is overridden if the CWF property Repeat Reference is set,
which indicates that the number of occurrences is given instead by an integer
element that occurs earlier in the message. In this case Max Occurs is ignored.

When validating, Min Occurs and Max Occurs are both used to check that the
content of the message tree matches the model.

Simple types – lists and unions: Lists and unions are XML-specific concepts. An
element or attribute of a simple type that is a list or a union will cause a task list
warning if a CWF physical format is present in the message set. The user can
choose whether to make this an error, warning, or information by editing the
Validation preferences. The dictionary generator will omit messages defined to
contain such elements or attributes from the CWF section of the dictionary.

MRM TDS format
The Tagged/Delimited String format (TDS) is the physical representation of a
message that has a number of data elements separated by tags and delimiters.

The TDS physical format is designed to model messages that consist of text strings,
but it can also handle binary data. Examples of TDS messages are those that

44 Message Models



conform to the ACORD AL3, EDIFACT, HL7, SWIFT, or X12 standards. The TDS
physical format allows a high degree of flexibility when defining message formats,
and is not restricted to modeling specific industry standards; therefore, you can use
the TDS format to model your own messages.

TDS message characteristics: There are a number of features of text string
messages that are common to many formats. This is an overview of the main
features that are supported by the TDS physical format:

Tags The text strings in the message can have a tag or a label preceding the data
value. The tag is a string that uniquely identifies the data value. The TDS
format allows you to associate a tag with each element when you define
the element.

Delimiters and tagged data separators
The message can contain various special characters or strings in addition to
the tags and text string data values. The TDS format supports a number of
different types of special characters or strings.

Some messages have a special character or string that separates each data
value from the next. In the TDS format this is a known as a delimiter.

In formats that have a tag before each data value, the tag can be separated
from its data value by a special character or string. In the TDS format this
is known as a tag data separator.

Group indicators and terminators
A message can be split into a number of substructures in a similar manner
to a COBOL or C structure. You can model each of these substructures
separately by defining groups, complex types or elements for each one.

A substructure can have a special character or string that indicates its start
within the data. This is known in the TDS format as a group indicator.

A substructure can also have a special character or string that indicates its
end in the data. In the TDS format, this is known as a group terminator.

A group indicator and group terminator can also be defined for the whole
message. Group indicators and group terminators are optional for the
message and each substructure.

Fixed length strings
Some text strings within a message can be of fixed length; therefore, a
delimiter between each data value is not necessary. This is supported by
the TDS format.

Fixed length tags
Some tags can be defined as fixed length; therefore, a tag data separator is
not necessary.

Separation types
The TDS property that controls the way text strings are separated is Data
Element Separation. It has several options that let you choose, for example,
whether tags are used, whether strings lengths are fixed or variable, and
what types of text strings are permitted.

The substructures within a message can use different types of data element
separation and use different special characters. Therefore the TDS format
allows you to define different types of data element separation and special
characters for each complex type within the message.

Regular Expressions
If you choose the Use data pattern option for Data Element Separation,

Developing message models 45



you can use regular expressions to identify parts of the message data to be
assigned to sub-fields. This is done by setting the regular expression in the
Data Pattern property.

The diagram below shows an example data message with each of its components
labeled.

v At the top level, each data value has a tag associated with it, each tag is
separated from its data value using a tag data separator of colon (:), and the data
values are separated from each other using the asterisk delimiter (*).

v The group indicator for the message is the left brace ({) and the group terminator is
the right brace (}).

v The data values Data2 and Data3 are in a substructure in which there are no
tags, and each data element is separated from the next using the plus delimiter
(+). The group indicator for this substructure is the left bracket ([) and the group
terminator is the right bracket (]).

v The data values Data4 and Data5 are in a substructure in which the values are
fixed length, and are therefore not separated by a delimiter. The group indicator
for this substructure is the less than symbol (<) and the group terminator is the
greater than symbol (>).

TDS format: Determining the length of simple data values:

The TDS format supports two categories of simple data types: textual and
non-textual.

The Physical Type of an element determines whether it is categorized as textual or
non-textual.

Textual data
Physical Type is either Text or TLOG Specific. For textual data, the Data
Element Separation of the parent complex type or group determines how
the length of the data is determined. See “TDS format: Data element
separation” on page 47 and its subtopics.

Non-textual data
Elements of all other Physical Types are non-textual. The length of
non-textual data is determined by the Physical Type of the element. For
non-textual data, the Data Element Separation property of the parent
complex type or group does not determine the length, unless Data Element
Separation is Use Data Pattern. See “TDS format: Data pattern separation
types” on page 56 for more information.

{Tag1:Data1*Tag2:[Data2+Data3]*Tag3:<Data4Data5>}

Tag
Separator

Data Tag
Separator

Data Tag
Separator

Data

Delimiter DelimiterDelimiter

Tag TagTag

Group
Indicator

Group
Indicator

Group
Indicator

Group
Terminator

Group
Terminator

Group
Terminator

46 Message Models



The following table describes how the length of data is determined for
each Physical Type.

Physical Type Determination of Length

Text
TLOG Specific

The Data Element Separation of the parent
complex type or group determines how the
length of the data is determined.

External Decimal
Integer
Packed Decimal
Float
Time Seconds
Time Milliseconds

Uses the value of the Length property of the
element.

If Physical Type is Time Seconds, the Length
property is set to 4. If Physical Type is Time
Milliseconds, the Length property is set to 8.
In neither case can this value be changed.

Length Encoded String 1
Length Encoded String 2

Uses the encoded length value in the data.

Null Terminated String Uses the null terminator at the end of the
data.

Binary Uses the value of the Length Reference or
Length property of the element.

TDS format: Data element separation:

Data element separation defines how a TDS message is to be parsed.

Data element separation defines which method of identifying data elements is to
be used and how the data elements are constructed. The different methods vary
from full flexibility to fixed format, depending on how they are defined.

The four main types of data element separation are:

Fixed length types
Fixed length types are dependent on each element having a length. See
“TDS format: Fixed length separation types.”

Tagged separation types
Tagged separation types are dependent on each element having tag prefix
to identify it. See “TDS format: Tagged separation types” on page 49.

Delimited separation types
Delimited separation types use delimiters to identify the end of one data
elements and the beginning of the next. See “TDS format: Delimited
separation types” on page 52.

Data pattern types
Data pattern types use a regular expression to identify each element. See
“TDS format: Data pattern separation types” on page 56.

There is a fifth category, which is different from the four described above:

Undefined separation types
Undefined separation types contain no data elements. They are applicable
to embedded messages only, and should not be used for anything else.
They use none of the TDS type-specific parameters other than Data
Element Separation. See “Multipart messages” on page 26.

TDS format: Fixed length separation types:

Developing message models 47



For fixed length separation types, each data value is a fixed length.

For fixed length data element separation types, all textual elements have a length
or length reference, and are padded out to their full length in the bit stream. No
tags or delimiters are used, and each data value directly follows the preceding data
value.

For example:
data1data200data30

The first element is length 5, the second is length 7 and the third is length 6. The
padding character is ″0″.

For non-textual elements, the length is determined by the Physical Type of the
element. See “TDS format: Determining the length of simple data values” on page
46.

Fixed length type: In fixed length type, all textual elements must have a length or
length reference, and must be written out to that full length. The elements must be
presented in the correct order, and all elements must be written in the bit stream.
This includes all repeats of any repeating element (that is, the Maximum
Occurrences must be written out for each element).

For non-textual elements, the length is determined by the Physical Type of the
element. See “TDS format: Determining the length of simple data values” on page
46.

For example:
data10data2data2data2data300

The first element is length 6, the second is length 5 and repeats three times, and
the third element is length 7. The padding character is ″0″.

Applicable parameters: The main parameters for this format are the Length or
Length Reference of the element. All fields must be padded out to their full length
for the bit stream to be correctly specified to the parser.

Tag and delimiter parameters are ignored. Group indicators and terminators are
observed, because they are of fixed length.

Default values are required for each field that might not be set, because then every
field can be output, even if it is not filled with data from the message.

Fixed length AL3 type (Deprecated): This separation type has been deprecated.
ACORD AL3 support will be provided by a different method in a future release, at
which time this separation type will be removed from service.

Fixed length AL3 types are similar to fixed length types, but follow extra rules that
are specified by the ACORD AL3 format regarding truncation and missing
elements. If elements are missing from the end of an AL3 type, they can be
truncated. They cannot be omitted from the middle of a bit stream. If a field is
missing from the middle of the bit stream, that field is output as the appropriate
length string of the ″?″ character.

48 Message Models



Applicable parameters: The main parameters for this format are the Length or
Length Reference of the element. All fields must be padded out to their full length
for the bit stream to be correctly specified to a parser.

Tag and delimiter parameters are ignored. Group Indicators and Terminators are
observed, because they are of fixed length.

TDS format: Tagged separation types:

For tagged separation types, each data value is preceded by a tag that is specified
as an element property.

The Tag Data Separator, or specific Length of Tag parameter is used to determine
where the tag ends and the data starts. Different methods are used by each
separation type to determine the end of the data.

After considering these two parameters, this topic describes the following
supported tagged separation types:
v “Tagged Delimited separation”
v “Tagged Fixed Length separation” on page 50
v “Tagged Encoded Length separation” on page 51

Tagged separation is a flexible format. The elements do not have to occur in a
specific order. They do not all need to be present, and can be absent from any
point in the message.

Tag Data Separator and Tag Lengths: Either Tag Data Separator and Length of Tag
are used by all tagged separation types. But only one of these parameters can be
set at the same time.

The point at which a tag ends and data starts can be determined by one of two
methods. If the Tag Data Separator is set, then this character indicates where the
data ends. For example, the string might be:
tag1:data1

where Tag Data Separator is :

However if the Tag Data Separator is not set and the Length of Tag field is set,
then the tag is the specified length, and is immediately followed by the data. No
separating character is required. For example, the string might be:
tag1data1

where Length of Tag is 4

Tagged Delimited separation: Tagged Delimited separation is a completely flexible
format. Elements are separated by a predefined delimiter. The textual elements are
not of specific lengths. For non-textual elements, the length is determined by the
Physical Type of the element. See “TDS format: Determining the length of simple
data values” on page 46.

Applicable parameters: These parameters are used:
v Group Indicator indicates the start of a group or complex type.
v Group Terminator indicates the end of a group or complex type.
v Delimiter separates the data elements within a group or complex type.

Developing message models 49



v Tag for each element, indicates the tag needed to precede the data in that field.
v Either Tag Data Separator or Tag Length as described above.

Examples: If Tag Data Separator is set to :
{tag1:data1*tag2222222:data2*tag333:data3}

where:
v Group Indicator is {.
v Group Terminator is }.
v Delimiter is *.
v Tag defined for each element, is tag1 (for data1), tag2222222 (for data2), and

tag333 (for data3).

or, for example, if Length of Tag is set to 5
{tag11data1*tag22data2*tag33data3}

where parameters are as above, except:
v Tag, defined for each element (fixed at 5 characters), is tag11 (for data1), tag22

(for data2), and tag33 (for data3).

Tagged Fixed Length separation: Although Tagged Fixed Length separation is a
flexible format, the data must be a specific length. This means that a delimiter is
not needed to determine the end of each element.

Applicable parameters: These parameters are used:
v Group Indicator indicates the start of a group or complex type.
v Group Terminator indicates the end of a group or complex type.
v Tag for each element, indicates the tag needed to precede the data in that field.
v For each textual element, Length or Length Reference indicates the length of the

data (this value does not include the length of the tag). For non-textual elements,
the length is determined by the Physical Type of the element. See “TDS format:
Determining the length of simple data values” on page 46.

v Either Tag Data Separator or Tag Length as described above.

Examples: If Tag Data Separator is set to :
{tag1:data1tag22222222:data2000tag333:data300}

where:
v Group Indicator is {.
v Group Terminator is }.
v Delimiter is *.
v Tag, defined for each element, is tag1 (for data1), tag22222222 (for data2000), and

tag333 (for data300).
v Length, defined for each element, is 5 (data1), 8 (data2000), and 7 (data300).

or, for example, if Length of Tag is set to 5
{tag11data1tag22data2000tag33data300}

where parameters are as above, except:
v Tag, defined for each element (fixed at 5 characters), is tag11 (data1), tag22

(data2000), and tag33 (data300).

50 Message Models



Tagged Encoded Length separation: This method has both a tag and a length field
before the data. The length field indicates to the parser the length of the data
following it.

The length of this length field is itself defined in the Length of Encoded Length
parameter. Extra lengths to be added in this, such as the length of the field itself, is
set in the Extra Chars in Encoded Length parameter.

Only textual elements and elements with a Binary logical and physical type are
supported within a Tagged Encoded Length separation.

These examples show how the values set in these parameters are applied:
v tagA007dataAAAtagB006dataBBtagC009dataCCCCC

If Length of Tag is 4, Length of Encoded Length is 3, Extra Chars in Encoded
Length is 0, then in this bit stream, TagA is followed by the 3 character long
length field. This indicates that the following data (dataAAA) is 7 characters long.
The next field, tagB is then considered, and so on.

v tagA012dataAAAAAtagB010dataBBBtagC016dataCCCCCCCCC

If Length of Tag is 4, Length of Encoded Length is 3, Extra Chars in Encoded
Length is 3, then in this bit stream, TagA is followed by the 3-character length
field. This indicates that the following data, plus extra characters, is 12
characters long: length of the length field (3) + length of data (9) = 12. Therefore
the length of the actual data is only 12-3 = 9. The next field, tagB is then
considered, and so on. In each case the length given in the bit stream is 3 greater
than the actual length of the data.

Applicable parameters: These parameters are used:
v Group Indicator indicates the start of a group or complex type.
v Group Terminator indicates the end of a group or complex type.
v Tag for each element, indicates the tag needed to precede the data in that field.
v Length of Encoded Length indicates the length of the length field in the bit

stream.
v Extra Chars in Encoded Length indicates how many extra characters should be

included in calculating the value for the length field in the bit stream.
v Either Tag Data Separator or Tag Length as described above.

Examples: If Tag Data Separator is set to :
{tag1111:008data1tag222222222:010data2AAtag3333:009data3A}

where:
v Group Indicator is {
v Group Terminator is }
v Length of Encoded Length is 3
v Extra Chars in Encoded Length is 3
v Tag, defined for each element, is tag1111, tag222222222, tag3333 respectively

or, for example, if Length of Tag is set to 5
{tag11008data1tag22010data2AAtag33009data3A}

where parameters are as above, except:
v Tag, defined for each element (fixed at 5 characters), is tag11, tag22, tag33

respectively

Developing message models 51



TDS format: Delimited separation types:

For delimited separation types, a delimiter is used to separate data fields, but there
are no tags present. The data fields need to be given in the correct order in the bit
stream and elements cannot be omitted from the middle of the bit stream.

The All Elements Delimited separation type means that data fields are delimited by
a pre-specified character or string. In this example, four data fields are separated
by an asterisk (*) delimiter:
data1*data2*data3*data4

Delimited separation types are restrictive in the ordering and presence of elements:
v The elements must be given in the order specified.
v No element can be omitted in the middle of a group or complex type, because

the parser cannot determine this from the resulting bit stream.
v Elements can sometimes be absent from the end of a complex type or group.

After considering “Delimiter suppression and truncation rules,” this topic describes
the following delimited separation types:
v “All Elements Delimited” on page 53
v “Variable Length Elements Delimited” on page 54

Delimiter suppression and truncation rules:

v Elements cannot be omitted from the middle of a group or complex type. An
absent element results in the inclusion of a zero-length string.
For example, with all elements present, the string might be:
data1*data2*data3*data4

where Delimiter is *
If data2 is missing, then the string would read:
data1**data3*data4

v It is possible to suppress the delimiters at the end of a string for absent
elements. The Suppress Absent Element Delimiter property determines whether
this is done. If this property is set to End of Type, this can be done (with one
exception, shown below).
In this case, for the above example with data3 and data4 missing, the string
would read:
data1*data2

That is, the delimiters have been suppressed from the end of this group or
complex type.

v If the Suppress Absent Element Delimiter property is set to Never, delimiter
suppression never takes place. The string would read:
data1*data2**

That is, the delimiters have to be present to indicate absent (zero-length)
elements.
An exception to the above rule occurs in the case where the same delimiters are
used at multiple levels in the model.
For example, you have a complex type or group with delimiter * and this
contains an element of another complex type (indicated by the element3 prefix

52 Message Models



on data fields in the example below), which also has delimiter *. If both types
use a delimited separation type, with all elements present, you might have:
data1*data2*element3Data1*element3Data2*element3Data3*data4

If element3Data2 and element3Data3 are missing, and the delimiters are
suppressed, it is not possible for the parser to determine which elements are
missing.
Therefore, in this case, you must override the Suppress Absent Element
Delimiter property, and write out all the delimiters to clearly define the message
to the parser. Therefore, the string must be:
data1*data2*element3Data1***data4

This restriction also applies where Group Indicators and Group Terminators use
the same character strings as delimiters; otherwise, the bit stream is not clear to
the parser.

All Elements Delimited: In an All Elements Delimited separation type, all elements
are separated by a delimiter; for example:
data1*data2*data3*data4*data5

where Delimiter is *.

An All Elements Delimited separation type does not use tags or their associated
parameters.

For textual elements, the length is determined by the delimiter, and the Length
property is ignored unless the Observe Element Length property is set.

For non-textual elements, the length is determined by the Physical Type of the
element. See “TDS format: Determining the length of simple data values” on page
46.

Applicable properties: These properties are used:
v Group Indicator indicates the start of a group or complex type.
v Group Terminator indicates the end of a group or complex type.
v Delimiter indicates the separator between the data elements within a group or

complex type.
v Suppress Absent Element Delimiters indicates whether delimiter suppression is

permitted (see below).

For example:
{data1*data22222*data3}

where:
v Group Indicator is {
v Group Terminator is }
v Delimiter is *

Repeating element rules: If an element needs to be repeated when the separation
type is All Elements Delimited, the Repeating Element Delimiter (RED), is used to
separate the repeated elements.

For example if data2 repeats 5 times:
data1*data2:data2:data2:data2:data2*data3*data4

Developing message models 53



where:
v Delimiter is *
v Repeating Element Delimiter is :

If the Suppress Absent Element Delimiters property is set to End of Type, you can
use delimiter suppression. Therefore, if only the first data2 element was present in
the previous example, the bit stream reads:
data1*data2*data3*data4

However, if the Suppress Absent Element Delimiters property is set to Never, the
bit stream reads:
data1*data2::::*data3*data4

If Delimiter and RED match, two delimiters are output to indicate that the repeat is
ending. Therefore, if the delimiter and RED are *, the bit stream reads:
data1*data2**data3*data4

Variable Length Elements Delimited: In a complex type with Variable Length
Elements Delimited separation, some elements are determined by their length, and
other elements are delimited. This combination of a delimited and a fixed length
format follows rules that are associated with both formats. Lengths can be given
and used, but they are not mandatory.
v If a length is present for a textual element, it is used, and a delimiter is not

needed to terminate that element. The element must be padded to the correct
length, and cannot exceed that length.

v If no length is given for a textual element, the delimiter is required.
v For non-textual elements, the length is determined by the Physical Type of the

element. See “TDS format: Determining the length of simple data values” on
page 46.

A complex type with Variable Length Elements Delimited separation that contains
only variable length elements resembles a acomplex type with All Elements
Delimited separation. If it contains only fixed length elements, it resembles a Fixed
Length type.

For example:
data1*data2*data3*data4000data5

where:
v Delimiter is *
v data4 has a length of 8

Applicable properties: The following properties are used:
v Group Indicator indicates the start of a group or complex type.
v Group Terminator indicates the end of a group or complex type.
v Delimiter indicates the separator between the data elements within a group or

complex type.
v Suppress Absent Element Delimiters indicates whether delimiter suppression is

permitted.
v (Optionally) Length or Length Reference indicates the length of a textual

element. If a textual element has a length, this length is used. Because the length

54 Message Models



of this element is known, it is not necessary to output a delimiter after it. If the
length is not known, a delimiter is required. A delimiter is never required for a
non-textual element.

In this example, the fourth field (containing data4) is of fixed length 8 and its
padding character is 0:
{data1*data22222*data3*data4000data5}

where:
v Group Indicator is {
v Group Terminator is }
v Delimiter is *

Repeating element rules: The action of a repeating element in a Variable Length
Elements Delimited environment is dependent on the minimum and maximum
number of repeats and whether the element has a length.

Delimited Element Repeating: If a delimited element (that is, an element with no
length) is repeated, then a Repeating Element Delimiter (RED) is required and the
rules for All Elements Delimited are followed. A delimiter is therefore required
after the last repeat. Delimiter suppression of this repeat can also occur.

For example, if data2 is repeating:
data1*data2:data2:data2:data2:data2:data2*data3*data4000data5

where:
v Delimiter is *
v Repeating Element Delimiter is :
v data4 has a fixed length of 8

If the Suppress Absent Element Delimiters field is set to End of Type then you can
use delimiter suppression.

If in the above example only the first data2 is present:
data1*data2*data3*data4000data5

However, if Suppress Absent Element Delimiters is set to Never, then the bit
stream reads:
data1*data2:::::*data3*data4000data5

If the delimiter and RED match, then two delimiters are output to indicate that the
repeat is ending. So if the delimiter and RED are both *, then the bit stream reads:
data1*data2**data3*data4

This also applies for a non-fixed length complex type or group inside a Variable
Length Elements Delimited environment.

Fixed Length Element Repeating: If an element with a defined length (a fixed length
element) is repeating and the minimum occurrences is not the same as maximum
occurrences, then an RED is not required, but a delimiter is required after the last
repeat. Delimiter suppression of this repeat can occur.

For example, if data4 (with a fixed length of 8) is repeating, and its minimum
occurrences is 2, maximum occurrences is 4:

Developing message models 55



data1*data2*data3*data400data400data400data400*data5

where Delimiter is *

Or, if there are only two occurrences of data4:
data1*data2*data3*data4000data4000*data5

If an element with a defined length (a fixed length element) is repeated, and the
minimum occurrences is the same as maximum occurrences, then an RED is not
required. A delimiter is also not required after the last repeat. Truncation of this
repeat cannot occur and all elements need to be present.

For example, if data4 (with a fixed length of 8) repeats four times:
data1*data2*data3*data4000data4000data4000data4000data5

where Delimiter is *

Or, if there are only two occurrences of data4:
data1*data2*data3*data4000data40000000000000000000data5

This also applies for a non-fixed length complex type or group inside a Variable
Length Elements Delimited environment.

If a complex type has Variable Length Elements Delimited separation, a delimiter
is always output between an included (’child’) complex element and the next
element even if the separation of the ’child’ complex element is Fixed Length. On
input, the parser accepts the bit stream with or without such a delimiter.

TDS format: Data pattern separation types:

For a data pattern separation type, each data value is matched with a regular
expression that is specified as a property of each element.

The length of both textual and non-textual data is determined by the Data Pattern
property of the element. If the Physical Type of the element is Length Encoded
String 1 or Length Encoded String 2, the regular expression must match both the
encoded length and the following data. The length in the encoded length must be
consistent with the length matched by the regular expression. If the Physical Type
of the element is Null Terminated String, the regular expression must match both
the data and the following null terminator.

The Data Pattern separation type uses a regular expression that is specified for
each element to match the data. The parser matches the data with the regular
expression in the Data Pattern property for that element. TDS parsing in the MRM
parser uses the regular expression in Data Pattern to determine the length of the
element, whether it is repeating, and whether it is present in the bit stream.

No delimiters or tags, other than those coded as part of the regular expression
pattern, are used in the bit stream. See “Using regular expressions to parse data
elements” on page 759 for an explanation of pattern matching.

For example, if the first three Data Pattern properties are, respectively:
v [A-Z]{1,3}
v [0-9]+
v [a-z]*

56 Message Models



and the message data is:
DT31758934information for you

Then, in this example:
v First data element = DT

v Second data element = 31758934

v Third data element = information

The first data pattern means ″from one to three characters in the range A to Z″, the
second means ″one or more characters in the range 0 to 9″, and the third means
″zero or more characters in the range a to z″. Note how each element’s data was
terminated by the first character that did not match the element’s Data Pattern.

If the TDS message that is being parsed is encoded in a single-byte code page, the
Data Pattern property can include hexadecimal values. A hexidecimal value is
specified as \xNN, where N is a hexadecimal digit in the range 0 to F. Note,
however, that the value \x00 is not valid.

Performance issues

The parsing required in Data Pattern separation type is the slowest of all the
different separation types because of its complexity.

Therefore, use Data Pattern separation type only when no other separation type
models the message. Do not use it, for example, when you can use Fixed Length
separation type.

Applicable parameters: Only one parameter is used:

Data Pattern for each element, indicates the regular expression that is used for
string matching.

TDS format: Message model integrity: When you use the TDS wire format, you
must conform to a number of rules that apply to the setting of values of properties.
This is necessary to avoid any discrepancies when processing a message within the
specified model.

Rules of TDS physical format properties: Restrictions to message formats are checked.
These will follow the rules specified in “TDS message model integrity” on page
755. The majority of rules are applied for at least one of these reasons:

Rules for message definition
Some rules are necessary for the message to be completely defined.

For example, in a Fixed Length separation type all elements must have
some length defined, either directly or by using a Length Reference.
Without this information, it is impossible to tell in the message bit stream
where one data element ends and the next starts.

Rules for nesting
Nesting rules relate to which separation types can be nested inside each
other.

Such rules are applied when an element of a complex type is present
inside another complex type. An example of this would be that it is not
possible to have a Tagged Delimited separation type inside a Fixed Length
type. Since a Tagged Delimited separation type is of variable length, the

Developing message models 57



parent Fixed Length type would be unable to tell where that particular
element ended, as there would be no length provided. Therefore the
message could not be processed.

Rules linking to the logical model
There are also rules linking TDS to the logical model.

These occur where a group composition or group content validation cannot
be used in conjunction with a particular separation type. Again this is for
message integrity. For example, a separation type of All Elements
Delimited cannot have a group composition of Open, as there is no
information as to what the extra elements represent and where they are in
the bit stream.

TDS format: NULL handling:

NULL handling dictates the way in which the MRM parser for TDS messages
handles elements that have been set to Null.

Null handling only takes place if the logical Nillable property of the element is set.
The rules for whether nulls are permitted are described in “TDS Null handling
options” on page 753.

Null properties: The element properties Encoding Null and Encoding Null Value
control how null handling is represented for individual elements.

You can select the Encoding Null property from the enumerated values
NULLPadFill, NULLLogicalValue, NULLLiteralValue, and NULLLiteralFill. The use
of the Encoding Null Value property is dependent on the value that you select for
the Encoding Null property.

NULL values are not defined for schema xsd:hexBinary simple types. The
properties Encoding Null and Encoding Null Value are therefore not set for
xsd:hexBinary types.

NULL values for schema Boolean simple types are defined at the message set level.
The message set property Boolean Null Representation specifies the value to be
used for Boolean Null representation.

TDS format: Multipart messages:

The Tagged/Delimited String Format (TDS) supports both the Message Identity
technique and the Message Path technique of identifying embedded messages
within a multipart message.

The SWIFT, X12 and EDIFACT messaging standards can all be modeled using the
Message Identity technique.

Versions of the TDS physical format prior to Version 6.0 included embedded
message identification by Message Key which worked in a similar manner to
Message Identity, but which applied to TDS only. The Message Key technique has
been deprecated and is superseded by Message Identity. Warning task list
messages are issued if the use of Message Key is detected, and a task list Quick Fix
may be selected to create the equivalent Message Identity automatically. You must
continue to use Message Key if the MRM parser that you are deploying to is
Version 5.0.

58 Message Models



TDS format: Data conversion: All TDS message data apart from binary types are
handled as strings. All string data is therefore subject to CCSID conversion only.
This includes the special characters used as delimiters, data separators, and so on.

TDS format: Relationship to the logical model:

There are some restrictions between TDS separation types and logical model
properties such as group composition and group content validation.

The rules that govern these options are explained in “Restrictions for nesting
complex types” on page 757.

These rules exist to ensure the integrity of the message. A combination of
separation type and group composition or group content validation must not lead
to a message that is unclear to a TDS parser.

Default values

In TDS, Default values are only observed by fixed length elements:

Separation Type Use of Default values

Tagged Delimited
Tagged Fixed Length
Tagged Encoded Length
All Elements Delimited
Data Pattern

Default values are never observed.

Fixed Length
Fixed Length AL3

Default values are observed on output by all elements.
An absent element that has no Default value defined,
will cause an error on writing.

Variable Length Elements Delimited Default values are only observed by fixed length
elements on output. Absent fixed length values must
have a Default value available to them. An absent
element that has no Default value defined, will cause an
error on writing.

Simple types – lists and unions

Lists and unions are XML-specific concepts. An element or attribute of a simple
type that is a list or a union will cause a task list warning if a TDS physical format
is present in the message set. The user can choose whether to make this an error,
warning, or information by editing the Validation preferences. If a dictionary is
generated from the message set, and an attempt is made to parse a TDS message
defined to contain such elements or attributes, a runtime error will occur.

Min Occurs and Max Occurs

The logical properties Min Occurs and Max Occurs specify the permitted number
of occurrences of an element or group in a message. They are used when parsing
and writing messages, and when validating the content of a message.

When parsing and writing, the exact interpretation of these properties depends on
the Data Element Separation property of the parent complex type or group as
shown in the table below.

Developing message models 59



However, this behavior is overridden if the TDS Repeat Reference property is set,
which indicates that the number of occurrences is given instead by an integer
element that occurs earlier in the message. See “Repeat reference” on page 61 for
more information.

When validating, Min Occurs and Max Occurs are both used to check that the
content of the message tree matches the model.

Separation type Interpretation of Min Occurs and Max Occurs

Tagged Delimited
Tagged Fixed Length
Tagged Encoded Length

Min Occurs and Max Occurs are effectively ignored when parsing and writing. When
parsing, the number of occurrences is identified by the tags in the message. When
writing, the writer outputs all occurrences in the message tree.

v A varying number of occurrences (Min Occurs <> Max Occurs) is allowed.

v Optional occurrence (Min Occurs = 0) is allowed.

v Always absent (Max Occurs = 0) is allowed.

v An unbounded number of occurrences (Max Occurs = -1) is allowed.

All Elements Delimited Max Occurs only is used when parsing and writing, in conjunction with the element’s
Repeating Element Delimiter property, and the parent type’s Suppress Absent Element
Delimiters property.

A varying number of occurrences (Min Occurs <> Max Occurs) is allowed if Suppress
Absent Element Delimiters is set to End of Type.

v If the Delimiter is different to the Repeating Element Delimiter then the Delimiter
will signify the end of the occurrences.

v If the Delimiter is the same as the Repeating Element Delimiter then an empty
repeat signifies the end of the occurrences.

v In both these cases, Max Occurs is the maximum number of repeats that are
expected.

If Suppress Absent Element Delimiters is Never, then all occurrences are expected
when parsing, and output when writing, although parsing will accept elements being
absent.

Optional occurrence (Min Occurs = 0) is ignored and a delimiter is still expected
when parsing, and output when writing.

Always absent (Max Occurs = 0) is allowed. No delimiter is expected when parsing,
nor output when writing.

An unbounded number of occurrences (Max Occurs = -1) is only allowed if the
Repeating Element Delimiter is different from the Delimiter. The repeats must be
terminated by the delimiter, or a containing group’s Group Terminator or Delimiter,
or by the end of the message bit stream. On writing, the writer outputs all
occurrences in the message tree.

60 Message Models



Separation type Interpretation of Min Occurs and Max Occurs

Fixed Length
Fixed Length AL3

Max Occurs only is used when parsing and writing. In general, Max Occurs
occurrences are expected when parsing, and Max Occurs occurrences are output when
writing; default values are used for missing elements, and any excess elements are
discarded.

A varying number of occurrences (Min Occurs <> Max Occurs) is ignored, Max
Occurs is assumed.

Optional occurrence (Min Occurs = 0) is ignored, Max Occurs is assumed.

Always absent (Max Occurs = 0) is allowed.

Fixed Length only. An unbounded number of occurrences (Max Occurs = -1) is
allowed if the element or group is the last child in its parent group, and the group is
terminated by a Group Terminator or a containing group’s Group Terminator or
Delimiter or by the end of the message bit stream. On writing, the writer outputs all
occurrences in the message tree, if this number is less than Min Occurs then
additional default values are written.

Variable Length Elements
Delimited

For fixed length simple elements, the rules for Fixed Length separation above are
followed with two differences.

1. A varying number of occurrences (Min Occurs <> Max Occurs) is allowed, the
end of the occurrences being signified by an extra delimiter.

2. An unbounded number of occurrences (Max Occurs = -1) is allowed, the end of
the occurrences being signified by an extra delimiter. On writing, the writer
outputs all occurrences in the message tree, followed by an extra delimiter.

For variable length simple elements, all complex elements and groups, the rules for
All Elements Delimited above are followed.

Data Pattern Min Occurs and Max Occurs are effectively ignored when parsing and writing. When
parsing, the pattern is matched as many times as possible. When writing, the writer
outputs all occurrences in the message tree. Note that on parsing, if the data pattern
permits a zero length match, and a zero length match occurs, an element is added to
the message tree and the matching terminates to prevent an infinite loop.

A varying number of occurrences (Min Occurs <> Max Occurs) is allowed.

Optional occurrence (Min Occurs = 0) is allowed. Always absent (Max Occurs = 0) is
allowed.

An unbounded number of occurrences (Max Occurs = -1) is allowed.

Repeat reference

The TDS property Repeat reference specifies a field that holds the number of
repeats of an object (Element or Group) within a message. The field that holds the
number of repeats must be within the message before the object that it refers to.

From a parsing perspective, the Repeat reference property replaces the role of the
minOccurs and maxOccurs properties.

If a value for the Repeat reference property is specified for an object, values that
are specified for minOccurs and maxOccurs are ignored when parsing and writing.
However, values that are specified for minOccurs and maxOccurs are used by
logical validation.

Developing message models 61



When parsing and writing, the exact interpretation of the Repeat reference
property depends on the Data Element Separation property of the parent complex
type or group as shown in the table below.

Separation type Interpretation of Repeat reference

Tagged Delimited
Tagged Fixed Length
Tagged Encoded Length

Repeat reference is effectively ignored when parsing and writing. When parsing, the
number of occurrences is identified by the tags in the message. When writing, the
writer outputs all occurrences in the message tree.

All Elements Delimited Repeat reference is used when parsing and writing, in conjunction with the element’s
Repeating Element Delimiter property, and the parent type’s Suppress Absent Element
Delimiters property.

A Repeat reference is allowed only if the parent complex type or group has Suppress
Absent Element Delimiters set to Never. All Repeat reference occurrences are expected
when parsing, and output when writing. However, parsing accepts elements being
absent.

Repeat reference = 0 is allowed. No delimiter is expected when parsing, nor output
when writing.

Fixed Length
Fixed Length AL3

Repeat reference is used when parsing and writing. Repeat reference occurrences are
expected when parsing, and are output when writing, with default values used for
missing elements.

Repeat reference = 0 is allowed.

Variable Length Elements
Delimited

For fixed length simple elements, the rules for Fixed Length separation above are
followed.

For variable length simple elements, all complex elements and groups, the rules for
All Elements Delimited that are listed above are followed.

Data Pattern Repeat reference is effectively ignored when parsing and writing. When parsing, the
pattern is matched as many times as possible. When writing, the writer outputs all
occurrences in the message tree. Note that, on parsing, if the data pattern permits a
zero length match, and a zero length match occurs, an element is added to the
message tree and the matching terminates to prevent an infinite loop.

MRM XML physical format
The MRM XML physical format describes the physical representation of an XML
message for use by the MRM parser.

An XML wire format describes the physical representation of a message that is
written according to the standards given in the W3C Extensible Markup Language
(XML) specification. The wire format defines information that is used to parse or
write XML messages in a runtime environment such as a broker. XML versions 1.0
and 1.1 are both supported.

You can add more than one XML physical format to a message set, but within that
message set, each physical format must have a unique name. The default name for
an XML wire format is XML1. The physical format name identifies the definitions
that are to be used by the message broker at runtime.

After adding an XML physical format, all XML properties for all existing objects in
the message set are set to default values. Therefore, immediately after adding the
format and deploying the message set to a runtime environment, you can process
XML messages using MRM features.

62 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml


You can configure XML properties for the message set, and for objects within the
message set. Objects that can have XML properties are messages, elements, and
attributes. For example, a message object can be customized to define a specific
DTD declaration on output; an element can have a tag name assigned to it which
is different from its element name in the model.

Adding an XML wire format to a message set allows you to both process input
messages, and to construct output messages in this format. You can also transform
messages between XML and either CWF or TDS.

XML messages are, by their nature, self-describing: each piece of data is prefixed
by a tag name or an attribute name. Therefore, it is possible for an XML message
instance to contain elements that are not in the definition for that message.
v If such an element exists in the message set, the model objects for that element

are used in parsing or writing the message.
v If the element does not exist in the message set, it is treated as a self-defining

element, and its data type is set to string.

Although it is possible to define an XML message ’by hand’, using the Message
Definition Editor, WebSphere Message Broker also provides importers for both
XML Schema and DTD, and these are often quicker and easier than manual
definition.

XML wire format: Message model integrity: When you save a message definition
file, the definitions that it contains are checked to ensure that they make sense and
provide sufficient information about the message. This action is called model
validation.

For XML, these checks mostly concern the uniqueness and validity of XML names
in global elements and attributes, and also for elements and attributes within
complex types or groups.

Tests other than these tend to be both simple and obvious so that, for example, the
message set property First Day of Week has to be the name of a day in the week.

MRM XML physical format: NULL handling:

The purpose of null handling is to specify how messages will deal with null
values; that is, the absence of a meaningful value for an element.

Null properties for the MRM XML physical format are set for the message set only,
and apply to all the defined objects within the message set, using the four
properties Encoding Null Num, Encoding Null Non-Num, Encoding Null Num Val
and Encoding Null Non-Num Val.

Null handling only takes place if the logical Nillable property of the element is set.

The purpose of these parameters is to specify how messages deal with null values.
In an XML message there are several options. Most obviously an element could
simply omit a value, for example:
<element1></element1>

Or, the element could include a distinctive value that means that no real value is
present, for example.
<element1>null</element1>

Developing message models 63



Or, the element could follow XML Schema instance rules:
<element1 xsi:nil="true"/>

The properties Encoding Null Num and Encoding Null Non-Num specify the style
of null handling, for example, that null is represented by an empty element.

The properties Encoding Null Num Val and Encoding Null Non-Num Val provide
a value (if needed) to represent a null value. For an element of type string, this
might be null or unspecified while for a number it might be 0 or 0.0.

MRM XML physical format: Multipart messages: If you are using the MRM
XML physical format, an embedded message can be identified in any of the
following ways:
v Message Identity

See “Identifying an embedded message using a Message Identity” on page 27.
v Message Path

See “Identifying an embedded message using a Message Path” on page 29.
v Automatic

The MRM parser identifies the message by matching the next XML tag in the bit
stream against the XML Name of a message definition.

If you choose the Message Identity or Message Path technique, the MRM parser
still checks that the next XML tag name matches the XML Name of the message
that was identified. If the XML Name does not match, an exception is thrown.

Where you have defined the embedded message in a different message set, you
need to use a Message Set Identity element or attribute value to specify the target
message set.Note that the message sets within which the root and subsequent
embedded messages are defined must be consistent in their use of the ’Use
Namespace’ property of the message set. That is, embedded messages that are
defined in a namespace-aware message set and that are contained within a parent
message that is defined in a message set that is not namespace-aware, are not
supported. Similarly, embedded messages that are defined in a message set that is
not namespace-aware and that are contained within a parent message that is
defined in a namespace-aware message set, are not supported.

If the embedded message definition is a complex type, the message definition will
contain a complex element based on that complex type. This complex element will
have its own tag, which will appear in the bit stream before the tag for the
embedded message. If you want to avoid this extra tag, you can create the
embedded message definition from a group, and insert the group at the
appropriate position in the message model.

Tip: Note that the root tag property of an embedded message is not applicable.

MRM XML physical format: relationship to the logical model: The MRM XML
physical format generally respects all of the setting in the logical model, but shares
certain restrictions in common with the other physical formats. These restrictions
are documented in “MRM restrictions” on page 729.

Default values

The MRM XML physical format ignores default and fixed values on elements and
attributes. If validation is enabled in WebSphere Message Broker, this can lead to

64 Message Models



unexpected validation errors for missing elements, even though they have default
or fixed values.

Simple types – unions and lists

The XML properties of an element or attribute of a simple type that is a union or
list vary depending on the members of the union or the itemType of the list. If the
union or list includes a dateTime type (or other date/time related type) the Date
Format field will be displayed. If the union includes a binary type, the Encoding
field will be displayed.

Min Occurs and Max Occurs

The logical properties Min Occurs and Max Occurs specify the permitted number
of occurrences of an element or group in a message. They are used when
validating the content of a message.

When parsing and writing, using the MRM XML physical format, Min Occurs and
Max Occurs are effectively ignored. When parsing, the number of occurrences is
identified by the tags in the message. When writing, the writer outputs all
occurrences in the message tree.
v A varying number of occurrences (Min Occurs <> Max Occurs) is allowed.
v Optional occurrence (Min Occurs = 0) is allowed.
v Always absent (Max Occurs = 0) is allowed
v An unbounded number of occurrences (Max Occurs = -1) is allowed.

When validating, Min Occurs and Max Occurs are both used to check that the
content of the message tree matches the model.

MRM XML physical format: Handling xsi:type attributes: The prefix ″xsi″ is the
namespace prefix used by convention for the XML Schema instance namespace.
XML documents can contain elements that have an xsi:type attribute. This provides
an explicit data type for the element.

The MRM XML parser in sensitive to xsi:type attributes in the XML document. It
modifies the data type of the element accordingly and adds the xsi:type attribute
into the message tree.

The MRM XML writer is sensitive to xsi:type attributes in the message tree. It
outputs xsi:type attributes according to XML Wire Format message set property
Output policy for xsi:type attributes. For example, xsi:type attributes can be
removed, output on all elements or output according to rules specified in the
SOAP standard.

If validation is enabled for a WebSphere Message Broker message flow, the
validation logic is sensitive to xsi:type attributes and uses them to modify the
validation of the element. It will also validate the values of xsi:type attributes
using the rules described in XML Schema Part 1: Structures on the World Wide
Web Consortium (W3C) Web site.

There are several important points to remember when parsing and writing XML
documents that contain xsi:type attributes.
v In order to detect and use xsi:type attributes, the message set must be

namespace-enabled. To make a message set namespace-enabled, check the
message set property Use namespaces.

Developing message models 65

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/TR/xmlschema-1/


v If the value of the xsi:type attribute contains a namespace prefix, the prefix will
be expanded into a fully-qualified URI by the MRM XML parser. If the same
xsi:type attribute is output later by the MRM XML writer, the same prefix will
not automatically be used for the value. You can control the prefixes used on
output using the Namespace settings list in the XML Wire Format message set
properties. If no prefix is supplied, the XML writer will assign a default prefix.

v If the xsi:type attribute of an element does not resolve to a type in the model,
then the behavior depends on whether MRM validation is enabled. If not
validating, the MRM will assume the type of the element is that declared in the
model, and continue. If validating, a validation exception will be thrown.

v If MRM validation is enabled, any required xsi:type attributes must be present in
the message tree at the point when validation is performed. An xsi:type attribute
is required when its value is different from the data type of the element as
defined in the message model (this most commonly occurs when using XML
Schema type derivation).
– If validation is being performed on an input message, then the MRM XML

parser ensures that xsi:type attributes appear in the message tree, as described
above.

– If validation is being performed on an output message you must ensure that
the correct xsi:type attributes appear in the message tree. You should ensure
that any required xsi:type attributes are copied from input message tree to
output message tree, or are explicitly created in the output message tree.

v If you are using simple types that are xsd:unions then an xsi:type attribute can
be used to direct the MRM XML parser when resolving the union.

v If you have migrated from an earlier version of WebSphere Message Broker that
was not sensitive to xsi:type attributes, you might notice some changes of
behavior. For example, xsi:type attributes are no longer treated as self-defining
attributes, so they appear in the message tree with the name ‘type’ instead of
‘@type’. If your message flow logic is sensitive to xsi:type attributes in the
message tree, change your message flow to comply with the current behavior. If
you want to retain logic from an earlier version of WebSphere Message Broker in
your message flows, this is described in Message flow migration notes.

For more information about xsi:type attributes, see XML Schema Part 0: Primer on
the World Wide Web Consortium (W3C) Web site.

Ways to create message definitions
When you have created a message set, you must populate the message set with
message definitions.

You can populate the message set in one of the following ways:
v By importing application message formats that are described by XML Schemas,

IBM supplied messages, XML DTD, C structures, COBOL structures, or WSDL
definitions; use the wizards that are started from the New Message Definition
File From wizard.

v By creating empty message definition files and then creating your messages by
using the Message Definition Editor; use the New Message Definition File
wizard.

v By using the Adapter Connection wizard to import EIS metadata.

Additionally, you can import application message formats by using the
mqsicreatemsgdefs or mqsicreatemsgdefsfromwsdl command line utilities.

66 Message Models

http://www.w3.org/TR/xmlschema-0/


The mqsicreatemsgdefs command has a bulk import capability, but
mqsicreatemsgdefsfromwsdl imports only one WSDL definition at a time.

Importing from other model representations to create message
definitions
You can add message definitions to your message set by importing application
message formats that already exist.

You can import the following message formats into your message set:
v XML Schema files
v IBM supplied messages
v XML DTD files
v C header files
v COBOL copybooks
v WSDL definitions
v EIS metadata

When you import one of these formats, a new message model is created that
consists of the elements, attributes, groups, and types that are required to represent
your message format. You can choose the name of the message definition file; if it
already exists, the content is deleted and recreated as part of the import operation.

The new message model that is created can consist of both logical and physical
information, if appropriate physical formats exist in the message set at the time of
the import.

To find out which wizards to use to import message formats, see “Ways to create
message definitions” on page 66.

You can also import C header files, COBOL copybooks, XML DTD files, or XML
Schema files by using the mqsicreatemsgdefs command line utility. The
mqsicreatemsgdefs command allows you to import several message format files in
a single operation, and allows you to create a new message set (based on an
existing message set) into which the message definition files are placed.

WSDL definitions can be imported by using the mqsicreatemsgdefsfromwsdl
command line utility. This utility imports only one WSDL definition at a time.

Client application access to messages: Client applications must have access to
message definitions to be able to construct the messages that they send, and to
interpret the messages that they receive.
v If the message formats have been imported from C or COBOL structures by

using the workbench, your applications can continue to use the same C and
COBOL data structures that were imported to create the message dictionary that
is used by the brokers.

v If the messages are self-defining XML, the client applications must construct
valid messages by using the structures that can be understood by the recipients
of the message.

Importing from XML Schemas to create message definitions: You can populate a
message set with message definitions by importing XML Schema files, using the
New Message Definition File From XML Schema file wizard, the Start from
WSDL and/or XSD files quick start wizard, or the mqsicreatemsgdefs command
line utility.

Developing message models 67



Each XML Schema file that you import results in a new message definition file
within the message set. The root name of the message definition file defaults to the
root name of the XML Schema file, but the New Message Definition File From
XML Schema file wizard allows you to choose a different root file name.

If the message definition file already exists, you must have permitted overwriting
to occur for the import to proceed, in which case the existing content is deleted
and recreated.

The namespace to which the message definition file created belongs depends on
whether namespaces have been enabled for the message set.
v If namespaces have been enabled, the message definition file belongs to the

target namespace of the XML Schema file that is imported.
v If namespaces have not been enabled for the message set, the message definition

file belongs to the noTarget XML namespace irrespective of the target namespace
of the imported XML Schema file and therefore resides in the (default) location
in your workspace. The implications of importing into a message set with
namespaces disabled are described in “Importing XML Schema into message sets
with namespaces disabled” on page 69.

A report file is created during the import operation. This is located by default in
the log folder of the message set. By default it takes the name of the message
definition file, with .report.txt appended.

Import using the New Message Definition File From XML Schema file wizard: When
you import using the New Message Definition File From XML Schema file
wizard, you can specify which of the global elements or global complex types
within the imported XML Schema file are to be messages within the message
definition file.

You can only import one XML Schema file with each import operation. If your
XML Schema file references other XML Schema files, with import or include
elements, these XML Schema files must be imported into the same message set
using a separate import operation.

Import using the command line: When you import using the command line you
have the option of either creating no messages or creating a message for each
global element and global complex type within the imported XML Schema file. The
import operation creates a message and corresponding global element in the
message definition file for each global element you specify. If you do not specify
that messages are to be created, you must create them manually using the message
definition editor after the import has completed.

You can import several XML Schema files in each import operation.

Physical information: As well as creating logical information, the import can also
create physical information. If the message set contains any XML wire format
physical formats, then the physical format properties for all XML Wire Format
layers is populated. If the message set does not contain any XML physical formats,
only logical information is created. Also, if you import from the command line,
only logical information is created in the new message set by default. If you want
physical information created as well, see “Importing from the command line” on
page 130 for details.

MRM CWF and TDS physical format properties are not populated and so take
default values.

68 Message Models



If you have one or more CWF or TDS layers, the import can cause entries in the
task list, warning you that certain CWF or TDS properties must be set if the XML
structures you have imported are to appear in a CWF or TDS message.

If the CWF or TDS physical formats are not applicable to your XML structures, you
can ignore these task list entries because they are just warnings, they do not
prevent your model being generated in another form; for example, as a message
dictionary.

Command line invocation: The mqsicreatemsgdefs command line utility allows you
to import several XML Schema files in a single operation. All the XML Schema files
must be in single directory, and the directory location must be passed as a
parameter to the utility.

When you import into a message set for which namespaces are not enabled, the
action to take for unsupported constructs can be specified using an XML options
file. This must contain an XML element called <XSD_NO_NS> that holds a set of
information that applies to all XML Schema files that are imported during an
invocation of the utility. A default XML options file, called mqsicreatemsgdefs.xml,
is supplied. If you want to apply different sets of information to different XML
Schema files, you must create multiple XML files and run the utility multiple
times.

When you are importing into a message set for which namespaces are not enabled,
there are two other options that you can specify in the <XSD_NO_NS> element in the
XML options file:
v The prefix to use for the http://www.w3.org/2001/XMLSchema-instance

namespace; the default is xsi.
v Additional namespace URI and prefix pairs.

The mqsicreatemsgdefs utility also allows you to create a new message set into
which the message definition files are placed, as part of the import operation. You
can also choose to base the message set created on an existing message set. This
facility enables you to prepare an empty message set that contains a XML physical
format and pre-populated message set level XML properties, which are then copied
into the message set that is created by the import.

Further information about XML Schema: For details about XML Schema, see XML
Schema Part 0: Primer on the World Wide Web Consortium (W3C) Web site.

Importing XML Schema into message sets with namespaces disabled:

You can import an XML Schema file with a target namespace even if the message
set does not have namespaces enabled.

When you import an XML Schema file with a target namespace into a message set
for which namespaces have not been enabled, the created message definition file is
placed in the XML no target namespace. In some cases, this action can lead to
name conflicts if global constructs have the same name in different namespaces in
the XML Schema files imported into the same message set. These conflicts cause
error entries in the task list that you must resolve before generating the model in
another format, such as a message dictionary.

Because all the message definition files are in the XML no target namespace, the
namespace information associated with the XML Schema file is lost. However, the
importer provides a limited form of namespace support by prefixing the XML

Developing message models 69

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/


names in the XML Wire Format layers with a namespace prefix. To allow this
namespace support to work, an imported XML Schema file must specify an xmlns
attribute with a non-empty prefix for the target namespace of the XML Schema file.
This prefix is used in the XML names in the XML Wire Format layers.

Therefore you cannot specify the target namespace of the XML file as the default
namespace. Each namespace in the XML Schema files must use a unique prefix
and the same namespace must always use the same prefix. Any XML instance
documents against which you match any of the forms generated from the model,
must also use the same prefixes for the namespaces.

The XML Schema importer creates a number of optional attributes in an attribute
group to represent namespace information. This attribute group is referenced by
the type of any message. An attribute is created to represent the location of the
XML Schema file, and an attribute is created to represent the mapping of the prefix
to the http://www.w3.org/2001/XMLSchema-instance namespace. An attribute is
also created for each xmlns attribute in the XML Schema document.

When importing using the Message Definition File wizard the prefix
http://www.w3.org/2001/XMLSchema-instance namespace can be changed and
additional namespace URI/prefix pairs added using the last panel of the Message
Definition File wizard. When you use the mqsicreatemsgdefs command line utility,
the same modifications can be made using the XML options file.

Further information about XML Schema: For details about XML Schema, see XML
Schema Part 0: Primer on the World Wide Web Consortium (W3C) Web site.

Importing from IBM supplied messages to create message definitions:

You can add messages to a message set by importing IBM supplied messages
using the New Message Definition File From IBM supplied messages wizard.

Each IBM supplied message that you import results in a new message definition
file within the message set. The name of the message definition file defaults to the
name of the IBM supplied message, but the New Message Definition File From
IBM supplied messages wizard allows you to choose a different file name.

See “Importing from the command line” on page 130 for information about what
IBM supplied messages can be imported.

When you import using the New Message Definition File From IBM supplied
messages wizard, you can specify only one IBM supplied message definition for
each import operation.

If the message definition file already exists, you must have permitted overwriting
to occur for the import to proceed, in which case the existing content is deleted
and recreated.

A report file is generated during the import operation that allows you to examine
what occurred during the import process and check any errors that resulted.

Importing from DTDs to create message definitions: You can populate a
message set with message definitions by importing DTD files, using either the
New Message Definition File From XML DTD file wizard or the
mqsicreatemsgdefs command line utility.

70 Message Models

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/


Each XML DTD file that you import results in a new message definition file within
the message set. The root name of the message definition file defaults to the root
name of the XML DTD file, but the New Message Definition File From XML
DTD file wizard allows you to choose a different root file name.

If the message definition file already exists, you must have permitted overwriting
to occur for the import to proceed, in which case the existing content is deleted
and recreated.

All message definition files that are created as a result of DTD file import belong
to the noTarget XML namespace and so reside in the (default) location in your
workspace.

A report file is created during the import operation. This is located by default in
the log folder of the message set. By default, it takes the name of the message
definition file, with .report.txt appended.

Import using the New Message Definition File From XML DTD file wizard: When you
import using the New Message Definition File From XML DTD file wizard, you
can specify which of the elements within the imported XML DTD file are to be
messages within the message definition file.

You can import only one XML DTD file with each import operation.

Import using the command line: When you import using the command line you
have the option of either creating no messages or creating a message for each
element within the imported XML DTD file. The import operation creates a
message and a corresponding element in the message definition file for each
element that you specify. If you do not specify that messages are to be created, you
must create them manually using the message definition editor after the import
has completed.

You can import several XML DTD files in each import operation.

Physical information: As well as creating logical information, the import can also
create physical information. If the message set contains any XML wire format
physical formats, the physical format properties for all XML Wire Format layers is
populated. If the message set does not contain any XML physical formats, only
logical information is created. Also, if you import from the command line, only
logical information is created in the new message set by default. If you want
physical information created as well, see “Importing from the command line” on
page 130 for details.

MRM CWF and TDS physical format properties are not populated and therefore
take default values.

If you have one or more CWF or TDS layers, the import can cause entries in the
task list, warning you that certain CWF or TDS properties must be set if the XML
structures that you have imported are to appear in a CWF or TDS message.

If the CWF or TDS physical formats are not applicable to your XML structures, you
can ignore these task list entries because they are just warnings; they do not
prevent your model being generated in another form, such as a message dictionary.

Developing message models 71



Command line invocation: The mqsicreatemsgdefs command line utility allows you
to import several XML DTD files in a single operation. All the XML DTD files
must be in single directory, and the directory location must be passed as a
parameter to the utility.

The mqsicreatemsgdefs utility also allows you to create a new message set into
which the message definition files are placed, as part of the import operation. You
can also choose to base the message set created on an existing message set. This
facility enables you to prepare an empty message set that contains a XML physical
format and pre-populated message set level XML properties, which are then copied
into the message set that is created by the import.

Further information about XML DTDs: For details about XML DTDs, see the World
Wide Web Consortium (W3C) Web site.

Importing from C header files to create message definitions:

You can populate your message set with message definitions by importing C
header files, using either the New Message Definition File From C header file
wizard or the mqsicreatemsgdefs command line utility.

Each C header file that you import results in a new message definition file. The
root name of the message definition file defaults to the root name of the C header
file, but the New Message Definition File From C header file wizard allows you
to choose a different root file name.

If the message definition file already exists, you must have permitted overwriting
to occur for the import to proceed, in which case the existing content is deleted
and recreated.

By default, all message definition files that are created as a result of an import
from a C header file belong to the noTarget XML namespace and therefore reside
in the (default) location in your workspace. This default namespace can be
overridden by specifying a target namespace. See “Namespaces with MRM
non-XML messages” on page 36 for reasons why you might want to do this.

In your C header file there are typically one or more C structures. You can select
which of these structures to import. The import operation then imports those
structures, plus any others that they require. All imported structures are converted
into the equivalent elements, groups and types in the message definition file.

You can also specify which of the selected structures are to be messages in the
message definition file. The import operation creates a message and a
corresponding global element in the message definition file for each structure that
you specify. If you do not specify that messages are to be created, you must create
them manually using the Message Definition editor after the import has
completed.

If you import using the New Message Definition File From C header file wizard
you can import only one C header file with each import operation. But, if you
import using the command line utility, you can import several C header files in
each import operation.

If your C header file needs any other header files for a successful compilation, you
must provide these and specify their location, because a compilation of your
header file is performed as part of the import operation.

72 Message Models

http://www.w3.org/
http://www.w3.org/


A report file is created during the import operation. This is located by default in
the log folder of the message set. By default, it takes the name of the message
definition file, with .report.txt appended.

Physical information: As well as creating logical information, the import can also
create physical information.

If the message set contains any Custom Wire Format (CWF) physical formats, the
physical format properties for all CWF layers are populated.

If the message set does not contain any CWF physical formats, only logical
information is created. Also, if you import from the command line, only logical
information is created in the new message set by default.

XML and TDS physical format properties are not populated and so take default
values.

If you have one or more TDS layers, the import can cause entries in the task list,
warning you that certain TDS properties must be set if the C structures you have
imported were to appear in a TDS message.

If the TDS physical format is not applicable to your C structures, you can ignore
these task list entries because they are just warnings; they will not prevent your
model being generated in another form, such as a message dictionary.

Because physical information is created, the application target environment
(platform and compiler) is important because it governs the way that, for example,
integers appear in the message. You can specify environment specific information
as part of the import operation, and the necessary properties will be set
accordingly. There is a range of environments supported; if your environment is
not shown, choose the closest match and review the created physical information
using the Message Definition Editor after the import has completed.

Command line invocation: The mqsicreatemsgdefs command line utility allows you
to import several C header files in a single operation. All the C header files must
be placed in the same directory and the directory location passed as a parameter to
the utility.

You provide the necessary environment-specific information, and include file
location information using an XML file. This must contain an XML element called
<C> which holds one set of information that applies to all C header files imported
during an invocation of the utility. A default XML file called
mqsicreatemsgdefs.xml is supplied. If you want to apply different sets of
information to different header files, you must create multiple XML files and run
the utility multiple times.

The mqsicreatemsgdefs utility also allows you to create a new message set into
which the message definition files are placed, as part of the import operation. You
can also choose to base this new message set on an existing message set. This
facility enables you to prepare an empty message set containing a CWF physical
format and message set level CWF properties already populated, which then gets
copied into the message set created by the import.

Importing from COBOL copybooks to create message definitions:

Developing message models 73



You can populate your message set with message definitions by importing COBOL
copybook files, using either the New Message Definition File From COBOL file
wizard or the mqsicreatemsgdefs command line utility.

Each COBOL copybook that you import results in a new message definition file.
The root name of the message definition file defaults to the root name of the
COBOL copybook file, but the New Message Definition File From COBOL file
wizard allows you to choose a different root file name.

If the message definition file already exists, you must have permitted overwriting
to occur for the import to proceed, in which case the existing content is deleted
and recreated.

By default, all message definition files that are created as a result of COBOL
copybook file import belong to the noTarget XML namespace and therefore reside
in the (default) location in your workspace. This default namespace can be
overridden by specifying a target namespace. See “Namespaces with MRM
non-XML messages” on page 36 for reasons why you might want to do this.

In your COBOL copybook file there are typically one or more level 01 structures.
You can select which of these structures to import. The import operation then
imports those structures, plus any others that they require. All imported structures
are converted into the equivalent elements, groups and types in the message
definition file.

You can also specify which of the selected level 01 structures are to be messages in
the message definition file. The import operation creates a message and
corresponding global element in the message definition file for each structure that
you specify. If you do not specify that messages are to be created, you must create
them manually using the Message Definition Editor after the import has
completed.

If you import using the New Message Definition File From COBOL file wizard,
you can only import one COBOL copybook file with each import operation. If you
use the command line utility, you can import several COBOL copybook files in
each import operation.

If your COBOL copybook file needs any other copybooks in order to compile
successfully, you must provide these in the same directory, because a compilation
of your copybook is performed as part of the import operation.

A report file is created during the import operation. This is located by default in
the log folder of the message set. By default it takes the name of the message
definition file, with .report.txt appended.

Physical information: As well as creating logical information, the import can also
create physical information. If the message set contains any Custom Wire Format
(CWF) physical formats, the physical format properties for all CWF layers are
populated. If the message set does not contain any CWF physical formats, only
logical information is created. If you import from the command line, only logical
information is created in the new message set by default. If you want physical
information created as well, see “Importing from the command line” on page 130
for details.

XML and TDS physical format properties are not populated and therefore take
default values.

74 Message Models



If you have one or more TDS layers, the import can cause entries in the task list,
warning you that certain TDS properties must be set if the COBOL structures that
you have imported were to appear in a TDS message.

If the TDS physical format is not applicable to your COBOL structures, you can
ignore these task list entries because they are just warnings, they will not prevent
your model being generated in another form, such as a message dictionary.

Because physical information is created, the application target environment
(platform and compiler) is important because it governs the way that, for example,
integers appear in the message. You can specify environment specific information
as part of the import operation, and the necessary properties are set accordingly.
There is a range of environments supported; if your environment is not shown,
choose the closest match and review the created physical information using the
Message Definition Editor after the import has completed.

Command line invocation: The mqsicreatemsgdefs command line utility allows you
to import several COBOL files in a single operation. All the COBOL copybook files
must be in single directory, and the directory location passed as a parameter to the
utility.

You provide the necessary environment specific information using an XML file.
This must contain an XML element called <COBOL> that holds one set of
environment specific information that applies to all COBOL copybook files that are
imported during an invocation of the utility. A default XML file called
mqsicreatemsgdefs.xml is supplied. If you want to apply different sets of
information to different copybooks, you must create multiple XML files and run
the utility multiple times.

The mqsicreatemsgdefs utility also allows you to create a new message set into
which the message definition files are placed, as part of the import operation. You
can also choose to base the message set created on an existing message set. This
facility enables you to prepare an empty message set that contains a CWF physical
format and pre-populated message set level CWF properties, which are then
copied into the message set that is created by the import.

Importing from WSDL files to create message definitions: You can add
messages to a message set by importing WSDL files, using the New Message
Definition File From WSDL file wizard, the Start from WSDL and/or XSD files
Quick Start wizard, or the mqsicreatemsgdefsfromwsdl command line utility.

Each WSDL file that you import results in one or more new message definition
files within the message set. A new message definition file is created for each
namespace that is defined for the message set. The name of the message definition
file defaults to the name of the WSDL file, but the New Message Definition File
From WSDL file wizard allows you to choose a different file name.

If the message definition file already exists, you must have permitted overwriting
to occur for the import to proceed, in which case the existing content is deleted
and recreated.

The message set that you are importing the WSDL file into must be namespace
enabled and, if it uses the MRM domain, must have an XML physical format so
that the message set is suitable for the runtime parsing of XML messages such as
SOAP.

Developing message models 75



A report file is generated during the import operation which allows you to
examine what occurred during the import process and to check any errors that
have resulted.

You specify a single WSDL definition for each import operation. If the WSDL
definition consists of a hierarchy of files, you must supply the name of the file that
contains the WSDL service or binding definitions. The WSDL definition that is
being imported must contain one or more WSDL bindings for the import to
proceed.

Importing using the New Message Definition File wizard

When you import using the New Message Definition File wizard, you can specify
only one WSDL definition for each import operation. A WSDL definition could be
held as one or more WSDL files and these will all be imported as a result of
importing the definition. The WSDL definition being imported must contain one or
more WSDL bindings for the import to proceed.

Importing using the command line

The WSDL command line importer (mqsicreatemsgdefsfromwsdl) can create a new
message set or update an existing one. If the message set project exists, it must be
namespace-enabled and have an XML physical format layer. If the project does not
exist, a new namespace-enabled project is created. If the import succeeds, new
message definition files are added to the message set.

The mqsicreatemsgdefsfromwsdl command allows you to import one WSDL
definition in a single operation.

The mqsicreatemsgdefsfromwsdl command copies the WSDL files it needs into the
workspace before the import runs. These are the top level WSDL files and any
imports are resolved using an absolute or relative location. The files are copied
under the specified message set in a folder called importFiles and are not
removed after the import, allowing the user to subsequently update or run
validation on them in the workbench.

Physical information

An XML physical format layer is required for the MRM domain, and must be
added to an existing message set prior to importing the WSDL definition.

Relationship of WSDL to Message Model:

If a broker is to communicate with an existing web service, it typically needs to
send and receive SOAP messages. To use this approach you should use the MRM
domain. You will need to ensure that the broker’s message model and the WSDL
definition used by the web service describe the same messages. In general this is
achieved by importing the WSDL for the existing web service using the broker
tooling. Currently only WSDL version 1.1 is supported.

Only the WSDL operation, message and part definitions will be represented in the
resulting broker model. Starting with the lowest level, a WSDL definition describes:
v a number of logical messages and their constituent parts which are themselves

defined in terms of XML Schema. The part definitions are imported directly into
the message model to create the corresponding element and type definitions.
The definitions are allocated to message definition files according to the target

76 Message Models



namespace of their schema definition. If there is no targetNamespace defined on
the <xsd:schema> element, then the resulting elements and types have no
namespace.

v a number of operations comprising the WSDL portType or interface. The
operations define the business payload for the SOAP messages at runtime.
Broker messages are created for each possible payload. In the case of rpc-style
WSDL this means that the message model needs message definitions
corresponding to the WSDL operations themselves. The names of these message
definitions are derived from the WSDL operation name and their namespace is
given by the namespace attribute on the WSDL <soap:body> definition.

v a SOAP version and encoding style. Message definitions for the SOAP envelope
and if necessary the SOAP encoding scheme are imported into the message set.
Currently the WSDL importer assumes the use of SOAP version 1.1. There is no
reason that WSDL version 1.1 cannot define a web service that uses SOAP
version 1.2 - it is simply that there isn’t a standard way of doing this. If your
web service does use SOAP version 1.2 then you may need to manually remove
the SOAP version 1.1 definitions and import the SOAP version 1.2 definitions.

Resulting message model

The resulting model allows the user to parse incoming SOAP messages using the
MRM XML parser where the message type would be Envelope. The message
model for the SOAP envelope defines the outer SOAP wrapper with its constituent
Header and Body sections and a number of attachment points where the various
business payloads can appear. These attachment points are defined with
composition message, allowing the broker messages created by the WSDL importer
to appear at these points.

The allowed attachment points are Envelope.Body, Envelope.Header and
Envelope.Body.Fault.detail. A message from the user’s message model may appear
at each point (in the case of the Envelope.Header, multiple messages may appear).
In the case of rpc-style WSDL, the message expected at Envelope.Body is the
automatically generated message corresponding to the WSDL operation. In all
other cases the messages expected are those defined by the WSDL message parts
for each operation.

Generate model representations
After you have created and populated a message set, you can generate a message
model in several different representations for use by a broker, a parser, or your
applications.

The following representations are supported:
v A message dictionary, for deployment to a broker.
v A W3C XML Schema, for use by an application building or processing XML

messages, or for deployment to a broker.
v Web Services Description Language (WSDL), for a Web services client

application, or for deployment to a broker.
v Documentation, to give to programmers or business analysts.

Generation for deployment to a broker takes place automatically when you add
your message set to a Broker Archive (BAR) file.

Generation for other purposes is achieved using the Generate menu actions.

Developing message models 77



Generate message dictionaries
A message dictionary is data structure that describes all of the messages in a
message set in a form suitable for deployment to the MRM parser.

Purpose of a message dictionary: A dictionary describes the logical structure and
content of a set of messages, and typically contains one or more physical formats
that describe how those messages are serialized in a bit stream. The MRM parser
within WebSphere Message Broker uses this information to parse an incoming
message bit stream into a message tree, or to write a message tree into a physical
bit stream.

Contents of a message dictionary: A message dictionary contains the same
information as the message set from which it was created, but in a compressed
form that the MRM parser within WebSphere Message Broker can understand and
use. A message dictionary contains all the elements in the message set, the
structure of the messages, and all the value constraints. A message dictionary also
contains any physical formats that were defined in the message set.

Generating a message dictionary: Before a message dictionary can be used, it
must be deployed to WebSphere Message Broker. To do this, add the message set
to a BAR file, and then deploy the BAR file to a message broker. The generation of
the message dictionary is performed automatically when a message set is added to
a BAR file, if the message set supports the MRM domain.

Before adding a message set to a BAR file, the Message Broker Toolkit performs a
full validation of the message set. If this validation finds any errors, the message
set is not added to the BAR file, and therefore no message dictionary is generated.

Dictionary generation report files:

Whenever a message dictionary is generated, a user log file is also generated and
added to the same BAR file. This file contains informational messages and
warnings that relate to the use of the generated dictionary. Always check this file
after generating a message dictionary.

Generate XML Schema
XML Schema is a standard way of describing complex message models.

You can generate a schema file from a message definition file. You can do this for
an individual message definition file, or for all message definition files in a
message set. If any XML physical formats have been defined for the message set,
you can select which of these XML wire formats are to be applied.
v If an XML format has been selected, the physical format information will also be

included.
v If no XML format is selected, the generated schema file only contains

information about the logical message model.

You can choose whether ’strict’ or ’lax’ schema generation is to be performed. This
is necessary because the logical extensions to the XML Schema model provided by
the message definition file cannot be represented in XML Schema. So you can
choose either to generate a Schema with more strict or more lax validation than the
equivalent validation performed by the message model parser. The affected model
extensions are:
v Content Validation = open
v Content Validation = open defined

78 Message Models



v Composition = unordered set

Further information about XML Schema: For details about XML Schema, see
XML Schema Part 0: Primer on the World Wide Web Consortium (W3C) Web site.

Validating an XML message against a schema:

The XMLNSC parser can validate an XML message against any deployed XML
schema.

You can validate an XML message against an XML schema when the message is
parsed, when the message is serialized, or at any point within a message flow.

To construct a message flow for schema validation, you must perform the
following tasks:
1. Enable validation at the appropriate point within the message flow. See

Validating messages.
2. Ensure that you have deployed all XML Schema files that are required. See

“Deploying an XML Schema.”
3. Specify the message set in which the schema was deployed; this is done using

the MessageSet property of the message. See Accessing the Properties tree.

Schemas are deployed within a message set, and are identified by supplying the
message set name in the message properties.

Deploying an XML Schema:

XML Schemas are created as Message Definition Files within a message set that is
then deployed.

To create and deploy a message set for schema validation you must:
1. Create or locate a message set that will contain the schemas.
2. Set the Message Domain property of the message set to XMLNSC.
3. Use the New Message Definition File wizard to create a message definition file

(mxsd) from the XML Schema file (.xsd).
4. Add the message set to a BAR file and deploy the BAR file.

Repeat step 3 for each XML Schema file that you want to deploy.

If your XML Schema imports or includes other XML Schema files, you can use the
mqsicreatemsgdefs command to create all the message definition files in a single
operation.

Generate WSDL
A Web Services Description Language (WSDL) document specifies the interface to a
Web service, and enables a Web service client to invoke it. A WSDL document that
is generated from a message set defines Web service requests and responses in
terms of the messages that you have defined in that message set.

Use message definition files with target namespaces when you generate WSDL. If
you do not, WebSphere Message Broker defaults the target namespace to the
WSDL target namespace.

If the WSDL uses a message from the message definition file, one XML Schema file
is generated for each message definition file in the message set. Within the main

Developing message models 79

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/


WSDL document, operations are defined in terms of logical messages, which are
themselves defined in terms of the elements and types that are defined in these
XML Schema files.

WSDL operations are grouped into a logical interface or portType, and are then
associated with a binding which defines the physical format of the messages. You
can select only one of the following bindings when you generate WSDL:
v SOAP (over JMS)
v SOAP (over HTTP)

A WSDL service definition specifies the endpoint where the service is available.
You can elect to have the service, binding, and portType definitions generated as a
single file or as separate files, but the XML Schema files are always generated
separately. Tools that consume WSDL are typically more tolerant of the single-file
format.

Relationship to the message model when generating WSDL: If a broker is to
communicate with a web service client, it typically needs to accept SOAP
messages. Using this approach you should use the MRM domain, in which case
the broker’s message model and the WSDL definition used by the web service
client must describe the same messages.

If the broker has an existing message model (possibly created by importing a C
header file or COBOL copybook), this can be exported to create a corresponding
WSDL definition for use by the client. At the same time, your message model
needs to be enhanced with appropriate definitions for the SOAP envelope and (for
rpc-style) the WSDL operations. Currently only WSDL version 1.1 is supported.

In order to generate WSDL you need:
1. a way of representing the WSDL operations. This is the role of the message

category.
2. a way of representing the data for these operations. This is the message model.
3. a way of soliciting the web service end-point and binding details. This is the

role of the WSDL Generator wizard.

A message category is required for each WSDL operation. The category specifies a
set of messages from the broker model and associates them with the required
WSDL qualifiers for the specified WSDL operation type.

At runtime, the format of the SOAP messages depends on the WSDL style
specified in the wizard. If the user selects rpc-style then the SOAP Envelope will
contain a message corresponding to a WSDL operation. The WSDL generator will
then add an appropriate message definition that corresponds to the WSDL
operation to your message set. If you select document-style then the SOAP
envelope will simply contain messages specified in the category, so no additional
message definitions need to be added to your message set.

Message definitions for the SOAP envelope and (if necessary) the SOAP encoding
scheme are imported into the message set.

Resulting message model

The resulting model allows you to parse incoming SOAP messages using the MRM
XML parser where the message type would be Envelope. The message model for
the SOAP envelope defines the outer SOAP wrapper with its constituent header

80 Message Models



and body sections and a number of attachment points where the various business
payloads can appear. These attachment points are defined with composition of
type message, allowing broker messages to appear at these points.

The allowed attachment points are Envelope.Body, Envelope.Header and
Envelope.Body.Fault.detail. A message from your message model may appear at
each point (in the case of the Envelope.Header, multiple messages may appear). In
the case of rpc-style WSDL, the message expected at Envelope.Body is the
automatically generated message corresponding to the WSDL operation (for
example, the message category). In all other cases the messages expected are those
referenced by the message categories.

Generating message set documentation
Message set documentation describes, in a human-readable format, message
definitions which you have created.

When you have created one or more message definitions, it can be useful to
generate message set documentation for business analysis and for developers who
are involved with the messages.

Message definition files contain both logical and physical definitions for the
message model. The generated documentation describes the logical format only.

The documentation exists as a self-consistent set of HTML pages.

Working with a message set project

Before you begin to develop your message model, you must create a message set.
A message set project is automatically created when you create a message set.

This topic area describes the tasks that are involved in working with a message set.
v “Creating a message set” on page 83
v “Deleting a message set project”

Deleting a message set project

Before you start:

You must have completed the following task:
v “Creating a message set” on page 83

Tip: Close all open windows within the workbench that relate to the message set
project or associated files that you want to delete. If you do not do this, errors
might occur when you try to process objects that no longer exist your
workspace.

This task topic describes how to delete a message set project and, optionally, the
contents of the associated project directory.

To delete a message set project:
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the message set project that you

want to delete, then click Delete on the pop-up menu. The Confirm Project
Delete window opens.

Developing message models 81



3. Choose whether to delete or retain the contents of the project directory. By
default, project directory contents are not deleted. To delete the contents of the
project directory, click Also delete contents; all files and directories that are
associated with the project are deleted.

4. Click Yes to delete the message set project. Alternatively, click No or press Esc
to cancel the deletion.

Working with a message set

This topic area describes the tasks that are involved in working with a message set:
v “Configuring message set preferences”
v “Opening an existing message set”
v “Creating a message set” on page 83
v “Configuring logical properties: Message sets” on page 85
v “Working with physical formats” on page 86
v “Configuring documentation properties: Message sets” on page 92
v “Deleting a message set” on page 92
v “Applying a Quick Fix to a task list error” on page 93

Configuring message set preferences
This task topic explains how to make changes to preferences that relate to message
set processing. These preferences are for message set editors, message set model
validation, and importing XML Schema.

To configure message set preferences:
1. Open the Preferences window by clicking Window > Preferences.
2. In the left hand pane, expand Broker Development > Message Sets by clicking

+. This displays the following options:
v Editors
v Validation
v XML Schema Importer

3. View or make any necessary changes to the preferences for message set
processing. These preferences are shown in the right hand area of the window.

4. When you have finished, click Apply. Alternatively, click Restore Defaults to
return to the default settings for the displayed fields.

5. Close the Preferences window by clicking OK.

Opening an existing message set
Open an existing message set in the Message Set editor so that you can view or
edit its contents.

Before you start:

Create a message set by following the instructions in “Creating a message set” on
page 83.

Tip: Although you can open resource files with other editors you are advised to
only use the workbench Message Set editor to work with message set files
because this editor correctly validates changes made to the messageSet.mset
files when they are saved. Other editors might not do this.

82 Message Models



To open a message set so that you can view or edit its contents:
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the messageSet.mset file of the

message set that you are opening then click Open on the pop-up menu. This
opens the Message Set editor for the selected file.

You can now view or edit the file as required.

Creating a message set
Use the New Message Set wizard to create a message set.

The New Message Set wizard also creates a new message set project.

Note: You can also use a Quick Start wizard to create a message set, a message set
project, and other resource files that you need to create a new application.

The New Message Set wizard allows you to select what kinds of message format
you want to model in your message set. The message domain and the physical
format created is inferred from the selection that you make. Note, however, that
you can change the inferred domain using the message set editor.

The options are:
v XML documents (general)
v Web services (SOAP)
v Binary data (for example, C or COBOL structures)
v Text data (for example, CSV, SWIFT, or HL7)
v MIME documents other than Web services
v Data for WebSphere Adapters

The default value is XML documents (general).

Below the list of message formats there are check boxes corresponding to each of
the message formats. The check box corresponding to the message format that you
selected is not available, but you can select any of the other check boxes to add
other message formats to your message set.

If you later select a different default message domain, the checked state for the
domain that you originally selected as the default does not change, but the check
box is enabled.

As you can now select more than one message domain you can, for example, use
the default value of XML documents (general) together with Binary data (for
example, C or COBOL structures) and Text data (for example, CSV, SWIFT or
HL7). This results in the selection of the XMLNSC and MRM domains (to handle
non-XML documents) within the same message set if you require this functionality.

The mapping between the selection, the domain, and the wire format created is
described in the following table:

Selection Inferred message domain Physical format created

XML documents (general) XMLNSC XML

Web services (SOAP) SOAP and XMLNSC XML

Developing message models 83



Selection Inferred message domain Physical format created

Binary data (for example, C
or COBOL structures)

MRM CWF

Text data (for example, CSV,
SWIFT, or HL7)

MRM TDS

MIME documents other than
Web services

MIME None

Data for WebSphere
Adapters

DataObject None

Depending on your selection, an appropriate IBM supplied message will be
imported into the message set.

Note: The XML physical format is created only in case the user switches to MRM
XML.

If you click Finish on the second page of the New Message Set wizard, the
message set that is created has the following default property values:

Property Default value

Message Domain XML documents (general)

Physical Format XML Wire Format (XML1)

Namespace support Enabled

To create a new message set:
1. Switch to the Broker Application Development perspective.
2. Open the New Message Set wizard. To do this, right-click anywhere in the

Broker Development view then click New> Message Set on the pop-up menu.
3. Type the Message set name for the message set that you are creating. The

name that you type is also displayed in the Message set project name field.
4. Optional: You can choose a different message set project name; to do this, type

this name into the Message set project name field.
5. Optional: You can specify a directory in which you want to store the project

contents. If you do not specify a directory, the default workspace is used. To
specify a directory, first clear the Use default check box and then either type
into the Directory field the location of the directory, or click Browse to see a
list of the folders that you can choose from for the location of the directory.

6. Optional: If you want to create a new message set whose definition is based on
existing message set, click Message Set in the Copy message set contents from
another message set pane and choose from the list of message set definitions
that are shown; then click Finish. The new message set (and the message set
project that contains it) is created immediately and the New Message Set
wizard automatically closes.

7. Optional: If you want to create a message set whose definition is not based on
an existing message set, click Next>. You are presented with the next pane
which allows you to choose the type of message data that you want to process.
a. Expand the list shown under Select the type of message data that you will

be working with most often and choose a value from the list shown. The

84 Message Models



value that you choose determines the default message domain of the
message set. If you choose XML Documents (general), the default message
domain XMLNSC is used.

b. Optional: You can now select additional types of message data. Under
Select any other types of message data that you will be working with
there are check boxes for each of the following message data types:
v XML documents (general)
v Web services SOAP
v Binary data (for example, C or COBOL structures)
v Text data (for example, CSV, SWIFT or HL7)
v MIME documents other than Web services
v Data for WebSphere Adapters

Note: These check boxes correspond to the list of data types from which
you chose the data type that you will be working with most often,
but the check box that corresponds to the data type that you chose
from that list is not available.

By default, all these check boxes are cleared. You can select any, or all of
these check boxes, to add the corresponding data types to your message set.
If you select the check box for text data, either for the type of message data
that you will be working with most often or as another type of message
data that you will be working with, you can additionally choose from the
displayed list of text messaging standards. This list is the same as that given
in the description of the Messaging Standard property in “TDS Format
message set properties” on page 160.

c. Click Next A new panel is displayed that summarizes some information
about the message set that you have created. Specifically, it lists:

Supported message domains
Physical formats to be created
IBM supplied messages to be imported

8. Click Finish on this page to create the message set, and the message set project
that contains it. The New Message Set wizard closes.

After the New Message Set wizard finishes, the message set editor is opened.

You can now create some message definitions in the new message set. You can
either create new message definitions from scratch, or create them based on
existing artifacts such as WSDL, XSD, DTD, C, COBOL files, or EIS metadata. Use
the Message Definition File wizard and the Message Definition File From wizard to
help you with this.

Configuring logical properties: Message sets

Before you start:

You must have completed the following task:
v “Creating a message set” on page 83

If the messageSet.mset file for the appropriate message set is not already open in
the Message Set editor, you must first open it as described in “Opening an existing
message set” on page 82.

Developing message models 85



This task topic describes how to configure the logical properties of a message set
using the Message Set editor.

To configure the logical properties of a message set:
1. Switch to the Broker Application Development perspective.
2. In the Message Set editor, in the Properties Hierarchy, click Message Set. This

displays the logical properties of the selected message set in the Details view.
3. Configure to your requirements the logical properties that are shown in the

Details view.

Note: Property fields that are disabled cannot be altered. For example, the
Message Set ID field is disabled because the message set ID is generated
automatically when the message set is created; the Message Set ID must
not then be altered.

4. Save your changes by clicking File> Save or by pressing Ctrl+S. Alternatively
click File> Save All or press Ctrl+Shift+S.

Working with physical formats

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Opening an existing message set” on page 82

If you are using the MRM domain to parse and write your messages, when you
are developing your message model you might want to add one or more physical
format layers to a message set and then configure the properties of these physical
formats. This topic area covers the following tasks that relate to working with the
physical properties of a message set:
v “Adding a Custom Wire Format (CWF)”
v “Configuring Custom Wire Format (CWF) properties: Message sets” on page 87
v “Adding a TDS physical format” on page 87
v “Configuring TDS properties: Message sets” on page 88
v “Adding an XML wire format” on page 89
v “Configuring XML Wire Format properties: Message sets” on page 89
v “Renaming a physical format” on page 90
v “Applying default physical format settings: Message sets” on page 90
v “Removing a physical format” on page 91
v “Observing 2007 U.S. changes to Daylight Saving Time” on page 91

Adding a Custom Wire Format (CWF)

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Opening an existing message set” on page 82

This task topic describes how to add a Custom Wire Format (CWF) physical format
layer to a message set using the Message Set editor.

86 Message Models



To add a CWF physical format layer to a message set:
1. Switch to the Broker Application Development perspective.
2. In the Message Set editor, in the Properties Hierarchy, open the Add Custom

Wire Format window by right-clicking Custom Wire Formats and then clicking
Add Custom Wire Format on the pop-up menu.

3. On the Add Custom Wire Format window, specify the name that you want to
use for the new CWF physical format. The default name is ’Binary1’.

Tip: Physical format names must be unique across a message set. You are
recommended to start the name of your new CWF physical format with
’CWF’ or ’Binary’, because this clearly identifies the type of the physical
format that you are adding in relation to any of the other types.

4. Click OK to add the physical format layer to the message set. Alternatively, if
you decide to cancel the process, click Cancel or press Esc on the keyboard.

Tip: The new physical format layer is added with the relevant default property
values. You can configure the message set properties according to your
requirements, using the appropriate editor.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.

Configuring Custom Wire Format (CWF) properties: Message
sets

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Opening an existing message set” on page 82
v “Adding a Custom Wire Format (CWF)” on page 86

This task topic describes how to configure the Custom Wire Format (CWF)
properties of a message set using the Message Set editor.

To configure the CWF properties of a message set:
1. Switch to the Broker Application Development perspective.
2. In the Message Set editor, the Custom Wire Formats node of the Properties

Hierarchy shows the name of each of the CWF physical formats that have been
added to the message set. If the physical format names are not in view, expand
Custom Wire Formats by clicking +.

3. Click the chosen CWF physical format so that the properties of this format
appear in the Details view of the Message Set editor.

4. Configure the CWF properties shown in the Details view according to your
requirements.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.
Alternatively click File> Save All or press Ctrl+Shift+S.

Adding a TDS physical format

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Opening an existing message set” on page 82

Developing message models 87



This task topic describes how to add a Tagged/Delimited String (TDS) physical
format layer to a message set using the Message Set editor.

To add a TDS physical format layer to a message set:
1. Switch to the Broker Application Development perspective.
2. In the Message Set editor, in the Properties Hierarchy, open the Add

Tagged/Delimited String Format window by right-clicking Tagged/Delimited
String Formats then clicking Add Tagged/Delimited String Format on the
pop-up menu.

3. In the Add Tagged/Delimited String Format window, specify the name that
you want to use for the new TDS format. The default name is ’Text1’.

Tip: Physical format names must be unique across a message set. You are
recommended to start the name of your new TDS physical format with
’TDS’ or ’Text’, because this clearly identifies the type of the physical
format that you are adding in relation to any of the other types.

4. Click OK to add the physical format to the message set. Alternatively, if you
decide to cancel the process, click Cancel or press Esc on the keyboard.

Tip: The new physical format layer is added with the relevant default property
values. You can configure the message set properties according to your
requirements, using the Message Set editor.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.

Configuring TDS properties: Message sets

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Opening an existing message set” on page 82
v “Adding a TDS physical format” on page 87

This task topic describes how to use the Message Set editor to configure the TDS
physical format properties of a message set.

To configure the TDS physical format properties of a message set, do the following:
1. Switch to the Broker Application Development perspective.
2. In the Message Set editor, the Tagged/Delimited String Formats node of the

Properties Hierarchy shows the name of each of the TDS physical formats that
have been added to the message set. If the physical format names are not in
view, expand Tagged/Delimited String Formats by clicking +.

3. Click the chosen TDS physical format so that the properties of this format
appear in the Details view of the Message Set editor.

4. Configure the TDS properties shown in the Details view according to your
requirements.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.
Alternatively click File> Save All or press Ctrl+Shift+S.

88 Message Models



Adding an XML wire format

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Opening an existing message set” on page 82

This task topic describes how to add an XML wire format physical format layer to
a message set using the Message Set editor.

To add an XML physical format layer to a message set:
1. Switch to the Broker Application Development perspective.
2. In the Message Set editor, in the Properties Hierarchy, open the Add XML Wire

Format window by right-clicking XML Wire Formats and then clicking Add
XML Wire Format on the pop-up menu.

3. On the Add XML Wire Format window, specify the name that you want to use
for the new XML wire format. The default name is ’XML1’.

Tip: Physical format names must be unique across a message set. You are
recommended to start the name of your new XML physical format with
’XML’, because this clearly identifies the type of the physical format that
you are adding in relation to any of the other types.

4. Click OK to add the physical format layer. Alternatively, if you decide to cancel
the process, click Cancel or press Esc on the keyboard.

Tip: The new physical format layer is added with the relevant default property
values. You can configure the message set properties according to your
requirements, using the appropriate editor.

5. Save your changes either by clicking File> Save or by pressing Ctrl+S.

Configuring XML Wire Format properties: Message sets

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Opening an existing message set” on page 82
v “Adding an XML wire format”

This task topic describes how to configure the XML Wire Format properties of a
message set using the Message Set editor.

To configure the XML wire format properties of a message set:
1. Switch to the Broker Application Development perspective.
2. In the Message Set editor, the XML Wire Formats node of the Properties

Hierarchy shows the name of each of the XML physical formats that have been
added to the message set. If the physical format names are not in view, expand
XML Wire Formats by clicking +.

3. Click the chosen XML physical format so that the properties of this format
appear in the Details view of the Message Set editor.

4. Configure the XML wire format properties shown in the Details view according
to your requirements.

Developing message models 89



5. Save your changes either by clicking File> Save or by pressing Ctrl+S.
Alternatively click File> Save All or press Ctrl+Shift+S.

Renaming a physical format

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Opening an existing message set” on page 82

This task assumes that you have added one or more physical formats to the
message set that you are working with. For further information see “Adding a
Custom Wire Format (CWF)” on page 86 or “Adding an XML wire format” on
page 89 or “Adding a TDS physical format” on page 87.

This task topic describes how to rename a physical format using the Message Set
editor.

To rename a physical format previously added to the message model:
1. Close all message definition (.mxsd) files that are currently open in the Message

Definition editor, otherwise you will not be able to rename the physical format.
2. Switch to the Broker Application Development perspective.
3. In the Message Set editor, the Properties Hierarchy shows the name of each of

the physical formats that have been added to the message set. If the physical
format names are not in view, expand XML Wire Formats, Custom Wire
Formats, or Tagged/Delimited String Formats by clicking +.

4. Right-click the physical format that you want to rename then click Rename on
the pop-up menu to open the “Rename wire format” window.

5. In the “Rename wire format” window, type the new name for the physical
format. The renaming operation modifies all of the message definition files in
the message set and saves the amended message set file.

6. Click Finish to rename the physical format and save the message set file.

Applying default physical format settings: Message sets

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Opening an existing message set” on page 82

The tasks in this topic area assume that you have added one or more physical
formats to the relevant message set. For further information see “Adding a Custom
Wire Format (CWF)” on page 86 or “Adding an XML wire format” on page 89 or
“Adding a TDS physical format” on page 87.

To apply the default settings to a physical format that has previously been added
to a message set:
1. Switch to the Broker Application Development perspective.
2. In the Message Set editor, in the Properties Hierarchy, right-click the physical

format to which you want to apply the default settings then click Apply
default physical format settings on the pop-up menu.

90 Message Models



The default settings are applied to the physical format that you have selected. No
warning appears beforehand.

Removing a physical format

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Opening an existing message set” on page 82

The tasks in this topic area assume that you have added one or more physical
formats to a message set. For further information see “Adding a Custom Wire
Format (CWF)” on page 86 or “Adding an XML wire format” on page 89 or
“Adding a TDS physical format” on page 87.

To remove a physical format layer from your message set:
1. Close any message definition files that are currently open in the Message

Definition editor, otherwise you will not be able to remove the physical format.
2. Switch to the Broker Application Development perspective.
3. In the Message Set editor, the Properties Hierarchy shows the name of each of

the physical formats that have been added to the message set. If the physical
format names are not in view, expand XML Wire Formats, Custom Wire
Formats, or Tagged/Delimited Wire Formats, by clicking +.

4. Right-click the physical format that you want to remove, and then click Delete
on the pop-up menu.

Tip: If you decide to proceed with deleting the physical format, all of the
message definition files under the current message set are modified and
the amended message set file is saved.

5. Click Finish to remove the physical format, or click Cancel to return to the
Broker Application Development perspective without making any changes.
Pressing Esc also returns you to the Broker Application Development
perspective without making any changes.

Observing 2007 U.S. changes to Daylight Saving Time

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Opening an existing message set” on page 82

This task assumes that you have added and configured one or more physical
formats to existing message sets. For further information see: “Working with
physical formats” on page 86.

This task describes how to ensure that the message sets observe daylight saving
time (DST) in line with the 2007 U.S. changes.

If your message sets use a named time zone that is not changing DST in line with
the 2007 U.S. changes, you do not need to do anything.

Developing message models 91



If you are using a GMT-04:00, GMT-05:00, GMT-06:00, GMT-07:00, or GMT-08:00
named time zone with DST, that must observe DST in line with the 2007 U.S.
changes, do the following on every computer on which the broker is running:
1. Set the environment variable MQSI_USE_NEW_US_DST to an initial value: Y,

for example.
2. Restart the broker to use the changed DST.

Configuring documentation properties: Message sets

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Opening an existing message set” on page 82

This task topic describes how to document a message set within the workbench.

To configure the documentation for a message set:
1. Switch to the Broker Application Development perspective.
2. In the Message Set editor Properties Hierarchy, click Message set. The

documentation text field appears in the Details view along with all the other
logical properties of the message set.

3. Configure the documentation properties shown in the Details view to your
requirements.

Tip: The Documentation property can be used to set user defined keywords
and their value. These are propagated to the Configuration Manager when
the message set is deployed to the broker. These keywords are used to
give additional information about the message set when the Configuration
Manager is used to display deployed message set properties. See
“Message set version and keywords” on page 10 for more information.

4. Save your changes either by clicking File> Save, or by pressing Ctrl+S.
Alternatively click File> Save All, or press Ctrl+Shift+S.

Deleting a message set
If you want to delete a message set from your message model, you must delete the
message set project that contains the message set.
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the message set project folder that

contains the message set that you want to delete and click Delete on the
pop-up menu. This opens the Confirm Project Delete window, which asks
whether you want to delete the message set project that you have specified.

3. Click Also delete contents ..... to delete the contents of the message set project,
or click Do not delete contents to cancel the deletion of the message set
project. Pressing the Esc key on your keyboard also cancels the deletion of the
message set project.

Important: When you delete a message set project, the action cannot be undone
after you have confirmed the deletion. All folders and associated files
for the message set project are deleted.

92 Message Models



Applying a Quick Fix to a task list error
During the creation, migration and manipulation of message definition files,
warnings or errors might occur; these are listed in the Problems view of the Broker
Application Development perspective. Some of these warnings or errors can be
cleared by applying a Quick Fix.

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94

The types of warnings or errors that can be cleared using a Quick Fix are those
where the construct has a broken link, where the construct has a facet that is not
legal, or where the construct has been imported, and where a warning or error has
occurred, but has been kept to ensure the integrity of structure that is being
imported. This allows you to fix the problem in the most appropriate way.

To apply a Quick Fix:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Problems view is visible in the Broker Application

Development perspective of the workbench. If the Problems view is not visible,
from the workbench menu, click Window → Show View → Problems.

3. In the Problems view, right-click the task list warning or error that you want to
apply the Quick Fix to, and then click Quick Fix. Note that Quick Fix might
not be available for the problem that you are trying to fix.

4. Step through the windows that are displayed, making the selections that are
required to ensure that the fix is applied in the appropriate way.

When the Quick Fix has successfully been applied to the task list warning or error,
it is removed from the Problems view.

Working with a message definition file

Before you start:

You must have completed the following task:
v “Creating a message set” on page 83

This topic area describes the tasks that are involved in working with a message
definition file:
v “Opening an existing message definition file”
v “Creating a message definition file” on page 94
v “Deleting a message definition file” on page 95

Opening an existing message definition file
This task topic describes how to open an existing message definition file in the
Message Definition editor; you can then view and edit the contents of the file.

To open an existing message definition file:
1. Switch to the Broker Application Development perspective.

Developing message models 93



2. In the Broker Development view, right-click the message definition file (file
extension *.mxsd) that you want to open, and select Open. This opens the
Message Definition editor for the message definition file that you have
specified.

Tip: The Eclipse framework lets you open resource files with other editors.
However, you are advised to use only the workbench Message Definition
editor to work with message definition files, because this editor correctly
validates any changes that are made to the message definition files. Other
editors might not do this.

3. View or edit the data in the file as required.

Creating a message definition file
Creating an empty message definition file to contain your message model objects.

Before you start:

You must have completed the following task:
v “Creating a message set” on page 83

You must create a message definition file before you can create the message model
objects. The message definition file contains the logical and physical model
definitions of the objects in XML Schema form.

You can create the message definition file in one of the following ways:
v Create the message definition file from scratch, see “Creating a message

definition file from scratch.”
v Base your message definition file on an existing resource (for example, an XML

Schema file, an IBM® supplied message, an XML DTD file, a C header file, a
COBOL file, or a WSDL file), see “Creating a message definition file from an
existing resource” on page 95.

Creating a message definition file from scratch

Before you start:

You must have completed the following task:
v “Creating a message set” on page 83

You must create a message definition file before you can create the message model
objects. The message definition file contains the logical and physical model
definitions of the objects in XML Schema form.

To create an empty message definition file from scratch:
1. Switch to the Broker Application Development perspective.
2. Open the New Message Definition File wizard.

To do this, right-click on the message set project in the Broker Development
view that you are adding the message definition file to, and click New>
Message Definition File on the pop-up menu. The Message Definition File
panel of the wizard is displayed. The target message set list is filtered to only
show artifacts in the active working set.

3. Click on the message set, type a name into the File name field, and click Next.
4. Step through the remainder of the wizard, filling in the details as required.

94 Message Models



The new empty message definition file, with the name that you have specified and
a file extension of *.mxsd, opens in the Message Definition editor; you can use the
editor to create your own message definitions. If you have chosen to use a target
namespace, a directory structure that is based on the URI that you have supplied is
created. The new message definition file is placed within this directory structure,
which appears in the Broker Development view.

Creating a message definition file from an existing resource
You must create a message definition file before you can create the message model
objects. The message definition file contains the logical and physical model
definitions of the objects in XML schema form.

You must have completed the following task:
v “Creating a message set” on page 83

To create a new message definition file that is based on an existing resource:
1. Switch to the Broker Application Development perspective.
2. Open the appropriate New Message Definition File From wizard.

To do this, right-click on the message set project in the Broker Development
view that you are adding the message definition file to, and click New>
Message Definition File From. A submenu shows the list of resources that you
can choose from.

3. Choose the resource on which you want to base your new message definition.
Click XML Schema File, IBM Supplied Message, XML DTD File, C Header
File, COBOL File, or WSDL File. The first panel of the corresponding wizard
is displayed.

4. Step through the remainder of the wizard filling in the details as required.

The new message definition file, with the name that you have specified and a file
extension of *.mxsd, opens in the Message Definition editor; you can use the editor
to create your own message definitions. If you have chosen to use a target
namespace, a directory structure that is based on the URI that you have supplied is
created. The new message definition file is placed within this directory structure,
which appears in the Broker Development view.

Deleting a message definition file

To delete a message definition file from your message model:
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the message definition file (file

extension *.mxsd) that you want to delete, then click Delete on the pop-up
menu. Alternatively, select the message definition file that you want to delete in
the Broker Development view, then, from the menu bar, click Edit> Delete, or
press the Delete key.

3. In the Confirm Resource Delete window, click Yes to delete the message
definition file. Click No, or press the Esc key, to cancel the deletion of the
message definition file.

Important: All files and objects that are associated with the message definition file
are deleted. This action cannot be undone.

Developing message models 95



Working with message model objects

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94

This topic area describes the tasks that are involved in working with message
model objects:
v “Adding message model objects”
v “Configuring message model objects” on page 107
v “Deleting objects” on page 120

Adding message model objects

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94

Before starting any of the tasks in this topic area, you must first open the message
definition file to which you want to add message model objects in the Message
Definition editor. See “Opening an existing message definition file” on page 93 for
further details.

This topic area describes the tasks that are involved in adding message model
objects to a message definition file:
v “Adding a message” on page 97
v “Adding a message from a global element” on page 97
v “Adding a global element” on page 98
v “Adding a local element” on page 99
v “Adding an element reference” on page 99
v “Adding a wildcard element” on page 100
v “Adding a global attribute” on page 100
v “Adding a local attribute” on page 101
v “Adding an attribute reference” on page 101
v “Adding a wildcard attribute” on page 102
v “Adding a simple type” on page 102
v “Adding a complex type” on page 104
v “Adding a simple type to an element or attribute” on page 111
v “Adding a complex type to an element” on page 111
v “Adding a global group” on page 104
v “Adding an attribute group” on page 105
v “Adding a group reference” on page 106

96 Message Models



Adding a message

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

To add a message to your message definition file:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Messages then click Add Message on the
pop-up menu. A simple message is immediately added to your message model
and is assigned a default name.

4. Either type a new name for the message or press Enter to accept the default.

Tip: When you add a message to your message model, an associated complex
type and global element with the same name as the message are also
created. The global element and the message cannot have different names
and changing the name of one changes the names of both. The complex
type can be renamed.

You can now configure the properties of the message to your exact requirements.
For further information on configuring message model objects see “Configuring
message model objects” on page 107.

Adding a message from a global element

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93
v “Adding a global element” on page 98 (This must be a global element of

complex type)

To add a message from a global element to your message model:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Messages then click Add Message From Global
Element on the pop-up menu to open the Add Message From Global Element
window. This window lists all the global elements of a complex type that are
not already associated with a message.

4. In the Select a global element of complex type that is not already used for a
message list, click the global element that you want to use to create your
message.

Developing message models 97



5. Click OK. This immediately adds a message with the same name as the
selected global element to your message model.

You can now configure the properties of the message to your exact requirements.
For further information on configuring message model objects see “Configuring
message model objects” on page 107.

Adding a message from a global type

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93
v “Adding a global element” (This must be a global element of complex type)

To add a message from a global type to your message model:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Messages then click Add Message From Global
Type on the pop-up menu to open the Add Message From Global Type
window. This window lists all the global complex types that are not already
associated with a message.

4. In the Select a global complex type list, click the global complex type that you
want to use to create your message.

5. Click OK. This immediately adds a message with the same name as the
selected global complex type to your message model.

You can now configure the properties of the message to your exact requirements.
For further information on configuring message model objects see “Configuring
message model objects” on page 107.

Adding a global element

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

To add a global element to your message model:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Elements and Attributes then click Add Global
Element on the pop-up menu. This adds a global element of type string to
your message model, and assigns a default name.

98 Message Models



4. Either type a new name for the global element or press Enter to accept the
default.

You can now configure the global element to your requirements. For further
information on configuring message model objects see “Configuring message
model objects” on page 107.

Adding a local element

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

This task assumes that you have previously added the relevant message, type,
group or complex element to your message model.

To add a local element to a message, type, group or complex element:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, group or
complex element) to which you are adding a local element then click Add
Local Element on the pop-up menu. A local element of type string is added to
the message model and is assigned a default name.

4. Either type a new name for the local element or press Enter to accept the
default.

You can now configure the local element to your exact requirements. For further
information on configuring message model objects see “Configuring message
model objects” on page 107.

Adding an element reference

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

This task assumes that you have previously added the relevant message, type,
global group or complex element to your message model.

To add an element reference to a message, type, global group or complex element:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

Developing message models 99



3. In the Outline view, right-click the object (message, complex type, group or
complex element) to which you are adding the element reference, then click
Add Element Reference on the pop-up menu. This adds a default element
reference to the message model object that points to an existing global element.
This existing global element may be in the current message definition file or in
a message definition file defined under Includes or Imports for the current
message definition file. For further information on Imports and Includes see
“Linking from one message definition file to another” on page 122.

You can now configure the element reference to your exact requirements. For
further information on configuring message model objects see “Configuring
message model objects” on page 107.

Adding a wildcard element

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

You can add a wildcard element to a message, type, group or complex element.
This task assumes that you have previously added the relevant message, type,
group or complex element to your message model.

To add a wildcard element to a message, type, group or complex element:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the message model object (message, complex
type, group or complex element) to which you are adding the wildcard element
then click Add Wildcard Element on the pop-up menu. A wildcard element is
added and appears in the Outline view.

You can now configure the wildcard element to your exact requirements. For
further information on configuring message model objects see “Configuring
message model objects” on page 107.

Adding a global attribute

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

To add a global attribute to your message model:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

100 Message Models



3. In the Outline view, right-click Elements and attributes then click Add Global
Attribute on the pop-up menu. A global attribute of type string is immediately
added and is assigned a default name.

4. Either type a new name for the global attribute or press Enter to accept the
default.

You can now configure the global attribute to your requirements. For more
information on configuring message model objects see “Configuring message
model objects” on page 107.

Adding a local attribute

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

You can add a local attribute to a message, complex type or complex element. This
task assumes that you have previously added the relevant message, complex type
or complex element to your message model.

To add a local attribute to a message, complex type or complex element:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, complex
element, or attribute group) to which you are adding the local attribute then
click Add Local Attribute on the pop-up menu. A local attribute of type string
is immediately added to the message model object and is assigned a default
name.

4. Either type a new name for the local attribute or press Enter to accept the
default.

You can now configure the local attribute to your requirements. For further
information on configuring message model objects see “Configuring message
model objects” on page 107.

Adding an attribute reference

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

You can add an attribute reference to a message, complex type or complex element.
This task assumes that you have previously added the relevant message, complex
type or complex element to your message model.

To add an attribute reference to a message, complex type or complex element:

Developing message models 101



1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the message model object (message, complex
type, complex element, or attribute group) to which you are adding the
attribute reference then click Add Attribute Reference on the pop-up menu.
This adds a default attribute reference to the message model object that points
to an existing global attribute.

You can now configure the attribute reference to your exact requirements. For
further information on configuring message model objects see “Configuring
message model objects” on page 107.

Adding a wildcard attribute

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

You can add a wildcard attribute to a message, complex type or complex element.
This task assumes that you have previously added the relevant message, complex
type or complex element to your message model.

To add a wildcard attribute to a message, complex type or complex element:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, complex
element, or attribute group) to which you are adding the wildcard attribute
then click Add Wildcard Attribute on the pop-up menu. A wildcard attribute
of type string is immediately added to the message model object and is
assigned a default name.

4. Either type a new name for the wildcard attribute or press Enter to accept the
default.

You can now configure the wildcard attribute to your requirements. For further
information on configuring message model objects see “Configuring message
model objects” on page 107.

Adding a simple type

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

102 Message Models



To add a simple type to your message model:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Types then click either Add Simple Type
Restriction, Add Simple Type List, or Add Simple Type Union on the pop-up
menu.
v For a restriction, a simple type of base type string is added, and assigned a

default name.
v For a list, a simple type of item type string is added, and assigned a default

name.
v For a union, a simple type with a single member type of string is added, and

assigned a default name.
4. Either type a new name for the simple type or press Enter to accept the default.

You can now configure the simple type to your exact requirements.

If the simple type is a restriction:
v You can change the base type using the editor Properties view.
v You can set the value constraints associated with the simple type. See “Setting

value constraints” on page 112.
v You can replace the base type with a new local simple type. In the Outline view

right-click on the simple type and click one of:
– Add Simple Type Restriction. This replaces the base type with a new simple

type restriction, with a base type of string. You can configure the restriction as
described in ’If the simple type is a restriction’. The result is that the original
simple type becomes a restriction of a restriction.

– Add Simple Type List. This replaces the base type with a new simple type
list, with an item type of string. You can configure the list as described in ’If
the simple type is a list’. The result is that the original simple type becomes a
restriction of a list. Note that this appears as a list in the editor, because a
restriction of a list is itself a list, but you can also set certain value constraints.

If the simple type is a list:
v You can change the item type using the editor Properties view.
v You can replace the item type with a new local simple type. In the Outline view

right-click on the simple type and click one of:
– Add Simple Type Restriction. This replaces the item type with a new simple

type restriction, with a base type of string. You can configure the restriction as
described in ’If the simple type is a restriction’. The result is that the original
simple type becomes a list of a restriction.

– Add Simple Type Union. This replaces the item type with a new simple type
union, with a single member type of string. You can configure the union as
described in ’If the simple type is a union’. The result is that the original
simple type becomes a list of a union.

If the simple type is a union:
v If the member type of string is not required, in the Outline view right-click on

the string and click Delete.

Developing message models 103



v You can add further members to the union. In the Outline view right-click on
the simple type and click one of:
– Add Union Member Type. This adds a union member that is an existing

simple type. Use the type selection dialog to select the simple type required.
– Add Local Member Type Restriction. This adds a union member that is a

new simple type restriction, with a base type of string. You can configure the
restriction as described in ’If the simple type is a restriction’ above.

– Add Local Member Type List. This adds a union member that is a new
simple type list, with an item type of string. You can configure the list as
described in ’If the simple type is a list’ above.

– Add Local Member Type Union. This adds a union member that is a new
simple type union, with a single member type of string. You can configure the
new union as described in ’If the simple type is a union’.

v New members are added to the end of the union. To change the order of a
member, in the Outline view select the member and drag it to the desired
position within the union. Note that all union members that are existing simple
types must occur ahead of all members that are local restrictions, lists and
unions, so reordering is subject to this rule.

For further information on configuring message model objects see “Configuring
message model objects” on page 107.

Adding a complex type

Before you start:

You must already have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

To add a complex type to your message model:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Types then click Add Complex Type on the
pop-up menu. A complex type is added and is assigned a default name.

4. Either type a new name for the complex type or press Enter to accept the
default.

You can now configure the complex type to your requirements. For further
information on configuring message model objects see “Configuring message
model objects” on page 107.

Adding a global group

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

104 Message Models



To add a global group to your message model:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Groups then click Add Group on the pop-up
menu. A global group is added to your message model and is assigned a
default name.

4. Either type a new name for the global group or press Enter to accept the
default.

You can now configure the global group to your requirements. For further
information on configuring the properties of message model objects see
“Configuring message model objects” on page 107.

Adding a local group

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

You can add a local group to a message, complex type, group, or complex element.
This task assumes that you have previously added the relevant message, complex
type, group, or complex element to your message model.

To add a local group to a message, complex type, group, or complex element:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the object (message, complex type, group, or
complex element) to which you are adding the local group then click Add
Local Group on the pop-up menu. A local group is immediately added to the
message model with type composition set to sequence by default.

You can now configure the local group to your requirements. For further
information on configuring message model objects see “Configuring message
model objects” on page 107.

Adding an attribute group

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

To add an attribute group to your message model:
1. Switch to the Broker Application Development perspective.

Developing message models 105



2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Groups then click Add Attribute Group on the
pop-up menu. A global attribute group is added to your message model and is
assigned a default name.

4. Either type a new name for the attribute group or press Enter to accept the
default.

You can now configure the attribute group to your requirements. For further
information on configuring the properties of message model objects see
“Configuring message model objects” on page 107.

Adding a group reference

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

You can add a group reference to a message, complex type, group, or complex
element. This task assumes that you have previously added the relevant message,
complex type, group, or complex element to your message model.

To add a group reference to a message, complex type, group or complex element:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right click the object (message, complex type, group, or
complex element) to which you want to add a group reference then click Add
Group Reference on the pop-up menu. A group reference is immediately
added to your message model.

You can now configure the group reference to your requirements. For further
information on configuring the properties of message model objects see
“Configuring message model objects” on page 107.

Adding an attribute group

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

To add an attribute group to your message model:
1. Switch to the Broker Application Development perspective.

106 Message Models



2. Ensure that the Outline view is visible in the Broker Application Development
perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click Groups then click Add Attribute Group on the
pop-up menu. An attribute group is added to your message model and is
assigned a default name.

4. Either type a new name for the attribute group reference or press Enter to
accept the default.

You can now configure the attribute group to your requirements using the Message
Definition editor. For further information on configuring the properties of message
model objects see “Configuring message model objects.”

Configuring message model objects

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

Before starting any of the tasks in this topic area, you must first open the message
definition file for which you want to configure message model objects in the
Message Definition editor. See “Opening an existing message definition file” on
page 93 for further details.

This topic area describes the tasks that are involved in configuring message model
objects:
v “Renaming objects” on page 108
v “Reordering objects” on page 108
v “Copying objects” on page 109
v “Pasting objects” on page 109
v “Changing the type of an element or attribute” on page 110
v “Setting value constraints” on page 112
v “Configuring logical properties: Message model objects” on page 114
v “Configuring documentation properties: Message model objects” on page 115
v “Configuring physical properties” on page 116

– “Configuring Custom Wire Format (CWF) properties: Message model objects”
on page 116

– “Configuring XML Wire Format properties: Message model objects” on page
118

– “Configuring TDS properties: Message model objects” on page 117
– “Applying default physical format settings: Message model objects” on page

119
v “Deleting objects” on page 120

Developing message models 107



Renaming objects

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93
v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

Objects in the workbench such as files, messages and elements can have different
physical representations. Eclipse handles renaming differently depending on the
object.

Tip: Not all objects can be renamed. For example, you cannot rename wildcards,
local groups, or local types, because they do not have a name.

If an object can be renamed the usual way to do it is as follows:
1. Switch to the Broker Application Development perspective.
2. In the Outline view, right-click the object that you want to rename then click

Rename on the pop-up menu. Alternatively, right-click the object in the
Message Definition editor Overview tab then click Rename on the pop-up
menu. In both cases, depending on the object, either a renaming dialog opens
or you will now be able to edit the name of the object directly.

3. Type the new name for the object.
4. If the renaming dialog is open, either press Enter or click OK.

Reordering objects

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93
v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

To reorder objects within a message definition file:
1. Switch to the Broker Application Development perspective.
2. Click the object that you want to move. For example, you could select a local

element within a message in either the Outline view or Properties Hierarchy.
3. Use the mouse to drag the object to its new location.

Tip: As you drag the object and the mouse cursor passes between objects, a
black line appears, showing where the current focus is. If you try to drag
the object to a location that it cannot be moved to (including objects that
are highlighted as the cursor passes over them), the object remains in its
original position when you release it.

108 Message Models



Copying objects

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93
v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

You can copy an object within a message definition file, such as a message for a
local element object, or types for a complex type object. To copy an object:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective. If the Outline view is not visible, from the workbench menu click
Window> Show View> Outline.

3. In the Outline view, right-click the message model object that you want to copy
then click Copy on the pop-up menu. Alternatively, right-click the object in the
Message Definition editor Overview tab then click Copy on the pop-up menu.

The object is now copied.

Pasting objects

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93
v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)
v “Copying objects”

You can paste objects that you have previously copied within the same message
definition file.

You can only copy and paste an object within the same message definition. You
cannot copy an object and paste it into another message definition, either within
the same message set or in a different message set.

To paste an object in the message definition from which you copied it:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the location where you are going to paste the
object then click Paste on the pop-up menu. Alternatively, right-click the object
in the Message Definition editor Overview tab then click Paste on the pop-up
menu. The object appears in the new location with a default name which you
can change if you want to.

Developing message models 109



4. Either type a new name for the object or press Enter to accept the default.

Note: When you copy and paste objects within the message set, where physical
properties exist for that object, these settings are not pasted, but are set to
default values.

Tip: If you cannot select Paste from either menu, this indicates that you are
attempting to paste the object into a location that is not valid; for example, if
you try to paste a complex type into a local element.

Changing the type of an element or attribute
You can change the type to a local element, global element, local attribute, or
global attribute.

Before you start:

You must already completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93
v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

You can change the type of an element or attribute in your message model to
another existing type, or you can create a new simple type or a new complex type.

To change the type of an element or attribute to an existing type:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, click the element for which you want to change the type.
4. Display the Properties tab of the Message Definition editor by clicking

Properties in the bottom left corner of the editor area.
5. In the Properties Hierarchy click Logical Properties > Global Element ( or

Logical Properties > Local Element, Logical Properties > Global Attribute, or
Logical Properties > Local Attribute). If necessary, expand Logical Properties
by clicking +.

6. In the Details view, in the Type property, click the new type that you require.

Tip: If the type you require is not displayed, you can find it by clicking
(More...) in the list. This displays the Type Selection window with
additional options. If you know which type you require, specify the first
letter in the text box at the top of the Type Selection window. Matching
types are then displayed, making the selection process easier.

7. When you have selected the type that you require, click OK.

The change to the type is applied wherever the element or attribute occurs.

The task above explains how to switch to an existing type. If you want to create a
new simple type or a new complex type, select (New Simple Type Restriction),
(New Simple Type List), (New Simple Type Union), or (New Complex Type) in
the Type list (see step 6 above). For information on how to create a new simple

110 Message Models



type or a new complex type see “Adding a simple type to an element or attribute”
or “Adding a complex type to an element.”

Adding a simple type to an element or attribute:

You can add a simple type to a local element, global element, local attribute, or
global attribute.

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

This task assumes that you have previously added the relevant element or attribute
to your message model.

To add a new simple type:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, click the element to which you want to add a new simple
type.

4. In the Message Definition editor, click the Properties tab.
5. In the Properties Hierarchy, click Logical Properties > Global Element ( or

Logical Properties > Local ElementLogical Properties > Global Attribute, or
Logical Properties > Local Attribute).

6. In the Details view, in the Type property, select (New Simple Type
Restriction), (New Simple Type List), or (New Simple Type Union) to open
the relevant New Simple Type window to create a simple type of the type that
you specify.

7. In the New Simple Type window, in the Base Type list, click the type that you
want to use.

8. Optional: If you want to add the new simple type as a global simple type,
select the Create as Global Simple Type check box and specify the name for
your new simple type in the Name field.

9. Click OK. A simple type is immediately added to your message model.

Any changes that you make are reflected throughout where the element to which
you have added a new simple type occurs.

Adding a complex type to an element:

You can add a complex type to a local element, global element, local attribute, or
global attribute.

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94

Developing message models 111



v “Opening an existing message definition file” on page 93

This task assumes that you have previously added the relevant element or attribute
to your message model.

When you add a complex type to an element or attribute, you can either create a
new complex type or derive a new complex type from an existing base type.

To add a new complex type:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, click the element to which you want to add a new
complex type.

4. In the Message Definition editor, click the Properties tab.
5. In the Properties Hierarchy, click Logical Properties > Global Element ( or

Logical Properties > Local ElementLogical Properties > Global Attribute, or
Logical Properties > Local Attribute).

6. In the Details view, in the Type list, click (New Complex Type) to display the
New Complex Type window.

7. If you want to create a new local complex type, click Create a Local Complex
Type then, in the Composition list, click the option that you require.

8. If you want to derive a new local complex type from an existing base type:
a. Click Derive a new Local Complex Type from existing base type.
b. In the Base Type list, click the base type that you want to use. Depending

on the base type you select, the Composition and Derived By lists might
become active.

c. If the Composition and Derived By lists are active, click the options that
you require in both lists.

9. If you want to add the new complex type as a global complex type, select the
Create as Global Complex Type check box, and specify a name for your new
complex type in the Name field.

10. Click OK to close the New Complex Type window and add the new complex
type to your message model.

Any changes that you make are reflected throughout where the element to which
you are adding the complex type occurs.

Setting value constraints

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93
v “Adding a simple type” on page 102 or “Adding a simple type to an element or

attribute” on page 111 (You must have added one or more global or local simple
types to your message model)

112 Message Models



Value constraints are usually associated with a simple type; they refine a simple
type by defining limits on the values which the simple type can represent. To set
the value constraints associated with a simple type:
1. Switch to the Broker Application Development perspective.
2. In the Outline view, click the simple type you are updating. If the Outline view

is not visible, from the workbench menu, click Window> Show View> Outline.
3. Display the Properties tab of the Message Definition Editor by clicking

Properties in the bottom left corner of the editor area. The Properties Hierarchy
displays the following nodes:
v Logical Properties
v Physical Properties
v Documentation

4. In the Properties Hierarchy under Logical Properties click Value Constraints.
This displays the current value constraints settings for the selected simple type
in the Details pane.

Tip: If Value Constraints is not in view, expand Logical Properties by clicking
+.

5. Set the value constraints for the selected simple type by making the appropriate
changes to the information shown in the Details pane.

Setting an enumeration:

An enumeration restricts which values can be set for the value constraint. For
example, ″ABC″ and ″123″. Use this section to create a list of fixed values that the
associated type must match.

To set an enumeration:
1. Click Add to the right of the Enumerations field. This adds an enumeration

that has a default enumeration (for example enumeration1).
2. Type the data that you want to set for this value constraint.
3. Press Enter on your keyboard.
4. Repeat the above steps for each enumeration that you are adding.

Setting a pattern:

Set a pattern to indicate that the value constraint defines a string used as a regular
expression that must be matched by the data in the associated type. The regular
expression syntax supported is XML Schema regular expressions.

See “Regular expression syntax” on page 761 for a list of supported regular
expression syntax elements.

To set a pattern:
1. Select Add to the right of the Patterns field. This adds a pattern that has a

default pattern (for example pattern1) and is in update mode.
2. Type the data that you want to set for this value constraint.
3. Press Enter on your keyboard.
4. Repeat the above steps for each pattern that you are adding.

Developing message models 113



Configuring logical properties: Message model objects

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93
v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

To configure the logical properties of an object that is part of the message model:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench and is displaying the following information:
v The name of the message definition file
v Messages
v Types
v Groups
v Elements and Attributes
If the Outline view is not visible, from the workbench menu, click Window>
Show View> Outline. If the information listed above is not displayed, ensure
that the message definition file is open in the Message Definition editor.
Message definition files have an .mxsd file extension.

3. In the Outline view, select the message model object for which you want to
configure the logical properties:
a. Depending on the type of the object that you are selecting, expand

Messages, Types, Groups or Elements and Attributes as appropriate by
clicking +.

b. Click the object that you want to select within the expanded node.
4. Display the Properties tab of the Message Definition editor by clicking

Properties in the bottom left corner of the editor area. The Properties Hierarchy
displays the following nodes:
v Logical Properties
v Physical Properties
v Documentation
The type (for example, Local Element or Global Element) of the message model
object that you selected in the Outline view is displayed under each of these
nodes.
If the items under Logical Properties are not in view, expand Logical
Properties by clicking +.

5. Display the logical properties of the selected object in the Details view of the
Message Definition editor, by clicking the appropriate item under Logical
Properties.

6. Configure the logical properties of the selected item to your requirements by
making the appropriate changes to the information shown in the Details view.

7. Save your changes by clicking File> Save message_definition_file.mxsd or by
pressing Ctrl+S. Alternatively click File> Save All or press Ctrl+Shift+S.

114 Message Models



Configuring documentation properties: Message model objects

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93
v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

To configure the documentation properties of an object contained within a message
definition file:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench and is displaying the following information:
v The name of the message definition file
v Messages
v Types
v Groups
v Elements and Attributes
If the Outline view is not visible, from the workbench menu, click Window>
Show View> Outline. If the information listed above is not displayed, ensure
that the message definition file is open in the Message Definition editor.
Message definition files have an .mxsd file extension.

3. In the Outline view, select the message model object for which you want to
configure the documentation properties by doing the following:
a. Depending on the type of the object that you are selecting, expand

Messages, Types, Groups or Elements and Attributes as appropriate by
clicking +.

b. Click the object you want to select within the expanded node.
4. Display the Properties tab of the Message Definition editor by clicking

Properties in the bottom left corner of the editor area. The Properties Hierarchy
displays the following nodes:
v Logical Properties
v Physical Properties
v Documentation
The type (for example, Local Element or Global Element) of the message model
object that you selected in the Outline view is displayed under each of these
nodes.

Tip: If the items under Documentation are not in view, expand
Documentation by clicking +.

5. Display the logical properties of the selected object in the Details view by
clicking the appropriate item under Documentation.

6. Configure the documentation properties of the selected item to your
requirements by typing text into the Documentation text field. Right-clicking in
the text field allows you to select options for undoing changes you have made,
cutting or copying text from the text field, pasting text into the text field,
deleting highlighted text or selecting all text in the field.

Developing message models 115



7. Save your changes by clicking File> Save message_definition_file.mxsd from
the menu or pressing Ctrl+S. Alternatively, from the menu, click File > Save
All or press Ctrl+Shift+S.

Configuring physical properties

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93
v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

The tasks in this topic area assume that you have added one or more physical
formats to a message set. For further information see “Adding a Custom Wire
Format (CWF)” on page 86 or “Adding an XML wire format” on page 89 or
“Adding a TDS physical format” on page 87.

When you have added objects to your message model it is likely that you will
want to configure the physical properties of these objects. The following tasks
relate to configuring the physical properties of message model objects:
v “Configuring Custom Wire Format (CWF) properties: Message model objects”
v “Configuring XML Wire Format properties: Message model objects” on page 118
v “Configuring TDS properties: Message model objects” on page 117
v “Applying default physical format settings: Message model objects” on page 119

Configuring Custom Wire Format (CWF) properties: Message model objects:

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93
v “Adding a Custom Wire Format (CWF)” on page 86
v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

To configure the CWF properties of a message model object:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench and is displaying the following information:
v The name of the message definition file
v Messages
v Types
v Groups
v Elements and Attributes
If the Outline view is not visible, from the workbench menu, click Window>
Show View> Outline. If the above hierarchy is not displayed, ensure that the

116 Message Models



message definition file is open in the Message Definition editor. Message
definition files have an .mxsd file extension.

3. In the Outline view, select the object for which you want to configure the CWF
properties by doing the following.
a. Depending on the type of the object that you are selecting, expand

Messages, Types, Groups or Elements and Attributes by clicking +.
b. Click the object you that want to select within the expanded node.

4. Display the Properties tab of the Message Definition editor by clicking
Properties in the bottom left corner of the editor area. In the Message
Definition editor, in the Properties Hierarchy, the name of each of the physical
formats that have been added to the message set appears under Physical
Properties. The object type (for example, Local Element or Global Element) of
the message model object that you selected in the Outline view is displayed
under each physical format shown.

Tip: If the physical formats are not in view in the Properties Hierarchy, expand
Physical Properties by clicking +. By default the CWF physical format is
called Binary1 but could have a user defined name instead.

5. Under Physical Properties, click the object type for the message model object
that you have chosen to configure under the CWF physical format. The CWF
properties of your selected message model object appear in the Details view.

6. Configure the CWF properties of the selected object to your requirements by
making the appropriate changes to the information shown in the Details view.

Note: It is not possible to configure disabled fields.
7. Save your changes by clicking File> Save message_definition_file.mxsd or

pressing Ctrl+S. Alternatively click File> Save All or press Ctrl+Shift+S.

Configuring TDS properties: Message model objects:

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93
v “Adding a TDS physical format” on page 87
v “Adding message model objects” on page 96 (Adding one or more objects to

your message model)

To configure the TDS properties of a message model object:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench and is displaying the following information:
v The name of the message definition file
v Messages
v Types
v Groups
v Elements and Attributes
If the Outline view is not visible, from the workbench menu, click Window>
Show View> Outline. If the above hierarchy is not displayed, ensure that the

Developing message models 117



message definition file is open in the Message Definition editor. Message
definition files have an .mxsd file extension.

3. In the Outline view, select the object for which you want to configure the TDS
properties by doing the following:
a. Depending on the type of the object that you are selecting, expand

Messages, Types, Groups or Elements and Attributes by clicking +.
b. Click the object that you want to select within the expanded node.

4. Display the Properties tab of the Message Definition editor by clicking
Properties in the bottom left corner of the editor area. In the Message
Definition editor, in the Properties Hierarchy, the name of each of the physical
formats that have been added to the message set appears under Physical
Properties. The object type (for example, Local Element or Global Element) of
the message model object that you selected in the Outline view is displayed
under each physical format shown.

Tip: If the physical formats are not in view in the Properties Hierarchy, expand
Physical Properties by clicking +. By default the TDS physical format is
called Text1 but could have a user defined name instead.

5. Select the Properties tab located in the bottom left corner of the Message
Definition editor.

6. Under Physical Properties, under the TDS physical format, click the object type
for the message model object that you have chosen to configure. The TDS
physical format properties of your selected message model object appear in the
Details view.

7. Configure the TDS physical format properties of the selected object to your
requirements by making the appropriate changes to the information shown in
the Details view.

Note: It is not possible to configure disabled fields.
8. Save your changes by selecting File> Save message_definition_file.mxsd from

the menu or press Ctrl+S. Alternatively, from the menu, select File > Save All,
or press Ctrl+Shift+S.

Configuring XML Wire Format properties: Message model objects:

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93
v “Adding an XML wire format” on page 89
v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

To configure the XML Wire Format properties of a message model object:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench and is displaying the following information:
v The name of the message definition file
v Messages
v Types

118 Message Models



v Groups
v Elements and Attributes
If the Outline view is not visible, from the workbench menu, click Window>
Show View> Outline. If the above hierarchy is not displayed, ensure that the
message definition file is open in the Message Definition Editor. Message
definition files have an .mxsd file extension.

3. In the Outline view, select the object for which you want to configure the XML
Wire Format properties by doing the following:
a. Depending on the type of the object that you are selecting, expand

Messages, Types, Groups or Elements and Attributes by clicking +.
b. Click the object that you want to select within the expanded node.

4. Display the Properties tab of the Message Definition editor by clicking
Properties in the bottom left corner of the editor area. In the Message
Definition editor, in the Properties Hierarchy, the name of each of the physical
formats that have been added to the message set appears under Physical
Properties. The object type (for example, Local Element or Global Element) of
the message model object that you selected in the Outline view is displayed
under each physical format shown.

Tip: If the physical formats are not in view in the Properties Hierarchy, expand
Physical Properties by clicking +. By default the XML Wire Format is
called XML1 but could have a user defined name instead.

5. Under Physical Properties, under the XML Wire Format, click the object type
for the message model object that you have chosen to configure. The XML Wire
Format properties of your selected message model object appear in the Details
view of the Message Definition editor.

6. Configure the XML Wire Format properties of the selected object to your
requirements by making the appropriate changes to the information shown in
the Details view.

Note: It is not possible to configure disabled fields.
7. Save your changes by clicking File> Save message_definition_file.mxsd or

pressing Ctrl+S. Alternatively select File> Save All from the menu or press
Ctrl+Shift+S.

Applying default physical format settings: Message model objects:

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93
v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

This task assumes that you have added one or more physical formats to the
relevant message set. For further information see “Adding a Custom Wire Format
(CWF)” on page 86 or “Adding an XML wire format” on page 89 or “Adding a
TDS physical format” on page 87.

To apply the default physical format setting to a message model object previously
added to a message definition file:

Developing message models 119



1. Switch to the Broker Application Development perspective.
2. In the Outline view, click the object to which you want to apply default

physical format settings.
3. Click the Properties tab located in the bottom left corner of the Message

Definition editor.
4. Check that the Message Definition editor Properties Hierarchy displays the

following information:
v Logical Properties
v Physical Properties (For each of the physical formats that have been added to

the message set, the name of the physical format appears under Physical
Properties. Under each physical format the type of message model object
that you selected is displayed as a child.)

v Documentation
Ensure that Physical Properties in the Properties Hierarchy is fully expanded
by clicking +.

5. Right click on the message model object type underneath the physical format to
which you want to apply the default settings then click Apply default physical
format settings. The default physical format settings for the message model
object that you selected are applied without warning.

6. Save your changes by clicking File> Save message_definition_file.mxsd from
the menu or pressing Ctrl+S. Alternatively, from the menu, click File > Save
All, or press Ctrl+Shift+S.

Deleting objects

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93
v “Adding message model objects” on page 96 (You must have added one or more

objects to your message model)

To remove objects contained within a message definition file:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, right-click the object that you wish to remove then click
Delete on the pop-up menu. Alternatively right-click the object in the Message
Definition editor Overview tab then click Delete on the pop-up menu.
The type of object and the relationship that it has with other objects determines
whether the object is now deleted without a confirmation window appearing,
or whether a confirmation window opens with a list of all the objects that will
be deleted along with the one that you have selected.

4. If a confirmation window opens, click OK to delete the objects.

Tip: You can undo a deletion by selecting Edit> Undo, as long as you have not
saved the changes that you have made.

120 Message Models



Creating a multipart message

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

A multipart message occurs when you embed a message within another message.
To create a multipart (embedded) message:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, add one of the following objects to your message model:
v A complex type (for further information on completing this task see “Adding

a complex type” on page 104)
v A global group (for further information on completing this task see “Adding

a global group” on page 104)
v A local group (for further information on completing this task see “Adding a

local group” on page 105)

Tip: You can also use a local ANONYMOUS complex type when creating a
multipart message. For further information see “Adding a complex type to
an element” on page 111.

4. Display the Properties tab of the Message Definition editor by clicking
Properties in the bottom left corner of the editor area.

5. In the Properties Hierarchy, under Logical properties, click one of the
following, depending on which of these you added in step 3:
v Complex Type

v Global Group

v Local Group

6. In the Details view, make the following changes to the displayed logical
properties:
a. In the Composition drop-down list, click message.
b. In the Content validation drop-down list, click Open, Closed or Open

Defined, depending on your requirements. Note that if the embedded
message is defined in a different message set, then you must click Open.
For further information about using these three options see “MRM content
validation” on page 191.

Note: There are a number of different ways for the parser to identify an embedded
message within a message bit stream. For further information on identifying
a message within another message see the concept topics listed below.

Developing message models 121



Linking from one message definition file to another

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Creating a message definition file” on page 94
v “Opening an existing message definition file” on page 93

There are two ways to link one message definition file to another: either you can
add an ’include’, or you can add an ’import’, for the file that you want to
reference.

When you are working with a message definition file, you can check which other
message definition files this file currently includes or imports by carrying out the
steps listed below:
1. Open the message definition file in the Message Definition editor.
2. In the Outline view, in the displayed hierarchy, select the .mxsd file.
3. In the Properties Hierarchy, expand Imports or Includes as appropriate to

display a list of the other files that the currently selected file includes or
imports.

Include

You use the include option if you want to link to a message definition file with the
same namespace, or if you want to link to a message definition file with no target
namespace from a message definition file with a target namespace (chameleon
behavior). You must also choose to add an include rather than an import if you
want to link a message definition file with no target namespace to another message
definition file that also has no target namespace.

Note: A message definition file can only reference objects in another message
definition file if this other file has been included directly, so you might have
a problem if you try to use the include option to include message definition
files that are themselves included within other message definition files. For
information about ways of resolving this situation, see Resolving problems
when developing message models.

This task assumes that you have opened an existing message definition file.

To add an include to a message definition file:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, click the message definition (.mxsd) file name.
4. Display the Properties tab of the Message Definition Editor by clicking

Properties in the bottom left corner of the editor area.
5. In the Properties Hierarchy, right-click Includes then click Add Include on the

pop-up menu. The “Select Message Definition file to include” window opens.

122 Message Models



6. In the Message Sets pane, select the message definition file that you want to
include. If the message definition files within your project are not visible in this
pane, expand the project hierarchy by clicking +.

7. Click Finish. The message definition file that you selected in step 4 is included
within the message definition file that you opened before beginning this task.

Import

You use the import option if you want to link a message definition file to another
message definition file in a different namespace. You cannot add an import from
the same namespace; this includes linking from a message definition file with no
target namespace to another message definition file with no target namespace.

To add an import to a message definition file:
1. Switch to the Broker Application Development perspective.
2. Ensure that the Outline view is visible in the Broker Application Development

perspective of the workbench. If the Outline view is not visible, from the
workbench menu, click Window > Show View> Outline.

3. In the Outline view, click the message definition (.mxsd) file name.
4. Display the Properties tab of the Message Definition editor by clicking

Properties in the bottom left corner of the editor area.
5. In the Properties Hierarchy, right-click Imports then click Add Import on the

pop-up menu. The “Select Message Definition file to import” window opens.
6. In the Message Sets pane, select the message definition file that you want to

import from the workspace. If the message definition files within your project
are not visible in this pane, expand the project hierarchy by clicking +.

7. Click Finish. The message definition file that you selected in step 4 is imported
into the schema of the message definition file that you opened before beginning
this task.

Working with a message category file
This topic area lists the tasks that are involved when working with a message
category file.
v “Creating a message category file”
v “Opening an existing message category file” on page 124
v “Adding a message to a message category” on page 125
v “Deleting a message from a message category” on page 126
v “Viewing or configuring message category file properties” on page 126
v “Deleting a message category file” on page 126

Creating a message category file
This topic describes how you would create a message category file.

Before you start:

You must have completed the following task:
v “Creating a message set” on page 83

To create a new message category file:
1. Switch to the Broker Application Development perspective.

Developing message models 123



2. Open the New Message Category File wizard by right-clicking in the Broker
Development view then clicking New> Message Category File on the pop-up
menu.

Tip: To preselect the message set when the wizard opens, either right-click the
message set to which you are adding the message category file, or select
the message set, before opening the wizard as just described.

3. In the first pane, select the Category Kind for the type of category that you are
creating.
v other. Indicates that this Message Category represents a generic grouping of

messages. The Category Usage field is disabled.
v wsdl. Indicates that this Message Category represents a WSDL operation. The

specified Category Name will become the WSDL operation name.

Note: This use of categories is only for compatibility with WebSphere
Message Broker Version 6.0.

4. If the Category Kind has been set to wsdl, specify the WSDL operation type by
selecting one of the following values for the Category Usage field:
v wsdl:request-response
v wsdl:solicit-response
v wsdl:one-way
v wsdl:notification

5. Click Next. In the Message Set Folder field, select a folder under the target
message set for the new message category file to be saved. The message set
folder view is filtered to only show artifacts in the active working set.

6. In the File name field, type a name for the new message category file (It will
automatically be given the file extension of .category).

7. Click Next. Select any messages that you want to add to the new category. Use
Shift-click to select a range of messages and Ctrl-click to select or deselect
individual messages. You cannot complete the creation of the category file
without adding one or more messages and setting the Role Type and Role
Usage values of each message correctly.

8. Click Finish. A message category file is created within the message set folder
that you selected, with the name that you specified and a file extension of
.category.

The new message category file opens in the Message Category editor so that you
can view and edit it as required.

Opening an existing message category file
This describes how to open an existing message category file in the Message
Category editor so that you can view or edit it.

Before you start:

To complete this task, you must have completed the following task:
v “Creating a message category file” on page 123

To open an existing message category file:
1. Switch to the Broker Application Development perspective.

124 Message Models



2. In the Broker Development view, right-click the message category file (with a
file extension of .category) that you want to open, then click Open on the
pop-up menu. This opens the message category file that you have selected in
the Message Category editor.

3. View and edit the message category file as required.

Tip: The Eclipse framework lets you open resource files with other editors. You are
advised to only use the workbench Message Category editor to work with the
message category files because this editor correctly validates changes made to
the files. Other editors might not do this.

Adding a message to a message category

Before you start:

You must have completed the following tasks:
v “Creating a message category file” on page 123
v “Opening an existing message category file” on page 124

Important: This topic assumes that you have already added one or more messages
to your message model.

To add a message to a message category file:
1. Switch to the Message Category editor, in the Broker Application Development

perspective.
2. In the Properties Hierarchy, open the Add Messages window by right-clicking

Message Category and then clicking Add Messages on the pop-up menu. The
Add Messages window lists all the messages that are available for adding to
the message category file. Any message that is in the message set but has not
already been added to the category is displayed.

3. Select the message or messages that you would like to add. Use Shift-click to
select a range of messages and Ctrl-click to select or deselect individual
messages.

4. Click OK. The selected message or messages are added to the message category
and now appear in the Properties Hierarchy.

Tip: Until you save the message category file, you can undo any additions that
you make. To undo a change, right-click Message Category in the
Properties Hierarchy then click Undo on the pop-up menu. If you have
added multiple messages, this removes all the messages that you have
added. If you want to remove a single message, right click this message
then click Undo. To redo an addition after undoing it, use the Redo
option.

5. Save and validate the additions that you have made to the message category
file by clicking File> Save or pressing Ctrl+S.

Note: When you have saved the message category file after adding a message, you
can no longer undo the addition of this message using the Undo option. To
remove a message after saving your changes, you can do so by deleting the
message from the message category file.

When you have added a message to a message category file, you can configure its
properties according to your requirements in the Message Category editor Details
view.

Developing message models 125



Deleting a message from a message category

Before you start:

To complete this task, you must have completed the following tasks:
v “Creating a message category file” on page 123
v “Opening an existing message category file” on page 124
v “Adding a message to a message category” on page 125

To delete a message from a message category file:
1. Switch to the Broker Application Development perspective.
2. In the Message Category editor, in the Properties Hierarchy, right-click the

message that you want to delete, then click Delete on the pop-up menu.

Tip: The message is deleted from the message category file immediately,
without a warning appearing first.

Viewing or configuring message category file properties
This topic describes how to view or configure the properties of a message category
file and associated messages using the Message Category editor.

Before you start:

To complete this task, you must have completed the following tasks:
v “Creating a message category file” on page 123
v “Opening an existing message category file” on page 124
v “Adding a message to a message category” on page 125 (You must have added

one or more messages to your message category file)

To configure the properties of a message category file:
1. Switch to the Message Category editor in the Broker Application Development

perspective.
2. To view or configure the properties of a message category, click Message

Category in the Properties Hierarchy. From the Details section of the Message
Category editor you can now view the properties of the message category and
make any changes to the properties that are necessary.

3. To view or configure the properties of a message in the message category file,
click the name of the message in the Properties Hierarchy. From the Details
section of the Message Category editor you can now view the properties of the
message and make any changes to the properties that are necessary.

4. If you have changed any of the properties in the message category or messages,
you can save those changes by selecting File → Save from the menu.

Note: Note that some combinations of Message Category Usage, Role Type and
Role Usage are not valid for WSDL and will result in task list errors being
generated.

Deleting a message category file

Before you start:

To complete this task, you must have completed the following task:

126 Message Models



v “Creating a message category file” on page 123

To delete a message category file:
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the message category file

(*.category file extension) that you want to delete, then click Delete on the
pop-up menu. Alternatively select the message category file in the Broker
Development view and then either click Edit> Delete, or press the Delete key
on your keyboard.

3. On the Confirm Resource Delete window, click Yes to delete the message
category file. Alternatively, to cancel the message category file deletion, either
click No or press the Esc key.

Tip: Once you have deleted a message category file, the action cannot be undone.

Working with data structures
This describes how to create a message definition file by importing from a number
of different data structures.

You can create a message definition file in a message set by importing from XML
Schema, XML DTD, IBM supplied messages, WSDL definitions, C header files, and
COBOL copybooks. This topic area describes how to import from these data
structures using the command line or the workbench.

Before you attempt to create a message definition from a data structure, using the
workbench, you advised to read “Importing file systems into the workbench.”

The following tasks topics relate to importing using the workbench:
v “Importing from C” on page 129
v “Importing from COBOL copybooks” on page 131
v “Importing from IBM supplied messages” on page 133
v “Importing from WSDL” on page 134
v “Importing from XML DTD” on page 136
v “Importing from XML Schema” on page 138

The following tasks relate to importing using the command line:
v “Importing from the command line” on page 130 for C header files, COBOL

Copybooks, XML DTDs and XML Schemas.
v “Importing WSDL definitions from the command line” on page 135

Importing file systems into the workbench

Before the workbench can use files to create a message definition that is based on a
WSDL definition, XML Schema, XML DTD, C header file, or COBOL copybook, the
files must be imported or copied into the workbench’s file structure. This topic
explains the three ways in which you can do this:
v “Using the Import wizard” on page 128
v “Dragging and dropping” on page 129
v “Copying and pasting” on page 129

Developing message models 127



Use any of these import methods to ensure that a file is available for use by your
selected message set project. You can then select the imported file in the New
Message Definition File wizard to create a message definition that is based on this
file.

Using the Import wizard

Use the Import wizard to import all the files, or a selection of files, from the
specified source.

To import files using the Import wizard:
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, click the project folder into which you are

going to import the files.
3. Open the Import wizard by clicking File → Import on the workbench menu.
4. On the Select page of the Import wizard, click either File System or Zip file,

depending on the type of resource that you are importing.
5. Click Next.
6. On the File System page, in the Directory field, specify the import source.

Either type the source name in the field, or click Browse and select the parent
directory, or compressed file that contains the file or files that you want to
import; then click OK (directory) or Open (compressed file).

Tip: Directories from which you have recently imported files, are shown in
the drop-down list in the Directory field.

7. Using the left and right panes that appear under the Directory field, specify
the folders or files, or both, that you want to import. Note the following
points when you are making your selections:
v To import the entire contents of a folder into the workbench, select the

check box for this folder in the left pane. To view any secondary folders
within a folder, expand the folder by clicking the plus sign (+).

v To import a specific file or files within a folder, use the right pane to select
the individual files that you want to import. If you select a file or files in
the right pane, the check box for the folder containing these files is greyed
in the left pane to indicate that only some of the files in the folder will be
imported into the workbench.

v To restrict the type of files that you are importing, click Filter Types and
then, on the Select Types window, select the check boxes for the file types
that you want to include, and click OK. If you want to include files with
extensions that are not shown in the list, type these extensions in the Other
Extensions field.

v To select all the folders and files that are shown on the File System page,
click Select All.

v To deselect all the folders and files that are currently selected on the File
System page, click Deselect All.

Note: The Select the destination for imported resources field should already
be filled in with the name of the project folder that you selected in step
2.

8. Optional: To change the destination project or folder, click Browse to open the
Folder Selection window. Select an alternative project folder by clicking the
folder then clicking OK.

128 Message Models



9. Optional: To overwrite existing resources and not have a warning displayed,
select the Overwrite existing resources without warning check box. This
check box applies to both compressed files and file systems.

10. File system import only: Select one of the following options, depending on the
folder structure that you want to create:
v Create complete folder structure

v Create selected folders only

11. Click Finish.

The files that you selected are imported and are shown in the Broker Development
view under the project folder that you selected.

Dragging and dropping

You can use the drag-and-drop method to import files from your file system into
the workbench. Drag the resources that you are importing to the exact location in
the Broker Development view where you want the resources to be. Do not drag
them onto a blank area in the Broker Development view.

To import files by dragging and dropping:
1. In your file system, locate the file or folder that you want to import into the

workbench.
2. Drag the file or folder to a specific location in the Broker Development view.

When you are dragging resources into the Broker Development view, the
project or folder into which you are trying to drop the resource is selected.

3. Ensure that the file or folder is copied into the workbench.

Copying and pasting

You can use your operating system’s copy and paste function as a method of
importing a file system into the workbench.

To import files by copying and pasting:
1. Locate the file or directory that you want to import into the workbench.
2. Using your operating system’s copy and paste function, copy the file or

directory to your system’s clipboard.
3. Select the destination for the file or directory in the Broker Development view.
4. From the workbench menu, click Edit → Paste.

The files or directories are copied into the workbench and placed into the location
that you selected.

Importing from C
This topic describes how to create a new message definition from a C header file
using the New Message Definition File wizard in the workbench.

Before you start:

Complete the following tasks:
v “Creating a message set” on page 83
v “Importing file systems into the workbench” on page 127

Be aware of the following points:

Developing message models 129



v To create a new message definition file from a C header file, the header file must
already be present in the workbench, for example in your message set project.
This allows you to select the header file in the New Message Definition File
wizard.

v The wizard can import C header files with .h, .c and .css extensions. If your
source file has a different extension you must rename it before attempting to
import it.

v If the message set to which you are adding the new message definition file does
not have an Custom Wire Format (CWF) layer only the logical information
appears in the model. You can add the physical layer to the message set before
or after importing a C header file, but you should add the physical layer before
importing it to ensure that it is populated with settings from the C header file.

v You can import a C header file from the command line using
mqsicreatemsgdefs.

The following steps cover both creating a completely new message definition file
and overwriting the contents of an existing file.

To create a message definition file from a C header file:
1. Switch to the Broker Application Development perspective.
2. Open the New Message Definition File wizard by clicking File → New →

Message Definition File from the workbench menu. Alternatively, you can
open the wizard by right-clicking a C header file previously imported into the
workbench and clicking New → Message Definition File on the menu.

3. In the displayed list of options, click C header file then click Next.
4. Step through the remainder of the wizard filling in the details as required.

When you have completed importing the C header file using the wizard:
v Carefully check for any errors in the report that is created when the file is

imported. You can find this report in the log directory within the project
containing the message definition that you have attempted to create. The report
has a .c.report.txt file extension, prefixed with the name that you specified for
the new message definition file.

v Review the messages shown in the workbench task list to check whether any
new warnings or errors have appeared.

Importing from the command line
This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.

Before you start:

Before you attempt this task, you should read the following information:
v mqsicreatemsgdefs command

The command line importer allows you to create a new message set, into which
the message definition files will be placed. When you create a new message set
from the command line, only the logical information is created by default.
However, the command line importer allows you to create a new message set
based on an existing message set. The physical format information from the base
message set is also created in the new message set. If you want physical format
information to be created as well, you must do the following before you invoke the
mqsicreatemsgdefs command:

130 Message Models



1. Using the workbench, create a message set in your workspace that is to be used
as a base message set.

2. To this base message set, add the physical formats that you want to be created
in your new message set.

To import C, COBOL copybooks, XML DTD or XML Schema using the command
line:
1. Close the workbench. This must not be running when you use the command

line importer.
2. Invoke the mqsicreatemsgdefs command from a command prompt specifying

the message set project name, path name of the source files folder, and any
other optional parameters that you require. If you want to add physical formats
to the new message set that the mqsicreatemsgdefs command creates, specify
the base message set that contains these physical formats as the -base
parameter on the import command line.

3. When the command has completed, open mqsicreatemsgdefs.report.txt. This
report is created when you invoke the mqsicreatemsgdefs command and by
default is written to the directory from which you invoked the command. The
report provides you with the following information:
v Details of the parameters that were used when mqsicreatemsgdefs was

invoked.
v The message set level action.
v The name of the file or files that have been imported.
v Details of the import process (for example, any warnings that have been

generated and message model objects that have been created).
v The number of files imported.

4. Start the workbench and switch to the Broker Application Development
perspective. The message definition file that was created when you invoked
mqsicreatemsgdefs is visible in the project that you specified.

If an error occurs during the import of a C, COBOL copybook, XML DTD, or XML
Schema file, carefully check any errors that the importer reports. By default, all
errors are written to the screen and to the log file described above. To gather
additional information about the import, specify the -v (Verbose) command line
parameter. This parameter displays more detailed information as the import
proceeds.

Importing from COBOL copybooks
This topic describes how to create a new message definition from a COBOL data
structure using the New Message Definition File wizard in the workbench.

Before you start:

Complete the following tasks:
v “Creating a message set” on page 83
v “Importing file systems into the workbench” on page 127

Be aware of the following points:
v To create a new message definition file from a COBOL data structure, the

COBOL file must already be present in the workbench, for example in your
message set project. This allows you to select the file in the New Message
Definition File wizard.

Developing message models 131



v The wizard can import COBOL files with .cbl, .ccp, .cob and .cpy extensions.
If your source file has a different extension, you must rename it before
attempting to import it.

v If the message set to which you are adding the new message definition file does
not have a Custom Wire Format (CWF) layer, or a Tagged/Delimited String
(TDS) format layer, only the logical information appears in the model.
You can add the physical layer to the message set before or after importing a
COBOL data structure but you should add the physical layer before you import
the data structure to ensure that it is populated with settings from the COBOL
copybook.

v You can import a COBOL data structure from the command line using
mqsicreatemsgdefs.

The steps below cover creating a completely new message definition file and
overwriting the contents of an existing file.

To create a message definition file from a COBOL data structure:
1. Switch to the Broker Application Development perspective.
2. Open the New Message Definition File wizard by clicking File → New →

Message Definition File from the workbench menu. Alternatively, you can
open the wizard by right-clicking a COBOL copybook previously imported into
the workbench and clicking New → Message Definition File on the menu.

3. In the displayed list of options, click COBOL file then click Next.
4. Step through the remainder of the wizard filling in the details as required.

When you have completed importing the COBOL file using the wizard:
v Carefully check for any errors in the report that is created when the file is

imported. You can find this report in the log directory within the project
containing the message definition that you have attempted to create. The report
has a .cobol.report.txt file extension, prefixed with the name that you
specified for the new message definition file.

v Review the messages shown in the workbench task list to check whether any
new warnings or errors have appeared.

Importing from the command line
This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.

Before you start:

Before you attempt this task, you should read the following information:
v mqsicreatemsgdefs command

The command line importer allows you to create a new message set, into which
the message definition files will be placed. When you create a new message set
from the command line, only the logical information is created by default.
However, the command line importer allows you to create a new message set
based on an existing message set. The physical format information from the base
message set is also created in the new message set. If you want physical format
information to be created as well, you must do the following before you invoke the
mqsicreatemsgdefs command:

132 Message Models

|
|
|

|
|
|
|



1. Using the workbench, create a message set in your workspace that is to be used
as a base message set.

2. To this base message set, add the physical formats that you want to be created
in your new message set.

To import C, COBOL copybooks, XML DTD or XML Schema using the command
line:
1. Close the workbench. This must not be running when you use the command

line importer.
2. Invoke the mqsicreatemsgdefs command from a command prompt specifying

the message set project name, path name of the source files folder, and any
other optional parameters that you require. If you want to add physical formats
to the new message set that the mqsicreatemsgdefs command creates, specify
the base message set that contains these physical formats as the -base
parameter on the import command line.

3. When the command has completed, open mqsicreatemsgdefs.report.txt. This
report is created when you invoke the mqsicreatemsgdefs command and by
default is written to the directory from which you invoked the command. The
report provides you with the following information:
v Details of the parameters that were used when mqsicreatemsgdefs was

invoked.
v The message set level action.
v The name of the file or files that have been imported.
v Details of the import process (for example, any warnings that have been

generated and message model objects that have been created).
v The number of files imported.

4. Start the workbench and switch to the Broker Application Development
perspective. The message definition file that was created when you invoked
mqsicreatemsgdefs is visible in the project that you specified.

If an error occurs during the import of a C, COBOL copybook, XML DTD, or XML
Schema file, carefully check any errors that the importer reports. By default, all
errors are written to the screen and to the log file described above. To gather
additional information about the import, specify the -v (Verbose) command line
parameter. This parameter displays more detailed information as the import
proceeds.

Importing from IBM supplied messages
You can create a new message definition file from an IBM supplied message.

Before you start:

You must have completed the following task:
v “Creating a message set” on page 83

The following steps describe how to create a new message definition file, and how
to overwrite the contents of an existing file.

To create a message definition from an IBM supplied message:
1. Switch to the Broker Application Development perspective.
2. Open the New Message Definition File wizard by clicking File → New →

Message Definition File From on the workbench menu.

Developing message models 133



3. In the displayed list of options, select IBM supplied message and click Next.
4. Complete the fields of the panel that is displayed by the wizard. See “New

message definition file wizard: IBM supplied message” on page 802.

When you have finished the import of the IBM supplied message:
v Carefully check for any errors in the report that is created when the file is

imported. You can find this report in the log directory within the project that
contains the message definition that you have created. The report has a
.xsd.report.txt file extension, prefixed with the name that you specified for the
new message definition file.

v Review the messages shown in the workbench task list to check whether any
new warnings or errors are displayed.

Importing from WSDL
You can use the New Message Definition File wizard in the workbench to create a
new message definition from WSDL.

There are two methods for importing from WSDL:
v Create a message set and use the New Message Definition File wizard. This

method is described here.
v Use the Start from WSDL and/or XSD files Quick Start wizard. See Creating an

application based on WSDL or XSD files.

If you choose the first of these options, before you start you must have completed
the following tasks:
v “Creating a message set” on page 83
v “Importing file systems into the workbench” on page 127

The following steps are required to create a completely new message definition
file, or to overwrite the contents of an existing file.

To create a message definition from a WSDL file (or files):
1. Switch to the Broker Application Development perspective.
2. Open the New Message Definition File From ... wizard by clicking File> New>

Message Definition File From ... on the workbench menu.
3. In the displayed list of options, selectWSDL file and click Next. Alternatively,

open the wizard by right-clicking a .wsdl file that was previously imported
into the workbench and clicking New> Message Definition File From ... on the
menu.

4. Step through the remainder of the wizard filling in the details as required.
You must choose whether the WSDL file, or files, that you want to import are
in the current workspace in the workbench or are outside the workspace.
Check boxes provide options to:
v Copy the source file (or files) into a directory of the message set project. By

default, this check box is cleared.
v Add the SOAP and XMLNSC domains to your message set so that you can

use the SOAP nodes. By default, this check box is selected.

Note:

v The panels and options available in the wizard are dependant on the
settings that you select.

134 Message Models



v Some fields in the wizard might not be available. This might be
because the field has a mandatory setting, or because the field has
only one possible value, or because the field is not being used as a
result of other settings that have been made.

When you have finished importing the WSDL file (or files) using the wizard:
v Check carefully for any errors in the report that is created when the file is

imported. You can find this report in the log directory within the project that
contains the message definition that you have tried to create. The report has a
<wsdl-file-name>.wsdl.report.txt file descriptor, where <wsdl-file-name> is
the name of the WSDL definition that you are importing.

v Review the messages that are shown in the workbench task list to check whether
any new warnings or errors have appeared.

Note: Any required SOAP Envelope and SOAP encoding message definitions are
automatically added to your message set during the import. If required, you
can also import these manually using the New Message Definition File
wizard by selecting the new option IBM supplied message.

Importing WSDL definitions from the command line
WSDL definitions can be imported using the (mqsicreatemsgdefsfromwsdl)
command.

Before you start:

Before you attempt this task, read the following information:
v mqsicreatemsgdefsfromwsdl command.

The WSDL command line importer allows you to create a new namespace enabled
message set into which the message definition files will be placed. It also allows
you to add message definition files to an existing message set that is namespace
enabled.

If you are adding new message definition files to an existing message set, the
message set must have an XML physical format layer. To improve web services
interoperability, avoid unnecessary customization of the XML physical format layer
for messages that participate in web services processes.

When you create a new message set from the command line, only the logical
information is created by default. If you require physical formats in the message
set you have two options:
v Create a new message set based on an existing message set. The physical format

information from the base message set is also created in the new message set.
v Use the workbench to create or open the message set and directly add the

physical formats to the message set prior to importing the WSDL definitions into
it.

Before starting the import, the mqsicreatemsgdefsfromwsdl command copies the
WSDL files that it needs into the workspace. These are the top level WSDL file and
any further files that might be imported by it. The files are copied under the
specified message set in a folder called importFiles and are not removed after the
import finishes. This allows you to update them, or run validation on them, in the
workbench at a later time.

To import WSDL definitions using the command line:

Developing message models 135



1. Close the workbench. The workbench must not be running when you use the
command line importer.

2. Invoke the mqsicreatemsgdefsfromwsdl command from a command prompt;
you must specify the message set project name, the path name of the directory
where the top level WSDL file is located, the name of that file, the location of
the workspace, and any other optional parameters that you require. If you want
to add physical formats to the new message set that the
mqsicreatemsgdefsfromwsdl command creates, specify the base message set
that contains these physical formats as the -base parameter on the import
command line.

3. When the command has completed, check the log file. The name of the log file
is the name that you specified in the command, and it has the file extension
*.wsdl.report.txt. This report is created when you invoke the
mqsicreatemsgdefsfromwsdl command and, by default, it is written to the
directory from which you invoked the command. The report provides you with
the following information:
v Details of the parameters that were used when mqsicreatemsgdefsfromwsdl

was invoked.
v The name of the file that has been imported.
v Details of the import process (for example, any warnings that have been

generated and message model objects that have been created).
4. Start the workbench and switch to the Broker Application Development

perspective. The message definition file that was created by the
mqsicreatemsgdefsfromwsdl command is visible in the project that you
specified.

If an error occurs during the import of a WSDL definition, carefully check any
errors that are reported. By default, all errors are written both to the screen and to
the file described above. To gather additional information about the import, specify
the -v (Verbose) command line parameter. This parameter displays more detailed
information as the import proceeds.

Importing from XML DTD
This describes how to create a new message definition from an XML DTD using
the New Message Definition File wizard in the workbench.

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Importing file systems into the workbench” on page 127

Before you begin this task, you should be aware of the points listed below:
v To create a new message definition file from an XML DTD, the DTD file must

already be present in the workbench, for example in your message set project.
This allows you to select the DTD file in the New Message Definition File
wizard.

v If the message set to which you are adding the new message definition file does
not have an XML wire format (XML) layer only the logical information appears
in the model. You can add the physical layer to the message set before or after
importing from a XML DTD, but you should add the physical layer before
importing it to ensure that it is populated with settings from the XML DTD.

136 Message Models



v It is also possible to import an XML DTD from the command line using
mqsicreatemsgdefs.

v The file extension must be .dtd in lower case.

The following steps cover both creating a completely new message definition file
and overwriting the contents of an existing file.

To create a message definition from an XML DTD:
1. Switch to the Broker Application Development perspective.
2. Open the New Message Definition File wizard by clicking File> New>

Message Definition File from the workbench menu.
3. In the displayed list of options, click XML DTD file to select it then click Next.
4. Step through the remainder of the wizard filling in the details as required.

When you have completed importing the XML DTD using the wizard:
v Carefully check for any errors in the report that is created when the file is

imported. You can find this report in the log directory within the project
containing the message definition that you have attempted to create. The report
has a .dtd.report.txt file extension, prefixed with the name that you specified
for the new message definition file.

v Review the messages shown in the workbench task list to check whether any
new warnings or errors have appeared.

The message definition file is created from the XML DTD and is opened in the
Message Definition editor so that you can check the imported information and
make any required changes. While you are checking the newly created message
definition file, review any messages that appear in the workbench task list to see
whether you need to make any corrections to resolve errors or warnings relating to
the new file.

Importing from the command line
This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.

Before you start:

Before you attempt this task, you should read the following information:
v mqsicreatemsgdefs command

The command line importer allows you to create a new message set, into which
the message definition files will be placed. When you create a new message set
from the command line, only the logical information is created by default.
However, the command line importer allows you to create a new message set
based on an existing message set. The physical format information from the base
message set is also created in the new message set. If you want physical format
information to be created as well, you must do the following before you invoke the
mqsicreatemsgdefs command:
1. Using the workbench, create a message set in your workspace that is to be used

as a base message set.
2. To this base message set, add the physical formats that you want to be created

in your new message set.

Developing message models 137



To import C, COBOL copybooks, XML DTD or XML Schema using the command
line:
1. Close the workbench. This must not be running when you use the command

line importer.
2. Invoke the mqsicreatemsgdefs command from a command prompt specifying

the message set project name, path name of the source files folder, and any
other optional parameters that you require. If you want to add physical formats
to the new message set that the mqsicreatemsgdefs command creates, specify
the base message set that contains these physical formats as the -base
parameter on the import command line.

3. When the command has completed, open mqsicreatemsgdefs.report.txt. This
report is created when you invoke the mqsicreatemsgdefs command and by
default is written to the directory from which you invoked the command. The
report provides you with the following information:
v Details of the parameters that were used when mqsicreatemsgdefs was

invoked.
v The message set level action.
v The name of the file or files that have been imported.
v Details of the import process (for example, any warnings that have been

generated and message model objects that have been created).
v The number of files imported.

4. Start the workbench and switch to the Broker Application Development
perspective. The message definition file that was created when you invoked
mqsicreatemsgdefs is visible in the project that you specified.

If an error occurs during the import of a C, COBOL copybook, XML DTD, or XML
Schema file, carefully check any errors that the importer reports. By default, all
errors are written to the screen and to the log file described above. To gather
additional information about the import, specify the -v (Verbose) command line
parameter. This parameter displays more detailed information as the import
proceeds.

Importing from XML Schema
You can use the New Message Definition File wizard in the workbench to create a
new message definition from an XML Schema

Before you start you must have completed the following tasks:
v “Creating a message set” on page 83
v “Importing file systems into the workbench” on page 127

Before you begin this task, you should be aware of the following points:
v To create a new message definition file from an XML Schema, the schema file

must already exist in the workbench; for example, in your message set project.
This allows you to select the schema file in the New Message Definition File
wizard.

v If the message set to which you are adding the new message definition file does
have an XML wire format layer, but no namespace support, the imported schema
is modified to remove namespaces. For this reason, you should enable
namespace support before importing a schema.

v If the message set to which you are adding the new message definition file does
not have an XML wire format layer, but does have namespace support, only the
logical information appears in the model. For this reason, you should add the

138 Message Models



physical layer to the message set before importing the schema. This ensures that
the message set is populated with the settings and values from the schema. The
XML Schema is not modified to remove namespaces.

v If the message set to which you are adding the new message definition file does
not have an XML wire format layer, and does not have namespace support, only
the logical information appears in the model and the imported schema is
modified to remove namespaces.

v If you are working with a message set that does not have namespace support,
you must specify the preferences that apply when you import a schema into the
message set. These preferences allow you to specify how the importer treats
certain individual schema constructs. You can either reject the schema if any
occurrences of the construct are encountered or modify occurrences of the
construct. If you choose modify, the importer modifies all occurrences of the
construct.

v The extension to the XML Schema file must be .xsd in lower case.

The following steps create a completely new message definition file or overwrite
the contents of an existing file.

To create a message definition from an XML Schema file:
1. Switch to the Broker Application Development perspective.
2. Open the New Message Definition File wizard by clicking File> New>

Message Definition File on the workbench menu. Alternatively, you can open
the wizard by right-clicking an *.xsd file that was previously imported into the
workbench and clicking New> Message Definition File on the menu.

3. In the displayed list of options, click XML Schema file to select it, and then
click Next.

4. Step through the remainder of the wizard, filling in the details as required. The
processing time for importing the XML Schema varies according to the size and
complexity of that schema. In a large and complex schema, it can take some
time to import the file, generate the log file and display any task list warnings
or errors.

When you have finished importing the XML Schema using the wizard:
v Carefully check the log file for any warnings or errors in the report that is

created when the file is imported. These warnings and error messages give
information about whether the schema failed to import or needed to be modified
to enable it to be successfully imported. You can find this report in the log
directory structure within the project that contains the message definition that
you have tried to create. The report has a .xsd.report.txt file extension,
prefixed with the name that you specified for the new message definition file.

v Review the messages that are shown in the workbench task list to check whether
any new warnings or error messages have appeared. Although you might have
imported a perfectly valid schema, the task list will display warnings or error
messages for any errors that exist in the message definition file. Some examples
of situations where messages appear are given below:
– If the XML Schema that you are importing contains xsd:key, xsd:keyref and

xsd:unique constructs, warning messages appear in the task list to tell you
that these constructs are unsupported and will be ignored by the broker. If
you prefer to delete these constructs, open the message definition file in the
Message Definition editor, and delete the constructs as described in “Deleting
objects” on page 120. Deleting the constructs also removes the warning
messages from the task list. If you decide not to delete the constructs, they

Developing message models 139



remain in the message model but are not be deployed to the broker, or used
for any other purpose. The warning messages remain in the task list, but you
can use the message model normally.

– If the XML Schema that you are importing contains xsd:redefine constructs,
error messages appear in the task list to tell you that this construct is
unsupported. If you right-click on the error messages and select Quick Fix,
you can choose to convert the xsd:redefine constructs into xsd:include
constructs. This also removes the error messages.

– If the XML Schema that you are importing contains xsd:attribute constructs
that contain both a fixed value and a default value, error messages appear in
the task list to tell you that this construct is unsupported. However, the
schema is still imported and the fixed value is used, not the default value.
The error messages can be ignored.

– If you are importing a collection of related XML Schema files and the
Message Definition Editor cannot resolve the links between two of the
imported files, messages appear in the task list to say that referenced types or
other objects cannot be found. If this occurs, refer to Resolving problems
when developing message models for more information.

Importing from the command line
This describes how to use the command line importer mqsicreatemsgdefs to
import C, COBOL copybooks, XML DTD or XML Schema in order to populate a
message set with message definitions.

Before you start:

Before you attempt this task, you should read the following information:
v mqsicreatemsgdefs command

The command line importer allows you to create a new message set, into which
the message definition files will be placed. When you create a new message set
from the command line, only the logical information is created by default.
However, the command line importer allows you to create a new message set
based on an existing message set. The physical format information from the base
message set is also created in the new message set. If you want physical format
information to be created as well, you must do the following before you invoke the
mqsicreatemsgdefs command:
1. Using the workbench, create a message set in your workspace that is to be used

as a base message set.
2. To this base message set, add the physical formats that you want to be created

in your new message set.

To import C, COBOL copybooks, XML DTD or XML Schema using the command
line:
1. Close the workbench. This must not be running when you use the command

line importer.
2. Invoke the mqsicreatemsgdefs command from a command prompt specifying

the message set project name, path name of the source files folder, and any
other optional parameters that you require. If you want to add physical formats
to the new message set that the mqsicreatemsgdefs command creates, specify
the base message set that contains these physical formats as the -base
parameter on the import command line.

3. When the command has completed, open mqsicreatemsgdefs.report.txt. This
report is created when you invoke the mqsicreatemsgdefs command and by

140 Message Models



default is written to the directory from which you invoked the command. The
report provides you with the following information:
v Details of the parameters that were used when mqsicreatemsgdefs was

invoked.
v The message set level action.
v The name of the file or files that have been imported.
v Details of the import process (for example, any warnings that have been

generated and message model objects that have been created).
v The number of files imported.

4. Start the workbench and switch to the Broker Application Development
perspective. The message definition file that was created when you invoked
mqsicreatemsgdefs is visible in the project that you specified.

If an error occurs during the import of a C, COBOL copybook, XML DTD, or XML
Schema file, carefully check any errors that the importer reports. By default, all
errors are written to the screen and to the log file described above. To gather
additional information about the import, specify the -v (Verbose) command line
parameter. This parameter displays more detailed information as the import
proceeds.

Generating documentation from message sets and message flows
You can generate documentation from your message sets, message flows, message
definition files, message maps, Java™ files, ESQL files, and deployable WSDL files.

To generate documentation that describes your message sets, message flows,
message definition files, message maps, Java files, ESQL files, and deployable
WSDL files:
1. Switch to the Broker Application Development perspective.
2. In the context menu of the Broker Development view, right-click a message set

project, a message set, a message flow, a message definition file, a Java file, an
ESQL file, or a deployable WSDL file, and select the action Generate
Documentation. The Documentation Generation wizard opens.

3. Provide the information that is requested to describe the documentation report
that you want, and click Next to move to the next panel of the wizard.

4. Step through the wizard, clicking Next to move to a new panel, and clicking
Finish when you have described all the information that you want your report
to document.

Generating XML Schemas
You can generate either a single XML Schema from a message definition file, or
multiple XML Schemas from a message set.

To generate a single XML Schema from a message definition file, see “Generating
an XML Schema” on page 143.

To generate multiple XML Schemas (one from each message definition file in a
message set) see “Generating XML Schemas” on page 142.

Developing message models 141



Generating XML Schemas
You can generate an XML Schema for each message definition file in a message set.

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Working with a message definition file” on page 93
v “Working with message model objects” on page 96

Note: WebSphere Message Broker uses XML Schema 1.0 to describe the logical
structure of messages.

Tip: You should replace any deprecated constructs before you generate XML
Schema representations of your models.

1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the message set folder from which

you want to generate XML Schemas, and click Generate> XML Schemas.
3. The Generate XML Schemas window is displayed, and you must put into the

Zip file name field the name of the compressed file (*.zip file extension) that
you want to contain the generated XML Schemas.

4. Select a destination folder for this compressed file. You can choose a location
either inside or outside the workspace:
v Click Create in a workspace directory and select the required destination

folder from the expanded workspace directory. The contents of the folder
that you select are overwritten.
If you want to create a new folder:
a. Click on the desired location.
b. Click Create New Folder.
c. Click OK

v Click Export to an external directory and click Browse to expand the
directory. Select a folder from the expanded directory. The contents of the
folder that you select are overwritten.
If you want to create a new folder:
a. Click on the desired location.
b. Click Make New Folder and type the name of the new folder into the

directory tree.
c. Click OK

5. Optional: Choose from the list given in the XML Wire Format field an XML
wire format that you want to use to generate the XML Schemas.

Tip: You must have previously added one or more XML Wire Format layers to
the message set if you want to use an XML physical format when you
generate XML Schemas. For further information see “Adding an XML wire
format” on page 89.

6. If you do not want strict generation of an XML Schema, clear the Strict
generation check box at the bottom of the Generate XML Schemas page. By
default, this check box is selected.

Tip: For further information on strict and lax generation of an XML Schema,
see “Generate XML Schema” on page 78.

142 Message Models



7. Click Finish. The compressed file that contains your generated XML Schemas is
created.

Generating an XML Schema

Before you start:

You must have completed the following tasks:
v “Creating a message set” on page 83
v “Working with a message definition file” on page 93
v “Working with message model objects” on page 96

Note: WebSphere Message Broker uses XML Schema 1.0 to describe the logical
structure of messages.

Tip: You should replace any deprecated constructs before generating XML Schema
representations of your models.

This task topic describes how to generate an XML Schema from a message
definition file:
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the message definition file (*.msxd

file extension) from which you want to generate an XML Schema, and then
click Generate> XML Schema on the menu.

3. The Generate XML Schema window is displayed, and the message definition
file that you selected is highlighted. The message definition file list is filtered to
only show artifacts in the active working set. If this is not the message
definition file from which you want to generate an XML Schema, select the
correct message definition file.

4. Optional: From the drop down list at the bottom of the Generate XML Schema
window, select the XML Wire Format that you want to use to generate the XML
Schema.

Tip: You must have previously added one or more XML Wire Format layers to
a message set if you want to use an XML physical format when you
generate XML Schema. For further information see “Adding an XML wire
format” on page 89.

5. If you do not want strict generation of an XML Schema, clear the Strict
generation check box at the bottom of the Generate XML Schema page. By
default, this check box is selected.

Tip: For further information on strict and lax generation of XML Schema, see
“Generate XML Schema” on page 78.

6. Click Next to move to the next page of the wizard.
7. Select a destination folder for the XML Schema. You can choose a location

either inside or outside the workspace:
v Click Create in a workspace directory and select the required destination

folder from the expanded workspace directory. The contents of the folder
that you select are overwritten.
If you want to create a new folder:
a. Click on the desired location.
b. Click Create New Folder.

Developing message models 143



c. Click OK
v Click Export to an external directory and click Browse to expand the

directory. Select a folder from the expanded directory. The contents of the
folder that you select are overwritten.
If you want to create a new folder:
a. Click on the desired location.
b. Click Make New Folder and type the name of the new folder into the

directory tree.
c. Click OK

8. Click Finish. Your XML Schema is generated.
9. Use the Broker Development view to locate the destination folder that you

specified for the generated XML Schema. This folder contains a file with exactly
the same name as your message definition file with the file extension *.xsd.
This is the generated XML Schema. To view this file, right-click it then click
Open on the menu. This opens the schema editor.

Tip: The Design, Source or Graph tabs located in bottom left corner of the
schema editor provide you with different views of generated XML
Schema.

Generating a WSDL definition from a message set

Before you start you must already have completed the following tasks:
v “Creating a message set” on page 83

To ensure the highest interoperability of your web services, use the document style
of WSDL whenever possible. If rpc style WSDL is necessary, use literal encoding.

Replace any deprecated constructs before generating WSDL representations of your
message models.

To generate a WSDL definition:
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the folder that contains the

message set file from which you want to generate a web service definition, and
select Generate → WSDL Definition. This starts the Generate WSDL wizard.

3. Step through the wizard filling in the details as required. Some of the panels
and options are subject to settings that you make within the wizard and might
not always be shown. Also, some fields in the wizard might be greyed out. This
happens when a field has a mandatory setting, or when the field is not used
because of settings that have already been made in other fields.
By default, the wizard creates the WSDL in the message set project. If you are
going to use the WSDL to configure a SOAP node, create the WSDL in the
message set, not the message set project.

On completion of the Generate WSDL wizard, you have generated a WSDL
definition. The file extension for WSDL files is .wsdl, and the file extension for any
imported schema files in multi-file mode (where the WSDL definition is split over
a number of files) is .xsd.

This following is an example of the WSDL that is generated for a JMS binding:

144 Message Models



<wsdl:service name='HTTP'>
<wsdl:port binding='tns:JMSSoapBinding' name='HTTP'>

<wsdlsoap:address
location='jms:/queue?destination=jms/MyQueue&amp;

connectionFactory=jms/MyCF&amp;
priority=5&amp;
targetService=GetQuote'/>

</wsdl:port>
</wsdl:service>

Note: The various parts of the location string are broken over separate lines for
clarity, but are actually generated as a continuous string without additional
white space.

Developing message models 145



146 Message Models



Part 2. Reference

Message model reference information . . . . 149
Message set preferences . . . . . . . . . . 149

Message Set Editor and Message Definition
Editor preferences . . . . . . . . . . . 149
Validation of the message model . . . . . . 150
XML Schema Importer . . . . . . . . . 151

Message set properties . . . . . . . . . . 151
Custom Wire Format message set properties . . 154
TDS Format message set properties . . . . . 160
XML Wire Format message set properties . . . 176
Documentation properties for a message set . . 183

Message definition file properties. . . . . . . 183
Message definition file includes properties . . 184
Message definition file imports properties . . . 184
Message definition file redefines properties . . 184
Documentation properties for all message set
objects. . . . . . . . . . . . . . . 185

Message category properties . . . . . . . . 185
Message category member properties . . . . 185

Message model object properties . . . . . . . 186
Logical properties for message model objects 187
Physical properties for message model objects 216
Documentation properties for all message set
objects. . . . . . . . . . . . . . . 247
Message model object properties by object. . . 247

Deprecated message model object properties . . . 600
Logical properties for deprecated message
model objects . . . . . . . . . . . . 600
Physical properties for deprecated message
model objects . . . . . . . . . . . . 604
Documentation properties for all message set
objects. . . . . . . . . . . . . . . 607
Deprecated message model object properties by
object . . . . . . . . . . . . . . . 607

Additional MRM domain information . . . . . 729
MRM restrictions . . . . . . . . . . . 729
Data types for elements in an MRM message 731
Additional CWF information . . . . . . . 732
Additional XML information . . . . . . . 733
Additional TDS information . . . . . . . 736
DateTime formats . . . . . . . . . . . 765

Additional MIME domain information . . . . . 774
MIME standard header fields . . . . . . . 774
MIME parser use and restrictions. . . . . . 777

Additional IDOC domain information . . . . . 778
Building the message model for the IDOC
parser . . . . . . . . . . . . . . . 778
Field names of the IDOC parser structures . . 780

Message model task list errors that have a quick fix 782
Generated model representations . . . . . . . 784

Document generation. . . . . . . . . . 784
WSDL generation . . . . . . . . . . . 784
XML Schema generation. . . . . . . . . 786

Import formats . . . . . . . . . . . . . 789
Importing from C: supported features . . . . 789
Importing from COBOL: supported features . . 791

Importing from WSDL: generated objects and
restrictions . . . . . . . . . . . . . 796
Importing from XML Schema: unsupported
features . . . . . . . . . . . . . . 799

Message model wizards . . . . . . . . . . 800
New message definition file wizards . . . . 800
Generate WSDL wizard . . . . . . . . . 807
Export WSDL wizard. . . . . . . . . . 815
Configure New Web Service Usage wizard . . 817

© Copyright IBM Corp. 2000, 2009 147



148 Message Models



Message model reference information

Reference information in this section can help you develop and configure message
models.

Message model reference information is available for:
v “Message set preferences”
v “Message set properties” on page 151
v “Message definition file properties” on page 183
v “Message category properties” on page 185
v “Message model object properties” on page 186
v “Deprecated message model object properties” on page 600
v “Additional MRM domain information” on page 729
v “Additional MIME domain information” on page 774
v “Generated model representations” on page 784
v “Import formats” on page 789
v “Message model wizards” on page 800

Message set preferences

Property Type Meaning

Default version
tag

String Provide the default version information you would like to be set in the message
set Version property when you create a new message set.

You can alter a number of the preferences that affect the way certain areas of
message set processing are handled. The areas are:
v “Message Set Editor and Message Definition Editor preferences”
v “Validation of the message model” on page 150
v “XML Schema Importer” on page 151

Message Set Editor and Message Definition Editor preferences
Message set editor settings

While looking at a large message set that contains a number of message definition
files that have different namespaces, or multiple message definition files that have
the same namespace, you might want to view the information in alternative ways
to make it easier for you to visualize the structure of the message set. If you
double click on the global construct, you open the message definition file in which
the global construct is defined.

Property Type Meaning

Group by
namespace and
then by
collections

Button Selecting this view groups the global constructs by namespace and then by
collection (for example, Messages, Types, Groups, or Elements and Attributes).
Using this view you can visualize all of the constructs that belong to each of the
defined namespaces.

© Copyright IBM Corp. 2000, 2009 149



Property Type Meaning

Group by
collections and
then by
namespace

Button Selecting this view groups the global constructs by collection (for example,
Messages, Types, Groups, or Elements and Attributes) and then by namespace.
Using this view you can visualize which global construct in the message set is
defined in which namespace.

Message definition editor settings

Property Type Meaning

Show base
complex types

Check box Where your complex type is based on another complex type that is derived by
an extension, selecting this will display the base complex type in the outline
view.

Prefix for
created
messages

String This property allows you to specify a prefix to precede the name of the initial
complex type in the name of the created message. This prefix applies only to
messages created from C or COBOL files. The default value is msg_.

Note, however, that no prefix is applied when a message is created from a C file,
and the selected preprocessing option is SAP ALE IDoc or SAP File IDoc.

Tab Extensions

Click Tab Extensions to display check boxes that allow you to determine what tabs
are enabled for the Message Set Editor, the Message Definition Editor, and the
Message Category Editor. All these check boxes are always selected and cannot be
cleared.

Editor Tab Extensions

Message Set Editor Properties

Message Definition Editor Overview

Properties

Message Category Editor Properties

A control is provided that allows you to choose the order in which the tab
extensions for each of the editors are displayed.

Validation of the message model
You can customize some of the warning messages that are generated by message
set validation. Use the Message Set Validation Preference page to do this.

Any warning or error that falls into any of the categories that are listed below can
be customized according to the relevant category. The customization can affect
both severity and priority.

The severity can be one of the following values:
v Error
v Warning
v Info
v Ignore

If the severity is not Ignore, the priority can be one of the following values:

150 Message Models



v High
v Normal
v Low

If the severity is Ignore, you cannot change the priority.

Message set validation settings

The following is a list of the categories that you can customize:
v Use of deprecated constructs
v Messages with abstract global elements
v Facet runtime validation differences
v Type/Element substitution runtime validation differences
v Mixed content runtime validation differences
v Wildcard runtime validation differences
v Unique Particle Attribution checks
v Tagged/Delimited String group content
v Zero Custom Wire Format length count
v Zero Tagged/Delimited String Format length count
v Empty Tagged/Delimited String Format tag
v List or Union with Custom Wire Format
v List or Union with Tagged/Delimited String Format
v Unbounded max occurs with Custom Wire Format
v Unbounded max occurs with Tagged/Delimited String Format

XML Schema Importer

You can customize the following categories that affect the way in which an XML
Schema is imported into a message set that does not support namespaces.

Category Modify Reject Accept

Import Converts Import to Include Import fails if it sees an
Import

Not applicable

Redefine Removes the Redefine
statements

Import fails if it sees a
Redefine

Redefine imported (gives
task list error)

List Changes type base to
xsd:string

Import fails if it sees a List List imported

Union Changes type base to
xsd:string

Import fails if it sees a
Union

Union imported

Abstract Complex Type Sets abstract to false Import fails if it sees an
Abstract Complex Type

Abstract Complex Type
imported

Abstract Element Sets abstract to false Import fails if it sees an
Abstract Element

Abstract Element imported

Message set properties
Message sets have properties that you can set to define their characteristics and the
way in which they are processed.

Message model reference information 151



General message set properties

The table below defines the properties that you can set to customize the message
set.

Property Type Meaning

Default
message
domain and
Supported
message
domains

String and
check boxes

The message parser name must match the Message Domain property of any input
node that processes messages from the message set, or the <Msd> element value
of any MQRFH2 header that precedes a message from the message set.

Choose a value from the list offered for the Default Message Domain property, and
select check boxes (from Supported Message Domains) to choose other domains.
You can select as many of these check boxes as you want.

Use the message parser name when you write ESQL field references for
messages in the message set; for example, InputRoot.MRM.Document. The
Mapping editor and the content assist feature of the ESQL editor use the
message parser name when they generate ESQL field references.

You can choose from the following names:

v XMLNSC (the default if you select Finish from page two of the New Message
Set wizard). Choose this domain if you want to model XML messages. You
can deploy the message set to brokers if you want, because the XMLNSC
parser optionally uses the message set at run time.

v MRM. Choose this domain for binary or text messages. You can also use this
domain for XML messages. You must deploy the message set to the brokers
that receive these messages. The deploy action creates a runtime dictionary
against which the MRM parser checks the received message.

v SOAP. Choose this domain for SOAP Web Services.

v DataObject. Choose this domain for data from WebSphere Adapters.

v XMLNS. You might need to choose this domain for some kinds of XML
messages. You do not have to deploy the message set to brokers, because the
XMLNS parser does not use the message set at run time.

v JMSMap. Choose this domain if you want to model a JMS MapMessage
message. You do not have to deploy the message set to brokers, because this
parser does not use the message set at run time.

v JMSStream. Choose this domain if you want to model a JMS StreamMessage
message. You do not have to deploy the message set to brokers, because this
parser does not use the message set at run time.

v MIME. Choose this domain if you want to model a MIME message. You do
not have to deploy the message set to brokers, because the MIME parser does
not use the message set at run time.

v XML. This domain is deprecated. Use the XMLNSC domain instead.

v IDOC. This domain is deprecated. Use the MRM domain instead.

152 Message Models



Property Type Meaning

Use namespaces Check box Select this property if you want to use namespaces within the message set.
Namespaces provide a method of avoiding naming conflicts where different
document definitions have elements of the same name. For further information
see Namespaces.

By default, this check box is selected.

Using namespaces affects how elements are created in the logical message tree.
Each element in the message tree has both a name and a namespace, so an ESQL
or Java reference to one of these elements has to specify both name and
namespace. Therefore, using namespaces has an effect on the ESQL or the Java
that you write.

Always select this property if you want to use the message set to model XML
messages.

MRM domain

Property Type Meaning

Default wire
format

String (Optional) Specify the default wire format used, only if you select MRM as the
default message domain, or MRM is selected in the list of supported message
domains. The default value is <no default specified>.

If you do not select MRM, either as the default message domain or as one of the
supported message domains, the Default Wire Format property is unavailable.

Message set ID String This property is a unique identifier that is automatically generated for you when
you create the message set. You cannot change this property.

Message set
alias

String Specify an alternative unique value that identifies the message set. This property
is only required if you are using the Message Identity technique to identify
embedded messages. Using this technique, the embedded messages are defined
in this message set but the parent message is defined in a different message set,
and the bit stream does not contain the actual message set name or identifier.

Message type
prefix

String This property is used when you define multipart messages, specifically when
using the Message Path technique to identify embedded messages.

The value that you specify is used as an absolute or relative path to the
innermost message from the outermost, and is used as a prefix to the value of
the Message Type property that is specified for the outermost message (specified
either in the MQRFH2 header of the message, or in the input node of the
message flow).

If you set a value, it must be in the form id1/id2/.../idnu where id1 is the
identifier of the outermost message, id2 is the identifier of the next element or
message, and idn is the identifier of the innermost message. The default value is
blank (not set).

The table below, describing the use of the message set property Message Type
Prefix, shows how this value is combined with the Message Type property of an
input message.

Broker will treat
Length facet as
MaxLength

Check box Select this property if you want the COBOL importer to create a maxLength
facet, rather than a length facet, for a fixed length string element.

By default, this check box is selected.

Message model reference information 153



Use of the Message type prefix property

The table below shows the implications of using the property Message type prefix.
The message type or message prefix can describe either elements or messages.

Message Type property example Message type prefix not set Message type prefix set

Simple Message Type:msg_type Results in the simple Message
Type:msg_type

Results in the path Message Type:
/msg_prefix_1/.../msg_prefix_n/
msg_type

Path Message Type:msg_type_1/.../
msg_type_m

Results in the path Message
Type:/msg_type_1/.../msg_type_m

Results in the combined path
Message Type: /msg_prefix_1.../
msg_prefix_n /msg_type_1/.../
msg_type_m

Simple absolute Message
Type:/msg_type

Results in the simple Message
Type:msg_type

Results in the simple Message
Type:msg_type

An error is raised if Message Type
Prefix is set to any value other than
msg_type.

Path absolute Message
Type:/msg_type_1/.../msg_type_m

Results in the path Message
Type:/msg_type_1/.../msg_type_m

Results in the path Message
Type:/msg_type_1/.../msg_type_m

An error is raised if all identifiers in
Message Type Prefix do not match
the corresponding identifiers in the
resulting path.

If you are using MRM or IDOC domains, in addition to the main message set
properties, you can update message set properties that are specific to each of the
physical formats. Links to reference topics that describe these properties are given
below.

Custom Wire Format message set properties
The tables define the properties that you can set for a Custom Wire Format
message set.

Some of the message set properties (marked with an asterisk (*)) are relevant only
if the message being processed is not using WebSphere MQ as the transport
protocol.

If the transport protocol is WebSphere MQ, values are derived from the message
headers (for example, MQMD), and the message set properties, if set, are ignored.

Binary representation of boolean values

Property Type Meaning

Boolean True
Value

String Enter up to eight hexadecimal digits. Do not include the hexadecimal indicator
(0x) preceding this number. Each digit is a half byte. The maximum length is 4
bytes. You must enter an even number of digits (a whole number of bytes). This
value must be different from, but the same length as, the Boolean False Value.
The default value is 00000001.

154 Message Models



Property Type Meaning

Boolean False
Value

String Enter up to eight hexadecimal digits. Do not include the hexadecimal indicator
(0x) preceding this number. Each digit is a half byte. The maximum length is 4
bytes. You must enter an even number of digits (a whole number of bytes). This
value must be different from, but the same length as, the Boolean True Value.
The default value is 00000000.

Boolean Null
Value

String Enter up to eight hexadecimal digits. Do not include the hexadecimal indicator
(0x) preceding this number. Each digit is a half byte. The maximum length is 4
bytes. You must enter an even number of digits (a whole number of bytes). This
value can be the same as either Boolean True Value or Boolean False Value, or
different. The default value is 00000000.

Output settings

Use these settings when messages are being output.

Property Type Meaning

Byte Alignment
Pad

String If the xsd:element Custom Wire Format properties Byte Alignment, Leading Skip
Count, and Trailing Skip Count cause bytes to be skipped in the bit stream
when the message is serialized, this property supplies the character to be used in
the skipped positions. Set this character in one of the following ways:

v Select SPACE, NUL, or 0 (the default) from the list of values shown.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Policy for
Missing
Elements

Enumerated This property determines the action that is taken by the broker when fields are
missing from the message tree when the message is serialized (for output):

v Use Default Value (the default). If a Default Value exists for the element, output
it; otherwise, throw an exception.

v Use Null Value. If the Nillable property of the element is selected, and an
Encoding Null Value is specified for the element, output the Encoding Null Value
according to the rules that are defined by the Encoding Null property;
otherwise, throw an exception.

Message model reference information 155



Property Type Meaning

Truncate fixed
length strings

Check box This property applies only to output strings.

If this check box is selected, and the element or attribute is a fixed length string
(that is, the logical type is xsd:string and the physical type is Fixed Length
String) that is longer than either the length that is specified in the model or the
length reference, the string is truncated to this length. No exception is raised on
output, unless validation (see Validating messages) is active.

The end from which data is truncated is determined by the value of the
Justification property. If the value of the Justification property is Left justify, data
is truncated from the right; if the value of the Justification property is Right
justify, data is truncated from the left. However, if the value of the Justification
property is Not applicable, truncation does not occur and an exception occurs if
the string is too long.

If this check box is cleared, an exception occurs if the element or attribute is a
fixed length string (that is, the logical type is xsd:string and the physical type is
Fixed Length String) that is longer than either the length that is specified in the
model, or the length reference. This behavior occurs in releases of the WebSphere
Message Broker earlier than Version 6.1.

By default, this check box is cleared.

Binary representation of decimal values

Property Type Meaning

Packed Decimal
Positive Code

Enumerated Select, from the list, the positive sign that is used for packed decimal numbers.
The default value is C, which indicates that 0x0C is used as the positive sign; this
value is used in most systems. You can also select F, which indicates that 0x0F is
used as the positive sign; this value is used in some systems.

Datetime settings

Property Type Meaning

Derive default
dateTime
format from
logical type

Button Select this option if you want the default dateTime format to be determined by
the logical type of the element or attribute.

You can override this property for an element or attribute within a complex
type.

Use default
dateTime
format

Button and
String

Select this option if you want to specify a default dateTime format that is fixed
for all elements or attributes of logical type dateTime, date, time, gYear,
gYearMonth, gMonth, gMonthDay, and gDay.

You can override this property for an element or attribute within a complex
type.

For more information, see “DateTime formats” on page 765.

Start of century
for 2 digit years

Integer This property determines how two-digit years are interpreted. Specify the two
digits that start a 100-year window that contains the current year. For example, if
you specify 89, and the current year is 2002, all two-digit dates are interpreted as
being in the range 1989 to 2088.

156 Message Models



Property Type Meaning

Days in First
Week of Year

Enumerated Specify the number of days of the new year that must fall within the first week.

The start of a year typically falls in the middle of a week. If the number of days
in that week is less than the value specified here, the week is considered to be
the last week of the previous year; therefore, week 1 starts some days into the
new year. Otherwise, it is considered to be the first week of the new year; in this
case, week 1 starts some days before the new year.

Select Use Broker Locale, which causes the broker to get the information from
the underlying platform, or select a number from the list that is displayed.

First Day Of
Week

Enumerated Specify the day on which each new week starts.

Select Use Broker Locale, which causes the broker to get the information from
the underlying platform, or select a value from the list that is displayed.

Message model reference information 157



Property Type Meaning

Strict DateTime
Checking

Check box Select this option if you want to restrict dateTimes to a valid dateTime format. If
Strict DateTime Checking is selected, receiving an incorrect dateTime causes an
error.

Strict dateTime checking
Examples of strict dateTime checking are:

v DateTimes are restricted to valid dateTimes only. When you use this
option, a date such as the 35th March is not processed as 4th April,
and 10:79 is not processed as 11:19. Receiving an out-of-band
dateTime, such as these examples, causes an error to occur.

v The number of characters for a numeric dateTime component must
be within the bounds of the corresponding formatting symbols.
Repeat the symbol to specify the minimum number of digits that you
require. The maximum number of digits that are permitted becomes
the upper bound for a particular symbol. For example, day in month
has an upper bound of 31; therefore, a format string of ’d’ allows the
values 2 and 21 to be parsed, but does not allow the values 32 and
210. On output, numbers are padded with zeros to the specified
length. A year is a special case; see the message set property Start of
century for 2 digit years. For fractional seconds, the length must
implicitly match the number of format symbols on input. The output
is rounded to the specified length.

v White space is not skipped over. The white space in the input string
must correspond with the same number and position of white space
in the formatting string.

v If there is still data to be parsed in the input string after all of the
symbols in the formatting string have been matched, an error occurs.

Lenient dateTime checking
Examples of lenient dateTime checking are:

v The parser converts out-of-band dateTime values to the appropriate
in-band value. For example, a date of 2005-05-32 is converted to
2005-06-01.

v Output of dateTimes always adheres to the symbol count. For
example, a formatting string of yyyy-MM-dd (where ’-’ is the field
separator) allows one or more characters to be parsed against MM
and dd. Therefore, dates that are not valid - for example, 2005-1-123
and 2005-011-12 - can be input. The first value of 2005-1-123 is output
as the date 2005-05-03, and the second value of 2005-011-12 is output
as the date 2005-11-12.

v The number of the timezone formatting symbol Z is only applicable
to the output dateTime format.

v White space is skipped over.

Time Zone Enumerated The value that you set for this property is used if the value that you specified
for the Default DateTime Format property does not include Time Zone
information.

The initial value is Use Broker Locale, which causes the broker to get the
information from the underlying platform.

You can change this property by selecting from the list of values.

Daylight
Savings Time

Check box Select this option if the area in the Time Zone property observes Daylight Saving
Time. If it does not observe Daylight Saving Time, do not select this option.

For example, if an area is selected in Time Zone and this option is not selected,
the value passed represents the time zone without the Daylight Saving Time.

158 Message Models



Property Type Meaning

Use input UTC
format on
output

Check box This property applies to elements and attributes of logical type xsd:dateTime or
xsd:time that contain a dateTime as a string and that have a dateTime format of
I, IU, T, or TU, or that include ZZZ or ZZZU.

Such elements and attributes can specify Coordinated Universal Time (UTC) by
using either the Z character or timezone +00:00 in the value. On input, the MRM
parser remembers the way that UTC was specified.

If this property is selected, and the element or attribute is copied to an output
message, the UTC format is preserved into the output message and overrides the
format that is implied by the dateTime format property.

If this property is cleared, or if the element or attribute was not copied from an
input message, the UTC format in the output message is controlled solely by the
dateTime format property.

Character and numeric encoding for non-WebSphere MQ
messages

Use these settings only for messages with no MQMD.

Property Type Meaning

Default CCSID* Integer Enter a numeric value for the default Coded Character Set Identifier. The default
is 500.

If the input message is a WebSphere MQ message, the equivalent attribute that
is set for the queue manager is used, and this property is ignored.

Default Byte
Order*

Enumerated Select either Big Endian (the default) or Little Endian from the list to specify the
byte order of numbers that are represented as binary integers.

In C, this is equivalent to data type short or long. In COBOL, this is equivalent
to a PIC 9, COMP, COMP-4, COMP-5, or BINARY data type.

Your choice must match the encoding with which messages are created.
Typically, Big Endian is the correct option for messages that are created on
UNIX® or z/OS®; Little Endian is the correct option for messages that are created
on Windows®.

Do not use this property if the message is received across the WebSphere MQ
transport protocol; in this case, the property is deduced from the MQMD of the
message, or from the encoding of the broker queue manager.

Default Packed
Decimal Byte
Order*

Enumerated Select Big Endian (the default) or Little Endian from the displayed list to specify
the byte order of numbers that are represented as packed decimal. In COBOL,
this is equivalent to PIC 9 COMP-3 data type. There is no equivalent data type
in C.

Your choice must match the encoding with which messages are created.
Typically, Big Endian is the correct option for messages that are created on UNIX
or z/OS; Little Endian is the correct option for messages that are created on
Windows.

Default Float
Format*

Enumerated Select one of S390 (the default), IEEE, or Reverse IEEE from the displayed list to
specify the byte order of numbers in the message that are represented as floating
point.

Message model reference information 159



TDS Format message set properties
The following tables show the properties that you can set for a TDS format
message set.

See “Default TDS message set properties” on page 170 for the default settings of
these properties for each of the industry standards.

Messaging Standard

Property Type Meaning

Messaging
Standard

Enumerated Specify the standard to be used for this wire format. Select one of the following
values:

v User Defined Text - for text data not based on a standard

v SWIFT

v ACORD AL3

v EDIFACT

v X12

v TLOG

v HL7

v CSV - Comma Separated Values

v User Defined Mixed - for mixed text and binary data

If you are defining your own tagged/delimited messages, or are using a
standard that is not included in the list of values shown, select either User
Defined Text, if all your data is text, or User Defined Mixed, if not all your data
is text.

The value that you select for this property determines the default values of some
of the other properties.

The default is User Defined Text.

Data element separation settings

Property Type Meaning

Group Indicator String Specify the default value of a special character or string that precedes the data
that belongs to a group or complex type within the bit stream.

Group
Terminator

String Specify the default value of a special character or string that terminates data that
belongs to a group or a complex type within the bit stream.

Delimiter String Specify the default value of a special character or string that specifies the
delimiter that is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

160 Message Models



Property Type Meaning

Suppress
Absent Element
Delimiters

Enumerated Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message. Select from:

v End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to three
elements and only two are present, the last delimiter can be omitted from the
message.

v Never. Use this option to ensure that even if optional elements are not
present, all delimiters are written out. This option must be used when the
same delimiter is used to delimit parent objects and child objects. For
example, if an optional child element is missing and all the delimiters are the
same, message processing applications cannot tell where the child elements in
a message ends and where the next parent element starts.

Tag Data
Separator

String Specify the default value of a special character or string that separates the tag
from the data.

If you set the property Tag Data Separator, the Length of Tag property is
ignored.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of Tag Integer Specify the default length of a tag value. When the message is parsed, this
property allows tags to be extracted from the bit stream.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If
you set the property Tag Data Separator, the Length of Tag property is ignored.

This property applies only to the tagged Data Element Separation methods
(Tagged Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Note: Any value that you set for a group or complex type property overrides the
value that you set for the corresponding message set property.

Character data settings

Property Type Meaning

Default CCSID Integer CCSID (Coded Character Set Identification) specifies the mapping between
character codes and symbols. You must specify a code set that is supported by
WebSphere Message Broker.

This property stores the default CCSID for the message bit stream, but this value
can be overridden when the message is processed (for example, by the CCSID in
the header of a WebSphere MQ input message).

Message model reference information 161



Property Type Meaning

Trim on input Enumerated This property applies only to elements and attributes with a physical type of
Text. This property specifies whether a simple element or attribute value is to be
trimmed when it is parsed. The property does not apply to a simple element, or
attribute, with a logical type of Boolean or Binary. All trimming is applied to
element or attribute values before the conversion of the value to its logical type.
This property does not apply when writing elements or attributes.

This property only applies to a simple element, or attribute, that is contained
within a complex type or group that has the Justification property set to Left
Justify or Right Justify, and that satisfies one of the following conditions:

v The Data Element Separation property is set to Fixed Length, Fixed Length
AL3, Tagged Fixed Length, Use Data Pattern, or Tagged Encoded Length.

v The Data Element Separation property is set to Variable Length Elements
Delimited, and the element or attribute has a value set for its model length or
length reference.

v The Data Element Separation property is set to Tagged Delimited or All
Elements Delimited, and the Observe Element Length property is set. The
element or attribute has a model length or length reference value set.

This property can be set to one of the following values:

v No Trim. No characters are trimmed from the element or attribute value.

v Leading White Spaces. White space characters are trimmed from the left of the
element or attribute value.

v Trailing White Spaces. White space characters are trimmed from the right of
the element or attribute value.

v Trim Both. White space characters are trimmed from both the left and the
right of the element or attribute value.

v Trim Padding Chars. Padding characters are trimmed from the element or
attribute value. The padding character is set by the Padding Character
property of the element or attribute. If the Justification property of the element
or attribute is set to Left Justify, the padding characters are trimmed from the
right. If the Justification property of the element or attribute is set to Right
Justify, the padding characters are trimmed from the left. If the Justification
property of the element or attribute is set to Not Applicable, no trimming
takes place.

White space characters include control characters that are in the range from
U+0000 to U+001f and from U+007f to U+009f.

You might need to use this property if you have data input that is mapped to a
numeric simple type. For example, if the input data has leading spaces, you can
set this property to Leading White Spaces to avoid data conversion problems
when you process these fields.

162 Message Models



Property Type Meaning

Truncate on
output

Check box This property applies only to output strings that have a physical type of Text.

The property applies to elements or attributes that have a logical type of
xsd:string and that are contained within a structure with a Data Element
Separation of Fixed Length, Fixed Length AL3, Tagged Fixed Length, Use Data
Pattern, or Variable Length Elements Delimited where a length has been
specified.

If this check box is selected, and the element or attribute has a length that is
longer than the length that is specified in the model or the length reference, the
string is truncated to this length. No exception is raised on output, unless
validation (see Validating messages) is active.

The end from which data is truncated is determined by the value of the
Justification property. If the value of the Justification property is Left justify, data
is truncated from the right; if the value of the Justification property is Right
justify, data is truncated from the left. However, if the value of the Justification
property is Not applicable, truncation does not occur and an exception occurs if
the string is too long.

If this check box is cleared, an exception occurs if the element or attribute is a
fixed length string (that is, the physical type is Text and a length has been
specified) that is longer than either the length that is specified in the model or
the length reference. This behavior occurs in releases of the WebSphere Message
Broker earlier than Version 6.1.

Escape
Character

Button and
String

Specify the escape character that is used to allow special reserved characters
(such as delimiters) to be included as part of data. You must specify a single
character only, or a mnemonic that represents a single character.

Escape characters apply only in variable length fields.

Escape characters, on parsing, always escape the next character, and are always
removed.

Escape characters, on writing, are inserted in front of all the characters that are
listed in Reserved Characters.

You can specify either an escape character or a quote character, but not both, for
a given message set.

Quote
Character

Button and
String

Specify the quote character that is used to allow special reserved characters
(such as delimiters) to be included as part of data. You must specify a single
character only, or a mnemonic that represents a single character.

Quote characters apply only to variable length fields.

Quote characters, on parsing, must be present at both the start and the end of
the data, and are always removed.

Quote characters, on writing, are added to both the start and end of the data, if
the data contains any character that is listed in the Reserved Characters property.

You can specify either an Escape Character or a Quote Character, but not both,
for a given message set.

Message model reference information 163



Property Type Meaning

Reserved
Characters

String Specify any special reserved characters. Either these reserve characters must be
preceded by the Escape Character, or the data field that contains them must be
delimited by a pair of Quote Characters, if they are to be included as part of the
data. The Escape Character, Quote Character, delimiters, and group indicators
must be included in this list.

If the set of reserved characters is to be updated dynamically (in the case of
EDIFACT and X12 when reserved characters, such as delimiters, are specified in
service strings), you must use the supplied mnemonics to specify characters in
this list.

If you have specified Reserved Characters, an Escape Character or a Quote
Character must also be specified.

Reserved characters apply only in variable length fields.

Reserved characters are not used when parsing.

Numeric settings

Property Type Meaning

Decimal Point String Specify the character that is used to separate the whole part of a number from
its fraction.

Packed decimal
positive code

String Controls the positive sign that is used for packed decimal fields.

Valid values are C or F.Specify the character that is used to separate the whole
part of a number from its fraction.

Strict Numeric
Checking

Check box Use this property in conjunction with the Messaging Standard property, the
Virtual Decimal Point property and the Precision property of an element. Using
this property allows you to apply stricter rules for the checking of numbers.

The rules for Strict Numeric Checking are:

v If the Precision property of an element is set to All Significant Digits , a
decimal separator is present only if the value has a fractional part.

v If the Precision property of an element is set to Explicit Decimal Point, the
decimal separator must always be present, even if the fractional part is
missing.

v If the Precision property of an element is set to Exponential Notation, the
incoming value must be in exponential notation. Exponential notation is only
allowed for floating numbers.

v If the Precision property of an element is set to a specific value, the specific
number of digits after the decimal separator must be present.

v All values must contain at least one digit in the integer part of the number.

v If a Virtual Decimal Point of an element has been set, the number must not
have a decimal point.

v Except for EDIFACT, the decimal separator can be only the specified value,
and ’.’ is not permitted. For EDIFACT, both ’.’ and the specified separator are
permitted. In this case, the decimal separator must be specified as ’,’ and the
code permits ’.’ to be used.

v Except for exponential functions, only digits 0-9, the decimal separator, the
positive sign, and the negative sign are permitted. For exponential functions
the characters ’e’ and ’E’ are also permitted. Padding characters are permitted
only if they are in a position to be stripped from the number.

164 Message Models



Property Type Meaning

Derive sign
from logical
type

Check box If this property is selected, an unset TDS Signed property attempts to derive its
value from the simple type of the element (integer and decimal simple logical
types only). For these logical types it applies only to the Integer, External
Decimal, and Packed Decimal physical types.

Default byte
order

Enumerated Controls the byte order of numbers that are represented as binary integers for
messages with no MQMD.

Valid values are Big Endian or Little Endian.

This property stores the default byte order for numbers that are represented as
binary integers for messages with no MQMD, but this value can be overridden
when the message is processed.

Default packed
decimal byte
order

Enumerated Controls the byte order of numbers that are represented as packed decimal for
messages with no MQMD.

Valid values are Big Endian or Little Endian.

This property stores the default byte order of numbers that are represented as
packed decimal for messages with no MQMD, but this value can be overridden
when the message is processed.

Default float
format

Enumerated Controls the format of numbers that are represented as float for messages with
no MQMD.

Valid values are S390, IEEE, or Reverse IEEE.

This property stores the default format of numbers that are represented as float
for messages with no MQMD, but this value can be overridden when the
message is processed.

Representation of boolean values

Property Type Meaning

Text boolean
true value

String Specifies the character that represents the text Boolean true value.

Text boolean
false value

String Specifies the character that represents the text Boolean false value.

Text boolean
null value

String Specifies the character that represents the text Boolean null value.

Binary boolean
true value

String Specifies a hexadecimal value that represents the binary Boolean true value.

Binary boolean
false value

String Specifies a hexadecimal value that represents the binary Boolean false value.

Binary boolean
null value

String Specifies a hexadecimal value that represents the binary Boolean null value.

Datetime settings

Property Type Meaning

Derive default
dateTime
format from
logical type

Button Select this option if you want the default dateTime format to be determined by
the logical type of the element or attribute.

You can override this property for an element or attribute within a complex
type.

Message model reference information 165



Property Type Meaning

Use default
dateTime
format

Button and
String

Select this option if you want to specify a default dateTime format that is fixed
for all elements or attributes of logical type dateTime, date, time, gYear,
gYearMonth, gMonth, gMonthDay, and gDay.

You can override this property for an element or attribute within a complex
type.

For more information, see “DateTime formats” on page 765.

Start of century
for 2 digit years

Integer This property determines how two-digit years are interpreted. Specify the two
digits that start a 100-year window that contains the current year. For example, if
you specify 89, and the current year is 2002, all two-digit dates are interpreted as
being in the range 1989 to 2088.

Days in First
Week of Year

Enumerated Specify the number of days of the new year that must fall within the first week.

The start of a year typically falls in the middle of a week. If the number of days
in that week is less than the value specified here, the week is considered to be
the last week of the previous year; therefore, week 1 starts some days into the
new year. Otherwise, it is considered to be the first week of the new year; in this
case, week 1 starts some days before the new year.

Select Use Broker Locale, which causes the broker to get the information from
the underlying platform, or select a number from the list that is displayed.

First Day Of
Week

Enumerated Specify the day on which each new week starts.

Select Use Broker Locale, which causes the broker to get the information from
the underlying platform, or select a value from the list that is displayed.

166 Message Models



Property Type Meaning

Strict DateTime
Checking

Check box Select this option if you want to restrict dateTimes to a valid dateTime format. If
Strict DateTime Checking is selected, receiving an incorrect dateTime causes an
error.

Strict dateTime checking
Examples of strict dateTime checking are:

v DateTimes are restricted to valid dateTimes only. When you use this
option, a date such as the 35th March is not processed as 4th April,
and 10:79 is not processed as 11:19. Receiving an out-of-band
dateTime, such as these examples, causes an error to occur.

v The number of characters for a numeric dateTime component must
be within the bounds of the corresponding formatting symbols.
Repeat the symbol to specify the minimum number of digits that you
require. The maximum number of digits that are permitted becomes
the upper bound for a particular symbol. For example, day in month
has an upper bound of 31; therefore, a format string of ’d’ allows the
values 2 and 21 to be parsed, but does not allow the values 32 and
210. On output, numbers are padded with zeros to the specified
length. A year is a special case; see the message set property Start of
century for 2 digit years. For fractional seconds, the length must
implicitly match the number of format symbols on input. The output
is rounded to the specified length.

v White space is not skipped over. The white space in the input string
must correspond with the same number and position of white space
in the formatting string.

v If there is still data to be parsed in the input string after all of the
symbols in the formatting string have been matched, an error occurs.

Lenient dateTime checking
Examples of lenient dateTime checking are:

v The parser converts out-of-band dateTime values to the appropriate
in-band value. For example, a date of 2005-05-32 is converted to
2005-06-01.

v Output of dateTimes always adheres to the symbol count. For
example, a formatting string of yyyy-MM-dd (where ’-’ is the field
separator) allows one or more characters to be parsed against MM
and dd. Therefore, dates that are not valid - for example, 2005-1-123
and 2005-011-12 - can be input. The first value of 2005-1-123 is output
as the date 2005-05-03, and the second value of 2005-011-12 is output
as the date 2005-11-12.

v The number of the timezone formatting symbol Z is only applicable
to the output dateTime format.

v White space is skipped over.

Time Zone Enumerated The value that you set for this property is used if the value that you specified
for the Default DateTime Format property does not include Time Zone
information.

The initial value is Use Broker Locale, which causes the broker to get the
information from the underlying platform.

You can change this property by selecting from the list of values.

Daylight
Savings Time

Check box Select this option if the area in the Time Zone property observes Daylight Saving
Time. If it does not observe Daylight Saving Time, do not select this option.

For example, if an area is selected in Time Zone and this option is not selected,
the value passed represents the time zone without the Daylight Saving Time.

Message model reference information 167



Property Type Meaning

Use input UTC
format on
output

Check box This property applies to elements and attributes of logical type xsd:dateTime or
xsd:time that have a dateTime format of I, IU, T, or TU, or that include ZZZ or
ZZZU.

Such elements and attributes can specify Coordinated Universal Time (UTC) by
using either the Z character or timezone +00:00 in the value. On input, the MRM
parser remembers the way that UTC was specified.

If this property is selected, and the element or attribute is copied to an output
message, the UTC format is preserved into the output message and overrides the
format that is implied by the dateTime format property.

If this property is cleared, or the element or attribute was not copied from an
input message, the UTC format in the output message is controlled solely by the
dateTime format property.

General settings

Property Type Meaning

Output policy
for missing
elements

Enumerated Controls whether the default value or null value is used on output for missing
elements.

Valid values are UseDefaultValue or UseNullValue.

Derive default
length from
logical type

Check box If this property is selected, an unset TDS Length property attempts to derive its
default value from the simple type of the element (string, binary, integer, and
decimal simple logical types only). For these logical types, it applies only to the
Binary, Text, Integer, External Decimal, and Packed Decimal physical types.

TDS Mnemonics
The Tagged/Delimited String Format (TDS) uses mnemonics for a number of
properties for a message set, complex type, or both. These TDS mnemonics and
their associated properties are listed in the following table.

Mnemonic string Meaning Default value Associated property

<EDIFACT_CS> Component separator in
EDIFACT

: Message set and complex type
or group, Delimiter

<EDIFACT_DS> Data element separator in
EDIFACT

+ Message set and complex type
or group, Delimiter

<EDIFACT_TAGDATA_SEP> Tag data separator in EDIFACT

This is overridden with the
same value as that which
overrides <EDIFACT_DS>

+ Message set and complex type
or group, Tag Data Separator

<EDIFACT_DEC_NOTATION> Decimal notation in EDIFACT . Message set, Decimal Point

<EDIFACT_ESC_CHAR> Escape character in EDIFACT ? Message set, Escape Character

<EDIFACT_GROUP_TERM> Tag terminator in EDIFACT ’ Message set, Group Terminator

<X12_GROUP_TERM> Tag terminator in X12 ! Message set level, Group
Terminator

<X12_DS> Data element separator for X12 * Message set and complex type
or group, Delimiter

<X12_CS> Component separator for X12 : Message set and complex type
or group, Delimiter

168 Message Models



Mnemonic string Meaning Default value Associated property

<HL7_CS> Component separator in HL7 ^ Message set and complex type
or group, Delimiter

<HL7_FS> Data element separator in HL7 | Message set and complex type
or group, Delimiter

<HL7_RS> Repeating element delimiter in
HL7

~ Local element and element
reference, Repeating Element
Delimiter

<HL7_SCS> Sub-component separator in
HL7

& Message set and complex type
or group, Delimiter

Mnemonics for control characters are shown in the following table.

Mnemonic Hex
value

Unicode Description

<ACK> X’06’ <U+0006> Acknowledge

<BEL> X’07’ <U+0007> Bell

<BS> X’08’ <U+0008> Backspace

<CAN> X’18’ <U+0018> Cancel

<CR> X’0D’ <U+000D> Carriage Return

<DC1> X’11’ <U+0011> Device Control One

<DC2> X’12’ <U+0012> Device Control Two

<DC3> X’13’ <U+0013> Device Control Three

<DC4> X’14’ <U+0014> Device Control Four

<DLE> X’10’ <U+0010> Data Link Escape

<EM> X’19’ <U+0019> End of Medium

<ENQ> X’05’ <U+0005> Inquiry

<EOT> X’04’ <U+0004> End of Transmission

<ESC> X’1B’ <U+001B> Escape

<ETB> X’17’ <U+0017> End of Transmission Block

<ETX> X’03’ <U+0003> End of Text

<FF> X’0C’ <U+000C> Form Feed

<FS> X’1C’ <U+001C> File Separator

<GS> X’1D’ <U+001D> Group Separator

<GT> X’3E’ <U+003E> Greater Than

<HT> X’09’ <U+0009> Horizontal Tabulation

<LF> X’0A’ <U+000A> Line Feed

<LT> X’3C’ <U+003C> Less Than

<NAK> X’15’ <U+0015> Negative Acknowledge

<NUL> X’00’ <U+0000> Null-

<RS> X’1E’ <U+001E> Record Separator

<SI> X’0F’ <U+000F> Locking Shift Zero (Shift In)

<SO> X’0E’ <U+000E> Locking Shift One (Shift Out)

<SOH> X’01’ <U+0001> Start of Heading

Message model reference information 169



Mnemonic Hex
value

Unicode Description

<SP> X’20’ <U+0020> Space

<STX> X’02’ <U+0002> Start of Text

<SUB> X’1A’ <U+001A> Substitute

<SYN> X’16’ <U+0016> Synchronous Idle

<US> X’1F’ <U+001F> Unit Separator

<VT> X’0B’ <U+000B> Vertical Tabulation

These mnemonics were created for characters that cannot be entered into the
message editor.

You can enter a mnemonic in the form <U+NNNN>, where NNNN are hexadecimal
digits. None of the characters in this structure are case-sensitive. Do not enclose
spaces inside the angle brackets. These numbers represent a Unicode character, not
a character in the code page of the input message.

You can enter a mnemonic in the form <0xNN>, where NN are hexadecimal digits.
None of the characters in this structure are case-sensitive. Do not enclose spaces
inside the angle brackets. These numbers represent a raw hexadecimal byte value,
not a character in the code page of the input message.

If a mnemonic is of the form <0xNN>, it is applied directly to the input data, and no
code page conversion takes place. Otherwise, a mnemonic is applied to the data
after the data has been converted into Unicode from the code page of the input
data.

Default TDS message set properties
The following tables define the defaults for the message set properties for the TDS
Format for each of the industry standard messages that you can define.

For more information about the TDS Format, see “TDS Format message set
properties” on page 160 and “TDS Mnemonics” on page 168.

Default message set property values for TDS (part 1 of 3)

Property Messaging standard = User
Defined Text

Messaging Standard =
SWIFT

Messaging standard =
ACORD AL3

Group Indicator Empty <CR><LF>: Empty

Group Terminator Empty <CR><LF>- Empty

Delimiter Empty <CR><LF>: Empty

Suppress Absent
Element Delimiters

End of Type End of Type End of Type

Tag Data Separator Empty : Empty

Length of Tag Empty Empty Empty

Default CCSID 367 37 367

Trim on input No Trim Trim Both No Trim

Truncate on output Cleared Cleared Cleared

Escape Character Chosen - empty Chosen - empty Chosen - empty

170 Message Models



Property Messaging standard = User
Defined Text

Messaging Standard =
SWIFT

Messaging standard =
ACORD AL3

Quote character Not chosen Not chosen Not chosen

Reserved Characters Empty Empty Empty

Decimal Point . , .

Packed decimal
positive code

C Not applicable Not applicable

Strict Numeric
Checking

Cleared Selected Selected

Derive sign from
logical type

Selected Not applicable Not applicable

Default byte order Big Endian Not applicable Not applicable

Default packed
decimal byte order

Big Endian Not applicable Not applicable

Default float format S390 Not applicable Not applicable

Text boolean true
value

1 1 Y

Text boolean false
value

0 0 N

Text boolean null
value

0 0 N

Binary boolean true
value

00000001 Not applicable Not applicable

Binary boolean false
value

00000000 Not applicable Not applicable

Binary boolean null
value

00000000 Not applicable Not applicable

Derive default
dateTime format
from logical type

Chosen Chosen Chosen

Use default
DateTime Format1

Not chosen, but
yyyy-MM-
dd’T’HH:mm:ssZZZ if chosen

Not chosen, but
yyyy-MM-
dd’T’HH:mm:ssZZZ if chosen

Not chosen, but
yyyy-MM-
dd’T’HH:mm:ssZZZ if chosen

Start of century for
2 digit years

53 80 53

Days in First Week
of Year

Use Broker Locale Use Broker Locale Use Broker Locale

First Day of Week Use Broker Locale Use Broker Locale Use Broker Locale

Strict Datetime
Checking

Selected Selected Selected

Time Zone Use Broker Locale Use Broker Locale Use Broker Locale

Daylight Saving
Time

Cleared Cleared Cleared

Use input UTC
format on output

Cleared Cleared Cleared

Output policy for
missing elements

UseDefaultValue UseDefaultValue UseDefaultValue

Message model reference information 171



Property Messaging standard = User
Defined Text

Messaging Standard =
SWIFT

Messaging standard =
ACORD AL3

Derive default
length from logical
type

Selected Selected Selected

Default message set property values for TDS (part 2 of 3)

Property Messaging standard =
EDIFACT

Messaging Standard = X12 Messaging standard = TLOG

Group Indicator Empty Empty Empty

Group Terminator <EDIFACT_GROUP_TERM> <X12_GROUP_TERM> Empty

Delimiter <EDIFACT_CS> <X12_CS> :

Suppress Absent
Element Delimiters

End of Type End of Type End of Type

Tag Data Separator <EDIFACT_TAGDATA_SEP> Empty Empty

Length of Tag Empty Empty Empty

Default CCSID 367 367 367

Trim on input Trim Both Trim Both No Trim

Truncate on output Cleared Cleared Cleared

Escape Character Chosen -
<EDIFACT_ESC_CHAR>

Chosen - empty Chosen - empty

Quote character Not chosen Not chosen Not chosen

Reserved Characters <EDIFACT_ESC_CHAR>
<EDIFACT_TAGDATA_SEP>
<EDIFACT_GROUP_TERM>
<EDIFACT_CS>

Empty Empty

Decimal Point <EDIFACT_DEC_NOTATION> . .

Packed decimal
positive code

Not applicable Not applicable Not applicable

Strict Numeric
Checking

Selected Selected Cleared

Derive sign from
logical type

Not applicable Not applicable Not applicable

Default byte order Not applicable Not applicable Not applicable

Default packed
decimal byte order

Not applicable Not applicable Not applicable

Default float format Not applicable Not applicable Not applicable

Text boolean true
value

1 1 1

Text boolean false
value

0 0 0

Text boolean null
value

0 0 0

Binary boolean true
value

Not applicable Not applicable Not applicable

Binary boolean false
value

Not applicable Not applicable Not applicable

172 Message Models



Property Messaging standard =
EDIFACT

Messaging Standard = X12 Messaging standard = TLOG

Binary boolean null
value

Not applicable Not applicable Not applicable

Derive default
dateTime format
from logical type

Chosen Chosen Chosen

Use default
DateTime Format1

Not chosen, but
yyyy-MM-
dd’T’HH:mm:ssZZZ if chosen

Not chosen, but
yyyy-MM-
dd’T’HH:mm:ssZZZ if chosen

Not chosen, but
yyyy-MM-
dd’T’HH:mm:ssZZZ if chosen

Start of century for
2 digit years

53 53 53

Days in First Week
of Year

Use Broker Locale Use Broker Locale Use Broker Locale

First Day of Week Use Broker Locale Use Broker Locale Use Broker Locale

Strict Datetime
Checking

Selected Selected Selected

Time Zone Use Broker Locale Use Broker Locale Use Broker Locale

Daylight Saving
Time

Cleared Cleared Cleared

Use input UTC
format on output

Cleared Cleared Cleared

Output policy for
missing elements

UseDefaultValue UseDefaultValue UseDefaultValue

Derive default
length from logical
type

Selected Selected Selected

Default message set property values for TDS (part 3 of 3)

Property Messaging standard = HL7 Messaging Standard = CSV Messaging standard = User
Defined Mixed

Group Indicator Empty Empty Empty

Group Terminator <CR> Empty Empty

Delimiter <HL7_FS> , Empty

Suppress Absent
Element Delimiters

End of Type Never End of Type

Tag Data Separator <HL7_FS> Empty Empty

Length of Tag Empty Empty Empty

Default CCSID 367 367 850

Trim on input No Trim No Trim Trim Padding Chars

Truncate on output Cleared Cleared Cleared

Escape Character Chosen - empty Not chosen Chosen - empty

Quote character Not chosen Chosen - ″ Not chosen

Reserved
Characters

Empty ,
<CR>
<LF>
″

Empty

Message model reference information 173



Property Messaging standard = HL7 Messaging Standard = CSV Messaging standard = User
Defined Mixed

Decimal Point . . .

Packed decimal
positive code

Not applicable C C

Strict Numeric
Checking

Cleared Cleared Cleared

Derive sign from
logical type

Not applicable Selected Selected

Default byte order Not applicable Big Endian Big Endian

Default packed
decimal byte order

Not applicable Big Endian Big Endian

Default float format Not applicable S390 S390

Text boolean true
value

1 1 1

Text boolean false
value

0 0 0

Text boolean null
value

0 0 0

Binary boolean true
value

Not applicable 00000001 00000001

Binary boolean
false value

Not applicable 00000000 00000000

Binary boolean null
value

Not applicable 00000000 00000000

Derive default
dateTime format
from logical type

Not chosen Chosen Chosen

Use default
DateTime Format1

Chosen - yyyy-MM-
dd’T’HH:mm:ssZZZ

Not chosen - but
yyyy-MM-
dd’T’HH:mm:ssZZZ if chosen

Not chosen - but
yyyy-MM-
dd’T’HH:mm:ssZZZ if chosen

Start of century for
2 digit years

53 53 53

Days in First Week
of Year

Use Broker Locale Use Broker Locale Use Broker Locale

First Day of Week Use Broker Locale Use Broker Locale Use Broker Locale

Strict Datetime
Checking

Selected Selected Selected

Time Zone Use Broker Locale Use Broker Locale Use Broker Locale

Daylight Saving
Time

Cleared Cleared Cleared

Use input UTC
format on output

Cleared Cleared Cleared

Output policy for
missing elements

UseDefaultValue UseDefaultValue UseDefaultValue

Derive default
length from logical
type

Selected Selected Selected

174 Message Models



Default complex type/group property values for TDS (part 1 of 3)

Property Messaging standard = User
Defined Text

Messaging standard = SWIFT Messaging standard =
ACORD AL3

Data Element
Separation

Fixed Length Tagged Delimited Fixed Length AL3

Group Indicator Empty <CR><LF>: Empty

Group Terminator Empty <CR><LF>- Empty

Delimiter Empty <CR><LF>: not applicable

Suppress Absent
Element Delimiters

End of Type End of Type End of Type

Observe Element
Length

Selected Cleared Selected

Tag Data Separator Empty : Empty

Length of Tag Empty Empty Empty

Length of Encoded
Length

not applicable not applicable not applicable

Extra Chars in
Encoded Length

not applicable not applicable not applicable

Default complex type/group property values for TDS (part 2 of 3)

Property Messaging standard =
EDIFACT

Messaging standard = X12 Messaging standard = TLOG

Data Element
Separation

All Elements Delimited All Elements Delimited Fixed length

Group Indicator Empty Empty Empty

Group Terminator <EDIFACT_GROUP_TERM> <X12_GROUP_TERM> Empty

Delimiter <EDIFACT_CS> <X12_CS> :

Suppress Absent
Element Delimiters

End of Type End of Type End of Type

Observe Element
Length

Cleared Cleared Cleared

Tag Data Separator <EDIFACT_TAGDATA_SEP> Empty Empty

Length of Tag Empty Empty Empty

Length of Encoded
Length

not applicable not applicable not applicable

Extra Chars in
Encoded Length

not applicable not applicable not applicable

Default complex type/group property values for TDS (part 3 of 3)

Property Messaging standard = HL7 Messaging standard = CSV Messaging standard = User
Defined Mixed

Data Element
Separation

All Elements Delimited All Elements Delimited Fixed Length

Group Indicator Empty Empty Empty

Group Terminator <CR> Empty Empty

Message model reference information 175



Property Messaging standard = HL7 Messaging standard = CSV Messaging standard = User
Defined Mixed

Delimiter <HL7_FS> , Empty

Suppress Absent
Element Delimiters

End of Type Never End of Type

Observe Element
Length

Cleared Cleared Selected

Tag Data Separator <HL7_FS> not applicable Empty

Length of Tag Empty not applicable Empty

Length of Encoded
Length

not applicable not applicable not applicable

Extra Chars in
Encoded Length

not applicable not applicable not applicable

XML Wire Format message set properties
The following tables define the properties for the XML Wire Format for the
message set.

Namespace settings

Property Type Meaning

Namespace URI String Enter the name of the namespace that you are using for the associated prefix.

Prefix String Enter the prefix to associate the element and attribute names that you use it with
to the namespace name.

Namespace schema locations

Property Type Meaning

Namespace URI String Enter the namespace name that identifies which namespace you are using.

Schema location String Enter the location of the schema for the associated namespace name that is used
to validate objects within the namespace.

XML declaration

Property Type Meaning

Suppress XML
Declaration

Check box Select the check box to suppress the XML declaration. If selected, the declaration
(for example, <?xml version=’1.0’>) is suppressed.

By default, the check box is cleared.

XML Version Enumerated
type

This controls the value of the version in the generated XML declaration.

The default is 1.0.

If you set Suppress XML Declaration to Yes, this property is ignored.

176 Message Models



Property Type Meaning

XML Encoding Enumerated
type

This controls whether an encoding attribute is written in the generated XML
declaration.

If Null is selected, no encoding attribute is written in the XML declaration of the
output XML document.

If As document text is selected, an encoding attribute is generated that is
consistent with the text in the XML document.

The default is Null.

If the Suppress XML Declaration check box is selected, this property is ignored.

Standalone
Document

Enumerated
type

Select Yes, No, or Null from the list of values. If you select Null, no standalone
declaration is present in the XML declaration. If you select Yes or No, the
declaration standalone = ″yes″ or standalone = ″no″ is added to the XML
declaration when the output message is written. The default value is Null.

The setting of this property does not determine whether an external DTD subset
is loaded; external DTD subsets are never loaded in this release.

If the Suppress XML Declaration check box is selected, this property is ignored.

Output
Namespace
Declaration

Enumerated
type

The Output Namespace Declaration property controls where the namespace
declarations are placed in the output XML document. Select from:

v At start of document. Declarations for all of the entries in the Namespace
schema locations table above are output as attributes of the message in the
output XML document. The disadvantage of this option is that, in some cases,
unnecessary declarations might be output.

v As required. Declarations are output only when required by an element or
attribute that is in that namespace. The disadvantage of this option is that the
same namespace declaration might need to be output more than once in the
output XML document.

The default option is At start of document.

This property is active only if namespaces are enabled for this message set.

XML document type settings

Property Type Meaning

Suppress
DOCTYPE

Check box If you select the check box, the DOCTYPE (DTD) declaration is suppressed.

By default, the check box is selected.

DOCTYPE
System ID

String Specify the System ID for DOCTYPE external DTD subset (if DOCTYPE is
present). This is typically set to the name of the generated (or imported) DTD
for a message set.

If Suppress DOCTYPE is set, this property is ignored and cannot be changed (the
field is disabled). The default value is www.mrmnames.net/, followed by the
message set identifier.

DOCTYPE
Public ID

String Specify the Public ID for DOCTYPE external DTD subset (if DOCTYPE is
present, and System ID is specified).

If Suppress DOCTYPE is set, this property is ignored and cannot be changed (the
field is disabled). The default value is the message set identifier.

Message model reference information 177



Property Type Meaning

DOCTYPE Text String Use this property to add additional DTD declarations. It is not parsed by the
XML parser and, therefore, it might not be valid XML. You can include ENTITY
definitions or internal DTD declarations. It is a string (up to 32 KB) in which
new line and tab characters are replaced by \n and \t respectively.

The content is not parsed, and appears in the output message. If there is an
in-line DTD, the content of this property takes precedence.

If you have set Suppress DOCTYPE, this property is ignored and cannot be
changed (the field is disabled).

For more information, see “MRM XML: In-line DTDs and the DOCTYPE text
property” on page 182.

The default value is empty (not set).

XML representation of Boolean values

Property Type Meaning

Boolean True
Value

String Specify the string that is used to encode and recognize BOOLEAN true values.
When an XML document is parsed, the string 1 is always accepted as true for a
BOOLEAN element. Enter a string of up to 254 characters.

The default is true. 1 is also valid.

Boolean False
Value

String Specify the string that is used to encode and recognize BOOLEAN false values.
When an XML document is parsed, the string 0 is always accepted as false for a
BOOLEAN element. Enter a string of up to 254 characters.

The default is false. 0 is also valid.

XML representation of null values

Property Type Meaning

Encoding
Numeric Null

Enumerated
type

Specify the null encoding for numeric XML elements. This provides a method of
assigning a logical null meaning to such elements. You must select one of the
following values from the list shown:
v NULLEmpty. If the element value is the empty string, the element is null. This is

the default value.
v NULLValue. If the element value matches that provided by associated property

Encoding Numeric Null Value, the element is null.
v NULLXMLSchema. If the element contains an xsi:nil attribute that evaluates to

true, the element is null.
v NULLValueAttribute. This option is valid only for elements that have XML

Wire Format property Render set to either XMLElementAttrVal or
XMLElementAttrIDVal. See “XML Null handling options” on page 733 for
details.

v NULLAttribute (deprecated). If the element contains an attribute with a name
that matches that provided by associated property Encoding Numeric Null
Value, and the attribute evaluates to true, the element is null.

v NULLElement (deprecated). If the element contains a child element with a name
that matches that provided by associated property Encoding Numeric Null
Value, the element is null.

See “XML Null handling options” on page 733 for full details.

178 Message Models



Property Type Meaning

Encoding
Numeric Null
Value

String Specify the value to qualify the Encoding Numeric Null property, if you have set
that to NULLValue, NULLAttribute, or NULLElement. Refer to “XML Null handling
options” on page 733 for further information.

Encoding
Non-Numeric
Null

Enumerated
type

Specify the null encoding for non-numeric XML elements. This provides a
method of assigning a logical null meaning to such elements. The options are
identical to those available for property Encoding Numeric Null.

Encoding
Non-Numeric
Null Value

String Specify the value to qualify the Encoding Non-Numeric Null property. Refer to
“XML Null handling options” on page 733 for further information.

DateTime settings

Property Type Meaning

Derive default
dateTime
format from
logical type

Button Select this option if you want the default dateTime format to be determined by
the logical type of the element or attribute.

You can override this property for an element or attribute within a complex
type.

Use default
dateTime
format

Button and
String

Select this option if you want to specify a default dateTime format that is fixed
for all elements or attributes of logical type dateTime, date, time, gYear,
gYearMonth, gMonth, gMonthDay, and gDay.

You can override this property for an element or attribute within a complex
type.

For more information, see “DateTime formats” on page 765.

Start of century
for 2 digit years

Integer This property determines how two-digit years are interpreted. Specify the two
digits that start a 100-year window that contains the current year. For example, if
you specify 89, and the current year is 2002, all two-digit dates are interpreted as
being in the range 1989 to 2088.

Days in First
Week of Year

Enumerated Specify the number of days of the new year that must fall within the first week.

The start of a year typically falls in the middle of a week. If the number of days
in that week is less than the value specified here, the week is considered to be
the last week of the previous year; therefore, week 1 starts some days into the
new year. Otherwise, it is considered to be the first week of the new year; in this
case, week 1 starts some days before the new year.

Select Use Broker Locale, which causes the broker to get the information from
the underlying platform, or select a number from the list that is displayed.

First Day Of
Week

Enumerated Specify the day on which each new week starts.

Select Use Broker Locale, which causes the broker to get the information from
the underlying platform, or select a value from the list that is displayed.

Message model reference information 179



Property Type Meaning

Strict DateTime
Checking

Check box Select this option if you want to restrict dateTimes to a valid dateTime format. If
Strict DateTime Checking is selected, receiving an incorrect dateTime causes an
error.

Strict dateTime checking
Examples of strict dateTime checking are:

v DateTimes are restricted to valid dateTimes only. When you use this
option, a date such as the 35th March is not processed as 4th April,
and 10:79 is not processed as 11:19. Receiving an out-of-band
dateTime, such as these examples, causes an error to occur.

v The number of characters for a numeric dateTime component must
be within the bounds of the corresponding formatting symbols.
Repeat the symbol to specify the minimum number of digits that you
require. The maximum number of digits that are permitted becomes
the upper bound for a particular symbol. For example, day in month
has an upper bound of 31; therefore, a format string of ’d’ allows the
values 2 and 21 to be parsed, but does not allow the values 32 and
210. On output, numbers are padded with zeros to the specified
length. A year is a special case; see the message set property Start of
century for 2 digit years. For fractional seconds, the length must
implicitly match the number of format symbols on input. The output
is rounded to the specified length.

v White space is not skipped over. The white space in the input string
must correspond with the same number and position of white space
in the formatting string.

v If there is still data to be parsed in the input string after all of the
symbols in the formatting string have been matched, an error occurs.

Lenient dateTime checking
Examples of lenient dateTime checking are:

v The parser converts out-of-band dateTime values to the appropriate
in-band value. For example, a date of 2005-05-32 is converted to
2005-06-01.

v Output of dateTimes always adheres to the symbol count. For
example, a formatting string of yyyy-MM-dd (where ’-’ is the field
separator) allows one or more characters to be parsed against MM
and dd. Therefore, dates that are not valid - for example, 2005-1-123
and 2005-011-12 - can be input. The first value of 2005-1-123 is output
as the date 2005-05-03, and the second value of 2005-011-12 is output
as the date 2005-11-12.

v The number of the timezone formatting symbol Z is only applicable
to the output dateTime format.

v White space is skipped over.

Time Zone Enumerated The value that you set for this property is used if the value that you specified
for the Default DateTime Format property does not include Time Zone
information.

The initial value is Use Broker Locale, which causes the broker to get the
information from the underlying platform.

You can change this property by selecting from the list of values.

Daylight
Savings Time

Check box Select this option if the area in the Time Zone property observes Daylight Saving
Time. If it does not observe Daylight Saving Time, do not select this option.

For example, if an area is selected in Time Zone and this option is not selected,
the value passed represents the time zone without the Daylight Saving Time.

180 Message Models



Property Type Meaning

Use input UTC
format on
output

Check box This property applies to elements and attributes of logical type xsd:dateTime or
xsd:time that have a dateTime format of I, IU, T, or TU, or that include ZZZ or
ZZZU.

Such elements and attributes can specify Coordinated Universal Time (UTC) by
using either the Z character or timezone +00:00 in the value. On input, the MRM
parser remembers the way that UTC was specified.

If this property is selected, and the element or attribute is copied to an output
message, the UTC format is preserved into the output message and overrides the
format that is implied by the dateTime format property.

If this property is cleared, or the element or attribute was not copied from an
input message, the UTC format in the output message is controlled solely by the
dateTime format property.

xsi:type settings

Property Type Meaning

Output policy
for xsi:type
attributes

Enumerated
type

When writing XML documents, this property allows you to specify the
circumstances under which the xsi:type attribute of elements will be output.

Never Do not output xsi:type attributes for elements, even if xsi:type attributes
appear in the message tree.

When present
Output xsi:type attributes for elements only when xsi:type attributes
appear in the message tree. This is the default value.

Always (Simple elements only)
Ensure that all simple elements are output with an xsi:type attribute. If
a simple element already has an xsi:type attribute in the message tree it
will be used, otherwise an xsi:type attribute will be generated using the
rules in the table below.

Always (All elements)
Ensure that all elements are output with an xsi:type attribute if possible
to do so. If an element already has an xsi:type attribute in the message
tree it will be used, otherwise an xsi:type attribute will be generated
using the rules in the table below.

Follow SOAP Encoding rules
Follow the same behavior as for Always (Simple elements only).
Additionally, output a SOAP encoding-style attribute within the root tag
of all messages.

If an xsi:type attribute needs to be output, but does not appear in the message tree,
its value will be generated as follows:

Element type
Value generated when element is
defined in model

Value generated when element is
self-defining

Simple type If the type is global or is a built-in
type, use it.

If the type is local, use the global or
built-in type from which it is derived.

Use the built-in type which best
matches the data type of the element
in the message tree.

Message model reference information 181



Element type
Value generated when element is
defined in model

Value generated when element is
self-defining

Complex type with simple content If the type is global use it.

If the type is local, use the global or
built-in type from which it is derived.

Use the built-in type which best
matches the data type of the element
in the message tree.

Complex type with complex content If the type is global use it.

If the type is local, no xsi:type
attribute is output.

No xsi:type attribute is output.

Deprecated

Note: The following properties are used to control behavior of the MRM parser;
they should not be changed from their default settings. These properties will
be withdrawn in a future release.

Property Type Meaning

Root Tag Name String Specify the name of the message set root tag. You can leave this property blank,
in which case no wrapper tags are used for messages (that is, the message tag is
the root of the document). The name can be followed by a space and additional
text for attribute/value pairs to appear with the root tag.

The default value is blank.

Suppress
Timestamp
Comment

Check box If selected, the timestamp comment string in the XML output is suppressed.

If not selected, the comment is not suppressed, and a comment of the form
<!--MRM Generated XML Output on: Tue Apr 23 09:34:42 2002--> is included in
the output message.

The default is for the check box to be selected.

Enable
Versioning
Support

Check box If this is selected, versioning support is enabled. This property specifies whether
XML namespace definitions are coded for the root tag in the message, together
with namespace qualifiers for any elements that do not belong to the default
namespace. These namespace definitions are used to represent the message set
dependency information, which is used to support the exchange of messages
between applications that are based on different customizations of the same
message set.

The default is for the check box to be selected, for compatibility with MRM XML
messages in earlier releases. If you did not use MRM XML messages in earlier
releases, you should ensure that this check box is not selected.

MRM XML: In-line DTDs and the DOCTYPE text property

You can include in-line DTDs in your messages, and you can specify additional
information by setting the property DOCTYPE Text, but you must be aware of the
action taken by the parser when it constructs an output message:
1. If you take any action that causes the output message to be regenerated, for

example if you configure a Compute node to create a new output message by
coding ESQL statements like SET OutputRoot.MRM.Field1 = xxx:
v If you have set the property Suppress DOCTYPE for the message set in which

you have defined this message to Yes, both DOCTYPE information (specified
in the DOCTYPE Text property for the message set or message) and in-line
DTD are excluded from the output message.

182 Message Models



v If you have set the property Suppress DOCTYPE for the message set in which
you have defined this message to No.
– The in-line DTD is preserved if possible.
– Otherwise, if the message is self-defining, the message set DOCTYPE Text

property information is included in the output message.
– Otherwise (the message is not self-defining), the message level DOCTYPE

Text property information is included in the output message.
2. If you do not take any action that causes the output message to be regenerated,

the parser generates an output message that is a direct copy of the input
message. This occurs if you have configured a Compute node in the message
flow to copy the message using SET OutputRoot = InputRoot (explicitly, or by
checking the Copy entire message check box), and you do not modify the
message in any way in this or any other node. In this case the in-line DTD is
retained in the output message but any information that you specify in the
DOCTYPE Text property for the message set or message is not included.

Documentation properties for a message set

Property Type Meaning

Version String This field allows you to enter a version for the message set. This allows the
version of the message set to be displayed using the Eclipse properties view.

A default for this field can be set in the message set preferences.

Documentation String The documentation property of a message set is where you can add information
to enhance the understanding of the message set’s function.

It is a string field and any standard alphanumeric characters can be used.

You can also use this field to define a keyword and its value that will display for
the deployed message set in the properties view of Eclipse. An example is:

$MQSI Author=Fred MQSI$

When the properties of the deployed message set are displayed, this will add a
row to the display showing Author as the property name and ’Fred’ as its value.

Message definition file properties
Namespace

Property Type Meaning

Prefix String The namespace prefix for the target namespace of this file. This field cannot be
changed after the message definition file has been created.

Target
Namespace

String The target namespace for the message definition file. All global objects created
within the file will have this namespace by default. This field cannot be changed
after the message definition file has been created.

Default namespaces for local objects

Property Type Meaning

Elements String The default namespace for all local elements within this message definition file.

Attributes String The default namespace for all local attributes within this message definition file.

Message model reference information 183



Property Type Meaning

Default block String and
Enumerated
type

The default value for the block attribute for all complex types and elements
within this message definition file.

Default final String and
Enumerated
type

The default value for the final attribute for all complex types and elements
within this message definition file.

Property Type Meaning

Use xml.xsd
schema

Check box Select this check box if you need to use the xml.xsd schema. When you select
this check box, the http://www.w3.org/2001/xml.xsd schema is imported and
you can use any of the constructs in that schema.

Note: The full text that describes this check box is Use http://www.w3.org/2001/
xml.xsd schema.

Message definition file includes properties

Property Type Meaning

Schema
Location

String For each message definition file that has been included in this message
definition file, this field displays its location. The location is displayed as a
relative path from the message definition file to the included file.

Message definition file imports properties

Property Type Meaning

Schema
Location

String For each message definition file that has been imported into this message
definition file, this field displays its location. The location is displayed as a
relative path from the message definition file to the imported file.

Prefix String Displays the namespace prefix for each imported message definition file.

Namespace String Displays the namespace URI for each imported message definition file.

Message definition file redefines properties
This provides details of the properties associated with message definition redefines.

Property Type Meaning

Schema
Location

String For each message definition file that has been redefined in this message
definition file, this field displays its location. The location is displayed as a
relative path from the message definition file to the included file.

Note: Redefines are not supported and will result in a validation error. If you
right-click on the error message and select Quick Fix you can choose to
convert the redefines construct into an include construct. This also removes
the error message.

184 Message Models



Documentation properties for all message set objects

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Message category properties
A message category provides a way of grouping your messages.

The following table describes the properties that are associated with a message
category:

Property Type Meaning

Category Kind Enumerated
type

This property describes the purpose of the message category.

Choose from:

v wsdl. This is the default. Choose this value if the message category is to
participate in the generation of WSDL documents. When the WSDL document
is generated, the name of the message category provides the name for the
<wsdl:operation> element that is generated for eligible messages in the
message category.
Note: Message categories are no longer necessary for the generation of WSDL
documents; they were necessary in Version 6.0.

v other. This value ndicates that the category represents a generic grouping of
messages as an aid to organizing them in your workspace.

Category Usage Enumerated
type

Use this property to describe the operation type for a WSDL operation.

Choose from:

v wsdl:request-response. This is the default if Category Kind is wsdl.

v wsdl:solicit-response.

v wsdl:one-way.

v wsdl:notification.

v empty string. This is the default if Category Kind is other.

Documentation String Use this property to add information to enhance the understanding of an object’s
function.

This property is a string field; any standard alphanumeric characters can be
used.

If Category Kind is wsdl, the value of the field is included in any generated
WSDL as the wsdl:documentation child of the operation element in the WSDL
portType.

If Category Kind is other, the value of the field merely documents the Message
Category within your workspace.

Message category member properties
This describes the properties that are associated with a message category member.

Message model reference information 185



Property Type Meaning

Role Name String If Category Kind is wsdl, the value of the property becomes the WSDL message
part name and must be unique within the category. It always defaults to the
message name.

If Category Kind is other, the value of the property has no particular
significance.

Role Type Enumerated
type

This property determines the role that the message plays in the message
category.

Select from:

v wsdl:input

v wsdl:output

v wsdl:return

v wsdl:fault

v empty string

If Category Kind is wsdl, the default value is wsdl:input. This property dictates
the role within a WSDL operation. The value wsdl:return implies wsdl:output,
but for rpc-style WSDL generation it also identifies the message part that is used
as the return value and in this instance can be omitted from the parameterOrder
attribute. No more than one message can have Role Type of wsdl:return.

If Category Kind is other, the value defaults to an empty string and this
property has no role in the message category.

Role Usage Enumerated
type

This property determines the role that the message plays in the SOAP binding.

Select from:

v soap:body

v soap:header

v soap:fault

v soap:headerfault

v empty string

If Category Kind is wsdl, this property defaults to soap:body and dictates the
SOAP-binding child of the WSDL input, output, or fault element.

If Category Kind is other, this property is deactivated.

Documentation String This is a string property; any standard alphanumeric characters can be used.

If Category Kind is wsdl, the value of the property is included in any generated
WSDL as the wsdl:documentation child of the WSDL input, output, or fault
element under the WSDL portType.

If Category Kind is other, the value merely documents the Message Category
within your workspace.

Message model object properties

There are two ways of accessing the reference information for the properties of
message model objects. The following topics allow you to access the property
information by property kind:
v “Logical properties for message model objects” on page 187
v “Physical properties for message model objects” on page 216

186 Message Models



v “Documentation properties for all message set objects” on page 185

Alternatively, you can access the property information by object, starting from:
v “Message model object properties by object” on page 247

Deprecated objects are dealt with separately. For further information, see
“Deprecated message model object properties” on page 600

Logical properties for message model objects

Logical property information is available for the following objects:
v “Attribute group reference logical properties”
v “Attribute reference logical properties”
v “Complex type logical properties” on page 188
v “Element reference logical properties” on page 192
v “Global attribute logical properties” on page 193
v “Global attribute group logical properties” on page 196
v “Global element logical properties” on page 197
v “Global group logical properties” on page 200
v “Group reference logical properties” on page 202
v “Key logical properties” on page 202
v “Keyref logical properties” on page 202
v “Local element logical properties” on page 206
v “Local group logical properties” on page 210
v “Message logical properties” on page 212
v “Simple type logical properties” on page 213
v “Unique logical properties” on page 214
v “Wildcard attribute logical properties” on page 214
v “Wildcard element logical properties” on page 215

Attribute group reference logical properties

Property Type Meaning

Reference Name Enumerated
type

The Reference Name is the name of the object that this object is referring to. The
objects available to reference can be selected from the drop-down list.

Attribute reference logical properties

Property Type Meaning

Reference Name Enumerated
type

The Reference Name is the name of the object that this object is referring to. The
objects available to reference can be selected from the drop-down list.

Message model reference information 187



Property Type Meaning

Usage Enumerated
type

The usage property is used in conjunction with the Value property found in an
attribute object. The default for the Usage property is optional.

Select from;

v optional.

– Where the Value property is set to default and no data has been entered in
the Value property, the attribute can appear once and can have any value.

– Where the Value property is set to default, the attribute can appear once. If
it does not appear, its value is the data that has been entered in the Value
property. If it does appear it is the value given.

– Where the Value property is set to fixed, the attribute can appear once. If it
does appear, its value must match the data that has been entered in the
Value property. If it does not appear its value is the data that has been
entered in the Value property.

v prohibited. The attribute must not appear.

v required.

– Where the Value property is set to default and no data has been entered in
the Value property, the attribute must appear once and can have any value.

– Where the Value property is set to fixed, the attribute must appear once
and it must match the data that has been entered in the Value property.

Complex type logical properties

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Base Type Enumerated
type

You can use this property to select a type (simple or complex) that is used as the
starting point to define a new complex type that is derived by restriction or
extension.

Derived By Enumerated
type

If this property is active, select from;

v restriction. If a complex type is derived by restriction, the content model of
the complex type is a subset of the base type.

v extension. If the complex type is derived by extension, the content model of
the complex type is the content model of the base type plus the content model
specified in the type derivation.

Derivation by list or union is not supported.

188 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/


Content

The table below shows the valid settings for Composition and Content Validation.
These properties are actually located on the group which defines the content of this
type. They can only be edited if the Local group button is selected. If the Global
group button is selected, these properties are taken from the global group identified
by the Group name field.

Valid children in a complex type that depend on both Composition and Content
Validation are shown in “MRM content validation” on page 191.

Property Type Meaning

Local Group Button You should select this if the content of your complex type is a local group.

Composition Enumerated
type

Define the order, and the number of occurrences, of the elements and groups in
your messages. Composition does not affect the attributes in a complex type.

Select from:

v Empty

v sequence. If you select this option, you can define members that are elements
or groups. These members, if present, must appear in the specified order in
the message. They can repeat, and the same element or group can appear
more than once.

v choice. If you select this option, you can define members that are elements or
groups. Exactly one of the defined members must be present in the message,
and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a
Custom Wire Format, or an XML DTD element that uses choice in an XML
Wire Format, or a SWIFT field that has more than one option.

v all. If you select this option, you can define members that are elements;
groups are not allowed. The elements in an all group can appear in any
order. Each element can appear once, or not at all. An all group can only be
used at the top level of a complex type - it cannot be a member of another
group within a type.

v unorderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat but the
same element cannot appear twice in the list of members. The elements can
appear in any order in the message.

v orderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements must
appear in the specified order in the message.

v message.

This option is supported only by the MRM domain.If you select this option,
you can define only messages as members. Each member can repeat, but the
same message cannot appear twice in the list of members. Like choice, only
one of the defined members can be present in a message.

Unlike choice, when writing a message, if the complex type or group has
more than one member, the bit stream is not padded to the length of the
longest member.

Use this option to model multipart messages, which are used in some
industry standards, for example, SWIFT. For more information, see the section
on multipart messages in “Multipart messages” on page 26.

Message model reference information 189



Property Type Meaning

Content
Validation

Enumerated
type

Content Validation is used only by the MRM domain. If validation is enabled in
your message flow, Content Validation specifies the strictness of the MRM
validation for members of a complex type or group. See “MRM content
validation” on page 191 for further details.

Options:

v Closed. The complex type can only contain the child elements that you have
added to it.

v Open Defined. The complex type can contain any valid element defined within
the message set.

v Open. The complex type can contain any valid element, not just those that you
have added to this complex type.

See “Combinations of Composition and Content Validation” on page 295 for
further details of these options.

Group
Reference

Button You should select this if the content of your complex type is a reference to a
group object

Group Name Enumerated
type

The Group Name is the name of the group that this complex type is referring to.
The groups available to be referenced can be selected from the drop down list.

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is
1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is
1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1 to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Mixed Check box Select this where the complex type has mixed content and contains character
data alongside sub-elements.

Substitution settings

Property Type Meaning

Final Multiple
selection
enumerated
type

The final attribute on a complex type controls whether other types may be
derived from it. Valid values are extension/restriction/all. You can select from
one or more of the following:

v Empty

v restriction. Prohibit type substitution by elements whose types are
restrictions of the head element’s type.

v extension. Prohibit type substitution by elements whose types are extensions
of the head element’s type.

v #all. Prohibit substitution by any method.

To select more than one, you will need to type the selection into the property
field.

190 Message Models



Property Type Meaning

Block Multiple
selection
enumerated
type

The block attribute on a complex type restricts the types of substitutions which
are allowed for elements based on that type. In the WebSphere Message Broker
its effect is the same as if the block attribute were copied from the complex type
onto every element based on the complex type. You can select from one or more
of the following:

v Empty

v restriction. Prohibit type substitution by elements whose types are
restrictions of the head element’s type.

v extension. Prohibit type substitution by elements whose types are extensions
of the head element’s type.

v #all. Prohibit substitution by any method.

To select more than one, you will need to type the selection into the property
field.

Abstract Check box If selected, no elements based on this type can appear in the message.

MRM content validation:

Content Validation is applied when the domain is MRM and validation is enabled.
The Content Validation property specifies how strictly the MRM parser validates the
members of a complex type or group.

The first table below shows the valid settings for Content Validation if Composition is
set to Message, and the second table shows the valid settings for Content Validation
if Composition is not set to Message.

Content Validation options if Composition is set to Message

Option Meaning

Open When a message is parsed, this complex type or group can contain any message, not just those
that you have defined in this message set. You can use this option for sparse messages (see
“Predefined and self-defining elements and messages” on page 30 for a definition of sparse
messages).

Closed When a message is parsed, this complex type or group can only contain the messages that are
members of this complex type or group. This is always the case for messages represented in
CWF format.

Open Defined When a message is parsed, this complex type or group can contain any message defined within
the message set.

Content Validation options if Composition is not set to Message

Option Meaning

Open When a message is parsed, this complex type or group can contain any elements and not just
those that you have defined in this message set (see “Predefined and self-defining elements and
messages” on page 30 for a definition of sparse messages).

Closed When a message is parsed, this complex type or group can only contain the elements that are
members of this complex type or group.

Open Defined When a message is parsed, this complex type or group can contain any element that you have
defined within the message set.

Message model reference information 191



When you are using Content Validation set to open or open defined, you can not
specify the precise position where the content that is not modeled is permitted to
occur. If you wish to do this, you should consider using a wildcard element as an
alternative. Note that wildcard elements can only appear within a complex type or
group with Composition of sequence and Content Validation of closed.

Element reference logical properties

Property Type Meaning

Reference Name Enumerated
type

The Reference Name is the name of the object that this object is referring to. The
objects available to reference can be selected from the drop-down list.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is
1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is
1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1 to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

The Min Occurs and Max Occurs properties are used in conjunction with an
element’s Value properties. The table below summarizes how an element reference
can be constrained.

Min Occurs Max Occurs Fixed Default Notes

1 1 The element must appear once and can have
any value.

1 1 Delta The element must appear once and it must
match the data that has been entered in the
Value property. In this example the element
must contain the text Delta.

2 -1 Delta The element must appear twice or more and it
must match the data that has been entered in
the Value property. In this example there will
be at least two elements that must contain the
text Delta.

0 1 The element is optional and can appear once
and have any value.

192 Message Models



Min Occurs Max Occurs Fixed Default Notes

0 1 Delta The element is optional and can appear once.
If it does appear, its value must match the data
that has been entered in the Value property. If
it does not appear its value will be the data
that has been entered in the Value property.

0 1 Delta The element is optional and can appear once.
If it does not appear, its value will be the data
that has been entered in the Value property. If
it does appear it must be the value given in
the element.

0 2 Delta The element is optional and can appear once,
twice or not at all. If the element does not
appear it is not provided. If the element
appears and it is empty, it set to the data held
in the Value property, else it is the value given
in the element.

0 0 The element is prohibited and must not
appear.

Global attribute logical properties

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Message model reference information 193

http://www.w3.org/TR/REC-xml
http://www.w3.org/


Property Type Meaning

Type Enumerated
type

The Type property constrains the type of data that can be present in the object.

There are a limited number of types available directly from the drop-down
selector. These are;

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), this starts the Type Selection wizard. From this wizard
you can select any of the available types.

If you select (New Simple Type), this starts the New Simple Type wizard which
allows you to create an Anonymous simple type that is based on an existing
type. This can be created locally or globally.

If you select (New Complex Type), this starts the New Complex Type wizard
which allows you to create an Anonymous complex type which can be derived
from an existing base type. This can be created locally or globally.

For further information about these types, and examples of their use see the
XML Schema Part 0: Primer which can be found on the World Wide Web
Consortium (W3C) Web site.

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Value

The Value properties are used in conjunction with the Usage property in an
Attribute Reference or a Local Attribute.

194 Message Models

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/


Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If this is required, the
message tree can be serialized and then re-parsed with validation
enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If this is required, the message tree can
be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

Message model reference information 195



Property Type Meaning

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does
not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message may be defined in either the
current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived
from xsd:string.

Global attribute group logical properties

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

196 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/


Global element logical properties

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Type Enumerated
type

The Type property constrains the type of data that can be present in the object.

There are a limited number of types available directly from the drop-down
selector. These are;

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), this starts the Type Selection wizard. From this wizard
you can select any of the available types.

If you select (New Simple Type), this starts the New Simple Type wizard which
allows you to create an Anonymous simple type that is based on an existing
type. This can be created locally or globally.

If you select (New Complex Type), this starts the New Complex Type wizard
which allows you to create an Anonymous complex type which can be derived
from an existing base type. This can be created locally or globally.

For further information about these types, and examples of their use see the
XML Schema Part 0: Primer which can be found on the World Wide Web
Consortium (W3C) Web site.

Message model reference information 197

http://www.w3.org/TR/REC-xml
http://www.w3.org/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/


Property Type Meaning

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Value

Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If this is required, the
message tree can be serialized and then re-parsed with validation
enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If this is required, the message tree can
be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

198 Message Models



Property Type Meaning

Nillable Check box Select this if you want the element to be able to be defined as null. This is
distinct from being empty where there is no data in the element.

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does
not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message may be defined in either the
current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived
from xsd:string.

Substitution settings

Substitution Groups provide a means by which one element may be substituted for
another in a message. The element which can be substituted is called the ’head’
element, and the substitution group is the list of elements that may be used in its
place. An element can be in at most one substitution group.

Property Type Meaning

Final Enumerated
type

You use this property to limit the set of elements which may belong to its
substitution group.

v Empty

v restriction. Prohibit element substitution by elements whose types are
restrictions of the head element’s type.

v extension. Prohibit element substitution by elements whose types are
extensions of the head element’s type.

v #all. Prohibit substitution by any method.

Block Enumerated
type

You use this property to limit the set of elements which may be substituted for
this element in a message.

Select from:

v Empty

v restriction. Prohibit element substitution by elements whose types are
restrictions of the head element’s type

v extension. Prohibit element substitution by elements whose types are
extensions of the head element’s type

v substitution. Prohibit element substitution by members of the element’s
substitution group.

v #all. Prohibit substitution by any method.

Message model reference information 199



Property Type Meaning

Substitution
Group

Enumerated
type

Use this property to specify the name of a ’head’ element. Setting this property
indicates that this element is a member of the substitution group for the ’head’
element.

Abstract Check box Select this if you do not want the element to appear in the message, but require
one of the members of its substitution group to appear in its place.

Global group logical properties

Valid children in a global group that depend on both Composition and Content
Validation are shown in “MRM content validation” on page 191.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

200 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/


Property Type Meaning

Composition Enumerated
type

Define the order, and the number of occurrences, of the elements and groups in
your messages. Composition does not affect the attributes in a complex type.

Select from:

v Empty

v sequence. If you select this option, you can define members that are elements
or groups. These members, if present, must appear in the specified order in
the message. They can repeat, and the same element or group can appear
more than once.

v choice. If you select this option, you can define members that are elements or
groups. Exactly one of the defined members must be present in the message,
and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a
Custom Wire Format, or an XML DTD element that uses choice in an XML
Wire Format, or a SWIFT field that has more than one option.

v all. If you select this option, you can define members that are elements;
groups are not allowed. The elements in an all group can appear in any
order. Each element can appear once, or not at all. An all group can only be
used at the top level of a complex type - it cannot be a member of another
group within a type.

v unorderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat but the
same element cannot appear twice in the list of members. The elements can
appear in any order in the message.

v orderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements must
appear in the specified order in the message.

v message.

This option is supported only by the MRM domain.

If you select this option, you can define only messages as members. Each
member can repeat, but the same message cannot appear twice in the list of
members. Like choice, only one of the defined members can be present in a
message.

Unlike choice, when writing a message, if the complex type or group has
more than one member, the bit stream is not padded to the length of the
longest member.

Use this option to model multipart messages, which are used in some
industry standards, for example, SWIFT. For more information, see the section
on multipart messages in “Multipart messages” on page 26.

Message model reference information 201



Property Type Meaning

Content
Validation

Enumerated
type

Content Validation is used only by the MRM domain. If validation is enabled in
your message flow, Content Validation specifies the strictness of the MRM
validation for members of a complex type or group. See “MRM content
validation” on page 191 for further details.

Options:

v Closed. The complex type can only contain the child elements that you have
added to it.

v Open Defined. The complex type can contain any valid element defined within
the message set.

v Open. The complex type can contain any valid element, not just those that you
have added to this complex type.

See “Combinations of Composition and Content Validation” on page 295 for
further details of these options.

Group reference logical properties

Property Type Meaning

Reference Name Enumerated
type

The Reference Name is the name of the object that this object is referring to. The
objects available to reference can be selected from the drop-down list.

Occurrence properties

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is
1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is
1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1 to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Key logical properties

There are no properties to show.

Keyref logical properties

There are no properties to show.

202 Message Models



Local attribute logical properties

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Type Enumerated
type

The Type property constrains the type of data that can be present in the object.

There are a limited number of types available directly from the drop-down
selector. These are;

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), this starts the Type Selection wizard. From this wizard
you can select any of the available types.

If you select (New Simple Type), this starts the New Simple Type wizard which
allows you to create an Anonymous simple type that is based on an existing
type. This can be created locally or globally.

If you select (New Complex Type), this starts the New Complex Type wizard
which allows you to create an Anonymous complex type which can be derived
from an existing base type. This can be created locally or globally.

For further information about these types, and examples of their use see the
XML Schema Part 0: Primer which can be found on the World Wide Web
Consortium (W3C) Web site.

Message model reference information 203

http://www.w3.org/TR/REC-xml
http://www.w3.org/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/


Property Type Meaning

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Value

The Value properties are used in conjunction with the Usage property in an
Attribute Reference or a Local Attribute.

Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If this is required, the
message tree can be serialized and then re-parsed with validation
enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

204 Message Models



Property Type Meaning

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If this is required, the message tree can
be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does
not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message may be defined in either the
current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived
from xsd:string.

Message model reference information 205



Usage properties

Property Type Meaning

Usage Enumerated
type

The usage property is used in conjunction with the Value property found in an
attribute object. The default for the Usage property is optional.

Select from;

v optional.

– Where the Value property is set to default and no data has been entered in
the Value property, the attribute can appear once and can have any value.

– Where the Value property is set to default, the attribute can appear once. If
it does not appear, its value is the data that has been entered in the Value
property. If it does appear it is the value given.

– Where the Value property is set to fixed, the attribute can appear once. If it
does appear, its value must match the data that has been entered in the
Value property. If it does not appear its value is the data that has been
entered in the Value property.

v prohibited. The attribute must not appear.

v required.

– Where the Value property is set to default and no data has been entered in
the Value property, the attribute must appear once and can have any value.

– Where the Value property is set to fixed, the attribute must appear once
and it must match the data that has been entered in the Value property.

Local element logical properties

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

206 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/


Property Type Meaning

Type Enumerated
type

The Type property constrains the type of data that can be present in the object.

There are a limited number of types available directly from the drop-down
selector. These are;

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), this starts the Type Selection wizard. From this wizard
you can select any of the available types.

If you select (New Simple Type), this starts the New Simple Type wizard which
allows you to create an Anonymous simple type that is based on an existing
type. This can be created locally or globally.

If you select (New Complex Type), this starts the New Complex Type wizard
which allows you to create an Anonymous complex type which can be derived
from an existing base type. This can be created locally or globally.

For further information about these types, and examples of their use see the
XML Schema Part 0: Primer which can be found on the World Wide Web
Consortium (W3C) Web site.

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is
1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Message model reference information 207

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/


Property Type Meaning

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is
1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1 to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Value

Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If this is required, the
message tree can be serialized and then re-parsed with validation
enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If this is required, the message tree can
be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

208 Message Models



Property Type Meaning

Nillable Check box Select this if you want the element to be able to be defined as null. This is
distinct from being empty where there is no data in the element.

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does
not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message may be defined in either the
current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived
from xsd:string.

Substitution settings

Substitution Groups provide a means by which one element may be substituted for
another in a message. The element which can be substituted is called the ’head’
element, and the substitution group is the list of elements that may be used in its
place. An element can be in at most one substitution group.

Property Type Meaning

Final Enumerated
type

You use this property to limit the set of elements which may belong to its
substitution group.

v Empty

v restriction. Prohibit element substitution by elements whose types are
restrictions of the head element’s type.

v extension. Prohibit element substitution by elements whose types are
extensions of the head element’s type.

v #all. Prohibit substitution by any method.

Block Enumerated
type

You use this property to limit the set of elements which may be substituted for
this element in a message.

Select from:

v Empty

v restriction. Prohibit element substitution by elements whose types are
restrictions of the head element’s type

v extension. Prohibit element substitution by elements whose types are
extensions of the head element’s type

v substitution. Prohibit element substitution by members of the element’s
substitution group.

v #all. Prohibit substitution by any method.

Message model reference information 209



Property Type Meaning

Substitution
Group

Enumerated
type

Use this property to specify the name of a ’head’ element. Setting this property
indicates that this element is a member of the substitution group for the ’head’
element.

Abstract Check box Select this if you do not want the element to appear in the message, but require
one of the members of its substitution group to appear in its place.

Local group logical properties

Valid children in a local group that depend on both Composition and Content
Validation are shown in “MRM content validation” on page 191.

210 Message Models



Property Type Meaning

Composition Enumerated
type

Define the order, and the number of occurrences, of the elements and groups in
your messages. Composition does not affect the attributes in a complex type.

Select from:

v Empty

v sequence. If you select this option, you can define members that are elements
or groups. These members, if present, must appear in the specified order in
the message. They can repeat, and the same element or group can appear
more than once.

v choice. If you select this option, you can define members that are elements or
groups. Exactly one of the defined members must be present in the message,
and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a
Custom Wire Format, or an XML DTD element that uses choice in an XML
Wire Format, or a SWIFT field that has more than one option.

v all. If you select this option, you can define members that are elements;
groups are not allowed. The elements in an all group can appear in any
order. Each element can appear once, or not at all. An all group can only be
used at the top level of a complex type - it cannot be a member of another
group within a type.

v unorderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat but the
same element cannot appear twice in the list of members. The elements can
appear in any order in the message.

v orderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements must
appear in the specified order in the message.

v message.

This option is supported only by the MRM domain.

If you select this option, you can define only messages as members. Each
member can repeat, but the same message cannot appear twice in the list of
members. Like choice, only one of the defined members can be present in a
message.

Unlike choice, when writing a message, if the complex type or group has
more than one member, the bit stream is not padded to the length of the
longest member.

Use this option to model multipart messages, which are used in some
industry standards, for example, SWIFT. For more information, see the section
on multipart messages in “Multipart messages” on page 26.

Message model reference information 211



Property Type Meaning

Content
Validation

Enumerated
type

Content Validation is used only by the MRM domain. If validation is enabled in
your message flow, Content Validation specifies the strictness of the MRM
validation for members of a complex type or group. See “MRM content
validation” on page 191 for further details.

Options:

v Closed. The complex type can only contain the child elements that you have
added to it.

v Open Defined. The complex type can contain any valid element defined within
the message set.

v Open. The complex type can contain any valid element, not just those that you
have added to this complex type.

See “Combinations of Composition and Content Validation” on page 295 for
further details of these options.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is
1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is
1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1 to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Message logical properties
This section describes the logical properties of a message.

212 Message Models



Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Message Alias String Specify an alternative unique value that identifies the message. This property is
only required if you are using the MRM domain and the Message Identity
technique to identify embedded messages, and the bit stream does not contain
the actual message name.

Simple type logical properties

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Base Type Enumerated
type

This property only applies to a simple type restriction.

You can use this property to select a base type that is used as the starting point
to define a new simple type that is derived by setting additional value
constraints.

Item Type Enumerated
type

This property only applies to a simple type list.

You can use this property to select the type that is used as the item type of the
list.

Message model reference information 213

http://www.w3.org/TR/REC-xml
http://www.w3.org/
http://www.w3.org/TR/REC-xml
http://www.w3.org/


Property Type Meaning

Variety Enumerated
type

This property displays the variety of the simple type you have selected, either
atomic, list, or union.

A simple type can also have “Simple type logical value constraints.”

Simple type logical value constraints:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Unique logical properties

There are no properties to show.

Wildcard attribute logical properties

Property Type Meaning

Namespace String Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

This field is initially blank.

214 Message Models



Property Type Meaning

Process Content Enumerated
type

If a message contains an attribute that corresponds to a wildcard in the message
model, Process Content defines how the attribute is validated.

Select from;

v strict. The parser can only match against attributes declared in the specified
namespace.

v lax. The parser attempts to match against attributes declared in any accessible
namespace. If the specified namespace cannot be found, an error is not
generated.

v skip. If you select skip the parser does not perform any validation on the
attribute.

Wildcard element logical properties

Property Type Meaning

Namespace String Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

This field is initially blank.

Property Type Meaning

Process Content Enumerated
type

If a message contains an element that corresponds to a wildcard in the message
model, Process Content defines how the element is validated.

Select from;

v strict. The parser can only match against elements declared in the specified
namespace.

v lax. The parser attempts to match against elements declared in any accessible
namespace. If the specified namespace cannot be found, an error is not
generated.

v skip. If you select skip the parser does not perform any validation on the
element.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is
1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

This property is ignored by brokers that are earlier than WebSphere Message
Broker Version 6.0.

Message model reference information 215



Property Type Meaning

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is
1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1 to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

This property is ignored by brokers that are earlier than WebSphere Message
Broker Version 6.0.

Physical properties for message model objects

Property information is available for objects within:
v “Custom Wire Format physical properties for message model objects”
v “XML wire format physical properties for message model objects” on page 222
v “TDS format physical properties for message model objects” on page 231

Custom Wire Format physical properties for message model
objects

Custom wire format physical property information is available for the following
objects:
v “Attribute group reference CWF properties”
v “Attribute reference CWF properties”
v “Complex type CWF properties” on page 217
v “Element reference CWF properties” on page 217
v “Global attribute CWF properties” on page 218
v “Global attribute group CWF properties” on page 218
v “Global element CWF properties” on page 218
v “Global group CWF properties” on page 218
v “Group reference CWF properties” on page 218
v “Key CWF properties” on page 219
v “Keyref CWF properties” on page 219
v “Local element CWF properties” on page 220
v “Local group CWF properties” on page 221
v “Message CWF properties” on page 222
v “Simple type CWF properties” on page 222
v “Unique CWF properties” on page 222
v “Wildcard attribute CWF properties” on page 222
v “Wildcard element CWF properties” on page 222

Attribute group reference CWF properties:

There are no properties to show.

Attribute reference CWF properties:

216 Message Models



The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

Complex type CWF properties:

There are no properties to show.

Element reference CWF properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Message model reference information 217



Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

Global attribute CWF properties:

There are no properties to show.

Global attribute group CWF properties:

There are no properties to show.

Global element CWF properties:

There are no properties to show.

Global group CWF properties:

There are no properties to show.

Group reference CWF properties:

218 Message Models



Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Key CWF properties:

There are no properties to show.

Keyref CWF properties:

There are no properties to show.

Local attribute CWF properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Message model reference information 219



Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

Local element CWF properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

220 Message Models



Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

Local group CWF properties:

The CWF properties of a local group are described in the following tables.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Message model reference information 221



Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Message CWF properties:

There are no properties to show.

Simple type CWF properties:

There are no properties to show.

Unique CWF properties:

There are no properties to show.

Wildcard attribute CWF properties:

There are no properties to show.

Wildcard element CWF properties:

There are no properties to show.

XML wire format physical properties for message model objects

XML wire format physical property information is available for the following
objects:
v “Attribute group reference XML properties” on page 223
v “Attribute reference XML properties” on page 223
v “Complex type XML properties” on page 223
v “Element reference XML properties” on page 223
v “Global attribute XML properties” on page 224
v “Global attribute group XML properties” on page 225
v “Global element XML properties” on page 225
v “Global group XML properties” on page 226
v “Group reference XML properties” on page 226
v “Key XML properties” on page 226
v “Keyref XML properties” on page 226
v “Local attribute XML properties” on page 226
v “Local element XML properties” on page 227
v “Local group XML properties” on page 228
v “Message XML properties” on page 228

222 Message Models



v “Simple type XML properties” on page 230
v “Unique XML properties” on page 231
v “Wildcard attribute XML properties” on page 231
v “Wildcard element XML properties” on page 231

Attribute group reference XML properties:

There are no properties to show.

Attribute reference XML properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

Complex type XML properties:

There are no properties to show.

Element reference XML properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the

Message model reference information 223



properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

Global attribute XML properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

224 Message Models



Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

Global attribute group XML properties:

There are no properties to show.

Global element XML properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Message model reference information 225



Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

Global group XML properties:

There are no properties to show.

Group reference XML properties:

There are no properties to show.

Key XML properties:

There are no properties to show.

Keyref XML properties:

There are no properties to show.

Local attribute XML properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

226 Message Models



Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

Local element XML properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Message model reference information 227



Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

Local group XML properties:

There are no properties to show.

Message XML properties:

The following tables describe the XML properties of a message.

Namespace schema locations

This property is only active if namespaces have been enabled.

Property Type Meaning

Namespace URI String A unique string, usually in the form of a URL that identifies the schema for this

If namespaces have not been enabled, this property will display <no target
namespace>.

This property will overide the same property at the message set level.

Schema location String Enter the location of the schema for the associated namespace name that will be
used to validate objects within the namespace.

XML declarations

Property Type Meaning

Output
Namespace
Declaration

Enumerated
type

The Output Namespace Declaration property controls where the namespace
declarations will placed in the output XML document.

Select from:

v At start of document. Declarations for all of the entries in the Namespace
schema locations table above will be output as attributes of the message in the
output XML document. The disadvantage of this option is that in some cases
unnecessary declarations may be output.

v As required. Declarations will only be output when required by an element or
attribute that is in that namespace. The disadvantage of this option is that the
same namespace declaration may need to be output more than once in the
output XML document.

The default option is At start of document.

This property is only active if namespaces are enabled for this message set.

228 Message Models



XML document type settings

Property Type Meaning

DOCTYPE
System ID

String Specify the System ID for DOCTYPE external DTD subset. It overrides the
equivalent message set property setting for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is
ignored and cannot be changed (the field is disabled) .

The default value is the value that you specified for the DOCTYPE System ID
property for the message set.

DOCTYPE
Public ID

String Specify the Public ID for DOCTYPE external DTD subset. It overrides the
equivalent message set property setting for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is
ignored and cannot be changed (the field is disabled) .

The default value is the value that you specified for the DOCTYPE Public ID
property for the message set.

DOCTYPE Text String Enter optional additional text to include within the DOCTYPE. It overrides the
message set property for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is
ignored and cannot be changed (the field is disabled) .

For more information, see “MRM XML: In-line DTDs and the DOCTYPE text
property” on page 182.

The default value is the value that you specified for the DOCTYPE Text property
for the message set.

Property Type Meaning

Root Tag Name String Specify the name of the root tag for a message bit stream XML document. It
overrides the message set property set for this message.

The default value is the value that you specified for the Root Tag Name property
for the message set.
Note: This property is deprecated. Do not change its value from its default
setting.

Field identification

A number of the following properties will only become active depending on the
value that Render property is set to.

Message model reference information 229



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Simple type XML properties:

There are no properties to show.

230 Message Models



Unique XML properties:

There are no properties to show.

Wildcard attribute XML properties:

There are no properties to show.

Wildcard element XML properties:

There are no properties to show.

TDS format physical properties for message model objects

TDS format physical property information is available for the following objects:
v “Attribute group reference TDS properties”
v “Attribute reference TDS properties”
v “Complex type TDS properties” on page 232
v “Element reference TDS properties” on page 235
v “Global attribute TDS properties” on page 236
v “Global attribute group TDS properties” on page 236
v “Global element TDS properties” on page 236
v “Global group TDS properties” on page 237
v “Group reference TDS properties” on page 240
v “Key TDS properties” on page 241
v “Keyref TDS properties” on page 241
v “Local attribute TDS properties” on page 241
v “Local element TDS properties” on page 242
v “Local group TDS properties” on page 242
v “Message TDS properties” on page 246
v “Simple type TDS properties” on page 246
v “Unique TDS properties” on page 246
v “White space characters in TDS” on page 246
v “Wildcard attribute TDS properties” on page 247
v “Wildcard element TDS properties” on page 247

Attribute group reference TDS properties:

There are no properties to show.

Attribute reference TDS properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Message model reference information 231



Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

Complex type TDS properties:
Field Identification

If the complex type is based on a global group, the TDS properties listed below
will actually be located on the global group. If this is the case, any changes to
these properties will be applied to the global group, and will affect all references to
the group (including any other complex types which are based on it).

232 Message Models



Property Type Meaning

Data Element
Separation

Enumerated
type

Select one of the following values to specify the method that is used to separate
the data elements within the type.

v Tagged Delimited. This value indicates that all elements within the complex
type are identified by a tag, and are separated by the value that is specified in
the optional Delimiter property (if specified). You must set the Tag property for
all child elements of simple type, and you can set the Delimiter property to a
non-empty value. See “Global element TDS properties” on page 236. You must
also set the Tag Data Separator or the Length of Tag property.

v Tagged Fixed Length. This value indicates that each element is identified by a
tag, and the data has a fixed length. There are no delimiters. You must set the
Tag property for each of the child elements of this complex type, and each
child element must have a Length or Length Reference property assigned to it.
You must also set the Tag Data Separator or the Length of Tag property.

v Tagged Encoded Length. This value indicates that all elements within the
complex type are separated by a tag, and a length field follows each tag.
There are no delimiters. The tag can be fixed length, as set by the Length of Tag
property, or variable length delimited by the Tag Data Separator property. You
must also set the Length Of Encoded Length property so that the parser knows
the size of the length field, and set the Extra Chars in Encoded Length property
to tell the parser what to subtract from the value in the Length Of Encoded
Length property to get the actual length of the data that follows the length
field.

This method provides a more flexible way of handling ACORD AL3 standard
messages than using the Fixed Length AL3 value, by allowing different parts
of the messages to be at different versions of the ACORD AL3 standard.

v All Elements Delimited. This value indicates that all elements within the
complex type are separated by a delimiter. You must set a value in the
Delimiter property.

v Variable Length Elements Delimited. This value indicates that some of the
elements within the complex type might be of variable length; if they are, they
must be delimited by the value that is specified in the Delimiter property.

v Use Data Pattern. This value indicates that the parser determines the
elements by matching the data with the regular expression that is set in the
Data Pattern property of the element or type member. See “Message definition
file properties” on page 183.

v Fixed Length. This value indicates that all elements within the complex type
are fixed length. The next data element is accessed by adding the value of the
Length property to the offset. See “Global element TDS properties” on page
236. If you set the Data Element Separation property of a complex type to Fixed
Length, you must also set the Data Element Separation property of all complex
children of this type to Fixed Length. Each child element must have a Length
or Length Reference property assigned to it.

v Fixed Length AL3. This value has a similar meaning to the separation type
Fixed Length, but also indicates to the parser that a number of predefined
rules with regard to missing optional elements, encoded lengths, and
versioning, must be applied. If you set the Data Element Separation property of
a complex type to Fixed Length AL3, you must also set the Data Element
Separation property of all complex children of this type to Fixed Length AL3.

v Undefined. This value is set automatically if you set the Type Composition
property of a complex type to Message, and you cannot change it to any other
value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,
Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check
in the type.

Message model reference information 233



Property Type Meaning

Group Indicator String Specify the value of a special character, or string, that precedes the data that
belongs to a group, or a complex type, within the bit stream.

Group
Terminator

String Specify the value of a special character, or string, that terminates the data that
belongs to a group, or a complex type, within the bit stream.

Delimiter String Specify the value of a special character, or string, that specifies the delimiter that
is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

Suppress
Absent Element
Delimiters

Enumerated
type

Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message.

Select from:

v End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to 3 elements
and only 2 are present, the last delimiter can be omitted from the message.

v Never. Use this option to ensure that even if optional elements are not present,
all delimiters are written out. This option should be used when the same
delimiter is used to delimit parent and child objects. For example, if an
optional child element is missing, message processing applications could not
tell where the child elements in a message ended and the next parent element
started, if the delimiters are all the same.

Observe
Element Length

Check box This property is applicable when Data Element Separation is All Elements
Delimited, and tells the TDS parser to take any Length property of child
elements or attributes into account. The default value depends on the setting of
the Messaging Standard property (at the message set level) and the Data Element
Separation property.

v If Data Element Separation is All Elements Delimited and the Messaging
Standard is set to TLOG, the check box is selected. For all other messaging
standards, the check box is cleared.

v If Data Element Separation is Tagged Delimited, the check box is cleared.

v If Data Element Separation is Tagged Fixed Length, Fixed Length, Fixed Length
AL3, or Variable Length Elements Delimited, this property is set and is
disabled.

v For all other data element separation methods, this property is not set and is
disabled.

Tag Data
Separator

Button and
String

Specify the value of a special character or string that separates the Tag from the
data. The Tag Data Separator and Length of Tag properties are mutually exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods (Tagged
Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of Tag Button and
Integer

Specify the length of a tag value. When the message is parsed, this allows tags
to be extracted from the bit stream if the Tag Data Separator property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If you
set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods (Tagged
Delimited, Tagged Fixed Length, and Tagged Encoded Length).

234 Message Models



Property Type Meaning

Length of
Encoded
Length

Integer Specifies the number of characters (not bytes) after a tag that are used for the
length field. Enter a value from 0 to 2 147 483 647.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of
the Extra Chars in Encoded Length property.

Extra Chars in
Encoded
Length

Integer (Only valid if the Data Element Separation method is set to Tagged Encoded
Length.) Specifies the number of extra characters included in the value found in
the length field. (For example, the value in the length might include the size of
the length field itself as well as the size of the data field, or it might be the total
size of the tag, length, and data fields.)

Enter a value from 0 to 2 147 483 647. The parser subtracts this number from the
number found in the length field to get the number of data characters that follow
the length field.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length, and the actual number of data characters is less than
the value found in the length field.

Element reference TDS properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Message model reference information 235



Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

Global attribute TDS properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

Global attribute group TDS properties:

There are no properties to show.

Global element TDS properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

236 Message Models



Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Global group TDS properties:

Message model reference information 237



Field Identification

Property Type Meaning

Data Element
Separation

Enumerated
type

Select one of the following values to specify the method that is used to separate
the data elements within the type.

v Tagged Delimited. This value indicates that all elements within the complex
type are identified by a tag, and are separated by the value that is specified in
the optional Delimiter property (if specified). You must set the Tag property for
all child elements of simple type, and you can set the Delimiter property to a
non-empty value. See “Global element TDS properties” on page 236. You must
also set the Tag Data Separator or the Length of Tag property.

v Tagged Fixed Length. This value indicates that each element is identified by a
tag, and the data has a fixed length. There are no delimiters. You must set the
Tag property for each of the child elements of this complex type, and each
child element must have a Length or Length Reference property assigned to it.
You must also set the Tag Data Separator or the Length of Tag property.

v Tagged Encoded Length. This value indicates that all elements within the
complex type are separated by a tag, and a length field follows each tag.
There are no delimiters. The tag can be fixed length, as set by the Length of Tag
property, or variable length delimited by the Tag Data Separator property. You
must also set the Length Of Encoded Length property so that the parser knows
the size of the length field, and set the Extra Chars in Encoded Length property
to tell the parser what to subtract from the value in the Length Of Encoded
Length property to get the actual length of the data that follows the length
field.

This method provides a more flexible way of handling ACORD AL3 standard
messages than using the Fixed Length AL3 value, by allowing different parts
of the messages to be at different versions of the ACORD AL3 standard.

v All Elements Delimited. This value indicates that all elements within the
complex type are separated by a delimiter. You must set a value in the
Delimiter property.

v Variable Length Elements Delimited. This value indicates that some of the
elements within the complex type might be of variable length; if they are, they
must be delimited by the value that is specified in the Delimiter property.

v Use Data Pattern. This value indicates that the parser determines the
elements by matching the data with the regular expression that is set in the
Data Pattern property of the element or type member. See “Message definition
file properties” on page 183.

v Fixed Length. This value indicates that all elements within the complex type
are fixed length. The next data element is accessed by adding the value of the
Length property to the offset. See “Global element TDS properties” on page
236. If you set the Data Element Separation property of a complex type to Fixed
Length, you must also set the Data Element Separation property of all complex
children of this type to Fixed Length. Each child element must have a Length
or Length Reference property assigned to it.

v Fixed Length AL3. This value has a similar meaning to the separation type
Fixed Length, but also indicates to the parser that a number of predefined
rules with regard to missing optional elements, encoded lengths, and
versioning, must be applied. If you set the Data Element Separation property of
a complex type to Fixed Length AL3, you must also set the Data Element
Separation property of all complex children of this type to Fixed Length AL3.

v Undefined. This value is set automatically if you set the Type Composition
property of a complex type to Message, and you cannot change it to any other
value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,
Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check
in the type.

238 Message Models



Property Type Meaning

Group Indicator String Specify the value of a special character, or string, that precedes the data that
belongs to a group, or a complex type, within the bit stream.

Group
Terminator

String Specify the value of a special character, or string, that terminates the data that
belongs to a group, or a complex type, within the bit stream.

Delimiter String Specify the value of a special character, or string, that specifies the delimiter that
is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

Suppress
Absent Element
Delimiters

Enumerated
type

Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message.

Select from:

v End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to 3 elements
and only 2 are present, the last delimiter can be omitted from the message.

v Never. Use this option to ensure that even if optional elements are not present,
all delimiters are written out. This option should be used when the same
delimiter is used to delimit parent and child objects. For example, if an
optional child element is missing, message processing applications could not
tell where the child elements in a message ended and the next parent element
started, if the delimiters are all the same.

Observe
Element Length

Check box This property is applicable when Data Element Separation is All Elements
Delimited, and tells the TDS parser to take any Length property of child
elements or attributes into account. The default value depends on the setting of
the Messaging Standard property (at the message set level) and the Data Element
Separation property.

v If Data Element Separation is All Elements Delimited and the Messaging
Standard is set to TLOG, the check box is selected. For all other messaging
standards, the check box is cleared.

v If Data Element Separation is Tagged Delimited, the check box is cleared.

v If Data Element Separation is Tagged Fixed Length, Fixed Length, Fixed Length
AL3, or Variable Length Elements Delimited, this property is set and is
disabled.

v For all other data element separation methods, this property is not set and is
disabled.

Tag Data
Separator

Button and
String

Specify the value of a special character or string that separates the Tag from the
data. The Tag Data Separator and Length of Tag properties are mutually exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods (Tagged
Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of Tag Button and
Integer

Specify the length of a tag value. When the message is parsed, this allows tags
to be extracted from the bit stream if the Tag Data Separator property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If you
set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods (Tagged
Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Message model reference information 239



Property Type Meaning

Length of
Encoded
Length

Integer Specifies the number of characters (not bytes) after a tag that are used for the
length field. Enter a value from 0 to 2 147 483 647.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of
the Extra Chars in Encoded Length property.

Extra Chars in
Encoded
Length

Integer (Only valid if the Data Element Separation method is set to Tagged Encoded
Length.) Specifies the number of extra characters included in the value found in
the length field. (For example, the value in the length might include the size of
the length field itself as well as the size of the data field, or it might be the total
size of the tag, length, and data fields.)

Enter a value from 0 to 2 147 483 647. The parser subtracts this number from the
number found in the length field to get the number of data characters that follow
the length field.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length, and the actual number of data characters is less than
the value found in the length field.

Group reference TDS properties:

The following tables describe the TDS properties of a group reference.

Field identification

Property Type Meaning

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Occurrences

Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

240 Message Models



Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Key TDS properties:

There are no properties to show.

Keyref TDS properties:

There are no properties to show.

Local attribute TDS properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Message model reference information 241



Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

Local element TDS properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Local group TDS properties:

242 Message Models



Field Identification

Property Type Meaning

Data Element
Separation

Enumerated
type

Select one of the following values to specify the method that is used to separate
the data elements within the type.

v Tagged Delimited. This value indicates that all elements within the complex
type are identified by a tag, and are separated by the value that is specified in
the optional Delimiter property (if specified). You must set the Tag property for
all child elements of simple type, and you can set the Delimiter property to a
non-empty value. See “Global element TDS properties” on page 236. You must
also set the Tag Data Separator or the Length of Tag property.

v Tagged Fixed Length. This value indicates that each element is identified by a
tag, and the data has a fixed length. There are no delimiters. You must set the
Tag property for each of the child elements of this complex type, and each
child element must have a Length or Length Reference property assigned to it.
You must also set the Tag Data Separator or the Length of Tag property.

v Tagged Encoded Length. This value indicates that all elements within the
complex type are separated by a tag, and a length field follows each tag.
There are no delimiters. The tag can be fixed length, as set by the Length of Tag
property, or variable length delimited by the Tag Data Separator property. You
must also set the Length Of Encoded Length property so that the parser knows
the size of the length field, and set the Extra Chars in Encoded Length property
to tell the parser what to subtract from the value in the Length Of Encoded
Length property to get the actual length of the data that follows the length
field.

This method provides a more flexible way of handling ACORD AL3 standard
messages than using the Fixed Length AL3 value, by allowing different parts
of the messages to be at different versions of the ACORD AL3 standard.

v All Elements Delimited. This value indicates that all elements within the
complex type are separated by a delimiter. You must set a value in the
Delimiter property.

v Variable Length Elements Delimited. This value indicates that some of the
elements within the complex type might be of variable length; if they are, they
must be delimited by the value that is specified in the Delimiter property.

v Use Data Pattern. This value indicates that the parser determines the
elements by matching the data with the regular expression that is set in the
Data Pattern property of the element or type member. See “Message definition
file properties” on page 183.

v Fixed Length. This value indicates that all elements within the complex type
are fixed length. The next data element is accessed by adding the value of the
Length property to the offset. See “Global element TDS properties” on page
236. If you set the Data Element Separation property of a complex type to Fixed
Length, you must also set the Data Element Separation property of all complex
children of this type to Fixed Length. Each child element must have a Length
or Length Reference property assigned to it.

v Fixed Length AL3. This value has a similar meaning to the separation type
Fixed Length, but also indicates to the parser that a number of predefined
rules with regard to missing optional elements, encoded lengths, and
versioning, must be applied. If you set the Data Element Separation property of
a complex type to Fixed Length AL3, you must also set the Data Element
Separation property of all complex children of this type to Fixed Length AL3.

v Undefined. This value is set automatically if you set the Type Composition
property of a complex type to Message, and you cannot change it to any other
value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,
Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check
in the type.

Message model reference information 243



Property Type Meaning

Group Indicator String Specify the value of a special character, or string, that precedes the data that
belongs to a group, or a complex type, within the bit stream.

Group
Terminator

String Specify the value of a special character, or string, that terminates the data that
belongs to a group, or a complex type, within the bit stream.

Delimiter String Specify the value of a special character, or string, that specifies the delimiter that
is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

Suppress
Absent Element
Delimiters

Enumerated
type

Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message.

Select from:

v End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to 3 elements
and only 2 are present, the last delimiter can be omitted from the message.

v Never. Use this option to ensure that even if optional elements are not present,
all delimiters are written out. This option should be used when the same
delimiter is used to delimit parent and child objects. For example, if an
optional child element is missing, message processing applications could not
tell where the child elements in a message ended and the next parent element
started, if the delimiters are all the same.

Observe
Element Length

Check box This property is applicable when Data Element Separation is All Elements
Delimited, and tells the TDS parser to take any Length property of child
elements or attributes into account. The default value depends on the setting of
the Messaging Standard property (at the message set level) and the Data Element
Separation property.

v If Data Element Separation is All Elements Delimited and the Messaging
Standard is set to TLOG, the check box is selected. For all other messaging
standards, the check box is cleared.

v If Data Element Separation is Tagged Delimited, the check box is cleared.

v If Data Element Separation is Tagged Fixed Length, Fixed Length, Fixed Length
AL3, or Variable Length Elements Delimited, this property is set and is
disabled.

v For all other data element separation methods, this property is not set and is
disabled.

Tag Data
Separator

Button and
String

Specify the value of a special character or string that separates the Tag from the
data. The Tag Data Separator and Length of Tag properties are mutually exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods (Tagged
Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of Tag Button and
Integer

Specify the length of a tag value. When the message is parsed, this allows tags
to be extracted from the bit stream if the Tag Data Separator property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If you
set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods (Tagged
Delimited, Tagged Fixed Length, and Tagged Encoded Length).

244 Message Models



Property Type Meaning

Length of
Encoded
Length

Integer Specifies the number of characters (not bytes) after a tag that are used for the
length field. Enter a value from 0 to 2 147 483 647.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of
the Extra Chars in Encoded Length property.

Extra Chars in
Encoded
Length

Integer (Only valid if the Data Element Separation method is set to Tagged Encoded
Length.) Specifies the number of extra characters included in the value found in
the length field. (For example, the value in the length might include the size of
the length field itself as well as the size of the data field, or it might be the total
size of the tag, length, and data fields.)

Enter a value from 0 to 2 147 483 647. The parser subtracts this number from the
number found in the length field to get the number of data characters that follow
the length field.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length, and the actual number of data characters is less than
the value found in the length field.

Field Identification

Property Type Meaning

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Occurrences

Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Message model reference information 245



Message TDS properties:

Property Type Meaning

Message Key String Specify an alternative unique value that identifies the message in the bit stream.
This property is required if the message is embedded within another message.
Note: From Version 6.0 onwards, the use of Message Key has been deprecated
for identifying an embedded message. You now have the option of identifying
an embedded message by Message Identity, using the Message Alias logical
property.

Simple type TDS properties:

There are no properties to show.

Unique TDS properties:

There are no properties to show.

White space characters in TDS:

White space characters are defined as:
v ASCII characters (hexadecimal) ’X’09 to ’X’0D
v EBCDIC characters ’X’05, ’X’0B, ’X’0C, ’X’0D, ’X’25, ’X’40

You can specify these characters in your message model using TDS mnemonics if
they are important to your processing, for example, to use as group terminators or
delimiting characters. See “TDS Mnemonics” on page 168 for further information.

If the:
v TDS messaging standard property is ″X12″ or ″EDIFACT″ and the
v TDS data element separation in force for the structure is:

– Tagged delimiter, or
– Tagged fixed length, or
– Tagged encoded length

then white space after the end of a group and preceding the tag of the next
element is ignored.

The following bit stream is accepted:
Tag<data>!<Any white space character>Tag

where:
v ! is the group terminator
v <Any white space character> is one of the ASCII or EBCDIC characters listed

previously

The following X12 ASCII message successfully parses:
ST*856*777777%<SPC><SPC><SPC><HEX 09>BSN*00*7654321*940920*10000%

The sequence
<SPC><SPC><SPC><HEX 09>

is ignored by the parser.

246 Message Models



Wildcard attribute TDS properties:

There are no properties to show.

Wildcard element TDS properties:

There are no properties to show.

Documentation properties for all message set objects

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Message model object properties by object

The following objects have properties that can be viewed or set:
v “Attribute group reference properties”
v “Attribute reference properties” on page 248
v “Complex type properties” on page 290
v “Element reference properties” on page 299
v “Global attribute properties” on page 352
v “Global attribute group properties” on page 381
v “Global element properties” on page 382
v “Global group properties” on page 418
v “Group reference properties” on page 424
v “Key properties” on page 427
v “Keyref properties” on page 427
v “Local attribute properties” on page 428
v “Local element properties” on page 491
v “Local group properties” on page 572
v “Message properties” on page 579
v “Simple type properties” on page 582
v “Unique properties” on page 597
v “Wildcard attribute properties” on page 597
v “Wildcard element properties” on page 598

Attribute group reference properties

An attribute group reference can have the following properties;
v “Attribute group reference logical properties” on page 187
v “Attribute group reference CWF properties” on page 216
v “Attribute group reference XML properties” on page 223
v “Attribute group reference TDS properties” on page 231
v “Documentation properties for all message set objects” on page 185

Attribute group reference logical properties:

Message model reference information 247



Property Type Meaning

Reference Name Enumerated
type

The Reference Name is the name of the object that this object is referring to. The
objects available to reference can be selected from the drop-down list.

Attribute group reference CWF properties:

There are no properties to show.

Attribute group reference XML properties:

There are no properties to show.

Attribute group reference TDS properties:

There are no properties to show.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Attribute reference properties

An attribute reference can have the following properties;
v “Attribute reference logical properties” on page 187
v “Attribute reference CWF properties” on page 216
v “Attribute reference XML properties” on page 223
v “Attribute reference TDS properties” on page 231
v “Documentation properties for all message set objects” on page 185

Attribute reference logical properties:

Property Type Meaning

Reference Name Enumerated
type

The Reference Name is the name of the object that this object is referring to. The
objects available to reference can be selected from the drop-down list.

248 Message Models



Property Type Meaning

Usage Enumerated
type

The usage property is used in conjunction with the Value property found in an
attribute object. The default for the Usage property is optional.

Select from;

v optional.

– Where the Value property is set to default and no data has been entered in
the Value property, the attribute can appear once and can have any value.

– Where the Value property is set to default, the attribute can appear once. If
it does not appear, its value is the data that has been entered in the Value
property. If it does appear it is the value given.

– Where the Value property is set to fixed, the attribute can appear once. If it
does appear, its value must match the data that has been entered in the
Value property. If it does not appear its value is the data that has been
entered in the Value property.

v prohibited. The attribute must not appear.

v required.

– Where the Value property is set to default and no data has been entered in
the Value property, the attribute must appear once and can have any value.

– Where the Value property is set to fixed, the attribute must appear once
and it must match the data that has been entered in the Value property.

Attribute reference CWF properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Message model reference information 249



Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

CWF properties for attribute reference and local attribute binary types:

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Binary schema types: base64Binary, hexBinary

Physical representation

Property Type Meaning

Length Button and
Integer

If you have selected the length to be defined by Length, enter the number of
length units for the element.

The minimum value that you can specify is 1.

The maximum value that you can specify is 2147483647.

The default value is empty (not set).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

250 Message Models



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Message model reference information 251



Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute Boolean types:

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Boolean schema types: Boolean

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute dateTime types:

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

252 Message Models



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length
properties below.

v Length Encoded String 1. The element’s first byte contains the length of the
string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of
the string following the 2 length bytes in length units. The maximum length
of a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X’00’.

v Packed Decimal. The dateTime is coded as a Packed Decimal number. It is
valid only if the DateTime Format property represents numeric-only data.

v Binary. The dateTime is encoded as a binary sequence of bytes. If you select
this option, the range of symbols that you can specify for the Format String
property is less than the range of symbols you can specify if you select a
string option (see “DateTime formats” on page 765 for details).

v Time Seconds. This value supports C time_t and Java Date and Time objects. It
is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default value is fixed length string.

DateTime
Format

String Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of date and time formats.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal, or
Binary, and have selected the length to be defined by Length, enter the number
of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for
Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
108.

Message model reference information 253



Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this is property is inactive.

254 Message Models



Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is padded
from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Message model reference information 255



Numeric representation

Property Type Meaning

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute decimal types:

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

256 Message Models



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and
256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are
assumed to be 18.)

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Message model reference information 257



Property Type Meaning

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this is property is inactive.

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Numeric representation

Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used in conjunction
with Sign Orientation.

258 Message Models



Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.
No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232'. This is
the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is
positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number
is positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point should be moved from its assumed position.
For example, a decimal element containing 1234 with a Virtual Decimal value of
3 is 1.234. This is equivalent to ’V’ or ’P’ in a COBOL picture clause. There is no
C equivalent

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Message model reference information 259



Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute float types:

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Float schema types: double, float

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1
or COMP-2 data type in COBOL. This is the default value.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer, Packed Decimal, and Float are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Float, select a value from the displayed list. The
default value is 8.

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and
256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are
assumed to be 18.)

260 Message Models



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this is property is inactive.

Message model reference information 261



Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Numeric representation

Property Type Meaning

Signed Check box Select or deselect (unsigned, the default) this property. If you have set Physical
Type to Float, this is selected. This property is used in conjunction with Sign
Orientation.

262 Message Models



Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.
No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232'. This is
the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is
positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number
is positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point should be moved from its assumed position.
For example, a float element containing 1234 with a Virtual Decimal value of 3 is
1.234.

This is not applicable if you have set Physical Type to Float.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Message model reference information 263



Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute integer types:

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you have set Physical Type to Packed Decimal, enter a value between 1 and
6.

v If you have set Physical Type to Extended Decimal, enter a value between 1 and
11.

264 Message Models



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this is property is inactive.

Message model reference information 265



Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Numeric representation

Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used in conjunction
with Sign Orientation.

266 Message Models



Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.
No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232'. This is
the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is
positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number
is positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Message model reference information 267



Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute string types:

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length
properties below.

v Length Encoded String 1. The element’s first byte contains the length of the
string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of
the string following the 2 length bytes in length units. The maximum length
of a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X’00’.

The default is Fixed Length String.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String or Binary, and have
selected the length to be defined by Length, enter the number of length units for
the element.

The minimum value that you can specify is 0 (zero), the maximum value that
you can specify is 2147483647

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
108.

268 Message Models



Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this is property is inactive.

Message model reference information 269



Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is padded
from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

270 Message Models



Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Attribute reference XML properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Message model reference information 271



Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

XML properties for attribute reference, element reference, local attribute, local element
binary types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Binary schema types: base64Binary, hexBinary

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

272 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 273



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :
v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>
v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.
v base64. Values in this field are specified as digits only, coded in base 64.

XML properties for attribute reference, element reference, local attribute, local element
Boolean types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Boolean schema types: Boolean

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

274 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 275



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element
dateTime types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

276 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 277



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

DateTime
Format

String Specify a format string that specifies the rendering of the value for dateTime
elements.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of dateTime formats.

XML properties for attribute reference, element reference, local attribute, local element
decimal types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

278 Message Models



Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 279



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element float
types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Float schema types: double, float

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

280 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 281



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element
integer types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

282 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 283



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element
string types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

284 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 285



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Attribute reference TDS properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

286 Message Models



Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

TDS properties for attribute reference binary types:

The TDS Format properties described here apply to:
v Objects: Attribute Reference
v Binary schema types: base64Binary, hexBinary

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

TDS properties for attribute reference Boolean types:

There are no properties to show.

TDS properties for attribute reference dateTime types:

Message model reference information 287



The TDS Format properties described here apply to:
v Objects: Attribute Reference
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

TDS properties for attribute reference decimal types:

The TDS Format properties described here apply to:
v Objects: Attribute Reference
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

288 Message Models



TDS properties for attribute reference float types:

The TDS Format properties described here apply to:
v Objects: Attribute Reference
v Float schema types: double, float

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

TDS properties for attribute reference integer types:

The TDS Format properties described here apply to:
v Objects: Attribute Reference
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Message model reference information 289



TDS properties for attribute reference string types:

The TDS Format properties described here apply to:
v Objects: Attribute Reference
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Complex type properties

A complex type can have the following properties;
v “Complex type logical properties” on page 188
v “Complex type CWF properties” on page 217
v “Complex type XML properties” on page 223
v “Complex type TDS properties” on page 232
v “Documentation properties for all message set objects” on page 185

Complex type logical properties:

290 Message Models



Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Base Type Enumerated
type

You can use this property to select a type (simple or complex) that is used as the
starting point to define a new complex type that is derived by restriction or
extension.

Derived By Enumerated
type

If this property is active, select from;

v restriction. If a complex type is derived by restriction, the content model of
the complex type is a subset of the base type.

v extension. If the complex type is derived by extension, the content model of
the complex type is the content model of the base type plus the content model
specified in the type derivation.

Derivation by list or union is not supported.

Content

The table below shows the valid settings for Composition and Content Validation.
These properties are actually located on the group which defines the content of this
type. They can only be edited if the Local group button is selected. If the Global
group button is selected, these properties are taken from the global group identified
by the Group name field.

Valid children in a complex type that depend on both Composition and Content
Validation are shown in “MRM content validation” on page 191.

Property Type Meaning

Local Group Button You should select this if the content of your complex type is a local group.

Message model reference information 291

http://www.w3.org/TR/REC-xml
http://www.w3.org/


Property Type Meaning

Composition Enumerated
type

Define the order, and the number of occurrences, of the elements and groups in
your messages. Composition does not affect the attributes in a complex type.

Select from:

v Empty

v sequence. If you select this option, you can define members that are elements
or groups. These members, if present, must appear in the specified order in
the message. They can repeat, and the same element or group can appear
more than once.

v choice. If you select this option, you can define members that are elements or
groups. Exactly one of the defined members must be present in the message,
and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a
Custom Wire Format, or an XML DTD element that uses choice in an XML
Wire Format, or a SWIFT field that has more than one option.

v all. If you select this option, you can define members that are elements;
groups are not allowed. The elements in an all group can appear in any
order. Each element can appear once, or not at all. An all group can only be
used at the top level of a complex type - it cannot be a member of another
group within a type.

v unorderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat but the
same element cannot appear twice in the list of members. The elements can
appear in any order in the message.

v orderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements must
appear in the specified order in the message.

v message.

This option is supported only by the MRM domain.If you select this option,
you can define only messages as members. Each member can repeat, but the
same message cannot appear twice in the list of members. Like choice, only
one of the defined members can be present in a message.

Unlike choice, when writing a message, if the complex type or group has
more than one member, the bit stream is not padded to the length of the
longest member.

Use this option to model multipart messages, which are used in some
industry standards, for example, SWIFT. For more information, see the section
on multipart messages in “Multipart messages” on page 26.

292 Message Models



Property Type Meaning

Content
Validation

Enumerated
type

Content Validation is used only by the MRM domain. If validation is enabled in
your message flow, Content Validation specifies the strictness of the MRM
validation for members of a complex type or group. See “MRM content
validation” on page 191 for further details.

Options:

v Closed. The complex type can only contain the child elements that you have
added to it.

v Open Defined. The complex type can contain any valid element defined within
the message set.

v Open. The complex type can contain any valid element, not just those that you
have added to this complex type.

See “Combinations of Composition and Content Validation” on page 295 for
further details of these options.

Group
Reference

Button You should select this if the content of your complex type is a reference to a
group object

Group Name Enumerated
type

The Group Name is the name of the group that this complex type is referring to.
The groups available to be referenced can be selected from the drop down list.

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is
1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is
1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1 to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Mixed Check box Select this where the complex type has mixed content and contains character
data alongside sub-elements.

Substitution settings

Property Type Meaning

Final Multiple
selection
enumerated
type

The final attribute on a complex type controls whether other types may be
derived from it. Valid values are extension/restriction/all. You can select from
one or more of the following:

v Empty

v restriction. Prohibit type substitution by elements whose types are
restrictions of the head element’s type.

v extension. Prohibit type substitution by elements whose types are extensions
of the head element’s type.

v #all. Prohibit substitution by any method.

To select more than one, you will need to type the selection into the property
field.

Message model reference information 293



Property Type Meaning

Block Multiple
selection
enumerated
type

The block attribute on a complex type restricts the types of substitutions which
are allowed for elements based on that type. In the WebSphere Message Broker
its effect is the same as if the block attribute were copied from the complex type
onto every element based on the complex type. You can select from one or more
of the following:

v Empty

v restriction. Prohibit type substitution by elements whose types are
restrictions of the head element’s type.

v extension. Prohibit type substitution by elements whose types are extensions
of the head element’s type.

v #all. Prohibit substitution by any method.

To select more than one, you will need to type the selection into the property
field.

Abstract Check box If selected, no elements based on this type can appear in the message.

MRM content validation:

Content Validation is applied when the domain is MRM and validation is enabled.
The Content Validation property specifies how strictly the MRM parser validates the
members of a complex type or group.

The first table below shows the valid settings for Content Validation if Composition is
set to Message, and the second table shows the valid settings for Content Validation
if Composition is not set to Message.

Content Validation options if Composition is set to Message

Option Meaning

Open When a message is parsed, this complex type or group can contain any message, not just those
that you have defined in this message set. You can use this option for sparse messages (see
“Predefined and self-defining elements and messages” on page 30 for a definition of sparse
messages).

Closed When a message is parsed, this complex type or group can only contain the messages that are
members of this complex type or group. This is always the case for messages represented in
CWF format.

Open Defined When a message is parsed, this complex type or group can contain any message defined within
the message set.

Content Validation options if Composition is not set to Message

Option Meaning

Open When a message is parsed, this complex type or group can contain any elements and not just
those that you have defined in this message set (see “Predefined and self-defining elements and
messages” on page 30 for a definition of sparse messages).

Closed When a message is parsed, this complex type or group can only contain the elements that are
members of this complex type or group.

Open Defined When a message is parsed, this complex type or group can contain any element that you have
defined within the message set.

294 Message Models



When you are using Content Validation set to open or open defined, you can not
specify the precise position where the content that is not modeled is permitted to
occur. If you wish to do this, you should consider using a wildcard element as an
alternative. Note that wildcard elements can only appear within a complex type or
group with Composition of sequence and Content Validation of closed.

Combinations of Composition and Content Validation:

If your message is in the MRM domain, and validation is enabled, the members of
each complex type or group are validated. The MRM validation logic is controlled
by the Composition and Content Validation properties, as described in the table
below.

Content validation applies also to the IDOC domain because the IDoc parser uses
the MRM parser internally. Content Validation does not affect validation in the
XMLNSC domain.

Valid children in complex types dependent on Composition and Content
Validation

Composition Content Validation Valid children

Empty Closed None

Empty Open None

Empty Open Defined None

Sequence Open Elements, group references, embedded simple types

Sequence Closed Elements, group references, embedded simple types

Sequence Open Defined Elements, group references, embedded simple types

Choice Closed Elements, group references, embedded simple types

All Closed Elements

All Open Elements

All Open Defined Elements

Unordered Set Open Elements

Unordered Set Closed Elements

Unordered Set Open Defined Elements

Ordered Set Open Elements

Ordered Set Closed Elements

Ordered Set Open Defined Elements

Message Open Messages

Message Closed Messages

Message Open Defined Messages

Valid combinations of repeat and duplicate elements in complex types:

The table below defines the valid combinations of repeated and duplicate elements
within a complex type, dependent on the Composition property value.
v A repeated element is an element that is included once within the complex type,

and is defined with the property Min Occurs set to greater than 1. Repeated
elements are therefore always contiguous and are always specified in the form
A[n].

Message model reference information 295



v A duplicate element is an element included more than once anywhere within the
complex type. Duplicate elements do not have to be contiguous.

Repeated and duplicate elements in a complex type

Elements in type Example Unordered Set Ordered Set Sequence

No repeats, no
duplicates

A, B, C Yes Yes Yes

Repeated element
(contiguous)

A[n], B, C Yes Yes Yes

Duplicate element A
(contiguous)

A, A, B, C No No Yes

Duplicate element A
(non-contiguous)

A, B, C, A No No Yes

Complex type CWF properties:

There are no properties to show.

Complex type XML properties:

There are no properties to show.

Complex type TDS properties:
Field Identification

If the complex type is based on a global group, the TDS properties listed below
will actually be located on the global group. If this is the case, any changes to
these properties will be applied to the global group, and will affect all references to
the group (including any other complex types which are based on it).

296 Message Models



Property Type Meaning

Data Element
Separation

Enumerated
type

Select one of the following values to specify the method that is used to separate
the data elements within the type.

v Tagged Delimited. This value indicates that all elements within the complex
type are identified by a tag, and are separated by the value that is specified in
the optional Delimiter property (if specified). You must set the Tag property for
all child elements of simple type, and you can set the Delimiter property to a
non-empty value. See “Global element TDS properties” on page 236. You must
also set the Tag Data Separator or the Length of Tag property.

v Tagged Fixed Length. This value indicates that each element is identified by a
tag, and the data has a fixed length. There are no delimiters. You must set the
Tag property for each of the child elements of this complex type, and each
child element must have a Length or Length Reference property assigned to it.
You must also set the Tag Data Separator or the Length of Tag property.

v Tagged Encoded Length. This value indicates that all elements within the
complex type are separated by a tag, and a length field follows each tag.
There are no delimiters. The tag can be fixed length, as set by the Length of Tag
property, or variable length delimited by the Tag Data Separator property. You
must also set the Length Of Encoded Length property so that the parser knows
the size of the length field, and set the Extra Chars in Encoded Length property
to tell the parser what to subtract from the value in the Length Of Encoded
Length property to get the actual length of the data that follows the length
field.

This method provides a more flexible way of handling ACORD AL3 standard
messages than using the Fixed Length AL3 value, by allowing different parts
of the messages to be at different versions of the ACORD AL3 standard.

v All Elements Delimited. This value indicates that all elements within the
complex type are separated by a delimiter. You must set a value in the
Delimiter property.

v Variable Length Elements Delimited. This value indicates that some of the
elements within the complex type might be of variable length; if they are, they
must be delimited by the value that is specified in the Delimiter property.

v Use Data Pattern. This value indicates that the parser determines the
elements by matching the data with the regular expression that is set in the
Data Pattern property of the element or type member. See “Message definition
file properties” on page 183.

v Fixed Length. This value indicates that all elements within the complex type
are fixed length. The next data element is accessed by adding the value of the
Length property to the offset. See “Global element TDS properties” on page
236. If you set the Data Element Separation property of a complex type to Fixed
Length, you must also set the Data Element Separation property of all complex
children of this type to Fixed Length. Each child element must have a Length
or Length Reference property assigned to it.

v Fixed Length AL3. This value has a similar meaning to the separation type
Fixed Length, but also indicates to the parser that a number of predefined
rules with regard to missing optional elements, encoded lengths, and
versioning, must be applied. If you set the Data Element Separation property of
a complex type to Fixed Length AL3, you must also set the Data Element
Separation property of all complex children of this type to Fixed Length AL3.

v Undefined. This value is set automatically if you set the Type Composition
property of a complex type to Message, and you cannot change it to any other
value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,
Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check
in the type.

Message model reference information 297



Property Type Meaning

Group Indicator String Specify the value of a special character, or string, that precedes the data that
belongs to a group, or a complex type, within the bit stream.

Group
Terminator

String Specify the value of a special character, or string, that terminates the data that
belongs to a group, or a complex type, within the bit stream.

Delimiter String Specify the value of a special character, or string, that specifies the delimiter that
is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

Suppress
Absent Element
Delimiters

Enumerated
type

Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message.

Select from:

v End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to 3 elements
and only 2 are present, the last delimiter can be omitted from the message.

v Never. Use this option to ensure that even if optional elements are not present,
all delimiters are written out. This option should be used when the same
delimiter is used to delimit parent and child objects. For example, if an
optional child element is missing, message processing applications could not
tell where the child elements in a message ended and the next parent element
started, if the delimiters are all the same.

Observe
Element Length

Check box This property is applicable when Data Element Separation is All Elements
Delimited, and tells the TDS parser to take any Length property of child
elements or attributes into account. The default value depends on the setting of
the Messaging Standard property (at the message set level) and the Data Element
Separation property.

v If Data Element Separation is All Elements Delimited and the Messaging
Standard is set to TLOG, the check box is selected. For all other messaging
standards, the check box is cleared.

v If Data Element Separation is Tagged Delimited, the check box is cleared.

v If Data Element Separation is Tagged Fixed Length, Fixed Length, Fixed Length
AL3, or Variable Length Elements Delimited, this property is set and is
disabled.

v For all other data element separation methods, this property is not set and is
disabled.

Tag Data
Separator

Button and
String

Specify the value of a special character or string that separates the Tag from the
data. The Tag Data Separator and Length of Tag properties are mutually exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods (Tagged
Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of Tag Button and
Integer

Specify the length of a tag value. When the message is parsed, this allows tags
to be extracted from the bit stream if the Tag Data Separator property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If you
set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods (Tagged
Delimited, Tagged Fixed Length, and Tagged Encoded Length).

298 Message Models



Property Type Meaning

Length of
Encoded
Length

Integer Specifies the number of characters (not bytes) after a tag that are used for the
length field. Enter a value from 0 to 2 147 483 647.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of
the Extra Chars in Encoded Length property.

Extra Chars in
Encoded
Length

Integer (Only valid if the Data Element Separation method is set to Tagged Encoded
Length.) Specifies the number of extra characters included in the value found in
the length field. (For example, the value in the length might include the size of
the length field itself as well as the size of the data field, or it might be the total
size of the tag, length, and data fields.)

Enter a value from 0 to 2 147 483 647. The parser subtracts this number from the
number found in the length field to get the number of data characters that follow
the length field.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length, and the actual number of data characters is less than
the value found in the length field.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Element reference properties

An element reference can have the following properties:
v “Element reference logical properties” on page 192
v “Element reference CWF properties” on page 217
v “Element reference XML properties” on page 223
v “Element reference TDS properties” on page 235
v “Documentation properties for all message set objects” on page 185

Element reference logical properties:

Property Type Meaning

Reference Name Enumerated
type

The Reference Name is the name of the object that this object is referring to. The
objects available to reference can be selected from the drop-down list.

Message model reference information 299



Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is
1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is
1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1 to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

The Min Occurs and Max Occurs properties are used in conjunction with an
element’s Value properties. The table below summarizes how an element reference
can be constrained.

Min Occurs Max Occurs Fixed Default Notes

1 1 The element must appear once and can have
any value.

1 1 Delta The element must appear once and it must
match the data that has been entered in the
Value property. In this example the element
must contain the text Delta.

2 -1 Delta The element must appear twice or more and it
must match the data that has been entered in
the Value property. In this example there will
be at least two elements that must contain the
text Delta.

0 1 The element is optional and can appear once
and have any value.

0 1 Delta The element is optional and can appear once.
If it does appear, its value must match the data
that has been entered in the Value property. If
it does not appear its value will be the data
that has been entered in the Value property.

0 1 Delta The element is optional and can appear once.
If it does not appear, its value will be the data
that has been entered in the Value property. If
it does appear it must be the value given in
the element.

0 2 Delta The element is optional and can appear once,
twice or not at all. If the element does not
appear it is not provided. If the element
appears and it is empty, it set to the data held
in the Value property, else it is the value given
in the element.

300 Message Models



Min Occurs Max Occurs Fixed Default Notes

0 0 The element is prohibited and must not
appear.

Element reference CWF properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

CWF properties for element reference and local element binary types:

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Binary schema types: base64Binary, hexBinary

Message model reference information 301



Physical representation

Property Type Meaning

Length Button and
Integer

If you have selected the length to be defined by Length, enter the number of
length units for the element.

The minimum value that you can specify is 1.

The maximum value that you can specify is 2147483647.

The default value is empty (not set).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

302 Message Models



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Message model reference information 303



Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

CWF properties for element reference and local element Boolean types:

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Boolean schema types: Boolean

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

304 Message Models



Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

CWF properties for element reference and local element dateTime types:

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length
properties below.

v Length Encoded String 1. The element’s first byte contains the length of the
string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of
the string following the 2 length bytes in length units. The maximum length
of a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X’00’.

v Packed Decimal. The dateTime is coded as a Packed Decimal number. It is
valid only if the DateTime Format property represents numeric-only data.

v Binary. The dateTime is encoded as a binary sequence of bytes. If you select
this option, the range of symbols that you can specify for the Format String
property is less than the range of symbols you can specify if you select a
string option (see “DateTime formats” on page 765 for details).

v Time Seconds. This value supports C time_t and Java Date and Time objects. It
is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default value is fixed length string.

Message model reference information 305



Property Type Meaning

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal, or
Binary, and have selected the length to be defined by Length, enter the number
of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for
Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

306 Message Models



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this is property is inactive.

Message model reference information 307



Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is padded
from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

DateTime
Format

String Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of date and time formats.

308 Message Models



Numeric representation

Property Type Meaning

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list. The option that you
select determines the value that you must set for the property Encoding Null
Value:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The
field is filled with the value specified by the Padding Character. This is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. Use this option when the value you
have set for Encoding Null Value to specify a null date is not a dateTime value,
or does not conform to the standard dateTime format yyyy-MM-dd ’T’HH:mm:ss.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Encoding Null
Value

String If you set the Encoding Null property to NULLPadFill, this property is disabled
(grayed out).

If you set the Encoding Null property to NULLLogicalValue, you must set this
property to an ISO8601 dateTime format. These formats are described in
“DateTime as string data” on page 765. For example, specify a value conforming
to yyyy-MM-dd’T’HH:mm:ss such as 1970-12-01.

If you set the Encoding Null property to NULLLiteralValue, you can enter any
value that is the same length as the field.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Message model reference information 309



Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

CWF properties for element reference and local element decimal types:

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

310 Message Models



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and
256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are
assumed to be 18.)

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Message model reference information 311



Property Type Meaning

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this is property is inactive.

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Numeric representation

Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used in conjunction
with Sign Orientation.

312 Message Models



Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.
No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232'. This is
the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is
positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number
is positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point should be moved from its assumed position.
For example, a decimal element containing 1234 with a Virtual Decimal value of
3 is 1.234. This is equivalent to ’V’ or ’P’ in a COBOL picture clause. There is no
C equivalent

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field
is filled with the value specified by the Padding Character. Encoding Null Value
must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Message model reference information 313



Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, described
above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

314 Message Models



CWF properties for element reference and local element float types:

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Float schema types: double, float

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1
or COMP-2 data type in COBOL. This is the default value.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer, Packed Decimal, and Float are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Float, select a value from the displayed list. The
default value is 8.

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and
256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are
assumed to be 18.)

Message model reference information 315



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this is property is inactive.

316 Message Models



Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Numeric representation

Property Type Meaning

Signed Check box Select or deselect (unsigned, the default) this property. If you have set Physical
Type to Float, this is selected. This property is used in conjunction with Sign
Orientation.

Message model reference information 317



Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.
No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232'. This is
the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is
positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number
is positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point should be moved from its assumed position.
For example, a float element containing 1234 with a Virtual Decimal value of 3 is
1.234.

This is not applicable if you have set Physical Type to Float.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field
is filled with the value specified by the Padding Character. Encoding Null Value
must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

318 Message Models



Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, described
above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Message model reference information 319



CWF properties for element reference and local element integer types:

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you have set Physical Type to Packed Decimal, enter a value between 1 and
6.

v If you have set Physical Type to Extended Decimal, enter a value between 1 and
11.

320 Message Models



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this is property is inactive.

Message model reference information 321



Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Numeric representation

Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used in conjunction
with Sign Orientation.

322 Message Models



Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.
No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232'. This is
the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is
positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number
is positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field
is filled with the value specified by the Padding Character. Encoding Null Value
must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Message model reference information 323



Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, described
above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

324 Message Models



CWF properties for element reference and local element string types:

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length
properties below.

v Length Encoded String 1. The element’s first byte contains the length of the
string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of
the string following the 2 length bytes in length units. The maximum length
of a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X’00’.

The default is Fixed Length String.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String or Binary, and have
selected the length to be defined by Length, enter the number of length units for
the element.

The minimum value that you can specify is 0 (zero), the maximum value that
you can specify is 2147483647

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Message model reference information 325



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this is property is inactive.

326 Message Models



Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is padded
from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Message model reference information 327



Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The
field is filled with the value specified by the Padding Character. Encoding Null
Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Encoding Null
Value

STRING The use of this property depends on the Encoding Null property, described
above. If specified, its length must be equal to the length of the string element,
with the exception of NULLLiteralFill.

The default value is empty (not set).

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

328 Message Models



Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Element reference XML properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

XML properties for attribute reference, element reference, local attribute, local element
binary types:

Message model reference information 329



The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Binary schema types: base64Binary, hexBinary

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

330 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 331



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :
v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>
v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.
v base64. Values in this field are specified as digits only, coded in base 64.

XML properties for attribute reference, element reference, local attribute, local element
Boolean types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Boolean schema types: Boolean

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

332 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 333



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element
dateTime types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

334 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 335



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

DateTime
Format

String Specify a format string that specifies the rendering of the value for dateTime
elements.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of dateTime formats.

XML properties for attribute reference, element reference, local attribute, local element
decimal types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

336 Message Models



Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 337



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element float
types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Float schema types: double, float

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

338 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 339



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element
integer types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

340 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 341



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element
string types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

342 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 343



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Element reference TDS properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

344 Message Models



Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

TDS properties for element reference binary types:

The TDS Format properties described here apply to:
v Objects: Element Reference
v Binary schema types: base64Binary, hexBinary

Physical representation

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Message model reference information 345



Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

TDS properties for element reference Boolean types:

The TDS Format properties described here apply to:
v Objects: Element Reference
v Boolean schema types: Boolean

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

346 Message Models



TDS properties for element reference dateTime types:

The TDS Format properties described here apply to:
v Objects: Element Reference
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Physical representation

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Message model reference information 347



TDS properties for element reference decimal types:

The TDS Format properties described here apply to:
v Objects: Element Reference
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Physical representation

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

348 Message Models



TDS properties for element reference float types:

The TDS Format properties described here apply to:
v Objects: Element Reference
v Float schema types: double, float

Physical representation

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

TDS properties for element reference integer types:

Message model reference information 349



The TDS Format properties described here apply to:
v Objects: Element Reference
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Physical representation

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

TDS properties for element reference string types:

350 Message Models



The TDS Format properties described here apply to:
v Objects: Element Reference
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Physical representation

Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Documentation properties for all message set objects:

Message model reference information 351



Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Global attribute properties

A global attribute can have the following properties;
v “Global attribute logical properties” on page 193
v “Global attribute CWF properties” on page 218
v “Global attribute XML properties” on page 224
v “Global attribute TDS properties” on page 236
v “Documentation properties for all message set objects” on page 185

Global attribute logical properties:

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

352 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/


Property Type Meaning

Type Enumerated
type

The Type property constrains the type of data that can be present in the object.

There are a limited number of types available directly from the drop-down
selector. These are;

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), this starts the Type Selection wizard. From this wizard
you can select any of the available types.

If you select (New Simple Type), this starts the New Simple Type wizard which
allows you to create an Anonymous simple type that is based on an existing
type. This can be created locally or globally.

If you select (New Complex Type), this starts the New Complex Type wizard
which allows you to create an Anonymous complex type which can be derived
from an existing base type. This can be created locally or globally.

For further information about these types, and examples of their use see the
XML Schema Part 0: Primer which can be found on the World Wide Web
Consortium (W3C) Web site.

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Value

The Value properties are used in conjunction with the Usage property in an
Attribute Reference or a Local Attribute.

Message model reference information 353

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/


Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If this is required, the
message tree can be serialized and then re-parsed with validation
enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If this is required, the message tree can
be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

354 Message Models



Property Type Meaning

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does
not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message may be defined in either the
current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived
from xsd:string.

Global attribute CWF properties:

There are no properties to show.

Global attribute XML properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Message model reference information 355



Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

XML properties for global attribute and global element binary types:

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Binary schema types: base64Binary, hexBinary

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Physical representation

Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :
v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>
v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.
v base64. Values in this field are specified as digits only, coded in base 64.

356 Message Models



XML properties for global attribute and global element Boolean types:

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Boolean schema types: Boolean

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

XML properties for global attribute and global element dateTime types:

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Message model reference information 357



Physical representation

Property Type Meaning

DateTime
Format

String Specify a format string that specifies the rendering of the value for dateTime
elements.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of dateTime formats.

XML properties for global attribute and global element decimal types:

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

XML properties for global attribute and global element float types:

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Float schema types: double, float

358 Message Models



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

XML properties for global attribute and global element integer types:

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

XML properties for global attribute and global element string types:

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Message model reference information 359



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Global attribute TDS properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

TDS properties for global attribute binary types:

360 Message Models



The TDS Format properties described here apply to:
v Objects: Global Attribute
v Binary schema types: base64Binary, hexBinary

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

This value of this property defaults to Binary. It cannot be changed.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

The default is dependent on the setting of the message set property Derive default
length from logical type. If Derive default length from logical type is selected, the
default value is derived from any length or maxLength value constraint (schema
facet) on the object’s simple type.

Message model reference information 361



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

TDS properties for global attribute Boolean types:

The TDS Format properties described here apply to:
v Objects: Global Attribute
v Boolean schema types: Boolean

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

362 Message Models



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Binary. The data is in bit string format.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

TDS properties for global attribute dateTime types:

The TDS Format properties described here apply to:
v Objects: Global Attribute
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Message model reference information 363



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length
units) of the data string that follows the length byte. The maximum length of
a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in
length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X’00’.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v Binary. The data is in bit string format.

v Time Seconds. This value supports C time_t, and Java Date and Time objects.
It is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t, and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any length or maxLength value constraint (schema facet) on the
simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

364 Message Models



Property Type Meaning

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Message model reference information 365



Property Type Meaning

DateTime
Format

String Specify a template for date and time.

The default DateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of date and time formats.

Numeric representation

Property Type Meaning

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

TDS properties for global attribute decimal types:

The TDS Format properties described here apply to:
v Objects: Global Attribute
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

366 Message Models



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any length or maxLength value constraint (schema facet) on the
simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 367



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

368 Message Models



Numeric representation

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, ″+″ is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal
Point

Button and
Integer

Specify a nonzero integer that represents the position of an implied decimal
point within a number, or specify 0 (zero, the default) to use the formatting of
Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right hand side of the number. For example, if you specify 3, the
decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right hand side of the number. For example, if you specify -3, the
decimal value 1234 represents 1 234 000

Message model reference information 369



Property Type Meaning

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value of
the Virtual Decimal Point property is 0, which indicates that the decimal point is
present in the data. It deals with truncation, and specifies how many digits
should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For
example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data
is truncated. For example, the value 123.4567 is truncated to 123.45 if you set
Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even if there are no fractional digits. The
decimal separator must be present in the input bit stream, even if no fractional
digits are present.

TDS properties for global attribute float types:

The TDS Format properties described here apply to:
v Objects: Global Attribute
v Float schema types: double, float

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

370 Message Models



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Float. This equates to the data type FLOAT or DOUBLE in C, or the COMP-1
or COMP-2 numeric data type in COBOL.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any length or maxLength value constraint (schema facet) on the
simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 371



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

372 Message Models



Numeric representation

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, ″+″ is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal
Point

Button and
Integer

Specify a nonzero integer that represents the position of an implied decimal
point within a number, or specify 0 (zero, the default) to use the formatting of
Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right hand side of the number. For example, if you specify 3, the
decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right hand side of the number. For example, if you specify -3, the
decimal value 1234 represents 1 234 000

Message model reference information 373



Property Type Meaning

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value of
the Virtual Decimal Point property is 0, which indicates that the decimal point is
present in the data. It deals with truncation, and specifies how many digits
should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For
example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data
is truncated. For example, the value 123.4567 is truncated to 123.45 if you set
Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even if there are no fractional digits. The
decimal separator must be present in the input bit stream, even if no fractional
digits are present.

v Exponential Notation - Example ″1.23456e002″: data is written out to the bit
stream as a signed value having the format [sign1]a.bbbe[sign2]ccc where:

– [sign1] is the value of Negative Sign if the value is negative

– a is a single decimal digit

– bbb is one or more decimal digits

– [sign2] is the value of Negative Sign if the exponent is negative

– ccc is exactly three decimal digits (the exponent)

[sign1] and [sign2] are absent if the value and exponent, respectively, are
positive.

For example, the value -123.456 is represented as -1.23456e002 and the value
0.00012 is represented as 1.2e-004 in the output bit stream (assuming that the
value of Negative Sign is ″-″, and the value of Sign Orientation is Leading).

The value -0.00012 is represented as 1.2*e*004 if Negative Sign is ″*″ and Sign
Orientation is Trailing.

TDS properties for global attribute integer types:

The TDS Format properties described here apply to:
v Objects: Global Attribute
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

374 Message Models



Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any length or maxLength value constraint (schema facet) on the
simple type.

Message model reference information 375



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

376 Message Models



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Message model reference information 377



Numeric representation

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, ″+″ is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

TDS properties for global attribute string types:

The TDS Format properties described here apply to:
v Objects: Global Attribute
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

378 Message Models



Property Type Meaning

Interpret
Element Value

Enumerated
type

Specify whether values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.
This interpretation is generally standard-specific and is therefore hard-coded.

The possible values for this property are:

v None (the default value)

v EDIFACT Service String

v X12 Service String

v Message Key

v EDIFACT Syntax Level ID

v HL7 Service String

v HL7 Field Separator

Note: The Message Key enumeration has been deprecated

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length
units) of the data string that follows the length byte. The maximum length of
a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in
length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X’00’.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any length or maxLength value constraint (schema facet) on the
simple type.

Message model reference information 379



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

380 Message Models



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Global attribute group properties

A global attribute group can have the following properties;
v “Global attribute group logical properties” on page 196

Message model reference information 381



v “Global attribute group CWF properties” on page 218
v “Global attribute group XML properties” on page 225
v “Global attribute group TDS properties” on page 236
v “Documentation properties for all message set objects” on page 185

Global attribute group logical properties:

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Global attribute group CWF properties:

There are no properties to show.

Global attribute group XML properties:

There are no properties to show.

Global attribute group TDS properties:

There are no properties to show.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Global element properties

A global element can have the following properties;
v “Global element logical properties” on page 197
v “Global element CWF properties” on page 218
v “Global element XML properties” on page 225

382 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/


v “Global element TDS properties” on page 236
v “Documentation properties for all message set objects” on page 185

Global element logical properties:

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Type Enumerated
type

The Type property constrains the type of data that can be present in the object.

There are a limited number of types available directly from the drop-down
selector. These are;

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), this starts the Type Selection wizard. From this wizard
you can select any of the available types.

If you select (New Simple Type), this starts the New Simple Type wizard which
allows you to create an Anonymous simple type that is based on an existing
type. This can be created locally or globally.

If you select (New Complex Type), this starts the New Complex Type wizard
which allows you to create an Anonymous complex type which can be derived
from an existing base type. This can be created locally or globally.

For further information about these types, and examples of their use see the
XML Schema Part 0: Primer which can be found on the World Wide Web
Consortium (W3C) Web site.

Message model reference information 383

http://www.w3.org/TR/REC-xml
http://www.w3.org/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/


Property Type Meaning

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Value

Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If this is required, the
message tree can be serialized and then re-parsed with validation
enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If this is required, the message tree can
be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

384 Message Models



Property Type Meaning

Nillable Check box Select this if you want the element to be able to be defined as null. This is
distinct from being empty where there is no data in the element.

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does
not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message may be defined in either the
current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived
from xsd:string.

Substitution settings

Substitution Groups provide a means by which one element may be substituted for
another in a message. The element which can be substituted is called the ’head’
element, and the substitution group is the list of elements that may be used in its
place. An element can be in at most one substitution group.

Property Type Meaning

Final Enumerated
type

You use this property to limit the set of elements which may belong to its
substitution group.

v Empty

v restriction. Prohibit element substitution by elements whose types are
restrictions of the head element’s type.

v extension. Prohibit element substitution by elements whose types are
extensions of the head element’s type.

v #all. Prohibit substitution by any method.

Block Enumerated
type

You use this property to limit the set of elements which may be substituted for
this element in a message.

Select from:

v Empty

v restriction. Prohibit element substitution by elements whose types are
restrictions of the head element’s type

v extension. Prohibit element substitution by elements whose types are
extensions of the head element’s type

v substitution. Prohibit element substitution by members of the element’s
substitution group.

v #all. Prohibit substitution by any method.

Message model reference information 385



Property Type Meaning

Substitution
Group

Enumerated
type

Use this property to specify the name of a ’head’ element. Setting this property
indicates that this element is a member of the substitution group for the ’head’
element.

Abstract Check box Select this if you do not want the element to appear in the message, but require
one of the members of its substitution group to appear in its place.

Global element CWF properties:

There are no properties to show.

Global element XML properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

XML properties for global attribute and global element binary types:

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Binary schema types: base64Binary, hexBinary

386 Message Models



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Physical representation

Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :
v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>
v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.
v base64. Values in this field are specified as digits only, coded in base 64.

XML properties for global attribute and global element Boolean types:

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Boolean schema types: Boolean

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

XML properties for global attribute and global element dateTime types:

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element

Message model reference information 387



v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,
gYearMonth, time

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Physical representation

Property Type Meaning

DateTime
Format

String Specify a format string that specifies the rendering of the value for dateTime
elements.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of dateTime formats.

XML properties for global attribute and global element decimal types:

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

XML properties for global attribute and global element float types:

388 Message Models



The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Float schema types: double, float

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

XML properties for global attribute and global element integer types:

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

XML properties for global attribute and global element string types:

The XML Wire Format properties described here apply to:
v Objects: Global Attribute, Global Element
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Message model reference information 389



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

Global element TDS properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

TDS properties for global element binary types:

The TDS Format properties described here apply to:
v Objects: Global Element

390 Message Models



v Binary schema types: base64Binary, hexBinary

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

For all Messaging Standard values, the Physical Type property is set to Binary and
cannot be changed.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

The default is dependent on the setting of the message set property Derive default
length from logical type. If Derive default length from logical type is selected, the
default value is derived from any length or maxLength value constraint (schema
facet) on the object’s simple type.

Length Units Enumerated
type

Always set to Bytes

TDS properties for global element Boolean types:

The TDS Format properties described here apply to:
v Objects: Global Element
v Boolean schema types: Boolean

Message model reference information 391



Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Binary. The data is in bit string format.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

TDS properties for global element dateTime types:

The TDS Format properties described here apply to:
v Objects: Global Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

392 Message Models



Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length
units) of the data string that follows the length byte. The maximum length of
a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in
length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X’00’.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v Binary. The data is in bit string format.

v Time Seconds. This value supports C time_t, and Java Date and Time objects.
It is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t, and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Message model reference information 393



Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if one of the following statements is true:

v Physical Type is Packed Decimal.

v Physical Type is Text, no Length Reference is specified, and the Data Element
Separation of the parent complex type or group is Fixed Length, Tagged Fixed
Length, or Fixed Length AL3.

The default is dependent on the physical type of the object.

If Physical Type is Length Encoded String 1, Length Encoded String 2, or Null
Terminated String, this property is not applicable.

If Physical Type is Time Seconds, the value of this property is 4, and cannot be
changed.

If Physical Type is Time Milliseconds, the value of this property is 8, and cannot
be changed.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

394 Message Models



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

DateTime
Format

String Specify a template for date and time.

The default DateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of date and time formats.

Numeric representation

Property Type Meaning

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

Message model reference information 395



Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

TDS properties for global element decimal types:

The TDS Format properties described here apply to:
v Objects: Global Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

396 Message Models



Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any totalDigits value constraint (schema facet) or, if none, any
minInclusive, maxInclusive, minExclusive, or maxExclusive value constraints
(schema facets), on the simple type.

Message model reference information 397



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

398 Message Models



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Numeric representation

Property Type Meaning

Signed Check box Specify whether or not the value is signed.

Sign EBCDIC
Custom
Overpunched

Check box Specify whether EBCDIC custom sign format is used.

This property is applicable only if the Signed property is selected and the
Physical Type property is set to External Decimal.

Message model reference information 399



Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, ″+″ is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal
Point

Button and
Integer

Specify a nonzero integer that represents the position of an implied decimal
point within a number, or specify 0 (zero, the default) to use the formatting of
Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right hand side of the number. For example, if you specify 3, the
decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right hand side of the number. For example, if you specify -3, the
decimal value 1234 represents 1 234 000

400 Message Models



Property Type Meaning

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value of
the Virtual Decimal Point property is 0, which indicates that the decimal point is
present in the data. It deals with truncation, and specifies how many digits
should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For
example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data
is truncated. For example, the value 123.4567 is truncated to 123.45 if you set
Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even if there are no fractional digits. The
decimal separator must be present in the input bit stream, even if no fractional
digits are present.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

Message model reference information 401



TDS properties for global element float types:

The TDS Format properties described here apply to:
v Objects: Global Element
v Float schema types: double, float

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Float. This equates to the data type FLOAT or DOUBLE in C, or the COMP-1
or COMP-2 numeric data type in COBOL.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

402 Message Models



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 403



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Numeric representation

Property Type Meaning

Signed Check box Specify whether or not the value is signed.

Sign EBCDIC
Custom
Overpunched

Check box Specify whether EBCDIC custom sign format is used.

This property is applicable only if the Signed property is selected and the
Physical Type property is set to External Decimal.

404 Message Models



Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, ″+″ is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal
Point

Button and
Integer

Specify a nonzero integer that represents the position of an implied decimal
point within a number, or specify 0 (zero, the default) to use the formatting of
Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right hand side of the number. For example, if you specify 3, the
decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right hand side of the number. For example, if you specify -3, the
decimal value 1234 represents 1 234 000

Message model reference information 405



Property Type Meaning

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value of
the Virtual Decimal Point property is 0, which indicates that the decimal point is
present in the data. It deals with truncation, and specifies how many digits
should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For
example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data
is truncated. For example, the value 123.4567 is truncated to 123.45 if you set
Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even if there are no fractional digits. The
decimal separator must be present in the input bit stream, even if no fractional
digits are present.

v Exponential Notation - Example ″1.23456e002″: data is written out to the bit
stream as a signed value having the format [sign1]a.bbbe[sign2]ccc where:

– [sign1] is the value of Negative Sign if the value is negative

– a is a single decimal digit

– bbb is one or more decimal digits

– [sign2] is the value of Negative Sign if the exponent is negative

– ccc is exactly three decimal digits (the exponent)

[sign1] and [sign2] are absent if the value and exponent, respectively, are
positive.

For example, the value -123.456 is represented as -1.23456e002 and the value
0.00012 is represented as 1.2e-004 in the output bit stream (assuming that the
value of Negative Sign is ″-″, and the value of Sign Orientation is Leading).

The value -0.00012 is represented as 1.2*e*004 if Negative Sign is ″*″ and Sign
Orientation is Trailing.

406 Message Models



Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

TDS properties for global element integer types:

The TDS Format properties described here apply to:
v Objects: Global Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Message model reference information 407



Property Type Meaning

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any totalDigits value constraint (schema facet) or, if none, any
minInclusive, maxInclusive, minExclusive, or maxExclusive value constraints
(schema facets), on the simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

408 Message Models



Property Type Meaning

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Numeric representation

Property Type Meaning

Signed Check box Specify whether or not the value is signed.

Message model reference information 409



Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box Specify whether EBCDIC custom sign format is used.

This property is applicable only if the Signed property is selected and the
Physical Type property is set to External Decimal.

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, ″+″ is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

410 Message Models



Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

TDS properties for global element interval types:

The TDS Format properties described here apply to:
v Objects: Global Element
v Interval schema types: duration

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Message model reference information 411



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length
units) of the data string that follows the length byte. The maximum length of
a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in
length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X’00’.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any length or maxLength value constraint (schema facet) on the
simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

412 Message Models



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Message model reference information 413



Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

TDS properties for global element string types:

The TDS Format properties described here apply to:
v Objects: Global Element
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

414 Message Models



Property Type Meaning

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Interpret
Element Value

Enumerated
type

Specify whether values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.
This interpretation is generally standard-specific and is therefore hard-coded.

The possible values for this property are:

v None (the default value)

v EDIFACT Service String

v X12 Service String

v Message Key

v EDIFACT Syntax Level ID

v HL7 Service String

v HL7 Field Separator

Note: The Message Key enumeration has been deprecated

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length
units) of the data string that follows the length byte. The maximum length of
a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in
length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X’00’.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any length or maxLength value constraint (schema facet) on the
simple type.

Message model reference information 415



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

416 Message Models



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Message model reference information 417



Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Global group properties

A global element can have the following properties;
v “Global group logical properties” on page 200
v “Global group CWF properties” on page 218
v “Global group XML properties” on page 226
v “Global group TDS properties” on page 237
v “Documentation properties for all message set objects” on page 185

Global group logical properties:

Valid children in a global group that depend on both Composition and Content
Validation are shown in “MRM content validation” on page 191.

418 Message Models



Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Message model reference information 419

http://www.w3.org/TR/REC-xml
http://www.w3.org/


Property Type Meaning

Composition Enumerated
type

Define the order, and the number of occurrences, of the elements and groups in
your messages. Composition does not affect the attributes in a complex type.

Select from:

v Empty

v sequence. If you select this option, you can define members that are elements
or groups. These members, if present, must appear in the specified order in
the message. They can repeat, and the same element or group can appear
more than once.

v choice. If you select this option, you can define members that are elements or
groups. Exactly one of the defined members must be present in the message,
and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a
Custom Wire Format, or an XML DTD element that uses choice in an XML
Wire Format, or a SWIFT field that has more than one option.

v all. If you select this option, you can define members that are elements;
groups are not allowed. The elements in an all group can appear in any
order. Each element can appear once, or not at all. An all group can only be
used at the top level of a complex type - it cannot be a member of another
group within a type.

v unorderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat but the
same element cannot appear twice in the list of members. The elements can
appear in any order in the message.

v orderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements must
appear in the specified order in the message.

v message.

This option is supported only by the MRM domain.

If you select this option, you can define only messages as members. Each
member can repeat, but the same message cannot appear twice in the list of
members. Like choice, only one of the defined members can be present in a
message.

Unlike choice, when writing a message, if the complex type or group has
more than one member, the bit stream is not padded to the length of the
longest member.

Use this option to model multipart messages, which are used in some
industry standards, for example, SWIFT. For more information, see the section
on multipart messages in “Multipart messages” on page 26.

420 Message Models



Property Type Meaning

Content
Validation

Enumerated
type

Content Validation is used only by the MRM domain. If validation is enabled in
your message flow, Content Validation specifies the strictness of the MRM
validation for members of a complex type or group. See “MRM content
validation” on page 191 for further details.

Options:

v Closed. The complex type can only contain the child elements that you have
added to it.

v Open Defined. The complex type can contain any valid element defined within
the message set.

v Open. The complex type can contain any valid element, not just those that you
have added to this complex type.

See “Combinations of Composition and Content Validation” on page 295 for
further details of these options.

Global group CWF properties:

There are no properties to show.

Global group XML properties:

There are no properties to show.

Global group TDS properties:

Message model reference information 421



Field Identification

Property Type Meaning

Data Element
Separation

Enumerated
type

Select one of the following values to specify the method that is used to separate
the data elements within the type.

v Tagged Delimited. This value indicates that all elements within the complex
type are identified by a tag, and are separated by the value that is specified in
the optional Delimiter property (if specified). You must set the Tag property for
all child elements of simple type, and you can set the Delimiter property to a
non-empty value. See “Global element TDS properties” on page 236. You must
also set the Tag Data Separator or the Length of Tag property.

v Tagged Fixed Length. This value indicates that each element is identified by a
tag, and the data has a fixed length. There are no delimiters. You must set the
Tag property for each of the child elements of this complex type, and each
child element must have a Length or Length Reference property assigned to it.
You must also set the Tag Data Separator or the Length of Tag property.

v Tagged Encoded Length. This value indicates that all elements within the
complex type are separated by a tag, and a length field follows each tag.
There are no delimiters. The tag can be fixed length, as set by the Length of Tag
property, or variable length delimited by the Tag Data Separator property. You
must also set the Length Of Encoded Length property so that the parser knows
the size of the length field, and set the Extra Chars in Encoded Length property
to tell the parser what to subtract from the value in the Length Of Encoded
Length property to get the actual length of the data that follows the length
field.

This method provides a more flexible way of handling ACORD AL3 standard
messages than using the Fixed Length AL3 value, by allowing different parts
of the messages to be at different versions of the ACORD AL3 standard.

v All Elements Delimited. This value indicates that all elements within the
complex type are separated by a delimiter. You must set a value in the
Delimiter property.

v Variable Length Elements Delimited. This value indicates that some of the
elements within the complex type might be of variable length; if they are, they
must be delimited by the value that is specified in the Delimiter property.

v Use Data Pattern. This value indicates that the parser determines the
elements by matching the data with the regular expression that is set in the
Data Pattern property of the element or type member. See “Message definition
file properties” on page 183.

v Fixed Length. This value indicates that all elements within the complex type
are fixed length. The next data element is accessed by adding the value of the
Length property to the offset. See “Global element TDS properties” on page
236. If you set the Data Element Separation property of a complex type to Fixed
Length, you must also set the Data Element Separation property of all complex
children of this type to Fixed Length. Each child element must have a Length
or Length Reference property assigned to it.

v Fixed Length AL3. This value has a similar meaning to the separation type
Fixed Length, but also indicates to the parser that a number of predefined
rules with regard to missing optional elements, encoded lengths, and
versioning, must be applied. If you set the Data Element Separation property of
a complex type to Fixed Length AL3, you must also set the Data Element
Separation property of all complex children of this type to Fixed Length AL3.

v Undefined. This value is set automatically if you set the Type Composition
property of a complex type to Message, and you cannot change it to any other
value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,
Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check
in the type.

422 Message Models



Property Type Meaning

Group Indicator String Specify the value of a special character, or string, that precedes the data that
belongs to a group, or a complex type, within the bit stream.

Group
Terminator

String Specify the value of a special character, or string, that terminates the data that
belongs to a group, or a complex type, within the bit stream.

Delimiter String Specify the value of a special character, or string, that specifies the delimiter that
is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

Suppress
Absent Element
Delimiters

Enumerated
type

Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message.

Select from:

v End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to 3 elements
and only 2 are present, the last delimiter can be omitted from the message.

v Never. Use this option to ensure that even if optional elements are not present,
all delimiters are written out. This option should be used when the same
delimiter is used to delimit parent and child objects. For example, if an
optional child element is missing, message processing applications could not
tell where the child elements in a message ended and the next parent element
started, if the delimiters are all the same.

Observe
Element Length

Check box This property is applicable when Data Element Separation is All Elements
Delimited, and tells the TDS parser to take any Length property of child
elements or attributes into account. The default value depends on the setting of
the Messaging Standard property (at the message set level) and the Data Element
Separation property.

v If Data Element Separation is All Elements Delimited and the Messaging
Standard is set to TLOG, the check box is selected. For all other messaging
standards, the check box is cleared.

v If Data Element Separation is Tagged Delimited, the check box is cleared.

v If Data Element Separation is Tagged Fixed Length, Fixed Length, Fixed Length
AL3, or Variable Length Elements Delimited, this property is set and is
disabled.

v For all other data element separation methods, this property is not set and is
disabled.

Tag Data
Separator

Button and
String

Specify the value of a special character or string that separates the Tag from the
data. The Tag Data Separator and Length of Tag properties are mutually exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods (Tagged
Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of Tag Button and
Integer

Specify the length of a tag value. When the message is parsed, this allows tags
to be extracted from the bit stream if the Tag Data Separator property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If you
set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods (Tagged
Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Message model reference information 423



Property Type Meaning

Length of
Encoded
Length

Integer Specifies the number of characters (not bytes) after a tag that are used for the
length field. Enter a value from 0 to 2 147 483 647.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of
the Extra Chars in Encoded Length property.

Extra Chars in
Encoded
Length

Integer (Only valid if the Data Element Separation method is set to Tagged Encoded
Length.) Specifies the number of extra characters included in the value found in
the length field. (For example, the value in the length might include the size of
the length field itself as well as the size of the data field, or it might be the total
size of the tag, length, and data fields.)

Enter a value from 0 to 2 147 483 647. The parser subtracts this number from the
number found in the length field to get the number of data characters that follow
the length field.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length, and the actual number of data characters is less than
the value found in the length field.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Group reference properties

A group reference can have the following properties;
v “Group reference logical properties” on page 202
v “Group reference CWF properties” on page 218
v “Group reference XML properties” on page 226
v “Group reference TDS properties” on page 240
v “Documentation properties for all message set objects” on page 185

Group reference logical properties:

Property Type Meaning

Reference Name Enumerated
type

The Reference Name is the name of the object that this object is referring to. The
objects available to reference can be selected from the drop-down list.

424 Message Models



Occurrence properties

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is
1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is
1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1 to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Group reference CWF properties:
Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Message model reference information 425



Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Group reference XML properties:

There are no properties to show.

Group reference TDS properties:

The following tables describe the TDS properties of a group reference.

Field identification

Property Type Meaning

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Occurrences

Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

426 Message Models



Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Key properties

A key can have the following properties;
v “Key logical properties” on page 202
v “Key CWF properties” on page 219
v “Key XML properties” on page 226
v “Key TDS properties” on page 241
v “Documentation properties for all message set objects” on page 185

Key logical properties:

There are no properties to show.

Key CWF properties:

There are no properties to show.

Key XML properties:

There are no properties to show.

Key TDS properties:

There are no properties to show.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Keyref properties

A keyref can have the following properties;
v “Keyref logical properties” on page 202
v “Keyref CWF properties” on page 219
v “Keyref XML properties” on page 226
v “Keyref TDS properties” on page 241
v “Documentation properties for all message set objects” on page 185

Keyref logical properties:

Message model reference information 427



There are no properties to show.

Keyref CWF properties:

There are no properties to show.

Keyref XML properties:

There are no properties to show.

Keyref TDS properties:

There are no properties to show.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Local attribute properties

A local attribute can have the following properties;
v “Local attribute logical properties” on page 203
v “Local attribute CWF properties” on page 219
v “Local attribute XML properties” on page 226
v “Local attribute TDS properties” on page 241
v “Documentation properties for all message set objects” on page 185

Local attribute logical properties:

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

428 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/


Property Type Meaning

Type Enumerated
type

The Type property constrains the type of data that can be present in the object.

There are a limited number of types available directly from the drop-down
selector. These are;

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), this starts the Type Selection wizard. From this wizard
you can select any of the available types.

If you select (New Simple Type), this starts the New Simple Type wizard which
allows you to create an Anonymous simple type that is based on an existing
type. This can be created locally or globally.

If you select (New Complex Type), this starts the New Complex Type wizard
which allows you to create an Anonymous complex type which can be derived
from an existing base type. This can be created locally or globally.

For further information about these types, and examples of their use see the
XML Schema Part 0: Primer which can be found on the World Wide Web
Consortium (W3C) Web site.

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Value

The Value properties are used in conjunction with the Usage property in an
Attribute Reference or a Local Attribute.

Message model reference information 429

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/


Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If this is required, the
message tree can be serialized and then re-parsed with validation
enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If this is required, the message tree can
be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

430 Message Models



Property Type Meaning

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does
not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message may be defined in either the
current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived
from xsd:string.

Usage properties

Property Type Meaning

Usage Enumerated
type

The usage property is used in conjunction with the Value property found in an
attribute object. The default for the Usage property is optional.

Select from;

v optional.

– Where the Value property is set to default and no data has been entered in
the Value property, the attribute can appear once and can have any value.

– Where the Value property is set to default, the attribute can appear once. If
it does not appear, its value is the data that has been entered in the Value
property. If it does appear it is the value given.

– Where the Value property is set to fixed, the attribute can appear once. If it
does appear, its value must match the data that has been entered in the
Value property. If it does not appear its value is the data that has been
entered in the Value property.

v prohibited. The attribute must not appear.

v required.

– Where the Value property is set to default and no data has been entered in
the Value property, the attribute must appear once and can have any value.

– Where the Value property is set to fixed, the attribute must appear once
and it must match the data that has been entered in the Value property.

Local attribute CWF properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Message model reference information 431



Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

CWF properties for attribute reference and local attribute binary types:

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Binary schema types: base64Binary, hexBinary

Physical representation

Property Type Meaning

Length Button and
Integer

If you have selected the length to be defined by Length, enter the number of
length units for the element.

The minimum value that you can specify is 1.

The maximum value that you can specify is 2147483647.

The default value is empty (not set).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
108.

432 Message Models



Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Message model reference information 433



Property Type Meaning

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute Boolean types:

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Boolean schema types: Boolean

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute dateTime types:

The Custom Wire Format properties described here apply to:

434 Message Models



v Objects: Attribute Reference, Local Attribute
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length
properties below.

v Length Encoded String 1. The element’s first byte contains the length of the
string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of
the string following the 2 length bytes in length units. The maximum length
of a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X’00’.

v Packed Decimal. The dateTime is coded as a Packed Decimal number. It is
valid only if the DateTime Format property represents numeric-only data.

v Binary. The dateTime is encoded as a binary sequence of bytes. If you select
this option, the range of symbols that you can specify for the Format String
property is less than the range of symbols you can specify if you select a
string option (see “DateTime formats” on page 765 for details).

v Time Seconds. This value supports C time_t and Java Date and Time objects. It
is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default value is fixed length string.

DateTime
Format

String Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of date and time formats.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal, or
Binary, and have selected the length to be defined by Length, enter the number
of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for
Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
108.

Message model reference information 435



Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this is property is inactive.

436 Message Models



Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is padded
from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Message model reference information 437



Numeric representation

Property Type Meaning

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute decimal types:

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

438 Message Models



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and
256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are
assumed to be 18.)

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Message model reference information 439



Property Type Meaning

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this is property is inactive.

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Numeric representation

Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used in conjunction
with Sign Orientation.

440 Message Models



Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.
No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232'. This is
the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is
positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number
is positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point should be moved from its assumed position.
For example, a decimal element containing 1234 with a Virtual Decimal value of
3 is 1.234. This is equivalent to ’V’ or ’P’ in a COBOL picture clause. There is no
C equivalent

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Message model reference information 441



Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute float types:

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Float schema types: double, float

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1
or COMP-2 data type in COBOL. This is the default value.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer, Packed Decimal, and Float are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Float, select a value from the displayed list. The
default value is 8.

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and
256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are
assumed to be 18.)

442 Message Models



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this is property is inactive.

Message model reference information 443



Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Numeric representation

Property Type Meaning

Signed Check box Select or deselect (unsigned, the default) this property. If you have set Physical
Type to Float, this is selected. This property is used in conjunction with Sign
Orientation.

444 Message Models



Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.
No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232'. This is
the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is
positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number
is positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point should be moved from its assumed position.
For example, a float element containing 1234 with a Virtual Decimal value of 3 is
1.234.

This is not applicable if you have set Physical Type to Float.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Message model reference information 445



Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute integer types:

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you have set Physical Type to Packed Decimal, enter a value between 1 and
6.

v If you have set Physical Type to Extended Decimal, enter a value between 1 and
11.

446 Message Models



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this is property is inactive.

Message model reference information 447



Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Numeric representation

Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used in conjunction
with Sign Orientation.

448 Message Models



Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.
No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232'. This is
the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is
positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number
is positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Message model reference information 449



Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

CWF properties for attribute reference and local attribute string types:

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length
properties below.

v Length Encoded String 1. The element’s first byte contains the length of the
string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of
the string following the 2 length bytes in length units. The maximum length
of a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X’00’.

The default is Fixed Length String.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String or Binary, and have
selected the length to be defined by Length, enter the number of length units for
the element.

The minimum value that you can specify is 0 (zero), the maximum value that
you can specify is 2147483647

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
108.

450 Message Models



Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this is property is inactive.

Message model reference information 451



Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is padded
from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

452 Message Models



Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Local attribute XML properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Message model reference information 453



Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

XML properties for attribute reference, element reference, local attribute, local element
binary types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Binary schema types: base64Binary, hexBinary

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

454 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 455



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :
v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>
v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.
v base64. Values in this field are specified as digits only, coded in base 64.

XML properties for attribute reference, element reference, local attribute, local element
Boolean types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Boolean schema types: Boolean

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

456 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 457



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element
dateTime types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

458 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 459



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

DateTime
Format

String Specify a format string that specifies the rendering of the value for dateTime
elements.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of dateTime formats.

XML properties for attribute reference, element reference, local attribute, local element
decimal types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

460 Message Models



Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 461



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element float
types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Float schema types: double, float

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

462 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 463



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element
integer types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

464 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 465



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element
string types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

466 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 467



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Local attribute TDS properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

468 Message Models



Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

TDS properties for local attribute binary types:

The TDS Format properties described here apply to:
v Objects: Local Attribute
v Binary schema types: base64Binary, hexBinary

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Message model reference information 469



Physical representation

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

The default is dependent on the setting of the message set property Derive default
length from logical type. If Derive default length from logical type is selected, the
default value is derived from any length or maxLength value constraint (schema
facet) on the object’s simple type.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

TDS properties for local attribute Boolean types:

The TDS Format properties described here apply to:
v Objects: Local Attribute
v Boolean schema types: Boolean

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

470 Message Models



Property Type Meaning

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Binary. The data is in bit string format.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

TDS properties for local attribute dateTime types:

The TDS Format properties described here apply to:
v Objects: Local Attribute
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Message model reference information 471



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length
units) of the data string that follows the length byte. The maximum length of
a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in
length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X’00’.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v Binary. The data is in bit string format.

v Time Seconds. This value supports C time_t, and Java Date and Time objects.
It is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t, and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any length or maxLength value constraint (schema facet) on the
simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

472 Message Models



Property Type Meaning

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Message model reference information 473



Property Type Meaning

DateTime
Format

String Specify a template for date and time.

The default DateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of date and time formats.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Numeric representation

Property Type Meaning

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

TDS properties for local attribute decimal types:

The TDS Format properties described here apply to:
v Objects: Local Attribute
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

474 Message Models



Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any length or maxLength value constraint (schema facet) on the
simple type.

Message model reference information 475



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

476 Message Models



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Message model reference information 477



Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Numeric representation

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, ″+″ is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal
Point

Button and
Integer

Specify a nonzero integer that represents the position of an implied decimal
point within a number, or specify 0 (zero, the default) to use the formatting of
Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right hand side of the number. For example, if you specify 3, the
decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right hand side of the number. For example, if you specify -3, the
decimal value 1234 represents 1 234 000

478 Message Models



Property Type Meaning

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value of
the Virtual Decimal Point property is 0, which indicates that the decimal point is
present in the data. It deals with truncation, and specifies how many digits
should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For
example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data
is truncated. For example, the value 123.4567 is truncated to 123.45 if you set
Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even if there are no fractional digits. The
decimal separator must be present in the input bit stream, even if no fractional
digits are present.

TDS properties for local attribute float types:

The TDS Format properties described here apply to:
v Objects: Local Attribute
v Float schema types: double, float

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Message model reference information 479



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Float. This equates to the data type FLOAT or DOUBLE in C, or the COMP-1
or COMP-2 numeric data type in COBOL.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any length or maxLength value constraint (schema facet) on the
simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

480 Message Models



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Message model reference information 481



Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Numeric representation

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, ″+″ is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal
Point

Button and
Integer

Specify a nonzero integer that represents the position of an implied decimal
point within a number, or specify 0 (zero, the default) to use the formatting of
Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right hand side of the number. For example, if you specify 3, the
decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right hand side of the number. For example, if you specify -3, the
decimal value 1234 represents 1 234 000

482 Message Models



Property Type Meaning

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value of
the Virtual Decimal Point property is 0, which indicates that the decimal point is
present in the data. It deals with truncation, and specifies how many digits
should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For
example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data
is truncated. For example, the value 123.4567 is truncated to 123.45 if you set
Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even if there are no fractional digits. The
decimal separator must be present in the input bit stream, even if no fractional
digits are present.

v Exponential Notation - Example ″1.23456e002″: data is written out to the bit
stream as a signed value having the format [sign1]a.bbbe[sign2]ccc where:

– [sign1] is the value of Negative Sign if the value is negative

– a is a single decimal digit

– bbb is one or more decimal digits

– [sign2] is the value of Negative Sign if the exponent is negative

– ccc is exactly three decimal digits (the exponent)

[sign1] and [sign2] are absent if the value and exponent, respectively, are
positive.

For example, the value -123.456 is represented as -1.23456e002 and the value
0.00012 is represented as 1.2e-004 in the output bit stream (assuming that the
value of Negative Sign is ″-″, and the value of Sign Orientation is Leading).

The value -0.00012 is represented as 1.2*e*004 if Negative Sign is ″*″ and Sign
Orientation is Trailing.

TDS properties for local attribute integer types:

The TDS Format properties described here apply to:
v Objects: Local Attribute
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Message model reference information 483



Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any length or maxLength value constraint (schema facet) on the
simple type.

484 Message Models



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 485



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

486 Message Models



Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Numeric representation

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, ″+″ is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

TDS properties for local attribute string types:

The TDS Format properties described here apply to:
v Objects: Local Attribute
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Message model reference information 487



Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Interpret
Element Value

Enumerated
type

Specify whether values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.
This interpretation is generally standard-specific and is therefore hard-coded.

The possible values for this property are:

v None (the default value)

v EDIFACT Service String

v X12 Service String

v Message Key

v EDIFACT Syntax Level ID

v HL7 Service String

v HL7 Field Separator

Note: The Message Key enumeration has been deprecated

488 Message Models



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length
units) of the data string that follows the length byte. The maximum length of
a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in
length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X’00’.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any length or maxLength value constraint (schema facet) on the
simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Message model reference information 489



Property Type Meaning

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

490 Message Models



Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Local element properties

A local element can have the following properties;
v “Local element logical properties” on page 206
v “Local element CWF properties” on page 220
v “Local element XML properties” on page 227
v “Local element TDS properties” on page 242
v “Documentation properties for all message set objects” on page 185

Local element logical properties:

Message model reference information 491



Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Type Enumerated
type

The Type property constrains the type of data that can be present in the object.

There are a limited number of types available directly from the drop-down
selector. These are;

v int

v string

v Boolean

v hexBinary

v dateTime

v date

v time

v decimal

v float

v (More...)

v (New Simple Type)

v (New Complex Type)

If you select (More...), this starts the Type Selection wizard. From this wizard
you can select any of the available types.

If you select (New Simple Type), this starts the New Simple Type wizard which
allows you to create an Anonymous simple type that is based on an existing
type. This can be created locally or globally.

If you select (New Complex Type), this starts the New Complex Type wizard
which allows you to create an Anonymous complex type which can be derived
from an existing base type. This can be created locally or globally.

For further information about these types, and examples of their use see the
XML Schema Part 0: Primer which can be found on the World Wide Web
Consortium (W3C) Web site.

492 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/
http://www.w3.org/


Property Type Meaning

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is
1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is
1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1 to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Value

Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If this is required, the
message tree can be serialized and then re-parsed with validation
enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Message model reference information 493



Property Type Meaning

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If this is required, the message tree can
be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

Nillable Check box Select this if you want the element to be able to be defined as null. This is
distinct from being empty where there is no data in the element.

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does
not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message may be defined in either the
current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived
from xsd:string.

Substitution settings

Substitution Groups provide a means by which one element may be substituted for
another in a message. The element which can be substituted is called the ’head’
element, and the substitution group is the list of elements that may be used in its
place. An element can be in at most one substitution group.

494 Message Models



Property Type Meaning

Final Enumerated
type

You use this property to limit the set of elements which may belong to its
substitution group.

v Empty

v restriction. Prohibit element substitution by elements whose types are
restrictions of the head element’s type.

v extension. Prohibit element substitution by elements whose types are
extensions of the head element’s type.

v #all. Prohibit substitution by any method.

Block Enumerated
type

You use this property to limit the set of elements which may be substituted for
this element in a message.

Select from:

v Empty

v restriction. Prohibit element substitution by elements whose types are
restrictions of the head element’s type

v extension. Prohibit element substitution by elements whose types are
extensions of the head element’s type

v substitution. Prohibit element substitution by members of the element’s
substitution group.

v #all. Prohibit substitution by any method.

Substitution
Group

Enumerated
type

Use this property to specify the name of a ’head’ element. Setting this property
indicates that this element is a member of the substitution group for the ’head’
element.

Abstract Check box Select this if you do not want the element to appear in the message, but require
one of the members of its substitution group to appear in its place.

Local element CWF properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Message model reference information 495



Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

CWF properties for element reference and local element binary types:

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Binary schema types: base64Binary, hexBinary

Physical representation

Property Type Meaning

Length Button and
Integer

If you have selected the length to be defined by Length, enter the number of
length units for the element.

The minimum value that you can specify is 1.

The maximum value that you can specify is 2147483647.

The default value is empty (not set).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

496 Message Models



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Message model reference information 497



Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

CWF properties for element reference and local element Boolean types:

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Boolean schema types: Boolean

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

498 Message Models



Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

CWF properties for element reference and local element dateTime types:

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length
properties below.

v Length Encoded String 1. The element’s first byte contains the length of the
string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of
the string following the 2 length bytes in length units. The maximum length
of a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X’00’.

v Packed Decimal. The dateTime is coded as a Packed Decimal number. It is
valid only if the DateTime Format property represents numeric-only data.

v Binary. The dateTime is encoded as a binary sequence of bytes. If you select
this option, the range of symbols that you can specify for the Format String
property is less than the range of symbols you can specify if you select a
string option (see “DateTime formats” on page 765 for details).

v Time Seconds. This value supports C time_t and Java Date and Time objects. It
is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default value is fixed length string.

Message model reference information 499



Property Type Meaning

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal, or
Binary, and have selected the length to be defined by Length, enter the number
of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for
Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

500 Message Models



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this is property is inactive.

Message model reference information 501



Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is padded
from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

DateTime
Format

String Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of date and time formats.

502 Message Models



Numeric representation

Property Type Meaning

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list. The option that you
select determines the value that you must set for the property Encoding Null
Value:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The
field is filled with the value specified by the Padding Character. This is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. Use this option when the value you
have set for Encoding Null Value to specify a null date is not a dateTime value,
or does not conform to the standard dateTime format yyyy-MM-dd ’T’HH:mm:ss.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Encoding Null
Value

String If you set the Encoding Null property to NULLPadFill, this property is disabled
(grayed out).

If you set the Encoding Null property to NULLLogicalValue, you must set this
property to an ISO8601 dateTime format. These formats are described in
“DateTime as string data” on page 765. For example, specify a value conforming
to yyyy-MM-dd’T’HH:mm:ss such as 1970-12-01.

If you set the Encoding Null property to NULLLiteralValue, you can enter any
value that is the same length as the field.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Message model reference information 503



Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

CWF properties for element reference and local element decimal types:

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

504 Message Models



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and
256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are
assumed to be 18.)

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Message model reference information 505



Property Type Meaning

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this is property is inactive.

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Numeric representation

Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used in conjunction
with Sign Orientation.

506 Message Models



Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.
No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232'. This is
the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is
positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number
is positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point should be moved from its assumed position.
For example, a decimal element containing 1234 with a Virtual Decimal value of
3 is 1.234. This is equivalent to ’V’ or ’P’ in a COBOL picture clause. There is no
C equivalent

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field
is filled with the value specified by the Padding Character. Encoding Null Value
must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Message model reference information 507



Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, described
above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

508 Message Models



CWF properties for element reference and local element float types:

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Float schema types: double, float

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1
or COMP-2 data type in COBOL. This is the default value.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer, Packed Decimal, and Float are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Float, select a value from the displayed list. The
default value is 8.

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and
256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are
assumed to be 18.)

Message model reference information 509



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this is property is inactive.

510 Message Models



Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Numeric representation

Property Type Meaning

Signed Check box Select or deselect (unsigned, the default) this property. If you have set Physical
Type to Float, this is selected. This property is used in conjunction with Sign
Orientation.

Message model reference information 511



Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.
No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232'. This is
the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is
positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number
is positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point should be moved from its assumed position.
For example, a float element containing 1234 with a Virtual Decimal value of 3 is
1.234.

This is not applicable if you have set Physical Type to Float.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field
is filled with the value specified by the Padding Character. Encoding Null Value
must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

512 Message Models



Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, described
above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Message model reference information 513



CWF properties for element reference and local element integer types:

The Custom Wire Format properties described here apply to:
v Objects: Element Reference, Local Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you have set Physical Type to Packed Decimal, enter a value between 1 and
6.

v If you have set Physical Type to Extended Decimal, enter a value between 1 and
11.

514 Message Models



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this is property is inactive.

Message model reference information 515



Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Numeric representation

Property Type Meaning

Signed Check box Select (the default) or clear this property. This property is used in conjunction
with Sign Orientation.

516 Message Models



Property Type Meaning

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.
No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232'. This is
the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is
positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number
is positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field
is filled with the value specified by the Padding Character. Encoding Null Value
must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Message model reference information 517



Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, described
above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

518 Message Models



CWF properties for element reference and local element string types:

The Custom Wire Format properties described here apply to:
v Objects: Attribute Reference, Local Attribute
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length
properties below.

v Length Encoded String 1. The element’s first byte contains the length of the
string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of
the string following the 2 length bytes in length units. The maximum length
of a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X’00’.

The default is Fixed Length String.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String or Binary, and have
selected the length to be defined by Length, enter the number of length units for
the element.

The minimum value that you can specify is 0 (zero), the maximum value that
you can specify is 2147483647

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Message model reference information 519



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this is property is inactive.

520 Message Models



Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is padded
from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Message model reference information 521



Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The
field is filled with the value specified by the Padding Character. Encoding Null
Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Encoding Null
Value

STRING The use of this property depends on the Encoding Null property, described
above. If specified, its length must be equal to the length of the string element,
with the exception of NULLLiteralFill.

The default value is empty (not set).

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

522 Message Models



Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Local element XML properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Note:

1. duration: The physical format properties for simple type duration are the same as the physical properties of the
String logical types.

XML properties for attribute reference, element reference, local attribute, local element
binary types:

Message model reference information 523



The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Binary schema types: base64Binary, hexBinary

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

524 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 525



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :
v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>
v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.
v base64. Values in this field are specified as digits only, coded in base 64.

XML properties for attribute reference, element reference, local attribute, local element
Boolean types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Boolean schema types: Boolean

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

526 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 527



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element
dateTime types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

528 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 529



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

DateTime
Format

String Specify a format string that specifies the rendering of the value for dateTime
elements.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of dateTime formats.

XML properties for attribute reference, element reference, local attribute, local element
decimal types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

530 Message Models



Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 531



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element float
types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Float schema types: double, float

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

532 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 533



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element
integer types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

534 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 535



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML properties for attribute reference, element reference, local attribute, local element
string types:

The XML Wire Format properties described here apply to:
v Objects: Attribute Reference, Element Reference, Local Attribute, Local Element
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

536 Message Models



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 537



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Local element TDS properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

538 Message Models



Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

TDS properties for local element binary types:

The TDS Format properties described here apply to:
v Objects: Local Element
v Binary schema types: base64Binary, hexBinary

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

For all Messaging Standard values, the Physical Type property is set to Binary and
cannot be changed.

Message model reference information 539



Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

The default is dependent on the setting of the message set property Derive default
length from logical type. If Derive default length from logical type is selected, the
default value is derived from any length or maxLength value constraint (schema
facet) on the object’s simple type.

Length Units Enumerated
type

Always set to Bytes

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

540 Message Models



TDS properties for local element Boolean types:

The TDS Format properties described here apply to:
v Objects: Local Element
v Boolean schema types: Boolean

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Binary. The data is in bit string format.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Message model reference information 541



Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

TDS properties for local element dateTime types:

The TDS Format properties described here apply to:
v Objects: Local Element
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

542 Message Models



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length
units) of the data string that follows the length byte. The maximum length of
a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in
length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X’00’.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v Binary. The data is in bit string format.

v Time Seconds. This value supports C time_t, and Java Date and Time objects.
It is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t, and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if one of the following statements is true:

v Physical Type is Packed Decimal.

v Physical Type is Text, no Length Reference is specified, and the Data Element
Separation of the parent complex type or group is Fixed Length, Tagged Fixed
Length, or Fixed Length AL3.

The default is dependent on the physical type of the object.

If Physical Type is Length Encoded String 1, Length Encoded String 2, or Null
Terminated String, this property is not applicable.

If Physical Type is Time Seconds, the value of this property is 4, and cannot be
changed.

If Physical Type is Time Milliseconds, the value of this property is 8, and cannot
be changed.

Message model reference information 543



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

544 Message Models



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

DateTime
Format

String Specify a template for date and time.

The default DateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of date and time formats.

Message model reference information 545



Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Numeric representation

Property Type Meaning

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

546 Message Models



Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

TDS properties for local element decimal types:

The TDS Format properties described here apply to:
v Objects: Local Element
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Message model reference information 547



Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any totalDigits value constraint (schema facet) or, if none, any
minInclusive, maxInclusive, minExclusive, or maxExclusive value constraints
(schema facets), on the simple type.

548 Message Models



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 549



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

550 Message Models



Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Numeric representation

Property Type Meaning

Signed Check box Specify whether or not the value is signed.

Sign EBCDIC
Custom
Overpunched

Check box Specify whether EBCDIC custom sign format is used.

This property is applicable only if the Signed property is selected and the
Physical Type property is set to External Decimal.

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, ″+″ is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal
Point

Button and
Integer

Specify a nonzero integer that represents the position of an implied decimal
point within a number, or specify 0 (zero, the default) to use the formatting of
Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right hand side of the number. For example, if you specify 3, the
decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right hand side of the number. For example, if you specify -3, the
decimal value 1234 represents 1 234 000

Message model reference information 551



Property Type Meaning

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value of
the Virtual Decimal Point property is 0, which indicates that the decimal point is
present in the data. It deals with truncation, and specifies how many digits
should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For
example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data
is truncated. For example, the value 123.4567 is truncated to 123.45 if you set
Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even if there are no fractional digits. The
decimal separator must be present in the input bit stream, even if no fractional
digits are present.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

552 Message Models



Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

TDS properties for local element float types:

The TDS Format properties described here apply to:
v Objects: Local Element
v Float schema types: double, float

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Message model reference information 553



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Float. This equates to the data type FLOAT or DOUBLE in C, or the COMP-1
or COMP-2 numeric data type in COBOL.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

554 Message Models



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Message model reference information 555



Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Numeric representation

Property Type Meaning

Signed Check box Specify whether or not the value is signed.

Sign EBCDIC
Custom
Overpunched

Check box Specify whether EBCDIC custom sign format is used.

This property is applicable only if the Signed property is selected and the
Physical Type property is set to External Decimal.

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, ″+″ is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Virtual Decimal
Point

Button and
Integer

Specify a nonzero integer that represents the position of an implied decimal
point within a number, or specify 0 (zero, the default) to use the formatting of
Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right hand side of the number. For example, if you specify 3, the
decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right hand side of the number. For example, if you specify -3, the
decimal value 1234 represents 1 234 000

556 Message Models



Property Type Meaning

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value of
the Virtual Decimal Point property is 0, which indicates that the decimal point is
present in the data. It deals with truncation, and specifies how many digits
should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For
example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data
is truncated. For example, the value 123.4567 is truncated to 123.45 if you set
Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even if there are no fractional digits. The
decimal separator must be present in the input bit stream, even if no fractional
digits are present.

v Exponential Notation - Example ″1.23456e002″: data is written out to the bit
stream as a signed value having the format [sign1]a.bbbe[sign2]ccc where:

– [sign1] is the value of Negative Sign if the value is negative

– a is a single decimal digit

– bbb is one or more decimal digits

– [sign2] is the value of Negative Sign if the exponent is negative

– ccc is exactly three decimal digits (the exponent)

[sign1] and [sign2] are absent if the value and exponent, respectively, are
positive.

For example, the value -123.456 is represented as -1.23456e002 and the value
0.00012 is represented as 1.2e-004 in the output bit stream (assuming that the
value of Negative Sign is ″-″, and the value of Sign Orientation is Leading).

The value -0.00012 is represented as 1.2*e*004 if Negative Sign is ″*″ and Sign
Orientation is Trailing.

Message model reference information 557



Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

558 Message Models



TDS properties for local element integer types:

The TDS Format properties described here apply to:
v Objects: Local Element
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any totalDigits value constraint (schema facet) or, if none, any
minInclusive, maxInclusive, minExclusive, or maxExclusive value constraints
(schema facets), on the simple type.

Message model reference information 559



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

560 Message Models



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Message model reference information 561



Property Type Meaning

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Numeric representation

Property Type Meaning

Signed Check box Specify whether or not the value is signed.

Sign EBCDIC
Custom
Overpunched

Check box Specify whether EBCDIC custom sign format is used.

This property is applicable only if the Signed property is selected and the
Physical Type property is set to External Decimal.

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, ″+″ is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

562 Message Models



Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Message model reference information 563



TDS properties for local element interval types:

The TDS Format properties described here apply to:
v Objects: Local Element
v Interval schema types: duration

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length
units) of the data string that follows the length byte. The maximum length of
a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in
length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X’00’.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any length or maxLength value constraint (schema facet) on the
simple type.

564 Message Models



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 565



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

566 Message Models



Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Message model reference information 567



TDS properties for local element string types:

The TDS Format properties described here apply to:
v Objects: Local Element
v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,

Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token

Field Identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Interpret
Element Value

Enumerated
type

Specify whether values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.
This interpretation is generally standard-specific and is therefore hard-coded.

The possible values for this property are:

v None (the default value)

v EDIFACT Service String

v X12 Service String

v Message Key

v EDIFACT Syntax Level ID

v HL7 Service String

v HL7 Field Separator

Note: The Message Key enumeration has been deprecated

568 Message Models



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length
units) of the data string that follows the length byte. The maximum length of
a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in
length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X’00’.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any length or maxLength value constraint (schema facet) on the
simple type.

Length Units Enumerated
type

Select the unit of length for the object.

Select one of the following options (some physical types do not offer both
options):

v Bytes. The length is given in bytes.

v Characters. The length is given in characters. This means that the number of
bytes that are processed in the bit stream depends on the code page of the
message.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the contents of the bit stream. The parser
reads one character at a time and determines whether the character
comprises one or more bytes.

The default is dependent on the physical type of the object.

Message model reference information 569



Property Type Meaning

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

570 Message Models



Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Inclusive
Length
Reference

Check box This property is applicable only if Length Reference is set.

If the check box is selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object plus the length of
the sibling integer object.

If the check box is not selected, the value of the sibling integer object that is
identified by Length Reference is the length of the current object only.

If the check box is selected, the Length Units property of the sibling integer object
must be the same as that of the current object.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

Message model reference information 571



Occurrences

Property Type Meaning

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Local group properties

A local group can have the following properties;
v “Local group logical properties” on page 210
v “Local group CWF properties” on page 221
v “Local group XML properties” on page 228
v “Local group TDS properties” on page 242
v “Documentation properties for all message set objects” on page 185

Local group logical properties:

Valid children in a local group that depend on both Composition and Content
Validation are shown in “MRM content validation” on page 191.

572 Message Models



Property Type Meaning

Composition Enumerated
type

Define the order, and the number of occurrences, of the elements and groups in
your messages. Composition does not affect the attributes in a complex type.

Select from:

v Empty

v sequence. If you select this option, you can define members that are elements
or groups. These members, if present, must appear in the specified order in
the message. They can repeat, and the same element or group can appear
more than once.

v choice. If you select this option, you can define members that are elements or
groups. Exactly one of the defined members must be present in the message,
and can repeat.

Use this option if you want to model C unions and COBOL REDEFINES in a
Custom Wire Format, or an XML DTD element that uses choice in an XML
Wire Format, or a SWIFT field that has more than one option.

v all. If you select this option, you can define members that are elements;
groups are not allowed. The elements in an all group can appear in any
order. Each element can appear once, or not at all. An all group can only be
used at the top level of a complex type - it cannot be a member of another
group within a type.

v unorderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat but the
same element cannot appear twice in the list of members. The elements can
appear in any order in the message.

v orderedSet.

This option is supported only by the MRM domain.If you select this option,
you can define members that are elements. The elements can repeat, but the
same element cannot appear twice in the list of members. The elements must
appear in the specified order in the message.

v message.

This option is supported only by the MRM domain.

If you select this option, you can define only messages as members. Each
member can repeat, but the same message cannot appear twice in the list of
members. Like choice, only one of the defined members can be present in a
message.

Unlike choice, when writing a message, if the complex type or group has
more than one member, the bit stream is not padded to the length of the
longest member.

Use this option to model multipart messages, which are used in some
industry standards, for example, SWIFT. For more information, see the section
on multipart messages in “Multipart messages” on page 26.

Message model reference information 573



Property Type Meaning

Content
Validation

Enumerated
type

Content Validation is used only by the MRM domain. If validation is enabled in
your message flow, Content Validation specifies the strictness of the MRM
validation for members of a complex type or group. See “MRM content
validation” on page 191 for further details.

Options:

v Closed. The complex type can only contain the child elements that you have
added to it.

v Open Defined. The complex type can contain any valid element defined within
the message set.

v Open. The complex type can contain any valid element, not just those that you
have added to this complex type.

See “Combinations of Composition and Content Validation” on page 295 for
further details of these options.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is
1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is
1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1 to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Local group CWF properties:

The CWF properties of a local group are described in the following tables.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

574 Message Models



Property Type Meaning

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Local group XML properties:

There are no properties to show.

Local group TDS properties:

Message model reference information 575



Field Identification

Property Type Meaning

Data Element
Separation

Enumerated
type

Select one of the following values to specify the method that is used to separate
the data elements within the type.

v Tagged Delimited. This value indicates that all elements within the complex
type are identified by a tag, and are separated by the value that is specified in
the optional Delimiter property (if specified). You must set the Tag property for
all child elements of simple type, and you can set the Delimiter property to a
non-empty value. See “Global element TDS properties” on page 236. You must
also set the Tag Data Separator or the Length of Tag property.

v Tagged Fixed Length. This value indicates that each element is identified by a
tag, and the data has a fixed length. There are no delimiters. You must set the
Tag property for each of the child elements of this complex type, and each
child element must have a Length or Length Reference property assigned to it.
You must also set the Tag Data Separator or the Length of Tag property.

v Tagged Encoded Length. This value indicates that all elements within the
complex type are separated by a tag, and a length field follows each tag.
There are no delimiters. The tag can be fixed length, as set by the Length of Tag
property, or variable length delimited by the Tag Data Separator property. You
must also set the Length Of Encoded Length property so that the parser knows
the size of the length field, and set the Extra Chars in Encoded Length property
to tell the parser what to subtract from the value in the Length Of Encoded
Length property to get the actual length of the data that follows the length
field.

This method provides a more flexible way of handling ACORD AL3 standard
messages than using the Fixed Length AL3 value, by allowing different parts
of the messages to be at different versions of the ACORD AL3 standard.

v All Elements Delimited. This value indicates that all elements within the
complex type are separated by a delimiter. You must set a value in the
Delimiter property.

v Variable Length Elements Delimited. This value indicates that some of the
elements within the complex type might be of variable length; if they are, they
must be delimited by the value that is specified in the Delimiter property.

v Use Data Pattern. This value indicates that the parser determines the
elements by matching the data with the regular expression that is set in the
Data Pattern property of the element or type member. See “Message definition
file properties” on page 183.

v Fixed Length. This value indicates that all elements within the complex type
are fixed length. The next data element is accessed by adding the value of the
Length property to the offset. See “Global element TDS properties” on page
236. If you set the Data Element Separation property of a complex type to Fixed
Length, you must also set the Data Element Separation property of all complex
children of this type to Fixed Length. Each child element must have a Length
or Length Reference property assigned to it.

v Fixed Length AL3. This value has a similar meaning to the separation type
Fixed Length, but also indicates to the parser that a number of predefined
rules with regard to missing optional elements, encoded lengths, and
versioning, must be applied. If you set the Data Element Separation property of
a complex type to Fixed Length AL3, you must also set the Data Element
Separation property of all complex children of this type to Fixed Length AL3.

v Undefined. This value is set automatically if you set the Type Composition
property of a complex type to Message, and you cannot change it to any other
value.

Do not set the Type Composition property to Empty, Choice, Unordered Set,
Ordered Set, Sequence, or Simple Unordered Set. If you do, you cannot check
in the type.

576 Message Models



Property Type Meaning

Group Indicator String Specify the value of a special character, or string, that precedes the data that
belongs to a group, or a complex type, within the bit stream.

Group
Terminator

String Specify the value of a special character, or string, that terminates the data that
belongs to a group, or a complex type, within the bit stream.

Delimiter String Specify the value of a special character, or string, that specifies the delimiter that
is used between data elements.

This property applies only to the delimited Data Element Separation methods
(Tagged Delimited, All Elements Delimited, and Variable Length Elements
Delimited).

Suppress
Absent Element
Delimiters

Enumerated
type

Use this property to select whether you want delimiters to be suppressed for
elements that are missing within a message.

Select from:

v End Of Type. Use this option to suppress the delimiter when an element is
missing. For example, if the model has been defined to have up to 3 elements
and only 2 are present, the last delimiter can be omitted from the message.

v Never. Use this option to ensure that even if optional elements are not present,
all delimiters are written out. This option should be used when the same
delimiter is used to delimit parent and child objects. For example, if an
optional child element is missing, message processing applications could not
tell where the child elements in a message ended and the next parent element
started, if the delimiters are all the same.

Observe
Element Length

Check box This property is applicable when Data Element Separation is All Elements
Delimited, and tells the TDS parser to take any Length property of child
elements or attributes into account. The default value depends on the setting of
the Messaging Standard property (at the message set level) and the Data Element
Separation property.

v If Data Element Separation is All Elements Delimited and the Messaging
Standard is set to TLOG, the check box is selected. For all other messaging
standards, the check box is cleared.

v If Data Element Separation is Tagged Delimited, the check box is cleared.

v If Data Element Separation is Tagged Fixed Length, Fixed Length, Fixed Length
AL3, or Variable Length Elements Delimited, this property is set and is
disabled.

v For all other data element separation methods, this property is not set and is
disabled.

Tag Data
Separator

Button and
String

Specify the value of a special character or string that separates the Tag from the
data. The Tag Data Separator and Length of Tag properties are mutually exclusive.

If you set the property Tag Data Separator, it overrides Length of Tag.

This property applies only to the tagged Data Element Separation methods (Tagged
Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Length of Tag Button and
Integer

Specify the length of a tag value. When the message is parsed, this allows tags
to be extracted from the bit stream if the Tag Data Separator property is not set.

The Tag Data Separator and Length of Tag properties are mutually exclusive. If you
set the property Tag Data Separator, it overrides this value.

This property applies only to the tagged Data Element Separation methods (Tagged
Delimited, Tagged Fixed Length, and Tagged Encoded Length).

Message model reference information 577



Property Type Meaning

Length of
Encoded
Length

Integer Specifies the number of characters (not bytes) after a tag that are used for the
length field. Enter a value from 0 to 2 147 483 647.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length; it is not valid otherwise.

The actual number of data characters that are parsed depends on the value of
the Extra Chars in Encoded Length property.

Extra Chars in
Encoded
Length

Integer (Only valid if the Data Element Separation method is set to Tagged Encoded
Length.) Specifies the number of extra characters included in the value found in
the length field. (For example, the value in the length might include the size of
the length field itself as well as the size of the data field, or it might be the total
size of the tag, length, and data fields.)

Enter a value from 0 to 2 147 483 647. The parser subtracts this number from the
number found in the length field to get the number of data characters that follow
the length field.

You must set this property if you have set the Data Element Separation property
to Tagged Encoded Length, and the actual number of data characters is less than
the value found in the length field.

Field Identification

Property Type Meaning

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Occurrences

Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Repeat
reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the drop-down list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

578 Message Models



Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Message properties

A message can have the following properties;
v “Message logical properties” on page 212
v “Message CWF properties” on page 222
v “Message XML properties” on page 228
v “Message TDS properties” on page 246
v “Documentation properties for all message set objects” on page 185

Message logical properties:

This section describes the logical properties of a message.

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Message Alias String Specify an alternative unique value that identifies the message. This property is
only required if you are using the MRM domain and the Message Identity
technique to identify embedded messages, and the bit stream does not contain
the actual message name.

Message CWF properties:

There are no properties to show.

Message XML properties:

The following tables describe the XML properties of a message.

Message model reference information 579

http://www.w3.org/TR/REC-xml
http://www.w3.org/


Namespace schema locations

This property is only active if namespaces have been enabled.

Property Type Meaning

Namespace URI String A unique string, usually in the form of a URL that identifies the schema for this

If namespaces have not been enabled, this property will display <no target
namespace>.

This property will overide the same property at the message set level.

Schema location String Enter the location of the schema for the associated namespace name that will be
used to validate objects within the namespace.

XML declarations

Property Type Meaning

Output
Namespace
Declaration

Enumerated
type

The Output Namespace Declaration property controls where the namespace
declarations will placed in the output XML document.

Select from:

v At start of document. Declarations for all of the entries in the Namespace
schema locations table above will be output as attributes of the message in the
output XML document. The disadvantage of this option is that in some cases
unnecessary declarations may be output.

v As required. Declarations will only be output when required by an element or
attribute that is in that namespace. The disadvantage of this option is that the
same namespace declaration may need to be output more than once in the
output XML document.

The default option is At start of document.

This property is only active if namespaces are enabled for this message set.

XML document type settings

Property Type Meaning

DOCTYPE
System ID

String Specify the System ID for DOCTYPE external DTD subset. It overrides the
equivalent message set property setting for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is
ignored and cannot be changed (the field is disabled) .

The default value is the value that you specified for the DOCTYPE System ID
property for the message set.

DOCTYPE
Public ID

String Specify the Public ID for DOCTYPE external DTD subset. It overrides the
equivalent message set property setting for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is
ignored and cannot be changed (the field is disabled) .

The default value is the value that you specified for the DOCTYPE Public ID
property for the message set.

580 Message Models



Property Type Meaning

DOCTYPE Text String Enter optional additional text to include within the DOCTYPE. It overrides the
message set property for this particular message.

If the message set property Suppress DOCTYPE is set to Yes, this parameter is
ignored and cannot be changed (the field is disabled) .

For more information, see “MRM XML: In-line DTDs and the DOCTYPE text
property” on page 182.

The default value is the value that you specified for the DOCTYPE Text property
for the message set.

Property Type Meaning

Root Tag Name String Specify the name of the root tag for a message bit stream XML document. It
overrides the message set property set for this message.

The default value is the value that you specified for the Root Tag Name property
for the message set.
Note: This property is deprecated. Do not change its value from its default
setting.

Field identification

A number of the following properties will only become active depending on the
value that Render property is set to.

Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

Message model reference information 581



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Message TDS properties:

Property Type Meaning

Message Key String Specify an alternative unique value that identifies the message in the bit stream.
This property is required if the message is embedded within another message.
Note: From Version 6.0 onwards, the use of Message Key has been deprecated
for identifying an embedded message. You now have the option of identifying
an embedded message by Message Identity, using the Message Alias logical
property.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Simple type properties

A simple type can have the following properties;
v “Simple type logical properties” on page 213
v “Simple type CWF properties” on page 222
v “Simple type XML properties” on page 230
v “Simple type TDS properties” on page 246
v “Documentation properties for all message set objects” on page 185

582 Message Models



A simple type can also have “Simple type logical value constraints” on page 214.

Simple type logical properties:

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Base Type Enumerated
type

This property only applies to a simple type restriction.

You can use this property to select a base type that is used as the starting point
to define a new simple type that is derived by setting additional value
constraints.

Item Type Enumerated
type

This property only applies to a simple type list.

You can use this property to select the type that is used as the item type of the
list.

Variety Enumerated
type

This property displays the variety of the simple type you have selected, either
atomic, list, or union.

A simple type can also have “Simple type logical value constraints” on page 214.

Simple type logical value constraints:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- base64Binary
- hexBinary

Boolean types

- Boolean

DateTime types

- date
- dateTime
- gDay
- gMonth
- gMonthDay
- gYear
- gYearMonth
- time

Decimal types

- decimal
- integer
- negativeInteger
- nonNegativeInteger
- nonPositiveInteger
- positiveInteger
- unsignedLong

Message model reference information 583

http://www.w3.org/TR/REC-xml
http://www.w3.org/


Float types

- double
- float

Integer types

- byte
- int
- long
- short
- unsignedByte
- unsignedInt
- unsignedShort

Interval types

- duration

String types

- anyURI
- ENTITIES
- ENTITY
- ID
- IDREF
- IDREFS
- language
- Name
- NCName
- NMTOKEN
- NMTOKENS
- normalizedString
- NOTATION
- QName
- string
- token

Logical properties for value constraints for simple type binary types:

The simple type value constraint properties described here apply to:
v Objects: Simple types
v Binary schema types: base64Binary, hexBinary

Length constraints

Property Type Meaning

Length Integer The length property is used to specify the exact length of the simple type in
bytes or characters.

The value must be greater than 0 and less than 2147483648.

Min Integer The Min property is used to specify the minimum length of the simple type in
bytes or characters.

The value must be greater than 0 and less than 2147483648.

Max Integer The Max property is used to specify the maximum length of the simple type in
bytes or characters.

The value must be greater than 0 and less than 2147483648.

Property Type Meaning

White Space Enumerated
type

The White Space controls the processing of white space characters received for
this type.

The value of White Space must be one of;

v preserve. If you set the property to preserve, all white space characters
including carriage return, line feed and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed and
tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed and
tab characters are replaced with a space character. Any adjacent white space
characters are then collapsed to a single space character and any leading or
trailing spaces are stripped from the data.

584 Message Models



Enumerations

Property Type Meaning

Enumerations String Enumerations constrain the values to the list that is specified in this property. For
example, you might create a simple type called RainbowColors, and add Red,
Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations list.

You need to ensure that you have all variations of the data that you are likely to
receive in the message defined in the list. For example, Yellow, yellow, yel, y
might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data
you require.

If you need to change an entry, select the entry, then click on the entry a second
time (as distinct from double-click). The selected entry can then be updated.

Patterns

Property Type Meaning

Patterns String Patterns are a regular expression or a series of regular expressions used to
constrain the data within the simple type. For further information about patterns
and their syntax see “Using regular expressions to parse data elements” on page
759.

Select Add to add a default pattern. Overtype the default with the data you
require.

If you need to change an entry, select the entry, then click on the entry a second
time (as distinct from double-click). The selected entry can then be updated.

Logical properties for value constraints for simple type Boolean types:

The simple type value constraint properties described here apply to:
v Objects: Simple types
v Boolean schema types: Boolean

Property Type Meaning

White Space Enumerated
type

The White Space controls the processing of white space characters received for
this type.

The value of White Space must be one of;

v preserve. If you set the property to preserve, all white space characters
including carriage return, line feed and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed and
tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed and
tab characters are replaced with a space character. Any adjacent white space
characters are then collapsed to a single space character and any leading or
trailing spaces are stripped from the data.

Message model reference information 585



Patterns

Property Type Meaning

Patterns String Patterns are a regular expression or a series of regular expressions used to
constrain the data within the simple type. For further information about patterns
and their syntax see “Using regular expressions to parse data elements” on page
759.

Select Add to add a default pattern. Overtype the default with the data you
require.

If you need to change an entry, select the entry, then click on the entry a second
time (as distinct from double-click). The selected entry can then be updated.

Logical properties for value constraints for simple type dateTime types:

The simple type value constraint properties described here apply to:
v Objects: Simple types
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time

Inclusive Constraints

Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in
the message must be greater than or equal to.

When this value is set it cannot be equal to or greater than the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

Max Integer The Max property is used to specify the maximum value for which the data in
the message must be less than or equal to.

When this value is set it cannot be equal to or less than the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Exclusive Constraints

Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in
the message must be greater than.

When this value is set it cannot be equal to or greater than the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

586 Message Models



Property Type Meaning

Max Integer The Max property is used to specify the maximum value for which the data in
the message must be less than.

When this value is set it cannot be equal to or less than the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Property Type Meaning

White Space Enumerated
type

The White Space controls the processing of white space characters received for
this type.

The value of White Space must be one of;

v preserve. If you set the property to preserve, all white space characters
including carriage return, line feed and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed and
tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed and
tab characters are replaced with a space character. Any adjacent white space
characters are then collapsed to a single space character and any leading or
trailing spaces are stripped from the data.

Enumerations

Property Type Meaning

Enumerations String Enumerations constrain the values to the list that is specified in this property. For
example, you might create a simple type called RainbowColors, and add Red,
Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations list.

You need to ensure that you have all variations of the data that you are likely to
receive in the message defined in the list. For example, Yellow, yellow, yel, y
might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data
you require.

If you need to change an entry, select the entry, then click on the entry a second
time (as distinct from double-click). The selected entry can then be updated.

Patterns

Property Type Meaning

Patterns String Patterns are a regular expression or a series of regular expressions used to
constrain the data within the simple type. For further information about patterns
and their syntax see “Using regular expressions to parse data elements” on page
759.

Select Add to add a default pattern. Overtype the default with the data you
require.

If you need to change an entry, select the entry, then click on the entry a second
time (as distinct from double-click). The selected entry can then be updated.

Message model reference information 587



Logical properties for value constraints for simple type decimal types:

The simple type value constraint properties described here apply to:
v Objects: Simple types
v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,

nonPositiveInteger, positiveInteger, unsignedLong

Inclusive Constraints

Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in
the message must be greater than or equal to.

When this value is set it cannot be equal to or greater than the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

Max Integer The Max property is used to specify the maximum value for which the data in
the message must be less than or equal to.

When this value is set it cannot be equal to or less than the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Exclusive Constraints

Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in
the message must be greater than.

When this value is set it cannot be equal to or greater than the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

Max Integer The Max property is used to specify the maximum value for which the data in
the message must be less than.

When this value is set it cannot be equal to or less than the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Property Type Meaning

Fraction Digits Integer Set this property to limit the number of digits in the fraction part of a numerical
value to the number of digits specified in this property.

The value must be greater than or equal to 0 and less than 2147483648.

The value set for Fraction Digits cannot be greater than the value specified for
Total Digits.

588 Message Models



Property Type Meaning

Total Digits Integer Set this property to set the maximum number of digits in a numerical value to
the number of digits specified in this property.

The value must be greater than or equal to 0 and less than 2147483648.

The value set for Total Digits cannot be less than the value specified for Fraction
Digits.

Property Type Meaning

White Space Enumerated
type

The White Space controls the processing of white space characters received for
this type.

The value of White Space must be one of;

v preserve. If you set the property to preserve, all white space characters
including carriage return, line feed and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed and
tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed and
tab characters are replaced with a space character. Any adjacent white space
characters are then collapsed to a single space character and any leading or
trailing spaces are stripped from the data.

Enumerations

Property Type Meaning

Enumerations String Enumerations constrain the values to the list that is specified in this property. For
example, you might create a simple type called RainbowColors, and add Red,
Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations list.

You need to ensure that you have all variations of the data that you are likely to
receive in the message defined in the list. For example, Yellow, yellow, yel, y
might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data
you require.

If you need to change an entry, select the entry, then click on the entry a second
time (as distinct from double-click). The selected entry can then be updated.

Patterns

Property Type Meaning

Patterns String Patterns are a regular expression or a series of regular expressions used to
constrain the data within the simple type. For further information about patterns
and their syntax see “Using regular expressions to parse data elements” on page
759.

Select Add to add a default pattern. Overtype the default with the data you
require.

If you need to change an entry, select the entry, then click on the entry a second
time (as distinct from double-click). The selected entry can then be updated.

Logical properties for value constraints for simple type float types:

Message model reference information 589



The simple type value constraint properties described here apply to:
v Objects: Simple types
v Float schema types: double, float

Inclusive Constraints

Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in
the message must be greater than or equal to.

When this value is set it cannot be equal to or greater than the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

Max Integer The Max property is used to specify the maximum value for which the data in
the message must be less than or equal to.

When this value is set it cannot be equal to or less than the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Exclusive Constraints

Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in
the message must be greater than.

When this value is set it cannot be equal to or greater than the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

Max Integer The Max property is used to specify the maximum value for which the data in
the message must be less than.

When this value is set it cannot be equal to or less than the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

590 Message Models



Property Type Meaning

White Space Enumerated
type

The White Space controls the processing of white space characters received for
this type.

The value of White Space must be one of;

v preserve. If you set the property to preserve, all white space characters
including carriage return, line feed and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed and
tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed and
tab characters are replaced with a space character. Any adjacent white space
characters are then collapsed to a single space character and any leading or
trailing spaces are stripped from the data.

Enumerations

Property Type Meaning

Enumerations String Enumerations constrain the values to the list that is specified in this property. For
example, you might create a simple type called RainbowColors, and add Red,
Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations list.

You need to ensure that you have all variations of the data that you are likely to
receive in the message defined in the list. For example, Yellow, yellow, yel, y
might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data
you require.

If you need to change an entry, select the entry, then click on the entry a second
time (as distinct from double-click). The selected entry can then be updated.

Patterns

Property Type Meaning

Patterns String Patterns are a regular expression or a series of regular expressions used to
constrain the data within the simple type. For further information about patterns
and their syntax see “Using regular expressions to parse data elements” on page
759.

Select Add to add a default pattern. Overtype the default with the data you
require.

If you need to change an entry, select the entry, then click on the entry a second
time (as distinct from double-click). The selected entry can then be updated.

Logical properties for value constraints for simple type integer types:

The simple type value constraint properties described here apply to:
v Objects: Simple types
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Message model reference information 591



Inclusive Constraints

Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in
the message must be greater than or equal to.

When this value is set it cannot be equal to or greater than the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

Max Integer The Max property is used to specify the maximum value for which the data in
the message must be less than or equal to.

When this value is set it cannot be equal to or less than the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Exclusive Constraints

Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in
the message must be greater than.

When this value is set it cannot be equal to or greater than the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

Max Integer The Max property is used to specify the maximum value for which the data in
the message must be less than.

When this value is set it cannot be equal to or less than the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Property Type Meaning

Fraction Digits Integer Set this property to limit the number of digits in the fraction part of a numerical
value to the number of digits specified in this property.

The value must be greater than or equal to 0 and less than 2147483648.

The value set for Fraction Digits cannot be greater than the value specified for
Total Digits.

Property Type Meaning

Total Digits Integer Set this property to set the maximum number of digits in a numerical value to
the number of digits specified in this property.

The value must be greater than or equal to 0 and less than 2147483648.

The value set for Total Digits cannot be less than the value specified for Fraction
Digits.

592 Message Models



Property Type Meaning

White Space Enumerated
type

The White Space controls the processing of white space characters received for
this type.

The value of White Space must be one of;

v preserve. If you set the property to preserve, all white space characters
including carriage return, line feed and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed and
tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed and
tab characters are replaced with a space character. Any adjacent white space
characters are then collapsed to a single space character and any leading or
trailing spaces are stripped from the data.

Enumerations

Property Type Meaning

Enumerations String Enumerations constrain the values to the list that is specified in this property. For
example, you might create a simple type called RainbowColors, and add Red,
Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations list.

You need to ensure that you have all variations of the data that you are likely to
receive in the message defined in the list. For example, Yellow, yellow, yel, y
might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data
you require.

If you need to change an entry, select the entry, then click on the entry a second
time (as distinct from double-click). The selected entry can then be updated.

Patterns

Property Type Meaning

Patterns String Patterns are a regular expression or a series of regular expressions used to
constrain the data within the simple type. For further information about patterns
and their syntax see “Using regular expressions to parse data elements” on page
759.

Select Add to add a default pattern. Overtype the default with the data you
require.

If you need to change an entry, select the entry, then click on the entry a second
time (as distinct from double-click). The selected entry can then be updated.

Logical properties for value constraints for simple type interval types:

The simple type value constraint properties described here apply to:
v Objects: Simple types
v Interval schema types: duration

Message model reference information 593



Inclusive Constraints

Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in
the message must be greater than or equal to.

When this value is set it cannot be equal to or greater than the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

Max Integer The Max property is used to specify the maximum value for which the data in
the message must be less than or equal to.

When this value is set it cannot be equal to or less than the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Exclusive Constraints

Property Type Meaning

Min Integer The Min property is used to specify the minimum value for which the data in
the message must be greater than.

When this value is set it cannot be equal to or greater than the Max Inclusive
Constraint property.

You cannot specify both Min Inclusive Constraint and Min Exclusive Constraint
properties together for the same simple type.

Max Integer The Max property is used to specify the maximum value for which the data in
the message must be less than.

When this value is set it cannot be equal to or less than the Min Inclusive
Constraint property.

You cannot specify both Max Inclusive Constraint and Max Exclusive Constraint
properties together for the same simple type.

Property Type Meaning

White Space Enumerated
type

The White Space controls the processing of white space characters received for
this type.

The value of White Space must be one of;

v preserve. If you set the property to preserve, all white space characters
including carriage return, line feed and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed and
tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed and
tab characters are replaced with a space character. Any adjacent white space
characters are then collapsed to a single space character and any leading or
trailing spaces are stripped from the data.

594 Message Models



Enumerations

Property Type Meaning

Enumerations String Enumerations constrain the values to the list that is specified in this property. For
example, you might create a simple type called RainbowColors, and add Red,
Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations list.

You need to ensure that you have all variations of the data that you are likely to
receive in the message defined in the list. For example, Yellow, yellow, yel, y
might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data
you require.

If you need to change an entry, select the entry, then click on the entry a second
time (as distinct from double-click). The selected entry can then be updated.

Patterns

Property Type Meaning

Patterns String Patterns are a regular expression or a series of regular expressions used to
constrain the data within the simple type. For further information about patterns
and their syntax see “Using regular expressions to parse data elements” on page
759.

Select Add to add a default pattern. Overtype the default with the data you
require.

If you need to change an entry, select the entry, then click on the entry a second
time (as distinct from double-click). The selected entry can then be updated.

Logical properties for value constraints for simple type string types:

The simple type value constraint properties described here apply to:
v Objects: Simple types
v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort

Length constraints

Property Type Meaning

Length Integer The length property is used to specify the exact length of the simple type in
bytes or characters.

The value must be greater than 0 and less than 2147483648.

Min Integer The Min property is used to specify the minimum length of the simple type in
bytes or characters.

The value must be greater than 0 and less than 2147483648.

Max Integer The Max property is used to specify the maximum length of the simple type in
bytes or characters.

The value must be greater than 0 and less than 2147483648.

Message model reference information 595



Property Type Meaning

White Space Enumerated
type

The White Space controls the processing of white space characters received for
this type.

The value of White Space must be one of;

v preserve. If you set the property to preserve, all white space characters
including carriage return, line feed and tab are preserved.

v replace. If you set the property to replace, all carriage return, line feed and
tab characters are replaced with a space character.

v collapse. If you set the property to collapse, all carriage return, line feed and
tab characters are replaced with a space character. Any adjacent white space
characters are then collapsed to a single space character and any leading or
trailing spaces are stripped from the data.

Enumerations

Property Type Meaning

Enumerations String Enumerations constrain the values to the list that is specified in this property. For
example, you might create a simple type called RainbowColors, and add Red,
Orange, Yellow, Green, Blue, Indigo, and Violet to the enumerations list.

You need to ensure that you have all variations of the data that you are likely to
receive in the message defined in the list. For example, Yellow, yellow, yel, y
might be variations of a single color.

Select Add to add a default enumeration. Overtype the default with the data
you require.

If you need to change an entry, select the entry, then click on the entry a second
time (as distinct from double-click). The selected entry can then be updated.

Patterns

Property Type Meaning

Patterns String Patterns are a regular expression or a series of regular expressions used to
constrain the data within the simple type. For further information about patterns
and their syntax see “Using regular expressions to parse data elements” on page
759.

Select Add to add a default pattern. Overtype the default with the data you
require.

If you need to change an entry, select the entry, then click on the entry a second
time (as distinct from double-click). The selected entry can then be updated.

Simple type CWF properties:

There are no properties to show.

Simple type XML properties:

There are no properties to show.

Simple type TDS properties:

There are no properties to show.

596 Message Models



Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Unique properties

A unique can have the following properties;
v “Unique logical properties” on page 214
v “Unique CWF properties” on page 222
v “Unique XML properties” on page 231
v “Unique TDS properties” on page 246
v “Documentation properties for all message set objects” on page 185

Unique logical properties:

There are no properties to show.

Unique CWF properties:

There are no properties to show.

Unique XML properties:

There are no properties to show.

Unique TDS properties:

There are no properties to show.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Wildcard attribute properties

A wildcard attribute can have the following properties;
v “Wildcard attribute logical properties” on page 214
v “Wildcard attribute CWF properties” on page 222
v “Wildcard attribute XML properties” on page 231
v “Wildcard attribute TDS properties” on page 247
v “Documentation properties for all message set objects” on page 185

Wildcard attribute logical properties:

Message model reference information 597



Property Type Meaning

Namespace String Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

This field is initially blank.

Property Type Meaning

Process Content Enumerated
type

If a message contains an attribute that corresponds to a wildcard in the message
model, Process Content defines how the attribute is validated.

Select from;

v strict. The parser can only match against attributes declared in the specified
namespace.

v lax. The parser attempts to match against attributes declared in any accessible
namespace. If the specified namespace cannot be found, an error is not
generated.

v skip. If you select skip the parser does not perform any validation on the
attribute.

Wildcard attribute CWF properties:

There are no properties to show.

Wildcard attribute XML properties:

There are no properties to show.

Wildcard attribute TDS properties:

There are no properties to show.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Wildcard element properties

A wildcard element can have the following properties;
v “Wildcard element logical properties” on page 215
v “Wildcard element CWF properties” on page 222
v “Wildcard element XML properties” on page 231
v “Wildcard element TDS properties” on page 247
v “Documentation properties for all message set objects” on page 185

Wildcard element logical properties:

598 Message Models



Property Type Meaning

Namespace String Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

This field is initially blank.

Property Type Meaning

Process Content Enumerated
type

If a message contains an element that corresponds to a wildcard in the message
model, Process Content defines how the element is validated.

Select from;

v strict. The parser can only match against elements declared in the specified
namespace.

v lax. The parser attempts to match against elements declared in any accessible
namespace. If the specified namespace cannot be found, an error is not
generated.

v skip. If you select skip the parser does not perform any validation on the
element.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is
1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

This property is ignored by brokers that are earlier than WebSphere Message
Broker Version 6.0.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is
1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1 to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

This property is ignored by brokers that are earlier than WebSphere Message
Broker Version 6.0.

Wildcard element CWF properties:

There are no properties to show.

Wildcard element XML properties:

There are no properties to show.

Wildcard element TDS properties:

Message model reference information 599



There are no properties to show.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Deprecated message model object properties
Some objects in the message model are deprecated, but you can reference the
information for their properties.

You can access the reference information for the properties of deprecated message
model objects in two ways. The following topics allow you to access the property
information by property kind:
v “Logical properties for deprecated message model objects”
v “Physical properties for deprecated message model objects” on page 604
v “Documentation properties for all message set objects” on page 185

Alternatively, you can access the property information by object, starting from the
following topic:
v “Deprecated message model object properties by object” on page 607

Logical properties for deprecated message model objects

Logical property information is available for the following deprecated objects:
v “Compound element logical properties”
v “Embedded simple type logical properties” on page 603

Compound element logical properties

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

600 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/


Property Type Meaning

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Nillable Check box Select this if you want the element to be able to be defined as null. This is
distinct from being empty where there is no data in the element.

Abstract Check box Select this if you do not want the element to appear in the message, but require
one of the members of its substitution group to appear in its place.

Value

Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If this is required, the
message tree can be serialized and then re-parsed with validation
enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Message model reference information 601



Property Type Meaning

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If this is required, the message tree can
be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does
not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message may be defined in either the
current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived
from xsd:string.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is
1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

602 Message Models



Property Type Meaning

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is
1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1 to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Compound element complex type logical properties:

Only the complex type properties shown in the tables below are applicable to
compound elements.

Property Type Meaning

Name String This property is set to **ANONYMOUS** and cannot be changed.

Content:

Property Type Meaning

Group
Reference

Button This radio button is already selected and cannot be changed.

Group Name Enumerated
type

The Group Name is the name of the group that this complex type is referring to.
The groups available to be referenced can be selected from the drop down list.

Compound element value constraint properties:

The properties for compound element value constraints are identical to simple type
value constraints. See “Simple type logical value constraints” on page 214 for
details.

Embedded simple type logical properties
Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is
1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is
1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1 to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Message model reference information 603



Physical properties for deprecated message model objects

Property information is available for deprecated objects within:
v “Custom Wire Format properties for deprecated message model objects”
v “XML wire format physical properties for deprecated message model objects” on

page 605
v “TDS format physical properties for deprecated objects” on page 606

Custom Wire Format properties for deprecated message model
objects

Custom wire format physical property information is available for the following
deprecated objects:
v “Compound element CWF properties”
v “Embedded simple type CWF properties”

Compound element CWF properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- ComIbmMrm
_BaseValueBinary

Boolean types

- ComIbmMrm
_BaseValueBoolean

DateTime types

- ComIbmMrm
_BaseValueDateTime

Decimal types

- ComIbmMrm
_BaseValueDecimal

Float types

- ComIbmMrm
_BaseValueFloat

Integer types

- ComIbmMrm
_BaseValueInt

String types

- ComIbmMrm
_BaseValueString

`

Compound element complex type CWF properties:

There are no properties to show.

Embedded simple type CWF properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

604 Message Models



Binary types

- ComIbmMrm
_AnonBinary

Boolean types

- ComIbmMrm
_AnonBoolean

DateTime types

- ComIbmMrm
_AnonDate

- ComIbmMrm
_AnonDateTime

- ComIbmMrm
_AnonGDay

- ComIbmMrm
_AnonGMonth

- ComIbmMrm
_AnonGMonthDay

- ComIbmMrm
_AnonGYear

- ComIbmMrm
_AnonGYearMonth

- ComIbmMrm
_AnonTime

Decimal types

- ComIbmMrm
_AnonDecimal

Float types

- ComIbmMrm
_AnonFloat

Integer types

- ComIbmMrm
_AnonInt

String types

- ComIbmMrm
_AnonString

XML wire format physical properties for deprecated message
model objects

XML wire format physical property information is available for the following
deprecated objects:
v “Compound element XML properties”
v “Embedded simple type XML properties”

Compound element XML properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- ComIbmMrm
_BaseValueBinary

Boolean types

- ComIbmMrm
_BaseValueBoolean

DateTime types

- ComIbmMrm
_BaseValueDateTime

Decimal types

- ComIbmMrm
_BaseValueDecimal

Float types

- ComIbmMrm
_BaseValueFloat

Integer types

- ComIbmMrm
_BaseValueInt

String types

- ComIbmMrm
_BaseValueString

Compound element complex type XML properties:

There are no properties to show.

Embedded simple type XML properties:

Message model reference information 605



The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- ComIbmMrm
_AnonBinary

Boolean types

- ComIbmMrm
_AnonBoolean

DateTime types

- ComIbmMrm
_AnonDate

- ComIbmMrm
_AnonDateTime

- ComIbmMrm
_AnonGDay

- ComIbmMrm
_AnonGMonth

- ComIbmMrm
_AnonGMonthDay

- ComIbmMrm
_AnonGYear

- ComIbmMrm
_AnonGYearMonth

- ComIbmMrm
_AnonTime

Decimal types

- ComIbmMrm
_AnonDecimal

Float types

- ComIbmMrm
_AnonFloat

Integer types

- ComIbmMrm
_AnonInt

String types

- ComIbmMrm
_AnonString

TDS format physical properties for deprecated objects

TDS format physical property information is available for the following deprecated
objects:
v “Compound element TDS properties”
v “Embedded simple type TDS properties” on page 607

Compound element TDS properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- ComIbmMrm
_BaseValueBinary

Boolean types

- ComIbmMrm
_BaseValueBoolean

DateTime types

- ComIbmMrm
_BaseValueDateTime

Decimal types

- ComIbmMrm
_BaseValueDecimal

Float types

- ComIbmMrm
_BaseValueFloat

Integer types

- ComIbmMrm
_BaseValueInt

String types

- ComIbmMrm
_BaseValueString

Compound element complex type TDS properties:

606 Message Models



The TDS properties for compound element complex types are identical to the TDS
properties for normal complex types. See “Complex type TDS properties” on page
232 for details.

Embedded simple type TDS properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- ComIbmMrm
_AnonBinary

Boolean types

- ComIbmMrm
_AnonBoolean

DateTime types

- ComIbmMrm
_AnonDate

- ComIbmMrm
_AnonDateTime

- ComIbmMrm
_AnonGDay

- ComIbmMrm
_AnonGMonth

- ComIbmMrm
_AnonGMonthDay

- ComIbmMrm
_AnonGYear

- ComIbmMrm
_AnonGYearMonth

- ComIbmMrm
_AnonTime

Decimal types

- ComIbmMrm
_AnonDecimal

Float types

- ComIbmMrm
_AnonFloat

Integer types

- ComIbmMrm
_AnonInt

String types

- ComIbmMrm
_AnonString

Documentation properties for all message set objects

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Deprecated message model object properties by object

The following deprecated objects have properties that can be viewed or set:
v “Compound element properties”
v “Embedded simple type properties” on page 675

Compound element properties

A compound element can have the following properties;
v “Compound element logical properties” on page 600
v “Compound element CWF properties” on page 604
v “Compound element XML properties” on page 605

Message model reference information 607



v “Compound element TDS properties” on page 606
v “Documentation properties for all message set objects” on page 185

Compound element logical properties:

Property Type Meaning

Name String Specify a name for the object when you create it.

Names can consist of virtually any alphanumeric character including the letters
A through Z, a through z and the digits 0 through 9.

They may also include the following punctuation characters;

v - the hyphen

v _ the underscore

v . the period

Names can only start with a letter or the underscore character and not with a
number, hyphen or period.

Names beginning with xml or any variant (for example XmL) are reserved by the
XML standards specification.

Further details of naming conventions and allowable characters can be found in
the Extensible Markup Language (XML) specification that can be found on the
World Wide Web Consortium (W3C) Web site.

Namespace Enumerated
type

Namespaces are a simple method for qualifying element and attribute names by
associating them with namespaces identified by URI references.

If <no target namespace> is displayed, a namespace has not been set for this
object.

If the property is inactive, the message set has not been configured to support
namespaces.

Where the property is active, namespaces that are available for selection are
displayed in the drop-down list.

Nillable Check box Select this if you want the element to be able to be defined as null. This is
distinct from being empty where there is no data in the element.

Abstract Check box Select this if you do not want the element to appear in the message, but require
one of the members of its substitution group to appear in its place.

608 Message Models

http://www.w3.org/TR/REC-xml
http://www.w3.org/


Value

Property Type Meaning

Default Button and
String

This property provides the default value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, default values are applied to
missing attributes and empty elements as required by the XML Schema
1.0 specification. When writing, elements or attributes that are missing
from the message tree are not automatically added to the output XML
bit stream, even if they have default values. If this is required, the
message tree can be serialized and then re-parsed with validation
enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
default value is inserted into the bit stream so that the message
structure is preserved.

MRM (XML physical format)
No support for default values

Other domains
No support for default values.

Fixed Button and
String

This property provides the fixed value for an element or attribute.

XMLNSC domain
When parsing with validation enabled, if an attribute or element is
present, the value is validated against the fixed value. If the values are
not equal, a validation error is signalled. Also, when parsing with
validation enabled, fixed values are applied to missing attributes and
empty elements as required by the XML Schema 1.0 specification. When
writing, elements or attributes that are missing from the message tree
are not automatically added to the output XML bit stream, even if a
fixed value has been specified. If this is required, the message tree can
be serialized and then re-parsed with validation enabled.

MRM (CWF and TDS physical formats)
When writing a fixed-length portion of a message (CWF or fixed-length
TDS), if an attribute or element is missing from the message tree, the
fixed value is inserted into the bit stream so that the message structure
is preserved.

MRM (XML physical format)
No support for fixed values

Other domains
No support for fixed values.

Message model reference information 609



Property Type Meaning

Interpret Value
As

Enumerated
type

Specify if values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.

The possible values for this property are:

v None This is the default value and indicates that the element or attribute does
not have any key value associated with it.

v MessageSetIdentity. Specifies that the value of the element or attribute
corresponds to the identifier, name or alias (in that priority order) that is
associated with the message set where all subsequent embedded messages
that are descendents of the enclosing message are defined. This value remains
in force unless a new element or attribute MessageSetIdentity field is
encountered which resets the MessageSetIdentity value to this new one.

v MessageIdentity. Specifies that the value of the element or attribute
corresponds to the name or alias (in that priority order) that is associated with
a message and acts as an identifier for subsequent embedded messages which
are the immediate children of the enclosing message. This identity applies
until a new element or attribute MessageIdentity field is encountered at the
same level in the tree. The embedded message may be defined in either the
current message set or in a message set identified using a MessageSetIdentity.

Note: This property is only applicable when the type of the object is derived
from xsd:string.

Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is
1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is
1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1 to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Compound element value constraint properties:

The properties for compound element value constraints are identical to simple type
value constraints. See “Simple type logical value constraints” on page 214 for
details.

Compound element CWF properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

610 Message Models



Binary types

- ComIbmMrm
_BaseValueBinary

Boolean types

- ComIbmMrm
_BaseValueBoolean

DateTime types

- ComIbmMrm
_BaseValueDateTime

Decimal types

- ComIbmMrm
_BaseValueDecimal

Float types

- ComIbmMrm
_BaseValueFloat

Integer types

- ComIbmMrm
_BaseValueInt

String types

- ComIbmMrm
_BaseValueString

`

CWF properties for compound element binary types:

The Custom Wire Format properties described here apply to:
v Objects: Compound elements

Physical representation

Property Type Meaning

Length Button and
Integer

If you have selected the length to be defined by Length, enter the number of
length units for the element.

The minimum value that you can specify is 1.

The maximum value that you can specify is 2147483647.

The default value is empty (not set).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
108.

Message model reference information 611



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

612 Message Models



Property Type Meaning

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

CWF properties for compound element Boolean types:

The Custom Wire Format properties described here apply to:
v Objects: Compound elements

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Message model reference information 613



Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

CWF properties for compound element dateTime types:

The Custom Wire Format properties described here apply to:
v Objects: Compound elements

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length
properties below.

v Length Encoded String 1. The element’s first byte contains the length of the
string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of
the string following the 2 length bytes in length units. The maximum length
of a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X’00’.

v Packed Decimal. The dateTime is coded as a Packed Decimal number. It is
valid only if the DateTime Format property represents numeric-only data.

v Binary. The dateTime is encoded as a binary sequence of bytes. If you select
this option, the range of symbols that you can specify for the Format String
property is less than the range of symbols you can specify if you select a
string option (see “DateTime formats” on page 765 for details).

v Time Seconds. This value supports C time_t and Java Date and Time objects. It
is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default value is fixed length string.

DateTime
Format

String Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of date and time formats.

614 Message Models



Property Type Meaning

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal, or
Binary, and have selected the length to be defined by Length, enter the number
of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for
Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
108.

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

Message model reference information 615



Property Type Meaning

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this is property is inactive.

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is padded
from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

616 Message Models



Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list. The option that you
select determines the value that you must set for the property Encoding Null
Value:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The
field is filled with the value specified by the Padding Character. This is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. Use this option when the value you
have set for Encoding Null Value to specify a null date is not a dateTime value,
or does not conform to the standard dateTime format yyyy-MM-dd ’T’HH:mm:ss.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Encoding Null
Value

String If you set the Encoding Null property to NULLPadFill, this property is disabled
(grayed out).

If you set the Encoding Null property to NULLLogicalValue, you must set this
property to an ISO8601 dateTime format. These formats are described in
“DateTime as string data” on page 765. For example, specify a value conforming
to yyyy-MM-dd’T’HH:mm:ss such as 1970-12-01.

If you set the Encoding Null property to NULLLiteralValue, you can enter any
value that is the same length as the field.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Message model reference information 617



Property Type Meaning

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

CWF properties for compound element decimal types:

The Custom Wire Format properties described here apply to:
v Objects: Compound elements

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

618 Message Models



Property Type Meaning

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and
256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are
assumed to be 18.)

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Signed Check box Select (the default) or clear this property. This property is used in conjunction
with Sign Orientation.

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Message model reference information 619



Property Type Meaning

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.
No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232'. This is
the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is
positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number
is positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point should be moved from its assumed position.
For example, a decimal element containing 1234 with a Virtual Decimal value of
3 is 1.234. This is equivalent to ’V’ or ’P’ in a COBOL picture clause. There is no
C equivalent

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this is property is inactive.

620 Message Models



Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field
is filled with the value specified by the Padding Character. Encoding Null Value
must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Message model reference information 621



Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, described
above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

622 Message Models



CWF properties for compound element float types:

The Custom Wire Format properties described here apply to:
v Objects: Compound elements

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1
or COMP-2 data type in COBOL. This is the default value.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer, Packed Decimal, and Float are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Float, select a value from the displayed list. The
default value is 8.

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and
256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are
assumed to be 18.)

Message model reference information 623



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Signed Check box Select or deselect (unsigned, the default) this property. If you have set Physical
Type to Float, this is selected. This property is used in conjunction with Sign
Orientation.

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

624 Message Models



Property Type Meaning

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.
No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232'. This is
the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is
positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number
is positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point should be moved from its assumed position.
For example, a float element containing 1234 with a Virtual Decimal value of 3 is
1.234.

This is not applicable if you have set Physical Type to Float.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this is property is inactive.

Message model reference information 625



Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field
is filled with the value specified by the Padding Character. Encoding Null Value
must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

626 Message Models



Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, described
above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Message model reference information 627



CWF properties for compound element integer types:

The Custom Wire Format properties described here apply to:
v Objects: Compound elements

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you have set Physical Type to Packed Decimal, enter a value between 1 and
6.

v If you have set Physical Type to Extended Decimal, enter a value between 1 and
11.

628 Message Models



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Signed Check box Select (the default) or clear this property. This property is used in conjunction
with Sign Orientation.

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Message model reference information 629



Property Type Meaning

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.
No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232'. This is
the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is
positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number
is positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this is property is inactive.

630 Message Models



Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field
is filled with the value specified by the Padding Character. Encoding Null Value
must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Message model reference information 631



Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, described
above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

632 Message Models



CWF properties for compound element string types:

The Custom Wire Format properties described here apply to:
v Objects: Compound elements

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length
properties below.

v Length Encoded String 1. The element’s first byte contains the length of the
string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of
the string following the 2 length bytes in length units. The maximum length
of a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X’00’.

The default is Fixed Length String.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String or Binary, and have
selected the length to be defined by Length, enter the number of length units for
the element.

The minimum value that you can specify is 0 (zero), the maximum value that
you can specify is 2147483647

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
108.

Message model reference information 633



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this is property is inactive.

634 Message Models



Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is padded
from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Message model reference information 635



Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The
field is filled with the value specified by the Padding Character. Encoding Null
Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Encoding Null
Value

STRING The use of this property depends on the Encoding Null property, described
above. If specified, its length must be equal to the length of the string element,
with the exception of NULLLiteralFill.

The default value is empty (not set).

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

636 Message Models



Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Compound element XML properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- ComIbmMrm
_BaseValueBinary

Boolean types

- ComIbmMrm
_BaseValueBoolean

DateTime types

- ComIbmMrm
_BaseValueDateTime

Decimal types

- ComIbmMrm
_BaseValueDecimal

Float types

- ComIbmMrm
_BaseValueFloat

Integer types

- ComIbmMrm
_BaseValueInt

String types

- ComIbmMrm
_BaseValueString

XML wire format properties for compound element binary types:

The XML Wire Format properties described here apply to:
v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Message model reference information 637



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

638 Message Models



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :
v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>
v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.
v base64. Values in this field are specified as digits only, coded in base 64.

XML wire format properties for compound element Boolean types:

The XML Wire Format properties described here apply to:
v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Message model reference information 639



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

640 Message Models



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML wire format properties for compound element dateTime types:

The XML Wire Format properties described here apply to:
v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Message model reference information 641



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

642 Message Models



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Physical representation

Property Type Meaning

DateTime
Format

String Specify a format string that specifies the rendering of the value for dateTime
elements.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of dateTime formats.

XML wire format properties for compound element decimal types:

The XML Wire Format properties described here apply to:
v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Message model reference information 643



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

644 Message Models



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML wire format properties for compound element float types:

The XML Wire Format properties described here apply to:
v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Message model reference information 645



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

646 Message Models



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML wire format properties for compound element integer types:

The XML Wire Format properties described here apply to:
v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Message model reference information 647



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

648 Message Models



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

XML wire format properties for compound element string types:

The XML Wire Format properties described here apply to:
v Objects: Compound elements

Field identification

A number of the following properties only become active depending on the value
that Render property is set to.

Message model reference information 649



Property Type Meaning

Render Enumerated
type

Specify how the instantiated object or type is rendered (output) in the resulting
XML document. Select one of the following values from the drop-down list:

v XMLElement. If you select this value, the object (or type) is rendered as a child
XML element of the parent complex type. The identity of the child is
determined by the tag name of the child. The value is the content of the child
element.

If you select this value for more than one object, and set their XML
Nameproperty to the same value, both objects must refer to the same element.

This is the default value for element objects.

v XMLAttribute. If you select this value, the object (or type) is rendered as an
attribute of the parent XML object. The identity of the child is determined by
the attribute name. The value is the attribute value. This is only valid for
simple elements.

If you select this value for more than one object , you must set their XML
Name property to different values.

This is the default value for attribute objects.

v XMLElementAttrID. If you select this value, the object (or type) is rendered as a
child XML element of the parent complex type. The identity of the child is
determined by the value of a specified attribute of the child. The value is the
content of the child element. You must add an attribute to the child element
with an attribute name as specified in ID Attribute Name and a value as
specified in ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrIDVal for a second object, and set XML Name, ID Attribute
Name, ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

v XMLElementAttrVal. If you specify this value, the object (or type) is rendered
as a child XML element of the parent complex type. The identity of the child
is determined by the tag name of the child. The value is the value of a
specified attribute. The name of the attribute is specified in Value Attribute
Name.

v XMLElementAttrIDVal. This option combines the two options,
XMLElementAttrID and XMLElementAttrVal. The object is rendered as a child of
the parent complex type. The identity of the child is determined by the value
of ID Attribute Name. The value is the value of ID Attribute Value.

If you select this value for one object, and set this same value or the value
XMLElementAttrID for a second object, and set XML Name, ID Attribute Name,
ID Attribute Value to the same values:

– You must also set Value Attribute Name to the same value for the two
objects.

– Both objects must refer to the same element.

“XML rendering options” on page 735 shows some examples of how these
rendering options affect the XML output, and provides usage recommendations.

650 Message Models



Property Type Meaning

XML Name String Enter a value for the XML element name. This property specifies the name for
the XML start tag or attribute for the element (or attribute) in an XML document
(message).

This can be used to provide name mapping when the MRM identifier needs to
be different from the XML name, for example because of different namespace
rules. It must be a valid XML name.

You cannot specify a name that is already used for another element (or
attribute), or for a message. No two elements (or attribute) or messages can have
the same XML name.

If you do not set a value, it defaults to that of the element’s identifier. If the
element’s identifier is a prefixed identifier, it defaults to the identifier with the
caret character (^) replaced by an underscore (_).

ID Attribute
Name

String Specify the name of the attribute used to identify the child. This must be a valid
XML Attribute Name. This property is ignored and cannot be changed (the field
is disabled) if Render is set to XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is id.

Namespace String Enter the namespace associated with the ID Attribute.

ID Attribute
Value

String Specify the value of the attribute used to identify the child. This property is
ignored and cannot be changed (the field is disabled) if Render is set to
XMLElement, XMLAttribute, or XMLElementAttrVal.

The default value is the identifier of the child.

Value Attribute
Name

String
Specify the name of the attribute used for the value of the child. This must be a
valid XML Attribute Name. This is only used if required by the setting of Render.

The default value is val.

Namespace String Enter the namespace associated with the Value Attribute.

Compound element TDS properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- ComIbmMrm
_BaseValueBinary

Boolean types

- ComIbmMrm
_BaseValueBoolean

DateTime types

- ComIbmMrm
_BaseValueDateTime

Decimal types

- ComIbmMrm
_BaseValueDecimal

Float types

- ComIbmMrm
_BaseValueFloat

Integer types

- ComIbmMrm
_BaseValueInt

String types

- ComIbmMrm
_BaseValueString

TDS properties for compound element binary types:

The TDS properties described here apply to:
v Objects: Compound elements

Message model reference information 651



Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

The default is dependent on the setting of the message set property Derive default
length from logical type. If Derive default length from logical type is selected, the
default value is derived from any length or maxLength value constraint (schema
facet) on the object’s simple type.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

TDS properties for compound element Boolean types:

652 Message Models



The TDS properties described here apply to:
v Objects: Compound elements

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Binary. The data is in bit string format.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Message model reference information 653



Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

TDS properties for compound element dateTime types:

The TDS properties described here apply to:
v Objects: Compound elements

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

654 Message Models



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length
units) of the data string that follows the length byte. The maximum length of
a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in
length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X’00’.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v Binary. The data is in bit string format.

v Time Seconds. This value supports C time_t, and Java Date and Time objects.
It is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t, and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 655



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

DateTime
Format

String Specify a template for date and time.

The default DateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of date and time formats.

656 Message Models



Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

TDS properties for compound element decimal types:

The TDS properties described here apply to:
v Objects: Compound elements

Message model reference information 657



Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

658 Message Models



Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any totalDigits value constraint (schema facet) or, if none, any
minInclusive, maxInclusive, minExclusive, or maxExclusive value constraints
(schema facets), on the simple type.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 659



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

660 Message Models



Numeric representation

Property Type Meaning

Virtual Decimal
Point

Button and
Integer

Specify a nonzero integer that represents the position of an implied decimal
point within a number, or specify 0 (zero, the default) to use the formatting of
Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right hand side of the number. For example, if you specify 3, the
decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right hand side of the number. For example, if you specify -3, the
decimal value 1234 represents 1 234 000

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value of
the Virtual Decimal Point property is 0, which indicates that the decimal point is
present in the data. It deals with truncation, and specifies how many digits
should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For
example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data
is truncated. For example, the value 123.4567 is truncated to 123.45 if you set
Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even if there are no fractional digits. The
decimal separator must be present in the input bit stream, even if no fractional
digits are present.

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, ″+″ is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Message model reference information 661



Property Type Meaning

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

TDS properties for compound element float types:

The TDS properties described here apply to:
v Objects: Compound elements

662 Message Models



Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Float. This equates to the data type FLOAT or DOUBLE in C, or the COMP-1
or COMP-2 numeric data type in COBOL.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

Message model reference information 663



Property Type Meaning

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

664 Message Models



Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Numeric representation

Property Type Meaning

Virtual Decimal
Point

Button and
Integer

Specify a nonzero integer that represents the position of an implied decimal
point within a number, or specify 0 (zero, the default) to use the formatting of
Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right hand side of the number. For example, if you specify 3, the
decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right hand side of the number. For example, if you specify -3, the
decimal value 1234 represents 1 234 000

Message model reference information 665



Property Type Meaning

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value of
the Virtual Decimal Point property is 0, which indicates that the decimal point is
present in the data. It deals with truncation, and specifies how many digits
should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For
example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data
is truncated. For example, the value 123.4567 is truncated to 123.45 if you set
Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even if there are no fractional digits. The
decimal separator must be present in the input bit stream, even if no fractional
digits are present.

v Exponential Notation - Example ″1.23456e002″: data is written out to the bit
stream as a signed value having the format [sign1]a.bbbe[sign2]ccc where:

– [sign1] is the value of Negative Sign if the value is negative

– a is a single decimal digit

– bbb is one or more decimal digits

– [sign2] is the value of Negative Sign if the exponent is negative

– ccc is exactly three decimal digits (the exponent)

[sign1] and [sign2] are absent if the value and exponent, respectively, are
positive.

For example, the value -123.456 is represented as -1.23456e002 and the value
0.00012 is represented as 1.2e-004 in the output bit stream (assuming that the
value of Negative Sign is ″-″, and the value of Sign Orientation is Leading).

The value -0.00012 is represented as 1.2*e*004 if Negative Sign is ″*″ and Sign
Orientation is Trailing.

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

666 Message Models



Property Type Meaning

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, ″+″ is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

TDS properties for compound element integer types:

The TDS properties described here apply to:
v Objects: Compound elements

Message model reference information 667



Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

668 Message Models



Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any totalDigits value constraint (schema facet) or, if none, any
minInclusive, maxInclusive, minExclusive, or maxExclusive value constraints
(schema facets), on the simple type.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 669



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

670 Message Models



Numeric representation

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, ″+″ is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Message model reference information 671



Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

TDS properties for compound element string types:

The TDS properties described here apply to:
v Objects: Compound elements

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Interpret
Element Value

Enumerated
type

Specify whether values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.
This interpretation is generally standard-specific and is therefore hard-coded.

The possible values for this property are:

v None (the default value)

v EDIFACT Service String

v X12 Service String

v Message Key

v EDIFACT Syntax Level ID

v HL7 Service String

v HL7 Field Separator

672 Message Models



Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length
units) of the data string that follows the length byte. The maximum length of
a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in
length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X’00’.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any length or maxLength value constraint (schema facet) on the
simple type.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 673



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

674 Message Models



Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Embedded simple type properties

An embedded simple type can have the following properties;
v “Embedded simple type logical properties” on page 603
v “Embedded simple type CWF properties” on page 604
v “Embedded simple type XML properties” on page 605
v “Embedded simple type TDS properties” on page 607
v “Documentation properties for all message set objects” on page 185

Embedded simple type logical properties:

Message model reference information 675



Occurrences

Property Type Meaning

Min Occurs Integer Specify the minimum number of times that the object can repeat. The default is
1.

If the value is set to 0, then the object is optional.

With the exception of Max Occurs being set to -1, if a value is set for Min Occurs,
it must be less than or equal to the value in Max Occurs.

Max Occurs Integer Specify the maximum number of times that the object can repeat. The default is
1.

If this property is not set, then the object can not occur more than once.

If this property is set to 0, it is interpreted as if the object does not exist in the
message.

It can also be set to -1 to indicate that the limit is unbounded and there is no
maximum to the number of occurrences.

Embedded simple type CWF properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- ComIbmMrm
_AnonBinary

Boolean types

- ComIbmMrm
_AnonBoolean

DateTime types

- ComIbmMrm
_AnonDate

- ComIbmMrm
_AnonDateTime

- ComIbmMrm
_AnonGDay

- ComIbmMrm
_AnonGMonth

- ComIbmMrm
_AnonGMonthDay

- ComIbmMrm
_AnonGYear

- ComIbmMrm
_AnonGYearMonth

- ComIbmMrm
_AnonTime

Decimal types

- ComIbmMrm
_AnonDecimal

Float types

- ComIbmMrm
_AnonFloat

Integer types

- ComIbmMrm
_AnonInt

String types

- ComIbmMrm
_AnonString

CWF properties for embedded simple type binary types:

The Custom Wire Format properties described here apply to:
v Objects: Embedded simple types

676 Message Models



Physical representation

Property Type Meaning

Length Button and
Integer

If you have selected the length to be defined by Length, enter the number of
length units for the element.

The minimum value that you can specify is 1.

The maximum value that you can specify is 2147483647.

The default value is empty (not set).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
108.

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Message model reference information 677



Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

CWF properties for embedded simple type Boolean types:

The Custom Wire Format properties described here apply to:
v Objects: Embedded simple types

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

678 Message Models



Property Type Meaning

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

CWF properties for embedded simple type dateTime types:

The Custom Wire Format properties described here apply to:
v Objects: Embedded simple types

Message model reference information 679



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length
properties below.

v Length Encoded String 1. The element’s first byte contains the length of the
string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of
the string following the 2 length bytes in length units. The maximum length
of a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X’00’.

v Packed Decimal. The dateTime is coded as a Packed Decimal number. It is
valid only if the DateTime Format property represents numeric-only data.

v Binary. The dateTime is encoded as a binary sequence of bytes. If you select
this option, the range of symbols that you can specify for the Format String
property is less than the range of symbols you can specify if you select a
string option (see “DateTime formats” on page 765 for details).

v Time Seconds. This value supports C time_t and Java Date and Time objects. It
is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default value is fixed length string.

DateTime
Format

String Specify a template for date and time.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of date and time formats.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String, Packed Decimal, or
Binary, and have selected the length to be defined by Length, enter the number
of length units for the element.

The minimum value that you can specify is 1 for all three physical types.

The maximum value that you can specify is 256 for Fixed Length String, 10 for
Packed Decimal, and 2147483647 for Binary.

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
108.

680 Message Models



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Signed Check box Specify whether or not the value is signed.

This property is applicable only if the Physical type property is Packed Decimal.
By default, this check box is cleared, which indicates that the value is not signed.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this is property is inactive.

Message model reference information 681



Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is padded
from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

682 Message Models



Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list. The option that you
select determines the value that you must set for the property Encoding Null
Value:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The
field is filled with the value specified by the Padding Character. This is the
default value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. Use this option when the value you
have set for Encoding Null Value to specify a null date is not a dateTime value,
or does not conform to the standard dateTime format yyyy-MM-dd ’T’HH:mm:ss.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Encoding Null
Value

String If you set the Encoding Null property to NULLPadFill, this property is disabled
(grayed out).

If you set the Encoding Null property to NULLLogicalValue, you must set this
property to an ISO8601 dateTime format. These formats are described in
“DateTime as string data” on page 765. For example, specify a value conforming
to yyyy-MM-dd’T’HH:mm:ss such as 1970-12-01.

If you set the Encoding Null property to NULLLiteralValue, you can enter any
value that is the same length as the field.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Message model reference information 683



Property Type Meaning

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

CWF properties for embedded simple type decimal types:

The Custom Wire Format properties described here apply to:
v Objects: Embedded simple types

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

684 Message Models



Property Type Meaning

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and
256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are
assumed to be 18.)

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Signed Check box Select (the default) or clear this property. This property is used in conjunction
with Sign Orientation.

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Message model reference information 685



Property Type Meaning

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.
No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232'. This is
the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is
positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number
is positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point should be moved from its assumed position.
For example, a decimal element containing 1234 with a Virtual Decimal value of
3 is 1.234. This is equivalent to ’V’ or ’P’ in a COBOL picture clause. There is no
C equivalent

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this is property is inactive.

686 Message Models



Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field
is filled with the value specified by the Padding Character. Encoding Null Value
must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Message model reference information 687



Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, described
above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

688 Message Models



CWF properties for embedded simple type float types:

The Custom Wire Format properties described here apply to:
v Objects: Embedded simple types

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Float. This equates to the data type FLOAT or DOUBLE in C or the COMP-1
or COMP-2 data type in COBOL. This is the default value.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer, Packed Decimal, and Float are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Float, select a value from the displayed list. The
default value is 8.

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you set the Physical Type to Packed Decimal, enter a value between 1 and 10.

v If you set the Physical Type to Extended Decimal, enter a value between 1 and
256. (Numbers greater than the maximum COBOL PICTURE clause of 18 are
assumed to be 18.)

Message model reference information 689



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Signed Check box Select or deselect (unsigned, the default) this property. If you have set Physical
Type to Float, this is selected. This property is used in conjunction with Sign
Orientation.

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

690 Message Models



Property Type Meaning

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.
No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232'. This is
the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is
positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number
is positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Virtual Decimal
Point

Integer Specify the number of places to the left (for a positive value) or right (for a
negative value) that a decimal point should be moved from its assumed position.
For example, a float element containing 1234 with a Virtual Decimal value of 3 is
1.234.

This is not applicable if you have set Physical Type to Float.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this is property is inactive.

Message model reference information 691



Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field
is filled with the value specified by the Padding Character. Encoding Null Value
must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

692 Message Models



Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, described
above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Message model reference information 693



CWF properties for embedded simple type integer types:

The Custom Wire Format properties described here apply to:
v Objects: Embedded simple types

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. This equates to the COMP-3 data type in COBOL.

v External Decimal. This equates to the data type PIC 9 USAGE DISPLAY in
COBOL.

The representation of numeric elements can be affected by the Encoding and
CodedCharSetId attributes that are set for the WebSphere MQ queue manager:

v Elements that have Physical Type set to Integer and Packed Decimal are
represented in the appropriate WebSphere MQ Encoding value.

v Elements that have Physical Type set to External Decimal are represented in
the WebSphere MQ CodedCharSetId value.

Length Integer Enter the number of bytes to specify the element length:

v If you set the Physical Type to Integer, select 1, 2, or 4 (the default) from the
displayed list.

v If you have set Physical Type to Packed Decimal, enter a value between 1 and
6.

v If you have set Physical Type to Extended Decimal, enter a value between 1 and
11.

694 Message Models



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):
v Bytes.
v Characters. The Length is given in characters. This means that the number of

bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.
– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),

the number of bytes is equal to the number of characters.
– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID

1200), the number of bytes is exactly twice the number of characters.
– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),

the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.
– For single-byte and double-byte code pages, this option is identical to

Characters.
– For a multibyte code page, this option provides improved parsing

performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count.

The default is Bytes.

Signed Check box Select (the default) or clear this property. This property is used in conjunction
with Sign Orientation.

Sign EBCDIC
Custom
Overpunched

Check box If the Physical Type is set to External Decimal and the Signed EBCDIC Custom
property is set, this indicates that the Sign EBCDIC Custom Overpunched
representation is to be used within an ASCII environment. If this check box is
not selected (the default), the Sign ASCII representation is used.

The setting of the Sign EBCDIC Custom Overpunched check box is appropriate
only if the Sign Orientation property is set to Leading or Trailing (indicating that
the element/attribute has an embedded sign representation).

The check box is not available if the element/attribute is unsigned (for example,
if the Signed check box is not set).

Message model reference information 695



Property Type Meaning

Sign
Orientation

Enumerated
type

If you have set Physical Type to External Decimal and you have selected Signed,
choose from the following options that represent the COBOL options for
displaying numeric data:

v Leading Overpunched. This sets a bit in the first byte if the number is negative.
No setting is made if the number is positive. For example, the ASCII
hexadecimal representation of the number 22 is x'3232'. Using this option, the
number +22 would be x'3232' and the number -22 would be x'7232'. This is
the default value.

v Leading Separate. This sets the first byte of the element to ’+’ if the number is
positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

v Trailing Overpunched. This sets a bit in the last byte if the number is
negative. No setting is made if the number is positive. Using this option, the
number +22 would be x'3232' and the number -22 would be x'3272'.

v Trailing Separate. This sets the last byte of the element to ’+’ if the number
is positive and to ’-’ if the number is negative. For this option, the length must
include the sign byte.

If you have set Physical Type to any other value, the value Not Applicable is set
for you.

Justification Enumerated
type

If you have set the Physical Type property to External Decimal, select Left
Justify or Right Justify (the default value) from the list. If you have selected
another value for Physical Type, this is property is inactive.

696 Message Models



Property Type Meaning

Padding
Character

String The padding character is used to fill out the remaining character positions when
the string length is less than the specified string size. If you have set the Physical
Type property to Extended Decimal, and the Justification property is either Left
Justify or Right Justify, specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is External Decimal. The field
is filled with the value specified by the Padding Character. Encoding Null Value
must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string. You can specify a nonnumeric value for Encoding Null Value.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Message model reference information 697



Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property, described
above, with the exception of NULLLiteralFill. The default value is zero.

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character in the form 0xYY where YY is a hexadecimal
value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

698 Message Models



CWF properties for embedded simple type string types:

The Custom Wire Format properties described here apply to:
v Objects: Embedded simple types

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select one of the following from the displayed list:

v Fixed Length String. The element’s length is determined by other length
properties below.

v Length Encoded String 1. The element’s first byte contains the length of the
string following the length byte in length units. The maximum length of a
Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The element’s first two bytes contain the length of
the string following the 2 length bytes in length units. The maximum length
of a Length Encoded String 2 element is 65535 length units. The two length
bytes are in the format of the WebSphere MQ queue manager Encoding.

v Null Terminated String. The string ends with the hexadecimal NULL
character, X’00’.

The default is Fixed Length String.

Length Button and
Integer

If you have selected a Physical Type of Fixed Length String or Binary, and have
selected the length to be defined by Length, enter the number of length units for
the element.

The minimum value that you can specify is 0 (zero), the maximum value that
you can specify is 2147483647

The default value is 0 (zero).

Length
Reference

Button and
Enumerated
type

If you have selected the length to be defined by Length Reference, select the name
of the integer object that specifies the length of this object. Make your selection
from the displayed list of integer objects that are defined as siblings of the
current object, and occur before it in the structure of the message.

For information about reordering elements, see “Reordering objects” on page
108.

Message model reference information 699



Property Type Meaning

Length Units Enumerated
type

Select the unit of length for the element or attribute. Select one of the following
options from the displayed list (some physical types do not offer all of these
options):

v Bytes. The length is given in bytes.

v Characters. The Length is given in characters. This means that the number of
bytes that are processed in the bitstream depends on the code page of the
characters that are being processed.

– For a single-byte code page (SBCS CCSID) such as ″latin-1″ (CCSID 850),
the number of bytes is equal to the number of characters.

– For a double-byte code page (DBCS CCSID) such as ″UTF-16″ (CCSID
1200), the number of bytes is exactly twice the number of characters.

– For a multibyte code page (MBCS CCSID) such as ″UTF-8″ (CCSID 1208),
the number of bytes depends on the bitstream content. The parser reads
one character at a time and determines whether the character comprises
one or more bytes.

v Character Units. This specifies that the size of each character (in bytes) is
determined by the code page of the message.

– For single-byte and double-byte code pages, this option is identical to
Characters.

– For a multibyte code page, this option provides improved parsing
performance by assuming that every character is encoded in the smallest
character unit that the code page supports. However, this means that a
message must contain only these characters if it is to be processed correctly.
For example, in code page ″UTF-8″ (CCSID 1208), the minimum character
unit is one byte; therefore, the parser can make a single read (of the
number of bytes specified by the Length property) to fetch the entire
message. The message must contain only characters that are encoded in
1-byte units.

v End of Bitstream. All data up to the end of the bitstream is processed. This
option is valid only if the element is the last in the message. If you select this
value, you do not need to enter a value for the Length Count or Length
Reference property.

The default is Bytes.

Justification Enumerated
type

If you have set the Physical Type property to Fixed Length String, select Left
Justify (the default value) or Right Justify from the list. If you have selected
another value for Physical Type, this is property is inactive.

700 Message Models



Property Type Meaning

Padding
Character

String If you have set the Physical Type property to Fixed Length String, and the
Justification property is either Left Justify or Right Justify, this property is
applicable.

When writing an output message, use the padding character to fill out the
remaining character positions when the string length is less than the length
implied by the Length or Length Reference property. Whether the string is padded
from the left or the right is governed by the Justification property.

When parsing an input message, the padding character is trimmed from the end
of the string. Whether the string is trimmed from the left or the right is
governed by the Justification property.

Specify this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the displayed list.

v Enter a character between quotqtion marks; for example, ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

v Enter a hexadecimal character in the form 0xYY, where YY is a hexadecimal
value.

v Enter a decimal byte value (from 0 to 255).

The choice of which of these padding character forms is used for an MRM
element depends on the padding character that is required and whether the
padding character is to be subject to data conversion. In most cases, the
specification of a padding character in quotqtion marks is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated. For example, when converting
from ASCII to the code page 500, if you have specified U+0008 as your padding
character, this is converted from 0x08 to 0x15, the ASCII and EBCDIC
representations of ’back space’.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If you are converting a message from one code page to another, you should
ensure that the converted value of the padding character is valid for this code
page. If the padding character cannot be represented in the target code page, it
is replaced by a substitution character. The substitution character is fixed and its
value depends on the specified target code page.

If a padding character is required that is not subject to data conversion, the
hexadecimal or decimal format can be used. This gives the option of specifying
an absolute value as a padding character that is inserted directly into the output
message. If this format is used, you should still aim to ensure that this value is
valid for the code page of any output messages that are created using these
MRM definitions.

Message model reference information 701



Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the displayed list:

v NULLPadFill. This is valid only if Physical Type is Fixed Length String. The
field is filled with the value specified by the Padding Character. Encoding Null
Value must be set to an empty string.

v NULLLogicalValue. The Encoding Null Value is transformed to match the
required format for the field. This is the default value.

v NULLLiteralValue. The Encoding Null Value is directly substituted as if it is a
string.

v NULLLiteralFill. The field is filled with the value specified by the Encoding
Null Value. Encoding Null Value must resolve to a single character.

Encoding Null
Value

STRING The use of this property depends on the Encoding Null property, described
above. If specified, its length must be equal to the length of the string element,
with the exception of NULLLiteralFill.

The default value is empty (not set).

If you set the Encoding Null property to NULLLiteralFill, the value must resolve
to a single character. Set the character in one of the following ways:

v Select SPACE, NUL, 0x00 or 0xFF from the displayed list

v Enter a character between quotation marks, for example ’c’ or ″c″, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY where YY is a
hexadecimal value.

v Enter a decimal character code in the form YY where YY is a decimal value.

v Enter a Unicode value in the form U+xxxx where xxxx is a Unicode value
specified in hexadecimal format.

Byte alignment

Property Type Meaning

Byte Alignment Enumerated
type

Specify how the object is aligned from the start of the message. Select one of:
v 1 Bytes. This is the default value.
v 2 Bytes
v 4 Bytes
v 8 Bytes
v 16 Bytes

Leading Skip
Count

Integer Specify the number of bytes to skip before reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a field
defined by C or COBOL data which requires alignment on a 2, 4, 8 or 16 byte
boundary. Specify the number of bytes to skip before reading or writing this
object. When an output message is written, Skip Count bytes are assigned the
value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to the first instance only.

Trailing Skip
Count

Integer Specify the number of bytes to skip after reading or writing this object. The
default is 0, the minimum value is 0, and the maximum value is 999999. You can
use this value to ignore unwanted fields in a structure, or to model a repeating
structure containing fields which require alignment on a 2, 4, 8 or 16 byte
boundary. When an output message is written, Skip Count bytes are assigned
the value of the message set Byte Alignment Pad property.

For repeating objects, this property is applied to all instances.

702 Message Models



Occurrences

Property Type Meaning

Repeat
Reference

Enumerated
type

Use this property if the object occurs multiple times, and the number of
occurrences is given dynamically by a field earlier in the message. Select an
integer object from the displayed list of integer objects that occur before this
object in the structure of the message. The value of the selected integer specifies
the number of occurrences of this object. If no objects are listed, there are no
integer objects before this one in the message structure.

If a Repeat Reference is specified, it overrides any setting for the Max Occurs
logical property when parsing and writing the message, but not for validation of
the message.

Embedded simple type XML properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- ComIbmMrm
_AnonBinary

Boolean types

- ComIbmMrm
_AnonBoolean

DateTime types

- ComIbmMrm
_AnonDate

- ComIbmMrm
_AnonDateTime

- ComIbmMrm
_AnonGDay

- ComIbmMrm
_AnonGMonth

- ComIbmMrm
_AnonGMonthDay

- ComIbmMrm
_AnonGYear

- ComIbmMrm
_AnonGYearMonth

- ComIbmMrm
_AnonTime

Decimal types

- ComIbmMrm
_AnonDecimal

Float types

- ComIbmMrm
_AnonFloat

Integer types

- ComIbmMrm
_AnonInt

String types

- ComIbmMrm
_AnonString

XML Wire Format properties for embedded simple type binary types:

The XML wire format properties described here apply to:
v Objects: Embedded simple types

Message model reference information 703



Physical representation

Property Type Meaning

Encoding String Select one of the following values from the drop-down list: :
v CDatahex (the default). Hexadecimal values in this field are specified with the

CDATA qualifier, for example <e1><![CDATA[62]]></e1>
v hex. Hexadecimal values in this field are specified as digits only, for example

<e1>62</e1>.
v base64. Values in this field are specified as digits only, coded in base 64.

XML wire format properties for embedded simple type Boolean types:

The XML wire format properties described here apply to:
v Objects: Embedded simple types

There are no properties to show.

XML wire format properties for embedded simple type dateTime types:

The XML wire format properties described here apply to:
v Objects: Embedded simple types

Physical representation

Property Type Meaning

DateTime
Format

String Specify a format string that specifies the rendering of the value for dateTime
elements.

The default dateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of dateTime formats.

XML wire format properties for embedded simple type decimal types:

The XML Wire Format properties described here apply to:
v Objects: Embedded simple types

There are no properties to show.

XML wire format properties for embedded simple type float types:

The XML wire format properties described here apply to:
v Objects: Embedded simple types

There are no properties to show.

XML wire format properties for embedded simple type integer types:

The XML wire format properties described here apply to:
v Objects: Embedded simple types

There are no properties to show.

704 Message Models



XML wire format properties for embedded simple type string types:

The XML wire format properties described here apply to:
v Objects: Embedded simple types

There are no properties to show.

Embedded simple type TDS properties:

The properties that are displayed on the object page, and the values that those
properties can take, can vary according to the type of the object. For example, the
properties for type string are different from those of type Boolean. Select the link
for the object type from the following table.

Binary types

- ComIbmMrm
_AnonBinary

Boolean types

- ComIbmMrm
_AnonBoolean

DateTime types

- ComIbmMrm
_AnonDate

- ComIbmMrm
_AnonDateTime

- ComIbmMrm
_AnonGDay

- ComIbmMrm
_AnonGMonth

- ComIbmMrm
_AnonGMonthDay

- ComIbmMrm
_AnonGYear

- ComIbmMrm
_AnonGYearMonth

- ComIbmMrm
_AnonTime

Decimal types

- ComIbmMrm
_AnonDecimal

Float types

- ComIbmMrm
_AnonFloat

Integer types

- ComIbmMrm
_AnonInt

String types

- ComIbmMrm
_AnonString

TDS properties for embedded simple type binary types:

The TDS properties described here apply to:
v Objects: Embedded simple types

Message model reference information 705



Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

The default is dependent on the setting of the message set property Derive default
length from logical type. If Derive default length from logical type is selected, the
default value is derived from any length or maxLength value constraint (schema
facet) on the object’s simple type.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

TDS properties for embedded simple type Boolean types:

706 Message Models



The TDS properties described here apply to:
v Objects: Embedded simple types

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Binary. The data is in bit string format.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Message model reference information 707



Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

TDS properties for embedded simple type dateTime types:

The TDS properties described here apply to:
v Objects: Embedded simple types

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

708 Message Models



Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length
units) of the data string that follows the length byte. The maximum length of
a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in
length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X’00’.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v Binary. The data is in bit string format.

v Time Seconds. This value supports C time_t, and Java Date and Time objects.
It is valid only if the DateTime Format property represents numeric-only data.

v Time Milliseconds. This value supports C time_t, and Java Date and Time
objects. It is valid only if the DateTime Format property represents
numeric-only data.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 709



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

DateTime
Format

String Specify a template for date and time.

The default DateTime format is dependent on the logical type of the object. For
information about the defaults for the dateTime format according to the logical
type see “DateTime defaults by logical type” on page 772.

See “DateTime formats” on page 765 for details of date and time formats.

710 Message Models



Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

TDS properties for embedded simple type decimal types:

The TDS properties described here apply to:
v Objects: Embedded simple types

Message model reference information 711



Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

712 Message Models



Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any totalDigits value constraint (schema facet) or, if none, any
minInclusive, maxInclusive, minExclusive, or maxExclusive value constraints
(schema facets), on the simple type.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 713



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

714 Message Models



Numeric representation

Property Type Meaning

Virtual Decimal
Point

Button and
Integer

Specify a nonzero integer that represents the position of an implied decimal
point within a number, or specify 0 (zero, the default) to use the formatting of
Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right hand side of the number. For example, if you specify 3, the
decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right hand side of the number. For example, if you specify -3, the
decimal value 1234 represents 1 234 000

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value of
the Virtual Decimal Point property is 0, which indicates that the decimal point is
present in the data. It deals with truncation, and specifies how many digits
should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For
example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data
is truncated. For example, the value 123.4567 is truncated to 123.45 if you set
Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even if there are no fractional digits. The
decimal separator must be present in the input bit stream, even if no fractional
digits are present.

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, ″+″ is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Message model reference information 715



Property Type Meaning

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

TDS properties for embedded simple type float types:

The TDS properties described here apply to:
v Objects: Embedded simple types

716 Message Models



Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Float. This equates to the data type FLOAT or DOUBLE in C, or the COMP-1
or COMP-2 numeric data type in COBOL.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

Message model reference information 717



Property Type Meaning

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

718 Message Models



Property Type Meaning

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

Numeric representation

Property Type Meaning

Virtual Decimal
Point

Button and
Integer

Specify a nonzero integer that represents the position of an implied decimal
point within a number, or specify 0 (zero, the default) to use the formatting of
Float or Decimal numbers as specified by the Precision property.

If you specify a positive integer, the position of the decimal point is moved left
from the right hand side of the number. For example, if you specify 3, the
decimal value 1234 represents 1.234

If you specify a negative integer, the position of the decimal point is moved
right from the right hand side of the number. For example, if you specify -3, the
decimal value 1234 represents 1 234 000

Message model reference information 719



Property Type Meaning

Precision Button and
Integer

This property is applicable only if Physical Type is Text. It is used if the value of
the Virtual Decimal Point property is 0, which indicates that the decimal point is
present in the data. It deals with truncation, and specifies how many digits
should follow the decimal point.

Either specify a number of digits:

v If you set Precision to 0, data is truncated so that the fractional part is lost. For
example, the value 123.45 is truncated to 123.

v If you set Precision to a number less than the number of fractional digits, data
is truncated. For example, the value 123.4567 is truncated to 123.45 if you set
Precision to 2.

v If you set Precision to a number greater than the number of fractional digits,
the value is padded with extra zeros. For example, the value 12.345 is padded
to 12.34500 if you set Precision to 5.

Or select one of the following from the drop-down list:

v All Significant Digits - decimal separator only required if fractional
digits (the default): all significant digits are written to the output bit stream,
and there is no decimal separator if there are no fractional digits.

v Explicit Decimal Separator - decimal separator always required: all
significant digits are written to the output bit stream and the decimal
separator is always included, even if there are no fractional digits. The
decimal separator must be present in the input bit stream, even if no fractional
digits are present.

v Exponential Notation - Example ″1.23456e002″: data is written out to the bit
stream as a signed value having the format [sign1]a.bbbe[sign2]ccc where:

– [sign1] is the value of Negative Sign if the value is negative

– a is a single decimal digit

– bbb is one or more decimal digits

– [sign2] is the value of Negative Sign if the exponent is negative

– ccc is exactly three decimal digits (the exponent)

[sign1] and [sign2] are absent if the value and exponent, respectively, are
positive.

For example, the value -123.456 is represented as -1.23456e002 and the value
0.00012 is represented as 1.2e-004 in the output bit stream (assuming that the
value of Negative Sign is ″-″, and the value of Sign Orientation is Leading).

The value -0.00012 is represented as 1.2*e*004 if Negative Sign is ″*″ and Sign
Orientation is Trailing.

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

720 Message Models



Property Type Meaning

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, ″+″ is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

TDS properties for embedded simple type integer types:

The TDS properties described here apply to:
v Objects: Embedded simple types

Message model reference information 721



Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Integer. This equates to the data type SHORT or LONG in C, or the COMP,
COMP-4, COMP-5, or BINARY numeric data type in COBOL.

v Packed Decimal. The data is a packed decimal number that equates to the
COMP-3 data type in COBOL.

v External Decimal. The data is a decimal number that equates to the data type
PIC 9 USAGE DISPLAY in COBOL.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

722 Message Models



Property Type Meaning

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any totalDigits value constraint (schema facet) or, if none, any
minInclusive, maxInclusive, minExclusive, or maxExclusive value constraints
(schema facets), on the simple type.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 723



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

724 Message Models



Numeric representation

Property Type Meaning

Sign
Orientation

Enumerated
type

The values that you can choose for this property are:
v Leading Separate
v Trailing Separate
v Leading Overpunched
v Trailing Overpunched

This property is enabled only if you have set Physical Type to Text or External
Decimal, and you have selected Signed.

If Physical Type is Text, the only valid values of Sign Orientation are Leading
Separate and Trailing Separate.

If Physical Type is External Decimal and Sign EBCDIC Customer Overpunched is
selected, the only valid values of Sign Orientation are Leading Overpunched and
Trailing Overpunched.

Positive Sign String Specify the value that represents the positive symbol. Do not specify a numeric
value. If no value is set, ″+″ is assumed. The positive sign is not written when
creating an output message; it is used only to recognize the positive sign when
parsing a message bit stream.

This property is applicable only if Physical Type is Text and Signed is selected

Negative Sign String Specify the value that represents the negative symbol. Do not specify a numeric
value. If no value is set, ″-″ is assumed.

This property is applicable only if Physical Type is Text and Signed is selected.

Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Message model reference information 725



Property Type Meaning

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

TDS properties for embedded simple type string types:

The TDS properties described here apply to:
v Objects: Embedded simple types

Field identification

Property Type Meaning

Tag String Specify the value that is used to identify the object in a message bit stream.

If the object is simple and the Data Element Separation property of the complex
type or types in which the object is a child is Tagged Delimited, Tagged Fixed
Length, or Tagged Encoded Length, this property must contain a non-empty
value.

If the object is a complex element, and the Data Element Separation property of its
parent is Tagged Delimited, Tagged Fixed Length, or Tagged Encoded Length, the
property can contain an empty value.

The value for this property must be unique for every element in the message set;
that is, no two elements in the message set can contain the same value for this
property.

Data Pattern String Specify the regular expression that is to be used by the parser to identify the
data in the message to be assigned to the object. This property is used when the
Data Element Separation method has been set to Use Data Pattern in the complex
type. See “Regular expression syntax” on page 761 for more details.

Interpret
Element Value

Enumerated
type

Specify whether values stored within this object must be interpreted as having
significance for the parser and, if so, the type of interpretation that must occur.
This interpretation is generally standard-specific and is therefore hard-coded.

The possible values for this property are:

v None (the default value)

v EDIFACT Service String

v X12 Service String

v Message Key

v EDIFACT Syntax Level ID

v HL7 Service String

v HL7 Field Separator

726 Message Models



Property Type Meaning

Repeating
Element
Delimiter

String Specify the delimiter that is to be used between repeating elements.

This delimiter is used only when the element repeats and the Data Element
Separation property of the parent group or complex type is set to All Elements
Delimited or Variable Length Elements Delimited.

A default value is provided if the above conditions are true; if the messaging
standard is HL7, the mnemonic <HL7_RS> is used; if the messaging standard is
not HL7, and the maximum number of repeats is fixed, the delimiter of the
parent group or complex type is used.

If none of the above conditions are true, a default is not applied.

Physical representation

Property Type Meaning

Physical Type Enumerated
type

Select the physical type of the object.

If the Messaging Standard property of the message set is User Defined Text, User
Defined Mixed, CSV, or TLOG, select one of the following values:

v Text. The data is in character format.

v Length Encoded String 1. The data’s first byte contains the length (in length
units) of the data string that follows the length byte. The maximum length of
a Length Encoded String 1 element is 255 length units.

v Length Encoded String 2. The data’s first two bytes contains the length (in
length units) of the data string that follows the two length bytes. The
maximum length of a Length Encoded String 2 element is 65535 length units.

v Null Terminated String. The data string ends with the hexadecimal NULL
character, X’00’.

v TLOG Specific - this option can be selected only if the Message Standard
property of the message set is TLOG. This option indicates that the format of
the data is specific to the TLOG messaging standard.

The default is dependent on the Messaging Standard property.

For all other Messaging Standard values, the Physical Type property is set to Text.

Length Integer Specify the expected length of the object in length units.

A non-zero length must be specified if no Length Reference is specified.

If this property is not set and the message set property Derive default length from
logical type is selected, and the Physical type is ’Character’, the default value is
derived from any length or maxLength value constraint (schema facet) on the
simple type.

Justification Enumerated
type Specify the justification of the object if the data being written or parsed is less

than the fixed length value. This property is used only when a value is output
as a fixed length string.

Select one of the following values from the drop-down list:

v Not Applicable

v Left Justify

v Right Justify

Message model reference information 727



Property Type Meaning

Padding
Character

String Specify the padding character that is to be inserted or interpreted on the writing
or parsing of a fixed length object if the data is less than the fixed length value.
This property is used only when a value is output as a fixed length string.

Set this character in one of the following ways:

v Select NUL, ’0’, or SPACE from the drop-down list.

v Enter a character between quotation marks, for example ″c″ or ’c’, where c is
any alphanumeric character.

v Enter a hexadecimal character code in the form 0xYY, where YY is a
hexadecimal value.

v Enter a Unicode value in the form U+xxxx, where xxxx is a Unicode value
specified in hexadecimal. The maximum length of the string that you can
enter is 10.

The choice of which of these padding character forms is used for an MRM
element depends on the padding character required and whether the padding
character is to be subject to data conversion.

In most cases, the specification of a padding character is sufficient, and when
this padding character is used, it is converted to the target code page of the
output MRM message that is being generated.

If a padding character is required that cannot easily be entered in the padding
character field, the Unicode mnemonic format can be used to specify the
required character. When used, this Unicode value is also converted to the target
code page of the MRM message that is being generated.

If a padding character is required that is not subject to data conversion, the
hexadecimal format can be used. This gives the option of specifying a padding
character that is inserted directly into the output message. If this format is used,
you must ensure that this hexadecimal value is valid for the code page of any
output messages that are created using these MRM definitions.

If you are converting a message from one code page to another, you must ensure
that the converted value of the padding character is valid for this code page. For
example, when converting from ASCII to code page 500, if you have specified
the numeric 8 as your padding character, this is converted from 0x08 to 0x15, the
ASCII and EBCDIC representations of ’back space’.

There is a currently a restriction that the value of your padding character must
not be greater than U+007F. Note that if you enter a Unicode mnemonic or
numeric value, it is considered to be the character that is represented by that
number in UTF-8.

Length
Reference

Enumerated
type

This property is applicable only if Physical Type is Text, Binary, or TLOG
Specific. If set, this property takes precedence over any value in the Length
Units property.

Specify the identifier of a sibling integer object, the value of which determines
the length of the object in question. The sibling object must be defined before the
current object within the message structure.

For information about reordering elements, see “Reordering objects” on page
108.

728 Message Models



Representation of null values

Property Type Meaning

Encoding Null Enumerated
type

Select one of the following options from the drop-down list:

v NULLPadFill. This is valid only for fixed length objects. This is the default
value.

v NULLLogicalValue. The Encoding Null Value property is first converted to an
actual value, and rendered in the way specified for the field.

v NULLLiteralValue. This specifies that Encoding Null Value contains a value that
is directly substituted as if it is a string. For dateTime elements, use this
option if you want to use the Encoding Null Value property to test or compare
the content of the field in the message.

v NULLLiteralFill. This specifies that the field is filled with the value specified
by the Encoding Null Value property. Encoding Null Value must resolve to a
single character.

The option that you select determines the value that you must set for the
property Encoding Null Value.

For full information about using these options, see “TDS Null handling options”
on page 753.

Encoding Null
Value

String The use of this property depends on the Encoding Null property that is described
above. The default value is zero.

If you set the Encoding Null property for a dateTime object to NULLLogicalValue,
the value that you set must be in an ISO8601 dateTime format.

These formats are described in “DateTime as string data” on page 765.

For example, specify a value that conforms to the yyyy-MM-dd’T’HH:mm:ss format;
for example, 1970-12-01.

Documentation properties for all message set objects:

Use the documentation property of an object to add information to enhance the
understanding of the function of that object. The documentation property is
available on all objects except Key, Keyref, and Unique objects.

The property is a string field and you can use any standard alphanumeric
characters.

Additional MRM domain information

This section provides additional information in relation to the MRM domain. This
information is categorized into:
v “MRM restrictions”
v “Data types for elements in an MRM message” on page 731
v “Additional CWF information” on page 732
v “Additional XML information” on page 733
v “Additional TDS information” on page 736
v “DateTime formats” on page 765

MRM restrictions
The MRM parser does not exactly follow the XML Schema 1.0 specification.

Message model reference information 729



However, the XMLNSC domain fully complies with the XML Schema 1.0
specification when validation is enabled. All of the constructs that are mentioned
in this topic are supported by the XMLNSC domain.

XML Schema features supported only in the message editor

The following features can be created and edited using the message editor, but are
not honored by the MRM domain.
v Pattern facet on non-string data types. The message broker only validates pattern

facets that are applied to simple types based on xsd:string.
v White space facet. The message broker does not use the white space facet.

However, if necessary, white space facets can be included in the message model.
You can accurately control the processing of white space by using the settings on
the physical formats.

v ID attribute. The message model can contain attributes with the name ’id’, but
these will not be checked for uniqueness.

XML Schema exceptions

The following features can be created and edited using the message editor, but the
MRM domain processes them in a way that differs from the XML Schema
specification.
v Default and fixed values. The processing of default and fixed values depends on

the physical format in which the message is parsed. For details on how each
physical format uses these fields, refer to the concept topic Relationship to the
logical model for the relevant physical format.

v xsi:type attribute. The xsi:type attribute is not automatically processed by the
message broker. An attribute with the name ’xsi:type’ can be included in the
message model, and can be processed using a message flow.

Differences in validation

If validation is enabled in a message flow, the following features or scenarios are
not validated in exactly the same way as a validating XML parser would validate
them:
v Any Element or Any Attribute. If the message model contains a wildcard (’any

element’ or ’any attribute’), the message broker validates the ’processContents’
field as follows:
– skip. No checking is done; any element or attribute is allowed.
– lax. No checking is done; any element or attribute is allowed.
– strict. Any element or attribute in the same message set is allowed.

Note: If all of the definitions for a namespace are included within the same
message set, the validation of ’strict’ is the same as by a validating XML
parser.

v Element substitution and ’all’ groups. If an element can be substituted, and it
occurs within an ’all’ group, the following exceptions apply to the validation of
the element:
– The element is always validated as if it were optional.
– An input message is not rejected if more than one of the substitutions is used

in the same ’all’ group.

730 Message Models



Data types for elements in an MRM message
A parser is supplied for the body of a message in the MRM domain; it associates
each field with a specific data type.

The following table shows the mapping from XML Schema data types that you
have specified for elements in the MRM to data types used by the broker and
supported by ESQL. When you create an element, you might find that associated
value constraints are created to ensure a more accurate mapping of the XML
Schema type.

Data type of the element ESQL data type in message tree

ANYURI CHARACTER

BASE64BIN BLOB

BOOLEAN BOOLEAN

BYTE INTEGER

DATE DATE

DATETIME TIMESTAMP

DECIMAL DECIMAL

DOUBLE FLOAT

DURATION INTERVAL

ENTITIES List of CHARACTER

ENTITY STRING

FLOAT FLOAT

GDAY DATE

GMONTH DATE

GMONTHDAY DATE

GYEAR DATE

GYEARMONTH DATE

HEXBINARY BLOB

ID CHARACTER

IDREF CHARACTER

IDREFS List of CHARACTER

INT INTEGER

INTEGER DECIMAL

LANGUAGE CHARACTER

LONG INTEGER

NAME CHARACTER

NCNAME CHARACTER

NEGATIVE_INTEGER DECIMAL

NMTOKEN CHARACTER

NMTOKENS List of CHARACTER

NON_NEGATIVE_INT DECIMAL

NON_POSITIVE_INTEGER DECIMAL

NORMAILIZED_STRING CHARACTER

Message model reference information 731



Data type of the element ESQL data type in message tree

NOTATION CHARACTER

POSITIVE_INTEGER DECIMAL

QNAME CHARACTER

SHORT INTEGER

STRING CHARACTER

TIME DATETIME

TOKEN CHARACTER

UNSIGNED_BYTE INTEGER

UNSIGNEDINT INTEGER

UNSIGNEDLONG DECIMAL

UNSIGNED_SHORT INTEGER

Simple type - list

In the message tree, a list type will be represented as a name node with an
anonymous value child for each list item. This allows repeating lists to be handled
without any loss of information. Repeating lists will appear as sibling name
elements, each of which has its own anonymous value child nodes for its
respective list items.

Additional CWF information

This section provides additional information in relation to the CWF physical
format. This information has been categorized into:
v “CWF data conversion”
v “CWF Null handling options” on page 733

CWF data conversion
You can convert an MRM message to a different code page or encoding, or both.

To do this, set the CodedCharSetId and Encoding fields in the Properties folder
and the message tree to the target value.

The data conversion that is performed is dependent on the simple type of each
element:
v Binary schema types: base64Binary, hexBinary objects are not converted.
v Boolean schema types: Boolean objects are not converted.
v DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time objects are handled as binary, string, packed decimal,
timeSeconds, or timeMilliseconds.
If a dateTime element is defined as binary, it is not converted.
If it is defined as string, it is converted as a string element (described below).
If it is defined as a packed decimal value, it is converted as Decimal (described
below).
If it is defined as a timeSeconds or timeMilliseconds value, it is converted as
Integer (described below).

732 Message Models



v Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,
nonPositiveInteger, positiveInteger, unsignedLong objects with Physical Type set
to External Decimal are converted to the target CodedCharSetId. Elements with
other Physical Type settings are converted to the target Encoding.

v Float schema types: double, float objects with Physical Type set to External
Decimal are converted to the target CodedCharSetId. Elements with other
Physical Type settings are converted to the target Encoding.

v Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,
unsignedShort objects with Physical Type set to External Decimal are converted
to the target CodedCharSetId. Elements with other Physical Type settings are
converted to the target Encoding.

v String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS, language,
Name, NCName, NMTOKEN, NMTOKENS, normalizedString, NOTATION,
QName, string, token objects are converted to the target CodedCharSetId (the
length of an object that has Physical Type of Length Encoded String 2 is
converted to the target Encoding).

CWF Null handling options

The Custom Wire Format (CWF) supports handling of null values within messages.
The Boolean Null Value that you set for the message set is applicable for all the
defined objects within the message set.

For more information about the use of nulls, refer to the properties Encoding Null
and Encoding Null Value for objects of each simple type, for example, “CWF
properties for element reference and local element dateTime types” on page 305.

Additional XML information

This section provides additional information in relation to the XML physical
format. This information has been categorized into:
v “XML Null handling options”
v “XML rendering options” on page 735

XML Null handling options
The XML Wire Format supports the handling of null values in messages. Encoding
null properties for XML are set only on the message set, and apply to all the
defined objects in the message set.

You can use the following two properties to represent the numeric and
non-numeric encoding for NULL in the XML Wire Format:
v Encoding Numeric Null
v Encoding Non-Numeric Null

These properties represent the numeric and non-numeric encoding for NULL
respectively.
v The numeric data types are:

– Decimal schema types: decimal, integer, negativeInteger, nonNegativeInteger,
nonPositiveInteger, positiveInteger, unsignedLong

– Float schema types: double, float
– Integer schema types: byte, int, long, short, unsignedByte, unsignedInt,

unsignedShort
v The non-numeric data types are:

– Binary schema types: base64Binary, hexBinary

Message model reference information 733



– Boolean schema types: Boolean
– DateTime schema types: date, dateTime, gDay, gMonth, gMonthDay, gYear,

gYearMonth, time
– String schema types: anyURI, ENTITIES, ENTITY, ID, IDREF, IDREFS,

language, Name, NCName, NMTOKEN, NMTOKENS, normalizedString,
NOTATION, QName, string, token

Each of these encodings has the following enumerated values:
v NULLEmpty (default)
v NULLValue
v NULLXMLSchema
v NULLValueAttribute
v NULLAttribute (deprecated)
v NULLElement (deprecated)

You do not have to supply additional information for NULLEmpty,
NULLXMLSchema, and NULLValueAttribute, but if you select NULLValue,
NULLAttribute, or NULLElement, you must define further values to be assigned
to represent the NULL condition in the Encoding Numeric Null Value and
Encoding Non-Numeric Null Value message set properties.

The following table shows how each encoding works. For each encoding, the
example XML causes the element myElem to be given a value NULL.

Encoding Numeric Null
Encoding Non-Numeric Null

Encoding Numeric Null Value
Encoding Non-Numeric Null Value

Example XML

NULLEmpty <myElem/>
<myElem></myElem>

NULLValue zzz <myElem>zzz</myElem>

NULLXMLSchema <myElem xsi:nil='true'/>1 5

NULLValueAttribute <myElem></myElem>2

<parent id="myElem"></parent>3

NULLElement null4 <myElem><null/></myElem>

NULLAttribute null4 <myElem null='true'/>1

Notes:

1. The attribute must evaluate to true, so the value must be true, 1, or the
Boolean True Value property.

2. This value is valid only for XMLElementAttrVal element rendering, as
specified in “XML rendering options” on page 735. Marking an element
as being rendered in this way, and setting it to null, is equivalent to
removing the attribute of the element that provides the element’s value.

3. This value is valid only for XMLElementAttrIdVal element rendering, as
specified in “XML rendering options” on page 735. Marking an element
as being rendered in this way, and setting it to null, is equivalent to
removing the attribute of the element that provides the element’s value,
but not removing the attribute that provides the element’s name.

4. Both NULLElement and NULLAttribute are deprecated. The element or
attribute name provided must not include a namespace URI or prefix. If
namespaces are enabled for the message set, the name matches any
namespace.

5. xsi:nil is not supported with complex elements of MRM-XML.

734 Message Models



XML Null value:

Unlike the TDS and CWF format, when you set the Encoding Null Num property to
NULLValue in XML, the value is taken as a literal. A direct comparison is done with
the text string, and no logical data conversion is performed.

For example, if you set the message set property Encoding Null Num to the value
NULLValue, and you set Encoding Null Num Val to 0, a FLOAT value of 0.0 or a
DECIMAL value of +0 does not match NULL.

If you set Encoding Null Num to NULLEmpty, this is equivalent to setting Encoding
Null Num to NULLValue and Encoding Null Num Val to ″″.

XML Null element and NullValAttr:

In XML there are two conventions for storing a value:
1. It can be stored as an XML attribute with a local element or element reference

property Render set to XMLAttribute, XMLElement, XMLElementAttrID,
XMLElementAttrVal, or XMLElementAttrIDVal. For example, <element1
val="12"></element1>.

2. It can be stored as XML content with a local element or element reference
property Render set to XMLElement. For example, <element1>12</element1>.

If you set the message set property Encoding Null Num to NULLElement, there is no
way to represent a null value for an attribute value. If a null value is present in the
tree (from ESQL or another format), an attribute with an empty string is written in
the output message.

Conversely, if you have set the message set property Encoding Null Num or
Encoding Null Non-Num to NULLValAttr, there is no way to represent a null value
for a value rendered as XML content. If a null value is present in the tree, when
writing an empty string, an element with no character content is written out
instead.

XML Null representation for Binary data:

If you use the Encoding Null Non-Num Val field in conjunction with a binary object
in XML, you need to type the desired hex value. Do not insert the word CDATA in
this field. If CDataHex is specified in the Encoding XML property, CDATA rendering
is used when writing the message.

XML rendering options

There are four properties on the XML layer that you can use to affect how the
XML messages are rendered. The table below shows examples of the values that
you can set for the Member Render property. In this table, the member element is
referred to as A, and has the value value of element. The parent is referred to as
X.

Message model reference information 735



The effect of rendering options on XML output

To get XML rendered like this: Set this Member
Render property
value:

Set these other property values:

<X>
<A>value of element</A>
</X>

XMLElement (the
default)

Member XML Name = A

<X A='value of element'/> XMLAttribute Member XML Name = A

<X>
<Field id='A'>value of element</Field>
</X>

XMLElementAttrID Member XML Name = Field
Member ID Attribute Name = id
Member ID Attribute Value = A

<X>
<A val=value of element/>
</X>

XMLElementAttrVal Member XML Name = A
Member Value Attribute Name = val

<X>
<Field id='A' val='value of element'/>
</X>

XMLElementAttrIDVal Member XML Name = Field
Member ID Attribute Name = id
Member ID Attribute Value = A
Member Value Attribute Name = val

You should not have an element in the model that is rendered as an XML attribute.
This can result in incorrect validation of XML documents. Instead the element
should be redefined as an attribute in the model.

You should not have an attribute in the model that is rendered as an XML element.
This can result in incorrect validation of XML documents. Instead the attribute
should be defined as an element in the model.

There is one scenario where this technique is appropriate. When you have created
a message model by importing a C header file or a COBOL copybook, it will
consist entirely of elements. An XML form of this model can be created by simply
adding an XML physical format to the message set. If you are looking for certain
elements to appear as XML attributes in the XML form, then you can use the
Render property to achieve this.

Additional TDS information

This section provides additional information in relation to the TDS physical format.
It has been categorized into:
v “TDS Industry standard formats”
v “Message characteristics” on page 745
v “TDS Null handling options” on page 753
v “TDS message model integrity” on page 755
v “Using regular expressions to parse data elements” on page 759

TDS Industry standard formats

WebSphere Message Broker supports the ACORD AL3 , CSV, EDIFACT, FIX, HL7,
SWIFT, TLOG, and X12 standards. For some of these standards, default property
values are supplied as defined in “Default TDS message set properties” on page
170. If you use these defaults, or override some of these defaults where necessary,
you can model all these industry standard formats.

For more details about each of these industry standards see:

736 Message Models



v “EDIFACT messaging standard”
v “HL7 messaging standard” on page 738
v “SWIFT messaging standard” on page 739
v “TLOG messaging standard” on page 740
v “X12 messaging standard” on page 740
v “ACORD AL3 messaging standard” on page 740
v “FIX messaging standard” on page 742
v “CSV messaging standard” on page 742

These topics also contain details of any predefined message set solutions that are
available from IBM.

EDIFACT messaging standard:

EDIFACT is an international standard for EDI trading in commercial and
non-commercial sectors. EDIFACT has an underlying syntax, which is an ISO
standard. Within that syntax, there are directories of data elements, composite data
elements, segments, and messages. There are conventions for placing messages in
an “envelope” which identifies the sender and receiver and other attributes of a
transmission. For more information on the EDIFACT messaging standard, see the
United Nations Centre for Trade Facilitation and Electronic Business Web site and
click “Standards” on the left side.

EDIFACT messages can be modeled using the MRM Tagged/Delimited String
Format (TDS)

The high level structure of an EDIFACT message is shown below.

Message model reference information 737

http://www.unece.org/cefact/


You can model the top level interchange of an EDIFACT message by setting the
following properties for the complex type on which the message is based:
Composition = Sequence
Content Validation = Closed
Tag Data Separator = <EDIFACT_TAGDATA_SEP>
Data Element Separation = Tagged Delimited
Delimiter = <EDIFACT_CS>

Within an EDIFACT message, you can define the delimiters to be used in the
message itself using the optional Service String Advice element. To enable this
element to be recognized as an EDIFACT Service String, you must set the element
property Interpret Element Value to EDIFACT Service String. You must also set the
delimiter values to the mnemonic values that are defaulted when you set the
Message Standard property to EDIFACT.

A predefined message set solution for EDIFACT can be purchased from IBM.

HL7 messaging standard:

Hospitals, doctors, healthcare professionals and institutions require the ability to
exchange information. The HL7 messaging standard defines the structure and
content of the messages that are exchanged between systems that are working in
various administrative, financial, and clinical activities in the healthcare industry.

HL7 messages can be modeled using the MRM Tagged/Delimited String Format
(TDS).

Interchange

Service String Advice
UNA

Interchange Header
UNB

OR
Only Messages

Interchange Trailer
UNZ

Either Functional
Groups

` `

` `Functional Group Hdr-UNG Functional Group Trailer- UNEMessage Message

` `Message Header - UNH Data Segment Message Trailer- UNTData Segment

Value Component Data Element Component Data Element:

TAG + Composite Data ElementSimple Data Element `+

Code : Value

Value Value

738 Message Models



If you are working with HL7 messages you can specify the messaging standard at
the message set level and a number of the properties for this standard are set to
default settings for HL7 at the message set, complex type, group and element
levels.

A predefined message set solution for HL7 can be purchased from IBM.

SWIFT messaging standard:

SWIFT is a cooperative owned by the financial industry. It supplies secure,
standardized messaging services and interface software to financial institutions. For
more information on the SWIFT messaging standard, see the SWIFT community
Web site.

SWIFT FIN messages can be modeled using the MRM Tagged/Delimited String
Format (TDS).

The high-level block structure of a SWIFT message is shown in the table below.

SWIFT message high level block structure

Block name Format

Basic header {1:...}

Application header {2:...}

User header {3:...}

Text {4:...}

Trailer {5:...}

When they are concatenated in a message, the blocks appear as:
{1:...}{2:...}{3:...}{4:...}{5:...}

You can model this setting the following type properties for the message:
Data Element Separation = Tagged Delimited
Group Indicator = {
Delimiter = }{
Group Terminator = }
Tag Data Separator = :

Each block is modeled as a complex element with element Tag property values of
1,2,3,4, and 5 respectively.

The text body of the message has the following format:
{4:
:20:X
:32A:940930USD1,
.....
:72:/A/
-}

You can model the complex type of the Text body by setting the following type
properties:

Message model reference information 739

http://www.swift.com
http://www.swift.com


Data Element Separation = Tagged Delimited
Group Indicator = <CR><LF>:
Delimiter = <CR><LF>:
Group Terminator = <CR><LF>-
Tag Data Separator = :

The Tag property of the elements within the body has values of 20, 32A, 72, and so
on.

A predefined message set solution for SWIFT can be purchased from IBM. See the
WebSphere MQ SupportPacs Web page.

TLOG messaging standard:

In the retail industry, a TLOG is the Point of Sale (POS) Transaction Log.

The TLOG is a complete, detailed record of everything that occurs at the POS
terminal, including events that are not directly related to a sales transaction.
Typically, the precise TLOG record format is unique to a given POS application,
but the majority of formats are based on a tagged/delimited string format called
Raw TLOG.

Raw TLOG messages can be modeled using the MRM Tagged/Delimited String
Format (TDS).

If you are working with TLOG messages you can specify whether fields in the
messages are in character format or in a format that is specific to the message. This
requires that the Messaging Standard property (at the message set level) is set to
TLOG, and relevant objects that have this non-character based field in the TDS
message have their Physical Type property set to TLOG Specific.

Predefined message set solutions for TLOG can be purchased from IBM.

X12 messaging standard:

X12 is a standard for EDI trading in commercial and non-commercial sectors. X12
has an underlying syntax, which is an ANSI standard. Within that syntax, there are
directories of data elements, composite data elements, segments, and messages.
There are conventions for placing messages in an “envelope” which identifies the
sender and receiver and other attributes of a transmission. For more information
on the X12 messaging standard, see the ASC X12 Web site.

X12 messages can be modeled using the MRM Tagged/Delimited String Format
(TDS).

If you are working with X12 messages, you can define the delimiters to be used in
the message itself using the mandatory Interchange Control Header element. To
enable this element to be recognized as an X12 Service String, you must set the
element property Interpret Element Value to X12 Service String. You must also set
the delimiter values to the mnemonic values defaulted by setting the Message
Standard property to X12.

A predefined message set solution for X12 can be purchased from IBM.

ACORD AL3 messaging standard:

The basic structure of an ACORD AL3 message is shown below.

740 Message Models

http://www.ibm.com/software/integration/support/supportpacs
http://www.x12.org


Each group with an ACORD AL3 message has a header consisting of a one-digit
number, three letters, plus a three-digit total length count. These first seven
characters can be modeled as a tag. The data within the headers is fixed length.
Therefore the header type used for the overall message can be modeled as follows:
Data Element Separation = Tagged Fixed Length
Length of Tag = 7

The Transaction Group contains other groups, and is therefore modeled in the
same way as the overall message. The Message Header Group and the Message
Trailer group just consist of fixed length elements, therefore the type used can be
modeled as:
Data Element Separation = Fixed Length

There are two Data Element Separation methods particularly suited to handling
ACORD AL3 messages:
v Fixed Length AL3 supports basic handling of ACORD AL3 messages, including

situations where the message groups conform to a different version of the
ACORD AL3 standard. This is deprecated and will be removed in a future
version of the product and an alternative will be provided.

v Tagged Encoded Length supports handling of more sophisticated situations,
including messages containing message groups unknown to the message
dictionary.

The following sections describe their use:
v “Using Fixed Length AL3”
v “Using Tagged Encoded Length to support re-versioning” on page 742

Using Fixed Length AL3:

This is deprecated and will be removed in a future version of the product and an
alternative will be provided.

You can select the value Fixed Length AL3 for the Data Element Separation property
for complex types within a message that conforms to the ACORD AL3 standard.
This allows different versions of the ACORD AL3 standard to be supported using
the same message set. This value is similar to the value Fixed Length except for
the following:
v A question mark (?) in the left-most position of an element means that it is

skipped.
v A sequence of question marks is inserted for all missing optional elements.
v Unused trailing optional elements are truncated.
v Any <CR><LF> after the last element is ignored.

ACORD Message

Transaction Header Group Transaction Control Group ( OPTIONAL) Data Group Segments ( 1 Or More)

Message Header Group Message Trailer GroupTransaction (1 or More)

Message model reference information 741



v The length field is extracted on input (and not put to the tree), and automatically
recalculated on output.

Using Tagged Encoded Length to support re-versioning:

The incoming message might contain a group that is no longer in use within the
current ACORD AL3 standards, and has therefore been deleted from the later
version of the standards. Similarly, the incoming bit stream might be from a later
version of the ACORD AL3 standards, and might contain a new group that was
not defined in earlier versions.

In order to correctly parse this self defining tag, the TDS parser needs to know the
length of the group it is parsing and skip to the end of all data associated with
that self defining tag.

Use the Data Element Separation method Tagged Encoded Length to handle these
situations. You will also need to set these properties:
v Length of Tag or Tag Data Separator, so that the TDS parser knows where tags

end.
v Length of Encoded Length, so that the TDS parser knows the size of the length

field.
v Extra Chars in Encoded Length, are used to indicate to the TDS parser how

many characters, apart from the data itself, are counted in the encoded length
field.

FIX messaging standard:

The Financial Information eXchange (FIX) Protocol is a series of messaging
specifications. It is a global language describing trade-related messages, and is
used for automated trading of securities, derivative, and other financial
instruments. For more information on the FIX protocol, see the FIX protocol Web
site.

FIX messages can be modeled using the MRM Tagged/Delimited String Format
(TDS).

A predefined message set solution for FIX can be purchased from IBM. See the
WebSphere MQ SupportPacs Web page.

CSV messaging standard:

The comma separated value (CSV) format is a typical format for describing data in
tables or spreadsheets.

The CSV format is used to exchange data between database applications or
spreadsheet applications. Although the CSV format is widely used, a definitive
specification has not been formally documented. However, these are some of the
rules that characterize the CSV format:
v Data fields are separated by commas, and groups of data fields are separated by

repeating field delimiters (for example, the <CR><LF> combination of ASCII
characters).
Here is a typical CSV message:
12345,Smith,John,"3, North Street"<CR><LF>
41352,Jones,Ivor,"5, South Road"<CR><LF>
53421,Edwards,David,"10, East Lane"

742 Message Models

http://www.fixprotocol.org
http://www.fixprotocol.org
http://www.ibm.com/software/integration/support/supportpacs


v A comma that occurs within a data field is regarded as part of the data, rather
than as a field separator, only if the comma is preceded by a special escape
character (for example, a backslash (\)), or is surrounded by quotation marks (″).
For example, Clapton, Eric, 461\, Ocean Boulevard, Scunthorpe and Clapton,
Eric, "461, Ocean Boulevard", Scunthorpe are equivalent; they both define
data that contains four fields.

v A quotation mark character (″) that is within a data field that is enclosed within
quotation marks must always be ’escaped’ by another instance of the quotation
mark character.
For example, xx"xx must be written as "xx""xx", and "xxxx" must be written as
"""xxxx""".

v In an input message, any variable length data field can be enclosed within
quotation mark characters, regardless of whether the field contains any special
characters such as quotation mark characters, escape characters, or other
reserved characters.
The quotation mark characters must occur at the start and end of the data, are
stripped from the data when the field is parsed, and are not added to the output
tree. For example, the data A,"B",C results in an output tree that contains the
values A, B, and C.

v If a data field contains two quotation mark characters and nothing else, the
quotation mark characters are removed by the parser and the data field is
processed in the same way as an empty field.

v In an output message, any data field that contains a quotation mark character, or
any of the special characters that are specified in the TDS message set Reserved
Characters property, has quotation mark characters added.

CSV messages can be modeled by using the MRM Tagged/Delimited String
Format (TDS). The default message set property values are shown in “Default TDS
message set properties” on page 170.

The following sample is a message set application that shows you how to model
some typical CSV message variants, and how to transform the sample CSV
messages to and from XML. The XML messages illustrate the logical structure of
the data after it has been parsed. You can view samples only when you use the
information center that is integrated with the Message Broker Toolkit.
v Comma Separated Value (CSV) sample

You can also import a sample CSV message model by using the New Message
Definition File From IBM Supplied Message wizard.

IDoc messaging standard:

WebSphere Message Broker can receive data from SAP systems in a variety of
ways.

Two such ways are:
v ALE IDocs exported from SAP across the WebSphere MQ Link for R3.
v File IDocs exported from SAP to the file system.

Such IDocs are a fixed length text format, and can be modeled using the MRM
domain Tagged/Delimited String Format (TDS).

This supersedes the use of the IDOC domain, which is deprecated.

Message model reference information 743

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.csv.doc/doc/overview.htm


Note: For SAP data that is received from the WebSphere Adapter for SAP, use the
DataObject domain.

Building the MRM TDS model for an IDoc:

The MRM domain Tagged/Delimited String (TDS) physical format is suitable for
parsing and writing SAP ALE IDocs and SAP File IDocs. ALE IDoc messages are
exported from SAP across the WebSphere MQ Link for R3. File IDocs are exported
from SAP to the file system.

This topic describes how to build the message model that is required by the MRM
parser when parsing and writing SAP ALE and File IDocs using its TDS physical
format.

Obtaining the IDoc:

Create an import file of the required IDoc data for the Message Broker Toolkit.
1. Log on to a SAP system.
2. Run the supplied transaction we60, which extracts the IDoc data as a C header

file.
a. In Basic Type, select the IDoc type of interest; for example, MATMAS02.
b. Leave the Control, Data, and Status check boxes cleared.
c. Select the Record types version. A version 4 IDoc is type 3.
d. Press F7 to display a C representation of the IDoc.
e. Click unconverted.
f. Select System->List->Save->Local file .
g. When prompted, enter a file name and directory for the output from the

transaction. The C representation of the IDoc is saved to this C header file.

Tip: The exported C header can be imported into the Message Broker Toolkit
without any further manual processing. This was not true in previous releases
of WebSphere Message Broker.

Modeling the IDoc:

Create your message model.
1. Switch to the Broker Application Development perspective of the Message

Broker Toolkit.
2. Use the New Message Set wizard to create a message set for your IDoc. Select

text data as the kind of data to be used. This creates a Tagged/Delimited String
Format (TDS) physical format, and presets the Default message domain property
to MRM.

3. Use the Message Set editor to rename the TDS physical format to Text_IDoc.
4. Use the New Message Definition File From IBM supplied message wizard to

import a prebuilt model of the overall ALE or File IDoc message structure. This
model includes definitions of the DC and DD segments. The prebuilt models
are called SAP ALE IDoc and SAP File IDoc. The resultant message definition
file is called ale_idoc.mxsd or file_idoc.mxsd. For information about using the
New Message Definition File From IBM supplied message wizard, see
“Importing from IBM supplied messages” on page 133.

5. Use the New Message Definition File From C Header File wizard, or the
mqsicreatemsgdefs command, to import the C representation of the IDoc into
the new message set. Specify the following settings:

744 Message Models



v Set the Pre-processing option to SAP ALE IDoc or SAP File IDoc. If this is
not specified, the C header is not imported.

v Create messages for the segments that appear in the IDoc.
v Use the String Encoding option to import character arrays as fixed length

strings.
v Use the Padding Char for String option to make space (“ ”) the padding

character that is used.

For information about using the wizard, see “Importing from C” on page 129.

Using the IDoc message model:

You can now use your message model to help you to construct a message flow
that processes instances of your IDoc message, in the same way as any other
message that belongs to the MRM domain.

Tip: SupportPac™ IA0F contains a more detailed description of the steps involved
in building the IDoc message model. You can ignore ignore utilities
IDocHeaderTweak and IDocMsgSetTweak because that processing has been
incorporated into the New Message Definition File From C Header File
wizard.

Message characteristics

There are a number of features of text string messages that are common across
many formats. The following sections give an overview of the main features that
are supported by the TDS wire format:
v The text strings in the message can have a tag or a label preceding the data

value. The tag is a string that uniquely identifies the data value. The TDS format
allows you to associate a tag with each element when you define the element in
the workbench.

v The message can contain various special characters or strings in addition to the
tags and text string data values. The TDS format supports a number of different
types of special characters or strings. Some messages have a special character or
string that separates each data value from the next. In the TDS format this is a
known as a delimiter. In formats that have a tag before each data value, the tag
can be separated from its data value by a special character or string. In the TDS
format this is known as a tag data separator.

v A message can be split into a number of substructures in a similar manner to a
to COBOL or C structure. You can model each of these substructures separately
by defining complex types or elements for each one. Complex types and
elements are described in “Message model objects” on page 13. A substructure
can have a special character or string that indicates its start within the data. This
is known in the TDS format as a group indicator. A substructure can also have a
special character or string that indicates its end in the data. In the TDS format,
this is known as a group terminator. A group indicator and group terminator can
also be defined for the whole message. Group indicators and group terminators
are optional for the message and each substructure.

v Some text strings within a message can be of fixed length, so a delimiter
between each data value is not necessary. This is supported by the TDS format.
If you use a fixed length tag, a tagged data separator is not required.

v The TDS property that controls the way text strings are separated is Data Element
Separation. It has several options that let you choose, for example, if tags are

Message model reference information 745



used, if strings lengths are fixed or variable, and what types of text strings are
permitted. See “Specifying data element separation methods to model a
message.”

v The substructures within a message can use different types of Data Element
Separation and use different special characters. Therefore the TDS format allows
you to define different types of data element separation and special characters
for each complex type within the message.

v If you use the Use Data Pattern method of Data Element Separation, you can use
regular expressions to identify parts of the message data to be assigned to
sub-fields. This is done by setting the regular expression in the Data Pattern
property. See “Using regular expressions to parse data elements” on page 759 for
further details.

The figure below illustrates the tags and special characters in a TDS message,
showing an example data message with each of its components labeled.

v At the top level, each data value has a tag associated with it, each tag is
separated from its data value using a tag data separator of colon (:), and the
data values are separated from each other using the asterisk delimiter (*).

v The group indicator for the message is the left brace ({) and the group
terminator is the right brace (}).

v The data values Data2 and Data3 are in a substructure in which there are no
tags, and each data element is separated from the next using the delimiter plus
(+). The group indicator for this substructure is the left bracket ([) and the group
terminator is the right bracket (]).

v The data values Data4 and Data5 are in a substructure in which the values are
fixed length, and are therefore not separated by a delimiter. The group indicator
for this substructure is the less than symbol (<) and the group terminator is the
greater than symbol (>).

The following sections describe data element separation and the special characters
in more detail:
v “Specifying data element separation methods to model a message”
v “Specifying special characters to model a message” on page 749

Specifying data element separation methods to model a message:

Elements of data in a TDS message are identified according to the data element
separation method that you must specify for the Data Element Separation property

{Tag1:Data1*Tag2:[Data2+Data3]*Tag3:<Data4Data5>}

Tag
Separator

Data Tag
Separator

Data Tag
Separator

Data

Delimiter DelimiterDelimiter

Tag TagTag

Group
Indicator

Group
Indicator

Group
Indicator

Group
Terminator

Group
Terminator

Group
Terminator

746 Message Models



for a complex type. Depending on the value that you have set for Data Element
Separation, the properties Tag Data Separator and Delimiter (for a message set and a
complex type) might also be required to identify each element.

The methods that you can specify for each complex type are described below. The
examples given are all based on a complex type that contains three elements of
type STRING. The Tag Data Separator, where used, is the colon (:), and the
Delimiter, where used, is the asterisk (*).

Tagged Delimited
Each data value is preceded by a tag that is specified as an element
property. If the tag has an associated Length of Tag, indicating that the tag
has a fixed length, each data value follows immediately after the tag. If the
tag is not specified as fixed length, the tag is separated from the next
element by a Tag Data Separator. Each data value is separated from the next
by a Delimiter. There is no Delimiter after the last element in the complex
type.

The following example shows tags of fixed length:
tag1data1*tag2data2*tag3data3

The following example shows tags of variable length:
tag1:data1*tag11:data2*tag111:data3

Tagged Fixed Length
This method is the similar to Tagged Delimited, but the data values are
always fixed length. Therefore, no delimiter is required after each data
value. The tags themselves can be fixed length or variable length,
depending the setting of Tag Data Separator and Length of Tag.

The following example shows tags of fixed length:
tag1data1tag2data2tag3data3

The following example shows tags of variable length:
tag1:data1tag11:data2tag111:data3

Tagged Encoded Length
This method has a tag and a length field before the data. It indicates to the
parser that following each tag in the bit stream there is data defining the
length of data to be associated with that tag. You must set the Length of
Encoded Length parameter. If the value in Length of Encoded Length includes
extra characters, you must also set the Extra Chars in Encoded Length
parameter.

The following example shows a tag of fixed length of four characters
(Length of Tag has been set to four), a three-character length field (Length of
Encoded Length has been set to three), and several characters of data. Extra
Chars in Encoded Length has been set to zero:
tagA007dataAAAtagB006dataBBtagC009dataCCCCC

Given the bit stream above, the parser finds the tag ″tagA″ and extracts the
length value 7. Because Extra Chars in Encoded Length is set to zero, the next
seven (7 - 0) characters are the data. Then follow the characters for the next
tag ″tagB″ and the length value of 6, and so on for tag ″tagC″. In each case
in this example, the value in the length field is exactly the length of data.

The following example shows tags with a fixed length of four characters
(Length of Tag has been set to four), a three-character length field (Length of

Message model reference information 747



Encoded Length has been set to three), and several characters of data. Extra
Chars in Encoded Length has been set to three (because in this example the
length field value includes the three-character length field as well as the
data field):
tagA012dataAAAAAtagB010dataBBBtagC016dataCCCCCCCCC

Given the bit stream above, after ″tagA″ the parser extracts the length
value 12. But because Extra Chars in Encoded Length is set to three, only the
next nine (12 - 3) characters are the data. Then follow the characters for
″tagB″ and length value 10, and so on. In each case in this example, the
value in the length field is three more than the actual length of data.

All Elements Delimited
The data values have no tag, but each data value is separated from the
next by a delimiter.

The following example shows this:
data1*data2*data3

Variable Length Elements Delimited
If a data element is fixed length, the next data value follows immediately
after it. If the data element is variable length, the next data value is
separated from it by the delimiter. There are no tags.

The following example shows element 2 as fixed length, and elements 1
and 3 as variable length:
data1*data2data3

Use Data Pattern
The data associated with each element is determined by the parser
matching the data with the regular expression in the Data Pattern property
for that element. The TDS parser uses the regular expression in the Data
Pattern to:
v Determine the length of data to associate with each element.
v Determine if, in the case of a repeating element, another occurrence of

an element is present in the bit stream.
v Determine the presence (if the pattern is matched) or absence (if the

pattern is not matched) of an element in the bit stream.

There are no delimiters or tags, other than those coded as part of the
regular expression patterns. See “Regular expression syntax” on page 761
for an explanation of how pattern matching works.

The following example shows three elements, each having the regular
expression Data Pattern shown:
First Data Pattern = [A-Z]{1,3}
Second Data Pattern = [0-9]+
Third Data Pattern = [a-z]*

Message data = 'DT31758934information for you'

First element data: 'DT'
Second element data: '31758934'
Third element data: 'information'

The first Data Pattern means ″from one to three characters in the range A to
Z″, the second means ″one or more characters in the range 0 to 9″, and the

748 Message Models



third means ″zero or more characters in the range a to z″. Notice how each
element’s data was terminated by the first character that did not match the
element’s Data Pattern.

Fixed Length
All elements are fixed length, and each data value immediately follows the
next with no delimiter. There are no tags.

The following example shows this:
data1data2data3

Fixed Length AL3
This method is the same as Fixed Length, but it also notifies the parser to
implement a number of rules in relation to missing elements, length
encoding, and versioning that are predefined in the ACORD AL3 standard.

Undefined
This value is set automatically when you set the Type Composition property
of a complex type to Message, and you cannot set it to any other value. You
are also unable to set values for the TDS Type properties Group Indicator,
Group Terminator, Tag Data Separator, Length of Tag, and Delimiter.

If you set the Data Element Separation method to Undefined, you must not
set the Type Composition property to Empty, Choice, Unordered Set, Ordered
Set, Sequence, or Simple Unordered Set.

For more information about Type Composition set to Message, see “Multipart
messages” on page 26.

Specifying special characters to model a message:

You can specify a number of different types of special character in the workbench.

You can also specify special character values for message sets, types, and type
members. The values that you set for a type override the corresponding values that
are set for the message set in which it is defined.

You can specify a special character value in one of the following ways:
v As a literal string of one or more characters.
v As a mnemonic value.
v As a combination of both mnemonics and literals.

The types of special character are described in the table below.

Special character
type

Description Set as a property
of...

Group Indicator This is a string that indicates the start of a group or
complex type within a message

Message set,
complex type

Group
Terminator

This is a string that indicates that the end of a group
or complex type within a message

Message set,
complex type

Tag Data
Separator

This is the string that is used to separate a tag from
its data.

Message set,
complex type

Delimiter This is the string used to separate data elements
from one another

Message set,
complex type

Repeating
Element
Delimiter

This is the string used to separate repeating data
elements from one another

Local element or
element reference

Message model reference information 749



Special character
type

Description Set as a property
of...

Tag This is the string that indicates the start of a piece of
data.

Local element or
global element

Escape character This is the character that is used to allow special
reserved characters (such as delimiters) to be
included as part of data

Message set

Quote character This is the character that is used to allow special
reserved characters (such as delimiters) to be
included as part of data.

Message set

Reserved
characters

These are characters that have a special meaning; for
example, escape characters, quote characters,
delimiters, and group indicators, are all examples of
reserved characters.

Message set

Decimal point This is the character that is used as the separator
between the integer and fractional components of a
decimal number.

Message set

If you create a complex type and set the Data Element Separation property to Tagged
Delimited, the Group Indicator property to left brace ({) , the Group Terminator to
right brace (}), the Tag Data Separator to colon (:), and the Delimiter to asterisk (*),
the bit stream has the following format:
{tag1:data1*tag2:data2*tag3:data3}

In some message formats, a special character is specified before each element or
after each element, as shown in the following two examples:
:data1:data2:data3

data1:data2:data3:

You can model these formats by using a combination of the Data Element Separation
method, the Delimiter value, the Group Indicator value, and the Group Terminator
value.

For the first example, specify Data Element Separation as All Elements Delimited,
Delimiter as colon (:), and Group Indicator as colon (:).

For the second example, specify Data Element Separation as All Elements
Delimited, Delimiter as colon (:), and Group Terminator as colon (:).

Using mnemonics for special characters:

A mnemonic is a tag that is delimited by < and >. The broker translates the
mnemonic to obtain the actual value of the special character.

Mnemonics can be used in TDS properties Decimal Point, Escape Character,
Reserved Characters, Delimiter, Group Indicator, Tag data Separator, Tag, and
Repeating Element Delimiter to specify special characters.

There are two types of mnemonic:
v Control code mnemonics, which map to the common non-printing characters.

These are mapped using the local code page for your system. This is typically an
ASCII code page on distributed platforms and an EBCDIC code page on other
platforms.

750 Message Models



This means that characters are generally mapped to the ’expected’ values for
your system. This depends on your code page setting; for more information,
refer to your system documentation. If a specific mnemonic is not mapped to the
value that you need, you can use the explicit representation (<U+xxxx>,
<0xNN>, or <0XNN>) that is described below.

v Message mnemonics for use with specific industry message standards such as
X12.
These are mapped according to their associated message standard. Each
mnemonic has a default mapping, but in message standards such as EDIFACT
and X12, this default can be overridden by a ’service string’ that is specified in
the message itself.

Mnemonics can be specified in one of the following ways:
v <Mnemonic_Name>, where Mnemonic_Name can comprise alphanumeric characters

and underscore (_) characters.
v <U+xxxx>, where xxxx are hexadecimal digits. The mnemonic is interpreted as the

Unicode character that corresponds to the value of the digits.
v <0xNN> or <0XNN>, where N is a hexadecimal digit. The mnemonic is interpreted

as the raw byte value given by the digits.

For more details about the supported mnemonics, see “TDS Mnemonics” on page
168.

TDS Mnemonics:

The Tagged/Delimited String Format (TDS) uses mnemonics for a number of
properties for a message set, complex type, or both. These TDS mnemonics and
their associated properties are listed in the following table.

Mnemonic string Meaning Default value Associated property

<EDIFACT_CS> Component separator in
EDIFACT

: Message set and complex type
or group, Delimiter

<EDIFACT_DS> Data element separator in
EDIFACT

+ Message set and complex type
or group, Delimiter

<EDIFACT_TAGDATA_SEP> Tag data separator in EDIFACT

This is overridden with the
same value as that which
overrides <EDIFACT_DS>

+ Message set and complex type
or group, Tag Data Separator

<EDIFACT_DEC_NOTATION> Decimal notation in EDIFACT . Message set, Decimal Point

<EDIFACT_ESC_CHAR> Escape character in EDIFACT ? Message set, Escape Character

<EDIFACT_GROUP_TERM> Tag terminator in EDIFACT ’ Message set, Group Terminator

<X12_GROUP_TERM> Tag terminator in X12 ! Message set level, Group
Terminator

<X12_DS> Data element separator for X12 * Message set and complex type
or group, Delimiter

<X12_CS> Component separator for X12 : Message set and complex type
or group, Delimiter

<HL7_CS> Component separator in HL7 ^ Message set and complex type
or group, Delimiter

<HL7_FS> Data element separator in HL7 | Message set and complex type
or group, Delimiter

Message model reference information 751



Mnemonic string Meaning Default value Associated property

<HL7_RS> Repeating element delimiter in
HL7

~ Local element and element
reference, Repeating Element
Delimiter

<HL7_SCS> Sub-component separator in
HL7

& Message set and complex type
or group, Delimiter

Mnemonics for control characters are shown in the following table.

Mnemonic Hex
value

Unicode Description

<ACK> X’06’ <U+0006> Acknowledge

<BEL> X’07’ <U+0007> Bell

<BS> X’08’ <U+0008> Backspace

<CAN> X’18’ <U+0018> Cancel

<CR> X’0D’ <U+000D> Carriage Return

<DC1> X’11’ <U+0011> Device Control One

<DC2> X’12’ <U+0012> Device Control Two

<DC3> X’13’ <U+0013> Device Control Three

<DC4> X’14’ <U+0014> Device Control Four

<DLE> X’10’ <U+0010> Data Link Escape

<EM> X’19’ <U+0019> End of Medium

<ENQ> X’05’ <U+0005> Inquiry

<EOT> X’04’ <U+0004> End of Transmission

<ESC> X’1B’ <U+001B> Escape

<ETB> X’17’ <U+0017> End of Transmission Block

<ETX> X’03’ <U+0003> End of Text

<FF> X’0C’ <U+000C> Form Feed

<FS> X’1C’ <U+001C> File Separator

<GS> X’1D’ <U+001D> Group Separator

<GT> X’3E’ <U+003E> Greater Than

<HT> X’09’ <U+0009> Horizontal Tabulation

<LF> X’0A’ <U+000A> Line Feed

<LT> X’3C’ <U+003C> Less Than

<NAK> X’15’ <U+0015> Negative Acknowledge

<NUL> X’00’ <U+0000> Null-

<RS> X’1E’ <U+001E> Record Separator

<SI> X’0F’ <U+000F> Locking Shift Zero (Shift In)

<SO> X’0E’ <U+000E> Locking Shift One (Shift Out)

<SOH> X’01’ <U+0001> Start of Heading

<SP> X’20’ <U+0020> Space

<STX> X’02’ <U+0002> Start of Text

<SUB> X’1A’ <U+001A> Substitute

752 Message Models



Mnemonic Hex
value

Unicode Description

<SYN> X’16’ <U+0016> Synchronous Idle

<US> X’1F’ <U+001F> Unit Separator

<VT> X’0B’ <U+000B> Vertical Tabulation

These mnemonics were created for characters that cannot be entered into the
message editor.

You can enter a mnemonic in the form <U+NNNN>, where NNNN are hexadecimal
digits. None of the characters in this structure are case-sensitive. Do not enclose
spaces inside the angle brackets. These numbers represent a Unicode character, not
a character in the code page of the input message.

You can enter a mnemonic in the form <0xNN>, where NN are hexadecimal digits.
None of the characters in this structure are case-sensitive. Do not enclose spaces
inside the angle brackets. These numbers represent a raw hexadecimal byte value,
not a character in the code page of the input message.

If a mnemonic is of the form <0xNN>, it is applied directly to the input data, and no
code page conversion takes place. Otherwise, a mnemonic is applied to the data
after the data has been converted into Unicode from the code page of the input
data.

TDS Null handling options
TDS supports the handling of null values within messages, provided that the
logical Nillable property of the element is set.

You can use the message set property Boolean Null Representation to specify the
value to be used for Boolean Null representation. You can use the object properties
Encoding Null and Encoding Null Value to control how null handling is represented
for individual objects.

You can select the Encoding Null property from the enumerated values
NULLPadFill, NULLLogicalValue, NULLLiteralValue, and NULLLiteralFill:
v Only use the NULLPadFill option for fixed length objects. If you select this

option for an object of simple type dateTime, a null dateTime is written out,
which is an empty tag with a delimiter. (This is equivalent to selecting
NullLiteralValue, with the Encoding Null Value property set to the empty string
″″.) If you select this option for an object of another simple type, the object is
filled with the value specified by the Padding Character property. If you select
this option, the Encoding Null Value property is disabled.
If you use this option for a variable length object, the parser does not know how
many padding characters to write out; therefore, it does not write any. Instead,
the parser writes an explicit null, with tag and delimiter but no data value. For
example:
tag1:,

is written out, where tag1 is the tag for the variable length element with
NULLPadFill set, ":" is the tag data separator, and "," is the delimiter.

v If you select the NULLLogicalValue option, the value entered for the Encoding
Null Value property is converted to its logical value. For writing, the logical

Message model reference information 753



value is written in the same way as any other value. For parsing, the converted
logical value is compared against the converted message data.

v If you select the NULLLiteralValue option, the value entered for the Encoding
Null Value property is directly substituted as if it were a string value. The value
is case insensitive. For fixed length objects, the literal value must be no longer
than the length of the object.
If the literal value is shorter, the Encoding Null Value is padded (using Padding
Character) on output. On input, if the NULLLiteralValue’s length does not match
the Length field, set the message set level Trim Fix Len String property so that
padded nulls are correctly parsed.

v If you select the NULLLiteralFill option, the value entered for the Encoding Null
Value property is interpreted as a single character string value. Therefore, each
character of the value of the element in the bit stream must match exactly the
character value specified, to be interpreted as a null value.

The use of the Encoding Null Value property is dependent on the value that you
select for the Encoding Null property described above. Null values are not defined
for binary types. The properties Encoding Null and Encoding Null Value are therefore
not set for binary types.

Handling missing fields in a delimited format

When dealing with delimited message formats, it is common for fields to be empty.
For example, in a line-oriented format, blank lines might be inserted to separate
lines of data.
This is Line 1<CR><LF>
<CR><LF>
This is Line 3<CR><LF>
This is Line 4

If the TDS property Suppress Absent Element Delimiters of the parent complex type
is set to Never, such a message is successfully parsed, but the blank line does not
appear in the message tree:
MRM

- line1 = 'This is Line 1'
- line3 = 'This is Line 3'
- line4 = 'This is Line 4'

If you need to preserve the blank lines in the message tree, you can use TDS null
handling to treat the blank line as NULL. You must set the following three
properties on the element:
v Nillable = true
v TDS Encoding Null = ’NullLiteralValue’
v TDS Encoding Null Value = (Blank)

The message tree then looks like:
MRM

- line1 = 'This is Line 1'
- line2 = NULL
- line3 = 'This is Line 3'
- line4 = 'This is Line 4'

The example above assumes that each line is modeled as an element of simple type
string. If each line is modeled as an element of complex type, with each line

754 Message Models



consisting of a repeating number of word elements, set the three null handling
properties on the word element instead, because an element of complex type can
not have a null value.

The message tree then looks like:
MRM

- line1
- word = 'This'
- word = 'is'
- word = 'Line'
- word = '1'

- line2
- word = NULL

- line3
- word = 'This'
- word = 'is'
- word = 'Line'
- word = '3'

- line4
- word = 'This'
- word = 'is'
- word = 'Line'
- word = '4'

TDS message model integrity

When you use the TDS wire format, you must conform to a number of rules that
apply to the setting of values of properties. These rules are checked any time the
project is saved. If an inconsistency is found, the error is displayed in the task list
of the workbench.

The following sections cover the rules for TDS wire format properties:
v “General rules: TDS message model integrity”
v “Restrictions for nesting complex types” on page 757
v “Omission and truncation of elements” on page 758

General rules: TDS message model integrity:

This section describes the general rules for each value that you can set for the Data
Element Separation property of a type.

Tagged Delimited

v The Tag property for every simple child element must contain a
non-empty value.

Tagged Encoded Length

v The Tag property for every simple child element must contain a
non-empty value.

v The Length Of Encoded Length property must contain a positive integer
greater than zero.

Variable Length Elements Delimited

v The Delimiter property must contain a non-empty value.

Use Data Pattern

v Each simple element that is a child of the complex type must have a
regular expression specified for Data Pattern. See “Regular expression
syntax” on page 761.

Message model reference information 755



All Elements Delimited

v The Delimiter property must contain a non-empty value.

Fixed Length

v All simple child elements must specify a length, unless their data type is
Boolean (or derived from Boolean).

v All compound child elements must specify a length, unless their data
type is Boolean (or derived from Boolean).

v The length can be specified using either the Length property, or the
Length Value Of member property.

Fixed Length AL3

v All complex child elements with a non-Boolean compound element and
non-Boolean simple child elements must have either a nonzero value in
their Length property, or a non-empty value for their Length Value Of
type member property.

Tagged Fixed Length

v All complex child elements with a non-Boolean compound element and
non-Boolean simple child elements must have either a nonzero value in
their Length property or a non-empty value for their Length Value Of type
member property.

v The Tag property for each and every simple child element must contain
a non-empty value.

The following rules also apply:
v If you have set the parent Type Composition to Choice, and the parent Data

Element Separation property to Variable Length Elements Delimited, All
Elements Delimited, Fixed Length, or Fixed Length AL3:
– You must not set the Type Composition to Message for any child complex types.
– You must not set the Data Element Separation method to Tagged Delimited or

Tagged Fixed Length for any child complex types.

If you do so, the message set will not deploy successfully.
v If you have set the type’s Data Element Separation property to Fixed Length,

Fixed Length AL3, or Tagged Fixed Length, you must set either the Length or
Length Value Of property for all simple elements under this parent, and also for
all complex elements with a simple content and compound elements.

v For a Choice in a fixed length environment (Data Element Separation set to Fixed
Length, Tagged Fixed Length, or Fixed Length AL3), length references are not
valid, and element lengths should be used.

v Elements specified in a Length Value Of property must be simple elements of
type INTEGER, they must exist in the same structure as the referring element,
and they must appear before the referring element in that structure.

v Complex types with simple content and Compound elements must have an
empty Length Value Of type member property. This is because the Length Value
Of element would occur after the referring element in the parent structure,
which is disallowed by the previous rule.

v Complex types with simple content cannot have a separation type of Use Data
Pattern.

v Compound elements cannot have a separation type of Use Data Pattern.
v Regardless of the setting of the type’s Data Element Separation property, if the

type of a simple element is BINARY, you must set either the Length or Length
Value Of property.

756 Message Models



v For fixed length elements, the Justification property must be set to something
other than Not Applicable, and the Padding Character property cannot be an
empty value.

v If any element within a message has its Interpret Element Value property set to
Message Key, the Message Key property must be set for all messages within the
message set.

v If you have set the Repeat property in the type member to Yes, you must set a
value for the Max Occurs property in the following two situations:
– If you have defined an element as a member of a complex type that has the

property Data Element Separation set to Fixed Length.
– If you have defined a fixed length element as a member of a complex type

that has the property Data Element Separation set to Variable Length Elements
Delimited.

When it is invoked by the broker to interpret an input message, the parser
assumes that the number of occurrences of the element is equal to the value that
you set for Max Occurs. When the parser constructs an output message, if there
are fewer elements than the value of Max Occurs, the missing elements are
inserted with default values.

Restrictions for nesting complex types:

If you include a group within another group or complex type, the Data Element
Separation property for the nested group must be compatible with the Data Element
Separation property of the parent group or complex type. For example, you cannot
set the parent property to Fixed Length and the child property to Tagged
Delimited, because the length of the Tagged Delimited structure would not be
known, and would therefore conflict with the parent definition. If groups are
nested to three or more levels, the Data Element Separation property for each nested
group must be compatible with all of its parent groups.

The rules for compatibility are listed in the table of permitted options for nested
complex types shown below.

Parent

Child Tagged
Delimited,
Tagged Encoded
Length

All Elements
Delimited,
Variable Length
Elements
Delimited

Fixed Length,
Fixed Length
AL3

Tagged Fixed
Length

Use Data Pattern

Tagged
Delimited,
Tagged Encoded
Length

Allowed Allowed Not allowed Not allowed Allowed

All Elements
Delimited,
Variable Length
Elements
Delimited

Allowed Allowed Not allowed Not allowed Allowed

Fixed Length,
Fixed Length
AL3

Allowed Allowed Allowed Allowed Allowed

Tagged Fixed
Length

Allowed Allowed Not allowed1 Allowed Allowed

Use Data Pattern Allowed Allowed Allowed Allowed Allowed

Message model reference information 757



Parent

Child Tagged
Delimited,
Tagged Encoded
Length

All Elements
Delimited,
Variable Length
Elements
Delimited

Fixed Length,
Fixed Length
AL3

Tagged Fixed
Length

Use Data Pattern

Note:

1. Tagged Fixed Length cannot exist at the inner level if any outer level has a Data Element Separation method of
Fixed Length or Fixed Length AL3. This is because an item of Tagged Fixed Length can repeat a variable
number of times. Fixed Length and Fixed Length AL3 are parsed by moving a set number of bytes: with a
variable number of repeats, it is not possible to calculate the number of bytes that need to be parsed.

Omission and truncation of elements:

The omission and truncation of elements is dependent on the setting of the
property Suppress Absent Element Delimiters. A description of this can be found in
“Complex type TDS properties” on page 232, “Global group TDS properties” on
page 237, or “Local group TDS properties” on page 242.

If you have created a message in which some elements are optional, an input
message might not contain all defined elements. If the elements are in a complex
type that you have defined with the Data Element Separation property of the type
set to All Elements Delimited or Variable Length Elements Delimited (in which
the elements are separated by a delimiter and have no tag), any elements that are
missing from the end of the complex type must be indicated by the application
that creates the message in one of two ways. These both provide techniques to
avoid unnecessarily long sequences of delimiters, and to preserve consistent
representation of missing elements.
1. If you have set the Delimiter property for the complex type to a value that does

not match the value that you have set for the Delimiter property for any of the
complex type’s parent types, the elements at the end of the message can be
indicated by the occurrence of a Delimiter of one of its parents after the last
actual element in the complex type data.
This is known as the truncation method, in which missing elements are treated
as not expected, and both data and delimiters are omitted in the bit stream.
For example, you define a complex element C that has four optional elements.
You set the Delimiter property to the character plus (+). You define complex
element P, and set the Delimiter property of P to asterisk (*). You add three
elements to P, the first is a string, the second is complex element C, and the
third is a string.
When a particular instance of the message is received by the broker, all the
elements of P are present, but only the first two elements of C are present. The
data in the message appears as follows if the truncation method is used (where
Pn are the values of the elements of P and Cn the values of the elements of C):
P1*C1+C2*P3

When the parser encounters the second asterisk delimiter, it determines that the
last two elements of complex element C are not present, and the next element is
the third element of P.
You can use truncation successfully only when both omission and truncation
cause the parser to exhibit the same behavior, unless the elements truncated are
fixed length.

758 Message Models



2. If the Delimiter of the complex type matches that of one of its parents, the
truncation method cannot be used. This is because the parser cannot determine
whether the delimiter after the last element is for the current complex type, or
for one of its parents. Therefore a delimiter must be included in the message
data for each missing element to ensure that the parser can match the elements
with the model.
This is known as the omission method, in which missing simple elements are
represented by an empty sequence of characters between two delimiters.
For example, you define P and C as in the previous example, but set the
Delimiter property for P to plus (+). When the same message is received by the
broker (all elements of P are present, the first two elements of C are present),
the data in the message appears as follows:
P1+C1+C2++P3

Two delimiter characters have been inserted in the message data for the
missing elements of complex element C. If the truncation method had been
used, the parser would have interpreted the data value P3 as the value of the
third element of complex element C and not the third element of complex
element P.

Using regular expressions to parse data elements

If your input messages can contain sub-fields whose presence or absence can only
be determined by examining the actual value of the data (for example, an optional
field of numeric digits followed by one or more alphabetic characters) you need to
use the Data Element Separation method Use Data Pattern.

This is particularly relevant to messages that conform to the SWIFT industry
standard. To use this method, you must provide regular expressions to identify
those portions of an input message that are to be associated with sub-fields. You
need to provide a regular expression value for the Data Pattern property of each
child of the complex type.

When parsing, data is matched in turn with each child of the complex type. The
parser does this by using the regular expression for the child to determine the
number of characters from the message that apply for that child. This number of
characters is the length of the longest string, starting from the current position in
the message, that matches the regular expression. If the longest string that matches
the regular expression is of length zero, the element is present in the message, and
the empty string is used for the value. If no string matches the regular expression,
the element is not present. This might cause a subsequent validation error if the
element is required.

After the number of characters from the input message has been determined,
normal data conversion, or further parsing in the case of a complex element, is
performed on the text of the input message to assign values to elements. This
might lead to data overrun or underrun errors if the length identified by the
pattern is not appropriate for the definition of the child.

“Regular expression syntax” on page 761 explains the full syntax rules and how to
apply them, but the table below gives a few simple examples of parsing using data
patterns. A more complex example appears after the table.

Input message Data Pattern Value matched

"123456ABC" [0-9]* "123456"

Message model reference information 759



Input message Data Pattern Value matched

"123" [A-Z]* ""

"123" [A-Z]+ Not present

"0x2A2B" \x2A+ X’2A’

"ABCD123"
[A-Z]{1,3} first field

[A-Z]{2,4} second field

"ABC" - first field (the longest
string matching the pattern)

Not present - second field
(minimum length of two
alphabetic characters is not
present)

"ABCDEFGHIJ1234"
[A-Z]{1,3} first field, repeat

[0-9]+ second field

"ABC" - first field [1]

"DEF" - first field [2]

"GHI" - first field [3]

"J" - first field [4]

"1234" - second field (the
repeating field is terminated
when the data "1234" no
longer matches the data
pattern specified for the first
field.)

The example below shows three-field pattern matching.

In the case of a repeating child, instances of the child are parsed for as many times
as the pattern is matched. This is applied even if Max Occurs is specified for the
repeating element and the number of occurrences exceeds the upper bound.
Therefore some terminating condition must be determinable from the regular
expression pattern for the element. The table above includes an example of a
repeating element.

Message definition:
Complex type: Data Element Separation=Use Data Pattern
Field1: xsd:string minOccurs=1, maxOccurs=1, Length=5, Pad=SPACE,

Data Pattern=".{5}"
Field2: xsd:int minOccurs=0, maxOccurs=1,

Data Pattern="[0-9]{0,6}"
Field3: xsd:string minOccurs=1, maxOccurs=1, minLength=3, maxLength=4,

Data Pattern="[A-Z][A-Za-z0-9]{2,3}"

Input1: "ABCDE123F12"
Result1: Field1="ABCDE", Field2="123", Field3="F12"

Input2: "ABCDEF12"
Result2: Field1="ABCDE", Field2=not present, Field3="F12"

Input3: "ABCDE123456XXXX"
Result3: Field1="ABCDE", Field2="123456", Field3="XXXX"

Input4: "ABCDE1234567"
Result4: Field1="ABCDE", Field2="123456", Field3=not present,

which causes an exception if validation is enabled. One
character ("7") remains unassigned to any element, which
also causes an exception.

760 Message Models



When parsing, the data from the input message that matches the Data Pattern, and
that is assigned to an element, is not further scanned for delimiters of a higher
level complex type. This behavior is similar to that of Data Element Separation
method Fixed Length. However, you can code a regular expression that will match
data to one of a number of possible delimiters.

When writing, if a length is specified for a child, the value is padded as
appropriate to that length. This behavior is similar to that of Data Element
Separation method Variable Length Elements Delimited, but without delimiters.

If the message includes a complex type that has Composition set to Choice, you can
set the Data Element Separation method to Use Data Pattern. In this case, the Data
Pattern values of the children are used to resolve the choice. Starting with the first
child, the first pattern to provide a match determines which child is present.
Therefore the order of children in a choice might be important.

A complex type can contain repeating children with Max Occurs unbounded.
Length, and other associated properties such as Justification and Padding, can
optionally be specified for the children.

See “TDS message model integrity” on page 755 for rules that you must follow
when using the Data Element Separation method Use Data Pattern, and refer to
“Combinations of Composition and Content Validation” on page 295 for details of
valid settings of Composition and Content Validation.

Regular expression syntax:

A regular expression is a coded string. It defines a set of strings that match the
expression. A regular expression can be made up of one or more branches
(choices), each of which can be a string made up of characters, character classes, or
parenthesized expressions with modifiers to specify repetition rules.

The regular expression syntax that is supported is a subset of XML Schema regular
expressions, with the addition of the \xNN hexadecimal syntax. For the full
syntax, see Appendix F in XML Schema Part 2: Datatypes that can be found on the
World Wide Web Consortium (W3C) Web site.

The following table lists the supported regular expression syntax elements:

Metacharacter Meaning

\ escape

. any single character

* preceding character 0 or more times

+ preceding character 1 or more times

? preceding character 0 or 1 time

{...} occurrences of preceding 1

[...] match one of the class contained

[^...] match one of the class not contained 1

(...) group the expressions 1

| match either preceding or following

Escape sequence Meaning

\n new line

Message model reference information 761

http://www.w3.org/TR/xmlschema-2/#regexs
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/


\r carriage return

\t tab

\e escape

Class code Meaning

\d digit [0-9]

\D non-digit [^0-9] 2

\s white space[ \t\n\r]

\S non-whitespace character[^ \t\n\r] 2

\p{L} all letters 3

\p{N} all numbers, similar to \d 4

[\p{N}\p{L}] all numbers and all letters , similar to \w 4

\P{L} not letters, equivalent to [^\p{L}]

\P{N} not numbers, equivalent to [^\p{N}]

\xNN hexadecimal digits in the range 0 to F

Range Meaning

{n} exactly n times

{n,} at least n times

{n,m} at least n, but no more than m, times

{0,m) zero to m times

Notes:

1. The ellipsis (...) is used to indicate anything inside the { }, or [ ], or ( )
characters.

2. The caret (^) means ″not″ when inside the [ ] characters.
3. Consult Appendix F of the document XML Schema Part 2: Datatypes for

other characters that can be used in place of L and N.
4. Consult Appendix F of the document XML Schema Part 2: Datatypes for

the precise differences.

The following table gives some examples of the syntax rules for regular expression
syntax. See “Using regular expressions to parse data elements” on page 759 for
some examples of their use.

Regular expression data pattern Meaning

a Match character "a"

. Match any one character

a+ Match a string of one or more "a"

a* Match a string of zero or more "a"

a? Match zero or one "a"

a{3} Match a string of exactly three ″a″, that is
"aaa"

a{3,} Match a string of three or more "a"

a{2,4} Match a string with a minimum of two and
a maximum of four occurrences of "a"

762 Message Models

http://www.w3.org/TR/xmlschema-2/#regexs
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/xmlschema-2/#regexs
http://www.w3.org/TR/xmlschema-2


Regular expression data pattern Meaning

[abc] Match any one of the characters "a", "b", or
"c"

[a-zA-Z] Match any one character in the range "a" to
"z", or in the range "A" to "Z". Note that
the range of characters matched is based on
the Unicodes of the characters specified.

[^abc] Match any character except one of "a", "b",
or "c"

(ab)+ Match one or more repetitions of the string
"ab"

(ab)|(cd) Match either of the strings "ab" or "cd"

Using multiple delimiters:

If you set Data Element Separation to the method Use Data Pattern, messages in
which fields are delimited by one of a set of characters or strings can be parsed.

For example, consider a simple message with two numeric fields that can have
either of the characters ’;’ or ’/’ delimiting them. There are two approaches that
you could use:
1. Model the delimiter as a data element which is added to the message tree. If

the message is rewritten, it looks like the input message.
Consider this model:
Composition = Sequence
Data Element Separation = Use Data Pattern

FieldA Data Pattern = [0-9]*
Delim Data Pattern = [;/] optionally with a default value.
FieldB Data Pattern = [0-9]*

After parsing, the elements FieldA and FieldB each contain any number of the
digits 0 to 9, and the element Delim contains either ″;″ or ″/″.

2. Recognize the delimiter as a delimiter, which is not added to the tree. If the
message is rewritten, a preferred delimiter (as specified in the model) is used.
Consider this model:
Composition = Choice
Data Element Separation = Use Data Pattern

SubType1 Data Pattern = [0-9]*;[0-9]*
(Composition = Sequence
Data Element Separation = All Elements Delimited
Delimiter = ';')
FieldA
FieldB
SubType2 Data Pattern = [0-9]*/[0-9]*
(Composition = Sequence
Data Element Separation = All Elements Delimited
Delimiter = '/')
FieldA
FieldB

The regular expressions differentiate between the two options that can occur in
the message, which are then parsed as a normal delimited structure. After
parsing, the elements FieldA and FieldB each contain any number of the digits
0 to 9. The delimiter found in the input message is not saved in an element.

Message model reference information 763



You could refine this approach by using different names for the children, or
elements for SubType1 and SubType2, to provide the knowledge of which
delimiter is used, or to control which delimiter is included in the output
message.

Using a variable number of repeats:

You can use the Data Element Separation method Use Data Pattern to support a
variable number of repetitions in an otherwise fixed length environment, where
there is no markup to indicate the end of the repetitions.

However, it relies on the ability to recognize the end of the repetitions based on
the data content.

In its simplest form, you can do this by specifying a regular expression Data
Pattern that matches a fixed number of characters that is terminated by reaching
the end of the message bit stream.

For example, consider a message with one fixed length field (length 10), followed
by another fixed length field (length 20) that repeats indefinitely to the end of the
bit stream:

Message Data Element Separation=Use Data Pattern
FieldA Data Pattern=.{10}
FieldB Repeat, Min Occurs=1, no Max Occurs, Data Pattern=.{20}

The following example message contains a fixed length field (length 20) that
repeats a variable number of times, and is separated from a second field by the
string ″;″. The pattern specifies a string of 20 characters starting with anything
except a semicolon:

Message Data Element Separation=All Elements Delimited, Delimiter=;
SubType1 Data Element Separation=Use Data Pattern

FieldA Repeat, Min Occurs=1, no Max Occurs, Data Pattern=[^;].{19}
FieldB

Performance considerations when using regular expressions:

You should take care when specifying regular expressions: some forms of regular
expression can involve a large amount of work to find the best match, adversely
impacting performance. Other expressions might produce a result that you did not
expect.

For example, to match text up to and including a delimiter character ’;’ do not use
the pattern ″.*;″ because this matches up to the last ’;’ character in the message,
including any prior ’;’ characters in the matched text. Instead, you should use the
pattern ″[^;]*;″.

Similarly, avoid using the pattern ″.*″ because this will always force a search to the
end of the message to try and find the best match, and this might result in poor
performance. However, you should use the pattern ″.*″ if you intend to match all
remaining data in a message.

For best performance, avoid expressions with redundant nested repeats, such as
″([0-9]+)*″. Try to keep the expressions simple, with precise matching criteria. This
avoids the need to perform multiple searches for the best match.

764 Message Models



DateTime formats
When you create an element or attribute with a simple type of dateTime, you must
specify a format string in the object’s Format String property for each physical
format layer (CWF, TDS, XML).

You can use the symbols defined in the information below to control the format in
which the dateTime appears in the message data.

You can only use dateTime for Gregorian calendar dates.

DateTime information can appear in a message as:
v String data. This includes XML, and all TDS and CWF physical types except

those mentioned below. This is described further in “DateTime as string data”.
v Binary data. This is for the TDS or CWF Binary physical type. See “DateTime as

BINARY data” on page 771 for more information.
v An offset from an epoch in seconds or milliseconds. This is used if you have set

the TDS or CWF Physical Type property to Time Seconds or Time Milliseconds
respectively. See “DateTime as encoded values” on page 772 for details of this
option.

The defaults that are set for each message set property that relates to dateTime, for
each physical representation (CWF, TDS, XML), are defined in “Message set
defaults” on page 773.

DateTime as string data
You can use a string of pattern letters to specify the dateTime format.

When you convert a date or time into a string, a format pattern must be applied
that directs the conversion. Apply the format pattern to convert a date or time into
a string, or to parse a string into a date or time.

During the conversion (for example, of a dateTime into a string), a pattern or a set
of tokens is replaced with the equivalent source. The following diagram shows
how a pattern is used to format a dateTime source to produce a character string
output.

When a string is parsed (for example, when converting the string to a dateTime),
the pattern or set of tokens is used to determine which part of the target dateTime
is represented by which part of the string. The following diagram shows how this

source pattern

output

Year=2004, Month=10, Day=07,
Hour=10, Minute=24, Second=40

yyyy-MM-dd  HH:mm:ss

2004-10-07  10:24:40

Message model reference information 765



is done.

Syntax

The expression pattern is defined by:

�� � symbol
string

��

Where:

symbol
is a character in the set adDeEFGhHIkKmMsSTUwWyYzZ.

string is a sequence of characters enclosed in single quotation marks. If a single
quotation mark is required within the string, use two single quotation
marks (″).

Characters for formatting a dateTime as a string

The following table lists the characters that you can use in a pattern for formatting
or parsing strings in relation to a dateTime. The table is followed by some notes
that explain more about some of the examples in the table.

Symbol Meaning Presentation Examples

a am or pm marker Text Input am, AM, pm, PM.
Output AM or PM

d day in month (1-31) Number 1, 20

dd day in month (01-31) Number 01, 31

D day in year (1-366) Number 3, 80, 100

DD day in year (01-366) Number 03, 80, 366

DDD day in year (001-366) Number 003

e day in week (1-7)1 Number 2

source pattern

output

12 Jan 03, 3:45pm dd MMM yy, h:ma

Year=2003, Month=01, Day=12,
Hour=15, Minute=45

766 Message Models



Symbol Meaning Presentation Examples

EEE day in week1 Text Tue

EEEE day in week1 Text Tuesday

F day of week in month (1-5)2 Number 2

G Era Text BC or AD

h hour in am or pm (1-12) Number 6

hh hour in am or pm (01-12) Number 06

H hour of day in 24 hour
form (0-23)3

Number 7

HH hour of day in 24 hour
form (00-23)3

Number 07

I ISO8601 Date/Time (up to
yyyy-MM-dd’T’HH:mm:ss.
SSSZZZ)4

Text 2006-10-
07T12:06:56.568+01:00

IU ISO8601 Date/Time (similar
to I, but ZZZ with output
″Z″ if the time zone is
+00:00)4

Text 2006-10-
07T12:06:56.568+01:00,
2003-12 -15T15:42:12.000Z

k hour of day in 24 hour
form (1-24)3

Number 8

k hour of day in 24 hour
form (01-24)3

Number 08

K hour in am or pm (0-11) Number 9

KK hour in am or pm (00-11) Number 09

m minute Number 4

mm minute Number 04

M numeric month Number 5, 12

MM numeric month Number 05, 12

MMM named month Text Jan, Feb

MMMM named month Text January, February

s seconds Number 5

ss seconds Number 05

S decisecond5 Number 7

SS centisecond5 Number 70

SSS millisecond5 Number 700

SSSS 0.0001 second5 Number 7000

SSSSS 0.00001 second5 Number 70000

SSSSSS 0.000001 second5 Number 700000

T ISO8601 Time (up to
HH:mm:ss.SSSZZZ)4

Text 12:06:56.568+01:00

TU ISO8601 Time (similar to T,
but a time zone of +00:00 is
replaced with ’Z’)4

Text 12:06:56.568+01:00,
15:42:12.000Z

w week in year6 Number 7, 53

ww week in year6 Number 07, 53

Message model reference information 767



Symbol Meaning Presentation Examples

W week in month7 Number 2

yy year8 Number 06

yyyy year8 Number 2006

YY year: use with week in year
only6

Number 06

YYYY year: use with week in year
only6

Number 2006

zzz time zone (abbreviated
name)

Text GMT

zzzz time zone (full name) Text Greenwich Mean Time

Z time zone (+/-n) Text +3

ZZ time zone (+/-nn) Text +03

ZZZ time zone (+/-nn:nn) Text +03:00

ZZZU time zone (as ZZZ, ″+00:00″
is replaced by ″Z″)

Text +03:00, Z

ZZZZ time zone (GMT+/-nn:nn) Text GMT+03:00

ZZZZZ time zone (as ZZZ, but no
colon) (+/-nnnn)

Text +0300

’ escape for text ’User text’

″ (two single quotation
marks) single quotation
mark within escaped text

’o″clock’

The presentation of the dateTime object depends on the symbols that you specify.
v Text: If you specify four or more of the symbols, the full form is presented. If

you specify less than four, the short or abbreviated form, if it exists, is presented.
For example, EEEE produces Monday, EEE produces Mon.

v Number: The number of characters for a numeric dateTime component must be
within the bounds of the corresponding formatting symbols. Repeat the symbol
to specify the minimum number of digits required. The maximum number of
digits permitted is the upper bound for a particular symbol. For example, day in
month has an upper bound of 31; therefore, a format string of d allows the
values 2 or 21 to be parsed but does not allow the values 32 or 210 to be parsed.
On output, numbers are padded with zeros to the specified length. A year is a
special case; see note 8. Fractional seconds are also a special case; see note 5.

v Lenient dateTime checking: The parser converts out-of-band dateTime values to
the appropriate in-band value. For example, the date 2005-05-32 is converted to
2005-06-01. Output of dateTimes always adheres to the symbol count. For
example, a formatting string of yyyy-MM-dd (where ’-’ is the field separator)
allows one or more characters to be parsed against MM and dd. This conversion
allows dates such as 2006-01-123 and 2006-011-12, which are not valid, to be
input. The value of 2006-01-123 is output as the date 2006-05-03, and the value
of 2006-011-12 is output as the date 2006-11-12. The number of occurrences of the
time zone formatting symbol Z applies only to the output dateTime format.
White space is skipped over.

v Physical Type: If you specify the Physical Type property of the dateTime object
to be Packed Decimal, the only pattern formatting symbols that are valid are
those that represent numbers; that is, those that have Number in the

768 Message Models



Presentation column of the table. No other characters are allowed in the format
pattern. For example, yyyyMMdd is valid, but yyyyMMMdd is not valid
because MM is a numeric representation of the month, and MMM is a textual
representation of the month.

v Any characters in the pattern that are not in the ranges of [’a’..’z’] and [’A’..’Z’]
are treated as quoted text. For example, characters like colon (:), comma (,),
period (.), the number sign (hash or pound, #), the at sign (@), and space are
displayed in the resulting time text even if they are not enclosed within single
quotation marks.

v You can create formatting strings that produce unpredictable results; therefore,
you must use these symbols with care. For example, if you specify dMyyyy, it is
impossible to distinguish between day, month, and year. dMyyyy tells the broker
that a minimum of one character represents the day, a minimum of one
character represents the month, and four characters represent the year. Therefore
3112006 might be interpreted as 3/11/2006 or as 31/1/2006.

Notes: The following notes apply to the preceding table.
1. The day in week field is the numeric offset into a week and varies

according to the value of the physical message set property First Day of
Week. For example, the third day in the week is Wednesday if the
physical message set property First Day of Week is set to Monday.

2. 12th July 2006 is the second Wednesday in July and can be expressed as
2006 July Wednesday 2 using the format string yyyy MMMM EEEE F. Note
that this format does not represent the Wednesday in week 2 of July
2006, which is 5th July 2006; the format string for this is yyyy MMMM EEEE
W.

3. 24-hour fields might result in an ambiguous time, if specified with a
conflicting am/pm field.

4. See “ISO8601, I and T DateTime tokens” on page 770.
5. Fractional seconds are represented by uppercase S. The length must

implicitly match the number of format symbols on input. The format
string ss SSS or ss.SSS, for example, represents seconds and
milliseconds. However, the format string ss.sss represents a repeated
field (of seconds); the value after the period (.) is taken as a seconds
field, not as fractional seconds. The output is truncated to the specified
length.

6. The start of a year typically falls in the middle of a week. If the number
of days in that week is less than the value specified by the physical
message set property Days in First Week of Year, the week is considered
to be the last week of the previous year; in this case, week 1 starts some
days into the new year. Otherwise, the week is considered to be the first
week of the new year; in this case, week 1 starts some days before the
new year. For example, Monday of week 1 in 2004 (2004 01 Monday,
where Days in First Week of Year = 4 and First Day of Week = Monday
) using format string YYYY ww EEEE is in fact 29th December 2003. If you
use Y, the day of week (E) and week in year (w) are adjusted if necessary
to indicate that the date falls in the previous year.
If you use the lower case y symbol, the adjustment is not done and
unpredictable results might occur for dates around year end. For
example, if the string 2002 01 Monday is formatted:
v Monday of week 1 in 2002 using format string YYYY ww EEEE is

correctly interpreted as 31st December 2001

Message model reference information 769



v Monday of week 1 in 2002 using format string yyyy ww EEEE is
incorrectly interpreted as 30th December 2002

Use Y only together with w. If you specify Y without w, the year is
ignored. For example, if you specify YYYY-MM-dd to format 1996-03-01
the result is 2006-03-01 because the year input is ignored and the
current year is assumed.

7. The first and last week in a month might include days from
neighboring months. For example, Monday 31st July 2006 can be
expressed as Monday in week one of August 2006, which is 2006 08 1
Monday using format string yyyy MM W EEEE.

8. Year is handled as a special case:
v On output, if the count of y is 2, the year is truncated to 2 digits. For

example, if yyyy produces 2006, yy produces 06.
v On input, for 2-digit years, the physical message set property of Start

of century for 2 digit years is used to determine the century. For
example, if Start of century for 2 digit years is set to 53, year 97 is
1997, year 52 is 2052, and year 53 is 1953.

ISO8601, I and T DateTime tokens

If your dateTime values comply with the ISO8601:2000 ’Representation of dates
and times’ standard, consider using the formatting symbols I and T, which match
the following subset of the ISO8601 standard.
v The restricted profile as proposed by the W3C at http://www.w3.org/TR/

NOTE-datetime
v Truncated representations of calendar dates, as specified in section 5.2.1.3 of

ISO8601:2000
– Basic format (subsections c, e, and f)
– Extended format (subsections a, b, and d)

Use the formatting symbols I and T only on their own:
v The I formatting symbol matches any dateTime string that conforms to the

supported subset.
v The T formatting symbol matches any dateTime string that conforms to the

supported subset that consists of a time portion only.

The following table shows how the output form relates to the logical data type.

Logical model data type ESQL data type Output form

xsd:dateTime TIMESTAMP or GMTTIMESTAMP yyyy-MM-dd’T’HH:mm:ss.SSSZZZ

xsd:date DATE yyyy-MM-dd

xsd:gYear INTERVAL yyyy

xsd:gYearMonth INTERVAL yyyy-MM

xsd:gMonth INTERVAL --MM

xsd:gmonthDay INTERVAL --MM-dd

xsd:gDay INTERVAL ---dd

xsd:time TIME / GMTTIME ’T’HH:mm:ss.SSSZZZ

Note:

770 Message Models

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime


v On input, both I and T accept both ’+00:00’ and ’Z’ to indicate a zero time
difference from Coordinated Universal Time (UTC), but on output they
always generate ’+00:00’. If you want ’Z’ to always be generated on
output, use the IU or TU formatting symbols instead.

v ZZZ always outputs ’+00:00’ to indicate a zero time difference from
Coordinated Universal Time (UTC). If you want ’Z’ to always be
generated on output, use ZZZU instead.

Using the input UTC format on output

An element or attribute of logical type xsd:dateTime or xsd:time that contains a
dateTime as a string can specify Coordinated Universal Time (UTC) by using either
the Z symbol or time zone +00:00. On input, the MRM parser remembers the UTC
format of such elements and attributes. On output, you can specify whether Z or
+00:00 is displayed by using the Default DateTime Format property of the element
or attribute. Alternatively, you can preserve the input UTC format by selecting the
message set property Use input UTC format on output. If this property is selected,
the UTC format is preserved in the output message and overrides the format that
is implied by the dateTime format property.

Examples

The following table shows a few examples of dateTime formats.

Format pattern Result

″yyyy.MM.dd ’at’ HH:mm:ss ZZZ″ 2006.07.10 at 15:08:56 -05:00

″EEE, MMM d, ″yy″ Wed, July 10, ’06

″h:mm a″ 8:08 PM

″hh o″clock a, ZZZZ″ 09 o’clock AM, GMT+09:00

″K:mm a, ZZZ″ 9:34 AM, -05:00

″yyyy.MMMMM.dd hh:mm aaa″ 1996.July.10 12:08 PM

DateTime as BINARY data

The count of pattern letters determines the number of bytes used to represent a
value. The symbol used in the pattern of letters can only be used in groups of 1, 2,
or 4, for example, y, yy, or yyyy.

The following table shows the dateTime symbols for binary data:

Symbol Meaning Example

y year 1996

M month in year 7

d day in month 10

H hour in day (0-23) 13

m minute in hour 30

s second in minute 55

S millisecond 978

X Ignore on input
Pad with zeros on output

Message model reference information 771



The following example shows the C language structure tm with an integer of four
bytes:
struct tm
{ int tm_sec; /* seconds after the minute - [0,59]*/
{ int tm_min; /* minutes after the hour - [0,59]*/
{ int tm_hour; /* hours since midnight - [0,23]*/
{ int tm_mday; /* day of the month - [1,31]*/
{ int tm_mon; /* months since January - [0,11]*/
{ int tm_year; /* years since 1900 */
{ int tm_wday; /* days since Sunday - [0,6]*/
{ int tm_yday; /* days since January 1 - [0,365]*/
{ int tm_isdst; /* daylight saving time flag */
};

You can format this structure by specifying the string
″ssssmmmmHHHHddddMMMM+1yyyy+1900XXXXXXXXXXXX″. The number of pattern letters
determines the number of bytes. There are 36 A-Z characters specified in this
pattern, which match the 36 byte structure tm. A field followed by a plus sign (+)
has the succeeding numeric characters added to it. Therefore MMMM+1 adds one to
the month, yyyy+1900 adds 1900 to the year. X expects one byte of input, but
ignores its value. On output, it outputs the byte as 0.

DateTime as encoded values

You can represent a dateTime element with the following physical types:
v TimeSeconds. This is a 4 byte integer that represents the number of seconds since

the epoch.
v TimeMilliSeconds. This is an 8 byte integer that represents the number of

milliseconds since the epoch.

These types provide a way for c time_t and Java dateTime representations to be
parsed.

The epoch (time 0) is specified by a format string. To change the epoch you must
update the physical properties of your dateTime element:
v In the Physical representation section you must set the Physical Type to either

Time Seconds or Time Milliseconds.
v In the Format field set the value to the format of ″yyyy-MM-dd’T’HH:mm ZZZ″.

For example, 2000-01-01T12:59 +00:00.

DateTime defaults by logical type
The default value that is assigned to the dateTime Format property is dependent
on the logical type of the property.

The following table lists the default for each of the logical dateTime types:

Logical Type Default Format

date yyyy-MM-dd

dateTime yyyy-MM-dd’T’HH:mm:ss

gDay - - -dd

gMonth - -MM

gMonthDay - -MM-dd

gYear yyyy

gYearMonth yyyy-MM

772 Message Models



Logical Type Default Format

time HH:mm:ssZZZ

DateTime component defaults
Default values are assumed if any part of a dateTime element is not present on
input.

For example, the formatting string yyyy-MM'T'HH:mm does not contain any
information about day in month (d), seconds (s), or milliseconds (S). The table
below shows the defaults for all dateTime components:

Component Default value

Year 1970

Month First month of year

Day First day of month

Hour First hour of day

Minute Minute 0 of hour

Second Second 0 of minute

Millisecond Millisecond 0 of second

Message set defaults

The table below shows the default dateTime formatting property settings for the
different MRM physical formats:

Message set property CWF default TDS default XML default

Default DateTime Format See Note 1. See Note 1. See Note 1.

Default Time Zone ID Use Broker Locale ( see
Note 2 )

Use Broker Locale ( see
Note 2 )

Use Broker Locale ( see
Note 2 )

Century Window 53 53 (80 for SWIFT) 53

Days in First Week of Year 4 Use Broker Locale ( see
Note 2 )

Use Broker Locale ( see
Note 2 )

First Day of Week Monday Use Broker Locale ( see
Note 2 )

Use Broker Locale ( see
Note 2 )

Note:

1. You can either set the default dateTime format to be derived from its
logical type (the default), or specify the dateTime format that is to be
used. This is set at the message set level for each physical format that
has been added.

2. The key phrase Use Broker Locale causes the broker to get the
information from the underlying platform.

You can update all these default values. The CWF defaults are set for all values of
the Physical Type property. If you change the CWF Physical Type to Binary, Packed
Decimal, TimeSeconds, or TimeMilliseconds, you must update the Default DateTime
Format property manually to ensure consistent results.

Message model reference information 773



For more information about these message set properties, see “Custom Wire
Format message set properties” on page 154, “TDS Format message set properties”
on page 160, or “XML Wire Format message set properties” on page 176.

Additional MIME domain information

This section provides additional information in relation to the MIME domain. This
information is categorized into:
v “MIME standard header fields”
v “MIME parser use and restrictions” on page 777

MIME standard header fields
Check this quick reference to the common MIME headers.

This information does not provide a definitive specification of MIME. In some
cases, the MIME parser allows documents that are not strictly valid according to
the standard. For example, it does not insist on the presence of a MIME-Version
header. All the standard MIME header fields are simply written to the logical tree
as they appear in the MIME document. The MIME parser takes special note only
of the Content-Type header field.

All MIME headers can include comments enclosed by parentheses, as shown in the
example for the MIME-Version header.

MIME header fields

MIME-Version

Example:
MIME-version: 1.0 (generated by my-application 1.2)

For a MIME document to conform with RFC 2045, this field is required in
the top-level header with a value of 1.0. MIME-Version should not be
specified on individual parts.

Content-Type

Content-Type is not required for a document to conform with RFC 2045,
but a top-level Content-Type is required by the MIME parser. Content-Type
defaults to text/plain. Content-Type defines the type of data in each part
as a type/subtype. The MIME parser accepts most values for Content-Type
and stores them in the logical tree. The only exceptions are:
v The MIME parser rejects any Content-Type value with type = message.
v The MIME parser assumes that a Content-Type value with type =

multipart introduces a multipart MIME document, and rejects such a
value if it does not contain a valid boundary parameter. The value of the
boundary parameter defines the separator between message parts in a
multipart message. In a nested multipart message, a unique boundary
value is required for each nesting level.

Syntax:
Content-Type: type/subtype;parameter

where type and subtype define the Content-Type, and all optional
parameters are delimited by semicolons.

774 Message Models



Example 1:
Content-Type: multipart/related;type=text/xml

In example 1, the Content-Type is defined as multipart/related, and also
has an optional parameter definition (type=text/xml). Although this
structure is syntactically correct, because a valid boundary parameter does
not exist, this message is rejected.

Example 2:
Content-Type: multipart/related;boundary=Boundary;type=text/xml

Example 2 shows a valid Content-Type definition, both in terms of syntax
and semantics. The boundary value optionally can be enclosed in quotation
marks. When it appears in the MIME body, the value is preceded by the
sequence ’--’, and you must ensure that the resulting value (in this
example, --Boundary) cannot appear in the message body. If the message
data is encoded as quoted-printable, you must include a boundary that
includes a sequence such as “=_”, which cannot appear in a
quoted-printable body.

Some common Content-Type values are shown below. Other values are
allowed, and stored in the logical tree.

Content-Type Description

text/plain Typically used for a typical mail or news message. text/richtext is also common.

text/xml Typically used with SwA (SOAP with Attachments).

application/octet-stream Used where the message is an unknown type and contains any kind of data as bytes.

application/xml Used for application-specific xml data.

x-type Used for non-standard content type. It must start with the characters x-.

image/jpeg Used for images. image/jpeg and image/gif are common image formats that are used

multipart/related Used for multiple related parts in a message. Specifically used with SwA (SOAP with
Attachments)

multipart/signed Used for multiple related parts in a message including signature. Specifically used
with S/MIME

multipart/mixed Used for multiple independent parts in a message

Content-Transfer-Encoding

Optional. Many Content-Types are represented as 8-bit character or binary
data, and can include XML, which typically uses UTF-8 or UTF-16
encoding. This type of data cannot be transmitted over some transport
protocols, and might be encoded to 7-bit.

The Content-Transfer-Encoding header field is used to indicate the type of
transformation that has been used for encoding this type of data into a
7-bit format.

The following values only are allowed by the WS-I Basic Profile:
v 7bit - the default
v 8bit
v binary
v base64
v quoted-printable

Message model reference information 775



The values 7bit, 8bit, and binary all effectively mean that no encoding took
place. A MIME conformant mail gateway might use this value to control
how it handles the message. For example, encoding it as 7bit before
passing routing it over SMTP.

The values base64 and quoted-printable mean that the content has been
encoded. The value quoted-printable means that only non-7-bit characters
in the original are encoded, and is intended to yield a document which is
still human-readable. This setting is most likely to be used in conjunction
with a Content-Type of text/plain.

Content-ID

Optional. This field enables parts to be labeled, and referenced from other
parts of the message. These parts are typically referenced from part 0 (the
first) of the message.

Content-Description

Optional. This field enables parts to be described.

MIME encodings

The following section provides a basic guide to the base64 and quoted-printable
encoding; refer to RFC 1521 (linked at the end of this topic) for a definitive
specification of MIME encodings.

base64

The original data is broken into groups of 3 octets. Each group is then
treated as 4 concatenated 6-bit groups, each of which is translated into a
single digit in the base64 alphabet. The base64 alphabet is A-Z, a-z, 0-9,
and / (with A=0 and /=63).

If fewer than 24 bits are available at the end of the data, the encoded data
is padded using the “=” character. The maximum line length in the
encoded data is 76 characters and line breaks (and all other characters not
in the alphabet above) are ignored when decoding.

Examples:

Original Data

Encoded Data

msb

8 bits

6 bits 6 bits 6 bits 6 bits

8 bits 8 bits

lsb msb lsb msb lsb

Split into 3 x octets

Treat as 4 x 6-bits, each rendered
as one base 64 character

msb = most significant bit
lsb = least significant bit

776 Message Models



Input Output

Some data encoded in base64. U29tZSBkYXRhIGVuY29kZWQgaW4gYmFzZTY0Lg==

life of brian bGlmZSBvZiBicmlhbg==\012

what d2hhdA==

quoted-printable

This encoding is appropriate only if most of the data comprises printable
characters. Specifically, characters in the ranges 33-60 and 62-126 are
typically represented by the corresponding ASCII characters. Control
characters and 8-bit data must be represented by the sequence = followed
by a pair of hexadecimal digits.

The standard ASCII space <SP> and horizontal tab <HT> represent
themselves, unless they appear at the end of an encoded line (without a
soft line break), in which case the equivalent hexadecimal format must be
used (=09 and =20 respectively).

Line breaks in the data are represented by the RFC 822 line break sequence
<CR><LF> and should be encoded as ″=0D=0A″ if binary data is being
encoded.

For base64, the maximum line length in the encoded data is 76 characters.
An ‘=’ sign at the end of an encoded line (a ‘soft’ line break) is used to tell
the decoder that the line is to be continued.

MIME parser use and restrictions
The MIME domain does not support the full MIME standard, but supports specific
known uses of MIME. Read this general introduction to the MIME parser, and
information about some of the restrictions in its use.

MIME stands for Multipurpose Internet Mail Extensions. A multipart MIME
message comprises a number of message parts, each qualified by MIME headers.
The MIME domain and parser enable you to parse and write multipart MIME
messages.

MIME is used to send e-mail messages. When the e-mail includes attachments, a
multipart MIME message is used. Multipart MIME is becoming more widely used
as a convenient physical format for sending other kinds of message that have
attachments or that consist of multiple separate parts.

Examples are:
v RosettaNet. Each part is typically a separate XML document but there might

also be non-XML attachments. The MIME parser enables the parsing of MIME
messages of the style used by RosettaNet, including nested multipart messages.
However, it does not offer specific support for the wider RosettaNet architecture
or PIPs (Partner Interface Processes).

v SOAP with Attachments (SwA). The first part is a normal SOAP XML message
and the other parts contain XML or non-XML attachments.

v TLOG. This is a specialized use of SwA in which the attachments are groups of
point-of-sale Transaction Log records in either one of two XML forms or a
tagged/delimited string form. Different POS devices generate different TLOG
record formats such as ACE. In addition, the record can either be processed
before it is uploaded or it can be sent unchanged.

Message model reference information 777



Restrictions

The MIME parser is bit stream driven and has no external metadata. It relies
exclusively on bitstream metadata when parsing and on tree metadata when
writing. The parser does not validate MIME messages against a message model
and it ignores the tooling Validate property. The parts of a MIME message are
handled as BLOBs. You can choose to parse specific MIME parts using a different
parser. If this is an MRM parser, they can be validated in the usual way. The
MIME parser does not support on-demand parsing and ignores the Parse Timing
property.

You can specify the new MIME domain either at runtime in an MQRFH2 header
(WebSphere MQ only) or statically in their message flow in the tooling (on the
input nodes MQGet, HTTPRequest, ResetContentDescriptor, or XSLTransform). The
MIME parser is then invoked to own the last child of root (for example, the
message body). The MIME domain can be specified with the ESQL CREATE
PARSE clause and ASBITSTREAM function to parse and write bit streams. The
MIME parser handles documents received both over the HTTP transport (where
the Content-Type appears as an HTTP header) and over other transports (where
the Content-Type header is part of the message body). In both cases, set the
Content-Type value using the ContentType property in the MIME domain. Setting
the Content-Type value directly in the MIME tree or HTTP trees can lead to the
value being ignored or used inconsistently.

Typically, the MIME parser handles the majority of uses of MIME in
application-to-application messaging, including multipart MIME with a single part
and non-multipart MIME documents. However, you should use the SOAP domain
for SOAP with Attachments (SwA).

Additional IDOC domain information

This section provides additional information in relation to the IDOC domain. This
information is categorized into:
v “Building the message model for the IDOC parser”
v “Field names of the IDOC parser structures” on page 780

Note: The IDOC domain is deprecated and is not recommended for developing
new message flows. Instead use the MRM domain with a TDS physical
format when you want to process SAP ALE IDocs that are sent to the broker
by SAP R3 clients across the WebSphere MQ link for R3.

Building the message model for the IDOC parser
The ALE IDoc messages that are sent to, and received from, SAP applications
using the WebSphere MQ Link for R3, can be processed by the IDOC parser, which
requires a message model to interpret the data correctly. This topic describes how
to build the message model.

The IDOC domain is deprecated. To develop new message flows, use the MRM
domain with a TDS physical format when you want to process SAP ALE IDocs
that are sent to the broker by SAP R3 clients across the WebSphere MQ link for R3.

778 Message Models



Obtaining the IDoc

Create an import file of the required IDoc data for the Message Broker Toolkit.
1. Log on to a SAP system.
2. Run the supplied transaction we60, which extracts the IDoc data as a C header

file.
a. In Basic Type, select the IDoc type of interest; for example, MATMAS02.
b. Leave the Control, Data, and Status check boxes cleared.
c. Select the Record types version. A version 4 IDoc is type 3.
d. Press F7 to display a C representation of the IDoc.
e. Select System->List->Save->Local file.
f. Click unconverted.
g. When prompted, enter a file name and directory for the output from the

transaction. The C representation of the IDoc is saved to this C header file.

Tip: The exported C header can be imported into the Message Broker Toolkit
without any further manual processing. This was not true in previous releases
of WebSphere Message Broker.

Modeling the IDoc

Create your message model.
1. Switch to the Broker Application Development perspective of the Message

Broker Toolkit.
2. Use the New Message Set wizard to create a message set for your IDoc. Select

binary data as the kind of data to be used. This creates a message set with a
Custom Wire Format (CWF) physical format, and presets the Default message
domain property to MRM.

3. Use the Message Set editor to change the Default message domain property to
IDOC.

4. Use the New Message Definition File wizard to import a prebuilt model of the
ALE IDoc message structure. To start the wizard, click File → New → Message
Definition File From. When the wizard opens, select IBM supplied message,
then SAP ALE IDoc. This SAP ALE IDoc prebuilt model includes definitions of
the DC and DD segments. The resulting message definition file is called
ale_idoc.mxsd. For information about using the New Message Definition File
wizard, see “Importing from IBM supplied messages” on page 133.

5. Use the New Message Definition File wizard, or the mqsicreatemsgdefs
command, to import the C representation of the IDoc into the new message set.
To start the wizard, click File → New → Message Definition File From.
Specify the following settings:
v Select C Header file.
v Set Select the pre-processing option to apply to SAP ALE IDoc. If this option

is not specified, the import of the C header fails. If this option is specified,
the message prefix preference is ignored.

v Create messages for the segments that appear in the IDoc.
v Use the String Encoding option to import character arrays as fixed length

strings.
v Use the Padding Char for String option to make space (“ ”) the padding

character that is used.

Message model reference information 779



For information about using the New Message Definition File From C Header
File wizard, see “Importing from C” on page 129.

Using the IDoc message model

You can now use your message model to help you to construct a message flow
that processes instances of your IDoc message. You can use ESQL or Java to access
the fields of the IDoc. You cannot use graphical maps to access the fields of the
IDoc because the IDOC domain is not supported by the mapping editor.

When you set the properties of the MQInput node that is to receive your IDoc
from the WebSphere MQ Link for R3, the Message Domain property must be
IDOC, the Message Set property must be the name of your message set, and the
Message Format property must be the name of your Custom Wire Format. You do
not need to set a Message Type property on the MQInput node because it is not
needed by the IDOC parser.

When your message flow is complete, add the message set and the message flow
to a broker archive (BAR) file and deploy the BAR file to a broker execution group.

When an IDoc is received by the MQInput node, the IDOC parser processes the
SAP-defined elements in the DC and then, for each DD, processes the SAP-defined
elements, and then invokes the MRM parser to process the user-defined segment
data, as described by your exported IDoc, using the CWF physical format. The
MRM parser knows the Message Type property to use for the user-defined
segment, because this is obtained from the SAP-defined DD field segnam by the
IDOC parser.

Tip: SupportPac IA0F contains a more detailed description of the steps involved in
building the IDoc message model. You can ignore utilities IDocHeaderTweak
and IDocMsgSetTweak because that processing has been incorporated into the
New Message Definition File From C Header File wizard.

Field names of the IDOC parser structures
The field names of the Control Structure (DC) and the Data Structure (DD) that are
used by the IDOC parser.

The field names are documented in the form that they are used in a SET statement
of ESQL; for example:
SET OutputRoot.Properties = InputRoot.Properties;
SET OutputRoot.MQMD = InputRoot.MQMD;

Control structure (DC) fields

All the fields must be specified and set.

The syntax is:
<rootname>.<ParserName>.<foldername>.<fieldname>=

For example:
SET "OutputRoot"."IDOC"."DC"."docnum" = '0000000000000001';
SET "OutputRoot"."IDOC"."DC"."idoctyp" = 'MATMAS01'

The field names, which must be specified in order, are:

1) tabnam 2) mandt 3) docnum

780 Message Models



4) docrel 5) status 6) direct

7) outmod 8) exprss 9) test

10) idoctyp 11) cimtyp 12) mestyp

13) mescod 14) mesfct 15) std

16) stdvrs 17) stdmes 18) sndpor

19) sndprt 20) sndpfc 21) sndprn

22) sndsad 23) sndlad 24) rcvpor

25) rcvprt 26) rcvpfc 27) rcvprn

28) rcvsad 29) rcvlad 30) credat

31) cretim 32) refint 33) refgrp

34) refmes 35) arckey 36) serial

Data structure (DD) fields

To access each DD segment, use the array suffix DD[1], DD[2], and so on.

The syntax is:
<rootname>.<ParserName>.DD[1].<fieldname>=

For example:
SET OutputRoot.IDOC.DD[I].segnam = 'E2MAKTM001';
SET OutputRoot.IDOC.DD[I].mandt2 = '111';

The following table illustrates how the suffix 2 is used to give unique field names
to the mandt and docnum fields.

The field names, which must be supplied in order, are:

1) segnam 2) mandt2 3) docnum2

4) segnum 5) psgnum 6) hlevel

Notes:

v The last 1000 bytes of data in the DD segment are the bytes that are
parsed by the MRM domain.

v The DD segnam describes the model that the MRM uses.

Segment fields

The syntax is:
<rootname>.<ParserName>.DD[1].sdatatag.MRM.<fieldname>=

For example:
SET OutputRoot.IDOC.DD[I].sdatatag.MRM.msgfn = '006'
SET OutputRoot.IDOC.DD[I].sdatatag.MRM.spras_iso = 'EN'

Notes:

v The sdatatag field indicates to the parser that it is the element that
contains the data to be manipulated.

v The MRM field indicates that the MRM handles the transformation.

Message model reference information 781



msgfn spras maktx

msgfn spras_iso fill954

The fill954 field is the filler for the segment because an incoming IDoc to SAP
must have 1000 byte segments.

Message model task list errors that have a quick fix
This provides a list of message modeling task list warnings or errors where a quick
fix can be applied to correct them.

Unresolved references

The following table provides a list of those errors that have references that cannot
be resolved:

Error type Description Quick Fix

Attribute reference error The attribute reference
cannot be resolved

Allows you to add the
missing include or import
statement

Attribute group reference
error

The attribute group reference
cannot be resolved

Allows you to add the
missing include or import
statement

Attribute type reference The attribute type reference
cannot be resolved

Allows you to add the
missing include or import
statement

Base type error The type has an unresolved
base type

Allows you to add the
missing include or import
statement

Element reference error The element reference cannot
be resolved

Allows you to add the
missing include or import
statement

Element type reference error The element type reference
cannot be resolved

Allows you to add the
missing include or import
statement

Group reference error The group reference cannot
be resolved

Allows you to add the
missing include or import
statement

Schema directive error The schema directive cannot
be resolved

Allows you to add the
missing include or import
statement

Sub group error The element declaration
references a head element
which cannot be resolved.

Allows you to add the
missing include or import
statement

Other errors

The following table provides a list of additional warnings or errors that can be
cleared using a quick fix:

782 Message Models



Error type Description Quick Fix

Message key deprecated
warning

TDS property ″Message Key″
has been superseded by
logical property ″Message
Alias″.

Will update your message
definition to use ″Message
Alias″ instead. (You should
use this if you only have
Version 6.0 brokers in your
domain.)

Message key enumeration
deprecated warning

TDS property ″Interpret
Element Value = Message
Key″ has been superseded by
logical property ″Interpret
Value As = Message
Identity″.

Will update your element
definition to use logical
property ″Interpret Value As
= Message Identity″ instead.
You should use this if you
only have Version 6.0 brokers
in your domain.)

Repeat count deprecated
warning #1

CWF property ″Repeat
Count″ has been superseded
by ″Max Occurs″. Both
″Repeat Count″ and ″Max
Occurs″ have been set, but
do not have the same value.

You will have a choice of
two quick fixes:

v Will update your
definition to unset the
″Repeat Count″ property.

v Will update your
definition to set ″Max
Occurs″ to the value of the
″Repeat Count″ property,
and to unset the ″Repeat
Count″ property.

Repeat count deprecated
warning #2

CWF property ″Repeat
Count″ has been superseded
by ″Max Occurs″. Both
″Repeat Count″ and ″Max
Occurs″ have been set and
have the same value.

Will update your definition
to unset the ″Repeat Count″
property.

Redefine error An XML Schema Redefine
construct has been found but
is not supported.

Will update your message
definition file to use an XML
Schema Include construct
instead. Any redefinitions
will be lost.

Value does not match Length
facet error

The length of a default value,
fixed value or enumeration
value does not match the
effective Length facet for the
simple type.

You will have a choice of
two quick fixes:

v Will update your simple
type definition so that the
Length facet is converted
to a Max length facet.

v Will update all the simple
type definitions in your
message definition file so
that all Length facets are
converted to Max Length
facets, and then save the
file to remove all the
associated task list errors.

Facet not applicable for
simple type error

A facet has been found on a
simple type, but the facet is
either not permitted on that
simple type or is a duplicate.

Will update your simple type
definition so that all illegal
facets and all duplicate facets
are removed.

Message model reference information 783



Generated model representations

This section provides information on the possible generated model representations.
Details are provided for:
v “Document generation”
v “WSDL generation”
v “XML Schema generation” on page 786

Document generation

Output Files

The document generator produces a set of HTML pages and any necessary files
(for example, images) that are required to display the pages correctly.

There is one page for each message definition file in the message set, and one
additional index page linking these pages together.

The index page (index.html), is intended to be the ″entry point″ into the
documentation.

WSDL generation
This topic defines the objects created by the WSDL Generator.

Generated Files

The default file and definition element names are shown in the table below.
<Message Set> is the supplied message set name and <Definition Name> is the
supplied Definition Name solicited by the wizard.

Table 1. WSDL File Naming Convention

File File Name File Extension

Value of name
attribute on WSDL
<definitions>
element

Service File
(single-file format)

<Message Set> wsdl <Definition Name>

Service File
(multi-file format)

<Message Set>Service wsdl <Definition
Name>Service

Binding File <Message
Set>Binding

wsdl <Definition
Name>Binding

Interface File <Message Set> wsdl <Definition Name>

If ’Deployable WSDL’ is generated, no additional XML schema (xsd) files are
generated, and the WSDL refers directly to the broker message definition (mxsd)
files; otherwise, separate XML schema (xsd) files are generated, unless you selected
’inline schema’.

Report File

The WSDL generator appends the result of the generation operation to a report
file, listing any errors which occurred. The file name is:

784 Message Models



<Message Set>.wsdlgen.report.txt

WSDL Content

The tables below show the element / attribute values to be set in the generated
WSDL. The elements are described top-down as they appear in a conventionally
ordered WSDL document. The <schema> section of the WSDL definition is not
shown since this corresponds directly to the broker message definitions.

Element names are from the WSDL 1.1 namespace except where prefixed by soap:
for the WSDL SOAP namespace. Operation elements occur in both the binding and
portType sections, so operation is qualified as necessary – for example, portType /
operation.

The following values apply to the WSDL definition as a whole:

Table 2. WSDL objects

Element Attribute Value

definitions xmlns assign namespace prefixes.

definitions targetNamespace This is the WSDL Namespace solicited by the
wizard, defaulting to http://tempuri.org/<Message
Set>.

message name <operation>_<role> where <operation> is the
operation name and <role> is in, out, or fault

part name name of the broker message. If Style is set to rpc, the
body parts are defined using the type attribute. If
not, the body parts are defined using the element
attribute.

portType name <Message Set>PortType

binding name v ”<Message Set>SOAP_HTTP_ Binding”

v ”<Message Set>SOAP_JMS_ Binding”

soap:binding style From the value of Style set in the wizard.

The following values apply to each individual WSDL operation:

Table 3. WSDL <operation> objects

Element Attribute Value

operation name The name of the operation specified in the wizard.

soap:operation style From the value of Style set in the wizard.

input, output,
fault

name <operation>_<role>, where <operation> is the
operation name, and <role> is Input, Output, or
Fault.

soap:body namespace v If Style has been set to rpc then it is the
namespace of the corresponding broker message.

v If Style has been set to document the attribute is
not generated.

soap:header,
soap:fault,
soap:body

use This is set to literal.

Message model reference information 785



Message Set

The message set provides the basis for many important broker features, including
mapping support and ESQL code completion at development time, and validation
at runtime.

Therefore, the WSDL that you use in the broker at development time (for example,
when configuring SOAP nodes) is integrated with the message set, and references
the broker message definitions (mxsd) rather than ordinary Schema (xsd) files. This
is referred to as deployable WSDL and is displayed under the category Deployable
WSDL in the workbench.

Deployable WSDL is generated when you specify your Message Set Folder (the
immediate child of your Message Set Project) as the destination directory for
your WSDL.

Otherwise, regular WSDL is generated, along with separate XML schema (xsd) files
if these were requested. Regular WSDL cannot be used to configure SOAP nodes,
but is suitable for consumption by external applications such as .NET.

Assuming that you are generating deployable WSDL for use in a message flow, the
flow typically needs to be able to parse and validate the runtime SOAP messages
described by that WSDL. The WSDL generator, therefore, adds additional
definitions to your message set:
v For rpc-style WSDL, additional definitions for the WSDL operations themselves

are added to your message set
v For the version of the SOAP Envelope used by the WSDL an mxsd file is added

– this will be soapenv11.mxsd or soapenv12.mxsd.
v For use by ESQL Content assist and the Mapping editor primarily, a definition

of the SOAP_Domain_Msg tree.

XML Schema generation

This topic covers the behavior of XML Schema generation. For example, you could
use the schema generated from a message definition file to subsequently validate
XML instance documents written by WebSphere Message Broker.

Lax generation

Lax generation affects how complex types that have Content Validation set to Open
or OpenDefined or have Composition set to UnorderedSet are rendered in the
generated schema. Note that such a validating schema will permit a wider range of
messages than MRM parser validation.

Content Validation is set to Open or OpenDefined
Here a complex type (global or anonymous) has its content replaced by a
single element of type anyType. The following generation pattern is used
for complex types with Content Validation set to Open:
<element name="xmlNameOfMessage">
<complexType>
<sequence>
<any processContent="lax"
minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>
</element>

786 Message Models



Where Content Validation is set to OpenDefined, the following pattern is
used. (The namespaces listed are all those defined in the containing
message set.)
<element name="xmlNameOfMessage">
<complexType>
<sequence>
<any processContent="lax"

minOccurs="0" maxOccurs="unbounded"
namespace="http://www.ns1 http://www.ns2" />

</sequence>
</complexType>
</element>

Composition is set to UnorderedSet
Where Composition is set to UnorderedSet, to mimic the unordered aspect, a
choice is inserted with appropriate cardinality. This is shown below.
<element name="xmlNameOfMessage">
<complexType>
<sequence maxOccurs="unbounded"
minOccurs= "(minOccurs of original sequence) *

(items in original sequence)">
<choice>

.. sequence contents ..
</choice>
</sequence>
</complexType>
</element>

Strict generation

Strict generation affects how complex types that have Content Validation set to Open
or OpenDefined or have Composition set to UnorderedSet are rendered in the
generated schema. Note that such a validating schema will permit a narrower
range of messages than MRM parser validation.

Strict is the default generation option and generates a schema that matches the
schema held in the message definition file, without the model extensions.

Content Validation set to Open/OpenDefined
A complex type (global or anonymous) will lose the ability to contain
self-defining elements and becomes closed.

Composition set to UnorderedSet
A complex type (global or anonymous) will lose the ability to be
unordered and becomes a sequence.

Rendering of xsd:elements

If an XML physical format is specified when generating the schema, the wire
format customization is applied to the logical model. These properties control how
an element in the model is actually rendered when it appears in a message for an
XML wire format. See “XML rendering options” on page 735 for the different
render options available. A generated schema example is given below showing
what is generated for the different render options available for local elements; note
these examples do not modify the Namespace of any ID Attribute Name or Value
Attribute Name properties and assume that all elements specified in the
complexType1 are of schema built-in type string.

<xsd:complexType name="complexType1">
<xsd:sequence>
<!-- Local element Render = 'XMLElement' -->

Message model reference information 787



<xsd:element name="localElement1" type="xsd:string"/>
<!-- Local element Render = 'XMLElementAttrID'

ID Attribute Name = 'id' -->
<xsd:element name="localElement2">

<xsd:complexType>
<xsd:simpleContent>

<xsd:extension base="xsd:string">
<xsd:attribute name="id" type="xsd:string"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

<!-- Local element Render = 'XMLElementAttrVal'
Val Attribute Name = 'val' -->

<xsd:element name="localElement3">
<xsd:complexType>

<xsd:simpleContent>
<xsd:extension base="xsd:string">

<xsd:attribute name="val" type="xsd:string"/>
</xsd:extension>

</xsd:simpleContent>
</xsd:complexType>

</xsd:element>
<!-- Local element Render = 'XMLElementAttrIDVal'

ID Attribute Name = 'id' Val Attribute Name = 'val' -->
<xsd:element name="localElement4">

<xsd:complexType>
<xsd:simpleContent>

<xsd:extension base="xsd:string">
<xsd:attribute name="val" type="xsd:string"/>
<xsd:attribute name="id" type="xsd:string"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
<!-- Local element Render = 'XMLAttribute' -->
<xsd:attribute name="localElement5" type="xsd:string"/>

</xsd:complexType>

Rendering of xsd:attributes

The rendering of xsd:Attributes is not supported. The user can only change the
name of the attribute.

Embedded simple types and Compound Elements

These are deprecated objects that are only encountered if the message set was
created using WebSphere MQ Integrator Broker Version 2.1.

They are modeled in the message definition file as elements with both minOccurs
and maxOccurs set to 0 and have one of the predefined ComIbmMrm_xxx types.
During the schema generation, the type of such elements is changed to the base
type of the respective ComIbmMrm_xxx type.

If there are global simple types that inherit from one of these ComIbmMrm_xxx
types, these are changed to inherit from the base type of the corresponding
ComIbmMrm_xxx type.

Generated schema files will not have any occurrence of these ComIbmMrm_xxx
types.

788 Message Models



For example the global element with type defined below:
<element name="globalElement1" type="ns1:ComIbmMrm_BaseValueBinary"/>

will result in the generated schema file and a global element with the
corresponding xsd base type as defined below:
<element name="globalElement1" type="hexBinary"/>

Import formats

This section provides information on the supported features of formats that have
been imported from an external source. Details are provided for:
v “Importing from C: supported features”
v “Importing from COBOL: supported features” on page 791
v “Importing from WSDL: generated objects and restrictions” on page 796
v “Importing from XML Schema: unsupported features” on page 799

Importing from C: supported features
The C importer uses default values when mapping C data types to message model
elements.

The table below shows how the C definitions influence the XML Schema settings
in the message model. Some xsd types have ’-’ after the type. This character
indicates that it is an anonymous simple type based on this type. For strings, the
purpose of the anonymous type is to add a maximum length restriction; for
numeric types, the purpose of the anonymous type is to add either a minimum or
a maximum value restriction.

C data type XML Schema data Notes

Char xsd:string- maxlength=1

Char[10] xsd:string- maxlength=10

Char[10][3] xsd:string- maxlength=3

Char[10][3][6] xsd:string- maxlength=6

Unsigned Char xsd:unsignedByte

Unsigned Char[2] xsd:unsignedByte

Signed Char xsd:byte

Signed Char[2] xsd:byte

Int xsd:int

Int[2] xsd:int

Int[2][3] xsd:int

Unsigned Int xsd:unsignedInt

Short xsd:short

Unsigned Short xsd:unsignedShort

Long xsd:int

Long Long Int xsd:long

Float xsd:float

Double xsd:double

Long Double (see note 1) xsd:double

<any pointer type> xsd:hexBinary- maxlength=(see note 2)

Message model reference information 789



C data type XML Schema data Notes

<any enum> (see note 3)

The following table shows how C definitions influence the physical MRM CWF
characteristics of the elements that are generated in the message model.

C data type CWF Physical type CWF Length characteristics Other CWF characteristics

Char Fixed Length Length = 1

Length Units = Bytes

Char[10] Fixed Length Length = 10

Length Units = Bytes

Left justify

Char[10][3] Fixed Length Length = 3

(and Max Occurs = 10)

Length Units = bytes

Left justify

Char[10][3][6] Fixed Length Length =6

(and Max Occurs = 30)

Length Units = bytes

Left justify

Unsigned Char Integer Length = 1 Signed = no

Unsigned Char[2] Integer Length = 1

(and Max Occurs = 2)

Signed = no

Signed Char Integer Length = 1 Signed = yes

Signed Char[2] Integer Length = 1

(and Max Occurs = 2)

Signed = yes

Int Integer Length = 4 Signed = yes

Int[2] Integer Length = 4

(and Max Occurs = 2)

Signed = yes

Int[2][3] Integer Length = 4

(and Max Occurs = 6)

Signed = yes

Unsigned Int Integer Length = 4 Signed = no

Short Integer Length = 2 Signed = yes

Unsigned Short Integer Length = 2 Signed = no

Long Integer Length = 4 (see note 4) Signed = yes

Long Long Int Integer Length = 8 Signed = yes

Float Float Length = 4

Double Float Length = 8

Long Double (see note 1) Float Length = 8

<any pointer type> (see note 2)

<any enum> Integer (see note 3)

Notes:

790 Message Models



1. Do not set the value of C importer option size of long double to 128 bit.
This option does not import successfully; use the default 64 bit.

2. The length is affected by the Address Size C importer option:
v For 32 bit, CWF length = 4 bytes.
v For 64 bit, CWF length = 8 bytes.

3. The type and length of an enum is affected by the Size of enum C
importer option:
v For 1: Logical type = xsd:byte, CWF physical type = Integer, CWF

length = 1 byte.
v For 2: Logical type = xsd:short, CWF physical type = Integer, CWF

length = 2 bytes.
v For 4: Logical type = xsd:int, CWF physical type = Integer, CWF

length = 4 bytes.
v For Compact: The smallest representation is chosen that the

enumeration fits into.
4. The length of a long is affected by the Address Size C importer option:
v For 32 bit: CWF length = 4 bytes.
v For 64 bit: CWF length = 8 bytes.

5. Element names that clash with Java language keywords are modified
by prefixing them with a single underscore character.

6. The _Packed keyword is not supported. Only ANSI C declarations are
supported.

7. The C long long data type is not supported.
8. C++ object oriented extensions are not supported. Only ANSI C

declarations are supported.
9. Pointers will be imported as xsd:integer with CWF length set to 4.

10. Recursive C structures are not supported. If a nested structure contains
a structure with a name that is the same as the parent structure, the
import succeeds, but the logical definitions are not correct. To avoid
this problem, ensure that the name of the nested structure is not the
same as that of the outer or parent structure.

Importing from COBOL: supported features
The COBOL importer uses a set of default values and behaviors when mapping
COBOL data types to message model elements.

The following table shows how COBOL definitions influence the XML Schema
settings in the message model.

COBOL Clause XML Schema data
type

Notes

PIC A xsd:string

PIC G xsd:string Set the compile-time locale name to ja_JP in Windows - Preferences
- Importer - COBOL to process this.

PIC N xsd:string Set the compile-time locale name to ja_JP in Windows - Preferences
- Importer - COBOL to process this.

PIC X xsd:string

PIC 9(n) n = 1-4 xsd:short DISPLAY, COMP, or COMP-3

PIC 9(n) n = 5-9 xsd:int DISPLAY, COMP, or COMP-3

Message model reference information 791



COBOL Clause XML Schema data
type

Notes

PIC 9(n) n = 10-18 xsd:long DISPLAY, COMP, or COMP-3

PIC 9(n) n = 19-31 xsd:integer DISPLAY, COMP, or COMP-3

PIC 9(n)V9(m) xsd:decimal DISPLAY, COMP, or COMP-3 any virtual decimal point value

COMP-1 xsd:float

COMP-2 xsd:double

Any edited string xsd:string

Any edited number xsd:string For example, a COBOL PICTURE clause that contains any of the
following characters:

’Z’

’+’

’-’

’.’

’,’

’B’

’0’

or a currency symbol.

If you want your broker logical type to be a numeric one, make
sure that the COBOL PICTURE clause does not contain any of these
characters.

VALUE All Non-88 Level VALUE clauses can be imported as schema default
values (option on import wizard).

The following table shows how COBOL definitions influence the physical MRM
CWF characteristics of the elements that are generated in the message model.

COBOL Clause CWF Physical Type CWF Length
Characteristics

Other CWF characteristics

PIC X(n)

PIC A(n)

Fixed Length String Length = n

Length Units = Bytes

Justification = Left Justify

Padding Character =
SPACE

PIC G(n)

PIC N(n)

Fixed Length String Length = n

Length Units = Characters

Justification = Left Justify

Padding Character =
SPACE

PIC 9(n) DISPLAY n=1-31 External Decimal Length = n

Length Units = Bytes

Justification = Right Justify

Padding Character = ’0’

Signed = Unticked

Sign Orientation = Trailing

PIC 9(n) COMP, COMP-4,
COMP-5 or BINARY

Integer Length = 2, 4 or 8 based on
n

Length Units = Bytes

Signed = Unticked

Sign Orientation = Blank

792 Message Models



COBOL Clause CWF Physical Type CWF Length
Characteristics

Other CWF characteristics

PIC 9(n) COMP-3 n=1-18 Packed Decimal Length =
CEILING((n+1)/2)

Length Units = Bytes

Signed = Unticked

Sign Orientation = Blank

PIC S9(n) DISPLAY n=1-31 External Decimal Length = n

Length Units = Bytes

Signed = Ticked

Sign Orientation = Trailing

*See Note 1

PIC S9(n) COMP or
COMP-3

n=1-18

Integer or Packed Decimal Length = See COMP and
COMP-3 definitions above

Length Units = Bytes

Signed = Ticked

Sign Orientation = Blank

PIC 9(m)V9(n) DISPLAY
n=1-31

External Decimal Length = n+m

Length Units = Bytes

Signed = Unticked

Sign Orientation = Trailing

Virtual Decimal Point = n

PIC 9(m)V9(n) COMP or
COMP-3

Integer or Packed Decimal Length =
CEILING((n+m+1)/2) for
COMP-3

Length = 2, 4 or 8 for
COMP

Length Units = Bytes

Signed = Unticked

Sign Orientation = Blank

Virtual Decimal Point = n

COMP-1 Float Length = 4

Length Units = Bytes

Signed = Ticked

Sign Orientation = Blank

COMP-2 Float Length = 8

Length Units = Bytes

Signed = Ticked

Sign Orientation = Blank

SYNC Float, Integer or Packed
Decimal

Leading Skip Count as
appropriate

Trailing Skip Count as
appropriate

Byte alignment as
appropriate

*See note 2

Notes:

1. Sign Orientation can take one of the following values, based on the
SEPARATE, LEADING, or TRAILING keywords in the COBOL
definition:
v Leading
v Leading Separate
v Trailing
v Trailing Separate

Message model reference information 793



2. The SYNC keyword causes the field to be aligned on a 1, 2, 4, or
8-byte boundary. This might cause ’slack bytes’ to be added either
before or after a field. Leading Skip Count is the number of such
bytes that are added before a field; Trailing Skip Count is the number
of such bytes that are added after a field.
Leading Skip Count and Trailing Skip Count are calculated by the
importer for each of the imported elements by the importer,
irrespective of the SYNC clause. They have non-zero values when the
SYNC clause is present.
Where there is a repeating element, Leading Skip Count and Trailing
Skip Count are used for the first occurrence of the repeating element;
for subsequent occurrences, only the Trailing Skip Count is used.
Refer to COBOL reference material for details of fields that require
byte alignment.

3. All files that you import must be syntactically correct. Results are
unpredictable if the file being imported is not synctactically correct.

4. COBOL data types that have keywords POINTER, COMP-X, INDEX,
or PROCEDURE-POINTER, are not supported.

5. COBOL clauses that contain the keyword NATIVE cause an error, and
are not imported.

6. COBOL level 66 and level 77 data items are not imported.
7. Hexadecimal binary values cannot be attributed to non-numeric

literals. They cannot reside in the LINKAGE SECTIONs that are
imported by the COBOL importer. They can reside elsewhere in the
COBOL file. Alternatively, you can convert the hexadecimal value to a
character string for PIC X, or to a decimal number for PIC 9.

8. If element names clash with Java language keywords, the element
names are modified by prefixing the element name with a single
underscore character.

9. Object-oriented extensions to COBOL 85 are not supported. For
example, OBJECT-REFERENCE is not supported.

10. COBOL OCCURS DEPENDING ON clause. The Byte Alignment,
Leading Skip Count, and Trailing Skip Count CWF properties of
elements within such a structure are not set up properly. You must
correct these using the message editor.

11. When the imported COBOL source file contains QUOTE or QUOTES
in the value clause of a picture string, the default behavior is to fill in
the data with double quotation marks, unless you set the COBOL
QUOTE compile option to SINGLE on the Import Options page of the
COBOL importer wizard.

Signed external decimal numbers

The MRM Custom Wire Format (CWF) and TDS components of WebSphere
Message Broker support the External Decimal (also known as Zoned Decimal) data
format for numeric data. Numeric data in this format is stored internally as
decimal character data. For example, in a system that uses the EBCDIC code, the
number 1234 stored in a 4-byte external decimal field is stored as the character
string ’1234’, and its actual internal hexadecimal representation is ’F1F2F3F4’.

With signed external decimal numbers, the sign can be incorporated into the actual
data by modifying the first half of the first or last byte (depending on whether you
are using a sign-leading or sign-trailing representation). Typically, ’0xC’ is used to

794 Message Models



represent a positive number, ’0xD’ is used to represent a negative number and
’0xF’ is used to represent an unsigned number.

Note: In general, any of ’0xA’, ’0xC’, ’0xE’ or ’0xF’ can be used to indicate a
positive value, and ’0xB’ or ’0xD’ can be used to indicate a negative value.
The actual preferred representation is dependent upon the actual hardware
architecture.

On ASCII machines, there are a number of mechanisms for the internal
representation of external decimal data. One representation (’Sign ASCII’) that is
employed by IBM’s pSeries machines, uses the normal ASCII codes (’0’ [hex 30] to
’9’ [hex 39]) for the first or last digit of both unsigned and positive numbers, and
the characters ’p’ [hex 70] to ’y’ [hex 79] for negative numbers.

An alternative method (Sign EBCDIC Custom) is used on some other ASCII based
machines. This method uses the same characters as an EBCDIC based machine,
even though the actual internal hexadecimal representations of them are different.
Using this technique, the character string for both EBCDIC and ASCII platforms is
identical. You could potentially receive a message from an EBCDIC platform
(created from a COBOL copybook that contains such entries as PIC XXX and PIC
S999) and convert the whole message to ASCII, or the other way around. The
character string that represents the external decimal field in the message (after the
ASCII to EBCDIC, or EBCDIC to ASCII, conversion) maps to the code point that
represents the correct sign for the decimal. This method includes the limitation that
curly brace characters are variant (they have different code points in different
EBCDIC code pages). This mechanism works only for those EBCDIC code pages
where the curly brace characters ’{’ and ’}’ (which are used to represent signed 0)
have exactly the code points X’C0’ and X’D0’. For example, it works for code page
500 but not for code page 871, where the curly braces have code points X’8E’ and
X’9C.

In an ASCII environment (determined by the CCSID property at runtime), the
default for both input and output is the ’Sign ASCII’ representation. You can
specify the applicable representation in the CWF physical layer for local attributes
and local elements of types decimal, float, and integer.

Note: This option is only appropriate for those elements or attributes that have an
external decimal physical representation, and that have an embedded
(’Leading’ or ’Trailing’) sign (determined by the Sign Orientation property).

The table below shows the internal representation (both character and actual
hexadecimal value) of the first or last digit for external decimal numbers with an
included (embedded) leading or trailing sign respectively. (The table does not
specify the representation for unsigned values, which are 0x30-0x39 for ASCII and
0xF0-0xF9 for EBCDIC.)

Message model reference information 795



Positively signed values Negatively signed values

ASCII environment EBCDIC
environment

ASCII environment EBCDIC
environment

Digit Sign ASCII Sign EBCDIC
Custom

Sign ASCII Sign EBCDIC
Custom

0 0(30) {(7B) {(C0) p(70) }(7D) }(D0)

1 1(31) A(41) A(C1) q(71) J(4A) J(D1)

2 2(32) B(42) B(C2) r(72) K(4B) K(D2)

3 3(33) C(43) C(C3) s(73) L(4C) L(D3)

4 4(34) D(44) D(C4) t(74) M(4D) M(D4)

5 5(35) E(45) E(C5) u(75) N(4E) N(D5)

6 6(36) F(46) F(C6) v(76) O(4F) O(D6)

7 7(37) G(47) G(C7) w(77) P(50) P(D7)

8 8(38) H(48) H(C8) x(78) Q(51) Q(D8)

9 9(39) I(49) I(C9) y(79) R(52) R(D9)

The next table gives some examples for a range of simple numbers that are
representative of what can be transmitted or received using these approaches.

Sign leading Sign trailing

ASCII Environment EBCDIC
Environment

ASCII Environment EBCDIC
Environment

Decimal value Sign ASCII Sign EBCDIC
Custom

Sign ASCII Sign EBCDIC
Custom

1234 31 32 33 34
″1234″

31 32 33 34
″1234″

F1 F2 F3 F4
″1234″

31 32 33 34
″1234″

31 32 33 34
″1234″

F1 F2 F3 F4
″1234″

+1234 31 32 33 34
″1234″

41 32 33 34
″A234″

C1 F2 F3 F4
″A234″

31 32 33 34
″1234″

31 32 33 44
″123D″

F1 F2 F3 C4
″123D″

-1234 71 32 33 34
″q234″

4A 32 33 34
″J234″

D1 F2 F3 F4
″J234″

31 32 33 74
″123t″

31 32 33 4D
″123M″

F1 F2 F3 D4
″123M″

7890 37 38 39 30
″7890″

37 38 39 30
″7890″

F7 F8 F9 F0
″7890″

37 38 39 30
″7890″

37 38 39 30
″7890″

F7 F8 F9 F0
″7890″

+7890 37 38 39 30
″7890″

47 38 39 30
″G890″

C7 F8 F9 F0
″G890″

37 38 39 30
″7890″

37 38 39 7B
″789{″

F7 F8 F9 C0
″789{″

-7890 77 38 39 30
″w890″

50 38 39 30
″P890″

D7 F8 F9 F0
″P890″

37 38 39 70
″789p″

37 38 39 7D
″789}″

F7 F8 F9 D0
″789}″

Importing from WSDL: generated objects and restrictions
Several objects are generated when you import from WSDL but restrictions might
apply.

Generated objects

Files copied by command line import
The mqsicreatemsgdefsfromwsdl command copies the WSDL files it needs
into the workspace before running the import process. These files are the

796 Message Models



top level WSDL files and any imports resolved from a relative location.
The files are copied under the specified message set into a folder called
importFiles.

Report file
The WSDL importer appends the result of the import operation to a report
file, listing all errors that occurred during the process. The file name of the
report file is message set.wsdl.report.txt.

SOAP message definitions
The required SOAP .mxsds files are added to the message set. Currently,
the SOAP 1.1 definitions are always imported because:
v SOAP 1.1 is more widely used than SOAP 1.2.
v No standard SOAP 1.2 binding exists for WSDL 1.1. Therefore, the

WSDL importer cannot reliably determine that SOAP 1.2 is required.
v You cannot import both SOAP 1.1 and SOAP 1.2 definitions because

they use the same message name (for example, Envelope).

If you want to parse SOAP 1.2 instance documents, manually remove the
SOAP 1.1 definitions and import the SOAP 1.2 definitions by using the
Message Definition File wizard, selecting IBM supplied message.

If your message set has TDS or CWF layers, you might find that you get a
number of warnings against the imported SOAP definitions. Most of these
can be ignored, but take account of the allowed values for Boolean
attributes. In SOAP 1.1 the Boolean values are 1 or 0, while in SOAP 1.2
the values are true and false. The XML representation of Boolean values for
a message set is specified in the physical properties for the XML physical
format, and might need to be set accordingly.

Message definition files
Other message definition file names are created as input file name.mxsd
and their content depends on the WSDL style.

document-style
WSDL message parts for style=”document” (which includes all SOAP
header, fault and headerfault parts) refer to an element defined in XML
Schema. This element is imported as a global element and broker message
in the mxsd file.

The xsi:type Output Policy on the message is set to “Never”.

rpc-style
WSDL message parts for style=”rpc” (and exclusively those allocated to the
SOAP body) refer to a type defined in XML Schema. In this case, input and
output messages are created as shown in the following table.

An input message An output message

Derived From wsdl:input child (if any) of
WSDL operation, and the
WSDL message and parts
which it identifies

wsdl:output child (if any) of
WSDL operation, and the
WSDL message and parts
which it identifies

Name of Element value of the name attribute
on the WSDL operation
element

value of the name attribute
on the WSDL operation
element suffixed by
″Response″

Message model reference information 797



An input message An output message

Namespace of Element value of the namespace
attribute on the
corresponding soap:body
element

value of the namespace
attribute on the
corresponding soap:body
element

Each message is of local complex type, being a sequence of elements. The
name of each element is the value of the name attribute on the WSDL parts
of the message identified by either the input or output element. These
elements have no namespace (the underlying schema representation has
form=″unqualified″), and are locally scoped to avoid name clashes. The
type of these local elements is the XML Schema type referred to by the
type attribute of the corresponding part element. The type is global in the
WSDL schema.

If the soap:body was defined with use=″encoded″ in the WSDL definition,
the message definition includes a reference to the attribute group
encodingStyle in the SOAP-ENV namespace and the xsi:type Output Policy
on the message is set to ″Follow SOAP encoding rules″. Otherwise, the
xsi:type Output Policy on the message is set to ″Never″.

WSDLs generated using .NET
In some instances, WSDLs that are generated using .NET include element
references to the schema itself. An example of this type follows:

<xsd:complexType>
<xsd:sequence>
<xsd:element ref="s:schema"/>
</xsd:sequence>

</xsd:complexType>

For WSDLs of this type to be successfully imported into the Message
Broker Toolkit without validation errors, you must manually add a
namespace import statement to the namespace of the schema. An example
of the import statement follows:
<xsd:import namespace="http://www.w3.org/2001/XMLSchema"/>

Place the import statement first within the schema element, and ensure it
appears before any complex type or element definitions. Re-validate the
WSDL by right-clicking the updated WSDL and clicking Validate.

Restrictions

Restrictions related to importing WSDL definitions exist where the WSDL
definitions are not WS-I compliant.

SOAP Arrays
A WSDL 1.1 definition can define a SOAP Array (applicable only to the
WSDL rpc-encoded style, and not WS-I compliant):

<xsd:complexType name="t">
<xsd:complexContent>

<xsd:restriction base="SOAP-ENC:Array">
<xsd:sequence>

<xsd:element name="item" type="string" maxOccurs="unbounded"/>
</xsd:sequence>
<xsd:attribute ref="SOAP-ENC:arrayType" wsdl:arrayType="xsd:string[]"/>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>

798 Message Models



Some uses of SOAP array syntax are not fully supported. Although a
useful tree is created during parsing and can be serialized when writing:
v The model does not take any account of the SOAP-ENC:arrayType

attribute.
v The model for partially transmitted arrays does not take account of the

SOAP-ENC:offset attribute.
For example, the first element of an array specified with offset[2] needs
to be accessed in ESQL, not as InputRoot.MRM.array.item[3], but as
InputRoot.MRM.array.item[1].

v The model for multi-dimensional arrays flattens the representation into a
single dimension. For example, a 2-dimensional array is accessed in
ESQL, not as InputRoot.MRM.array.item[x][y], but as
InputRoot.MRM.array.item[i] where the index i has to be calculated
appropriately.

Anonymous elements
The WSDL excerpt above describes a SOAP instance document of the
following form:

<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:string[3]">
<item xsi:type="xsd:string">A general text string</item>
<item xsi:type="xsd:token">A restriction of the string type</item>
<item xsi:type="xsd:Name">ARestrictionOfTheTokenType</item>

</SOAP-ENC:Array>

The broker model handles this as expected, but in SOAP encoding array
elements are also allowed to use the type-elements from the SOAP
encoding namespace. Therefore, an application using the same WSDL
definition might create an instance document of the following form:

<SOAP-ENC:Array SOAP-ENC:arrayType="xsd:string[3]">
<SOAP-ENC:string>A general text string</SOAP-ENC:string>
<SOAP-ENC:token>A restriction of the string type</SOAP-ENC:token>
<SOAP-ENC:Name>ARestrictionOfTheTokenType</ SOAP-ENC:Name>

</SOAP-ENC:Array>

You must manually edit the broker model created by importing the WSDL
to handle this case, unless it is acceptable to have the parser treat it as a
self-defined element.

Importing from XML Schema: unsupported features
A number of features in XML Schema are not supported, or their support is
restricted in some way.

Message sets with namespace support
v Constructs accepted but not supported when importing from an XML Schema.

When importing an XML Schema into a message set that supports namespaces,
the Redefine construct is accepted, but causes an error message to be displayed
in the task list because it is not fully supported.
The following XML shows an example of the Redefine construct:
<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.ibm.com" xmlns:ibm="http://www.ibm.com">

<!-- Unsupported feature: redefine -->
<redefine schemaLocation="test.xsd"/>

</schema>

Message model reference information 799



Message sets without namespace support
v Constructs accepted and ignored when importing from an XML Schema.

The list of constructs and the action taken is the same as for a message set with
namespace support, as described above.

v Target namespaces not qualified with a prefix.
When importing an XML Schema into a message set that does not support
namespaces, you cannot import a schema document that has a target namespace
that is not qualified with a prefix. For example:
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.ibm.com" xmlns="http://www.ibm.com">
</xsd:schema>

Message model wizards
Wizards help to simplify complex message modeling tasks.

As software grows more complex, wizards are increasingly used to step you
through complex tasks or procedures, ensuring that you correctly specify all the
parameters that are required, and that you perform the required tasks in the
correct order.

This topic provides some additional reference material for those wizards where
you might need help in specifying certain parameters.

Each wizard that is documented here has its own high-level topic and a topic for
each panel that is displayed by the wizard. The panels are listed in the order that
they appear, and the fields on each panel appear in the topic in the same order as
they appear on the panel. These topics provide only information about these fields
and panels. You can find further information about the wizards in topics that are
referenced from the wizard’s high-level topic.

The following wizards have additional information:
v “New message definition file wizards”
v “Generate WSDL wizard” on page 807
v “Export WSDL wizard” on page 815
v “Configure New Web Service Usage wizard” on page 817

New message definition file wizards
Use the New message definition file wizards to create message definition files.

Depending on the selection that you make, you are routed through the correct
sequence of panels to create the message definition file from the source that you
have requested. Some panels are displayed only if certain conditions are met.
These panels are marked as optional.

The following links provide further information about the panels and fields that
form the New message definition file wizards.
v New Message Definition File (from scratch)
v XML Schema file
v IBM supplied message
v XML DTD
v C header file

800 Message Models



v COBOL file
v WSDL file

New message definition file wizard: Create a new message
definition file from scratch

Create a new message definition file from scratch

When you choose to create a new message definition file from scratch, you are
presented with the following panels:
v Select the target message set
v Specify the namespace

Create a new message definition file from scratch: Select the target message set:

Create a new message definition file from scratch

When you choose to create a new message definition file from scratch, you are
presented with the following panels:
v Select the target message set
v Specify the namespace

Panel properties

Message sets
This field lists the message set projects that are available in your
workspace. By clicking on the ’+’ symbol to the left of the project, these
expand to list the message sets that are available for you to select from the
active working set. Depending on how you started the New message
definition file wizard, a message set might be preselected for you, but this
does not prevent you from selecting a different message set if you prefer.

File name
Specify the name of the message definition file that you are creating.

Create a new message definition file from scratch: Specify the namespace:

Create a new message definition file from scratch

When you choose to create a new message definition file from scratch, you are
presented with the following panels:
v Select the target message set
v Specify the namespace

Panel properties

Schema for Schema settings

Prefix Specifies the namespace prefix to use for the namespace shown in the
Namespace property.

Namespace
Specifies the namespace to be used.

Message model reference information 801



Use target namespace

Selecting this check box allows you to specify a target namespace for the message
definition file. You can only choose a target namespace if namespaces have been
enabled in the message set.

Target namespace settings

Prefix Specifies the namespace prefix to use for the namespace shown in the
Namespace property.

Namespace
Specifies the namespace to be used.

New message definition file wizard: Create a new message
definition file from an XML Schema file
You can create a new message definition file from an XML Schema file.

Create a new message definition file from an XML Schema file

When you choose to create a new message definition file from an XML Schema
file, you are presented with a panel with the following fields:

Select an XML Schema file

Message set
Use this field to choose the message set project that will contain the
message definition file that you create.

Message definition file name
Use this field for the name of the message definition file that you want to
create.

Select file from workspace
Choose this option if the XML Schema file that you want to add to the
message definition file that you are creating is in the current workspace,
and select the file from the displayed content of the workspace.

Select file from outside workspace
Choose this option if the XML Schema file that you want to add to the
message definition file that you are creating is not in the current
workspace, and specify the location of the XML Schema file that you want
to add.

Copy source file into the ’importFiles’ directory of the message set project
Select this check box to copy the source file into the ’importFiles’ directory
of the message set project.

Create an appropriate physical format if one does not already exist
Select this check box to automatically create the message set physical
format that is needed by the pre-canned schema that you have selected for
import.

New message definition file wizard: IBM supplied message
You can create a new message definition file from an IBM supplied message.

IBM supplied message wizard

When you choose to create a message definition file from an IBM supplied
message, you are presented with a panel with the following fields:

802 Message Models



Select an IBM supplied message

Message set
Use this field to choose the message set project that will contain the
message definition file that you create. Message set projects are filtered to
only show artifacts in the active working set.

Message definition file name
Use this field for the name of the message definition file that you want to
create.

IBM supplied messages
Select from the displayed set of IBM supplied message definitions. This
field is split into two panes; the pane on the left displays the IBM supplied
message definitions that are available, and the pane on the right contains
text that gives advice about the usage of the message definition that you
have selected in the field’s left pane.

Copy source file into the importFiles directory of the message set project
Select this check box to copy the source file into the importFiles directory
of the message set project.

Create an appropriate physical format if one does not already exist
Select this check box to automatically create the message set physical
format that is required by the precanned schema that you have selected for
import.

IBM supplied messages that you can import:

You can import IBM supplied messages to create a new message definition file.

If the message is to be used with an XML parser, the following points apply:
v If the message set to which you are adding the new message definition file has

an XML physical format layer, but does not have namespace support, the
imported IBM supplied message is modified to remove namespaces. Therefore,
enable namespace support before you import an IBM supplied message.

v If the message set to which you are adding the new message definition file does
not have an XML physical format layer, but has namespace support, only the
logical information is displayed in the model. The IBM supplied message is not
modified to remove namespaces. Add an XML physical format to the message
set before you import an IBM supplied message.

v If the message set to which you are adding the new message definition file does
not have an XML physical format layer, and does not have namespace support,
only the logical information appears in the model and the imported IBM
supplied message is modified to remove namespaces.

The IBM supplied messages that you can import are:

SOAP message definitions
These message definitions model the SOAP-defined portions of SOAP XML
messages. They are best used with the SOAP parser. The definitions Soap
1.1 Envelope and Soap 1.2 Envelope model the SOAP envelope structure that
is used to wrapper the user-defined body of a SOAP message. The
definitions Soap 1.1 Encoding and Soap 1.2 Encoding model certain structures
for use in ″rpc/encoded″ style SOAP messages.

An IBM message for the SOAP domain tree is supplied as a schema that
provides content-assist in creating a logical model for the SOAP domain by
using the ESQL or mapping editor.

Message model reference information 803



Multipart MIME message definitions
These message definitions model the MIME-defined portions of multipart
MIME messages and must be used with the message broker’s MIME
parser. Use the MIME multipart header definition for typical multipart
MIME messages such as SOAP with Attachments, or RosettaNet. Use the
MIME Nested Multipart header definition for multipart MIME messages in
which the individual parts can themselves be multipart MIME; for
example, S/MIME.

SAP IDoc message definitions
These message definitions model the SAP-defined portion of ALE and File
IDocs that precede the user-defined content. The ALE IDoc model can be
used with the MRM and IDOC parsers. The File IDoc model can be used
with the MRM parser only.

Timeout Request message definition
This message definition models the TimeoutRequest message that is used
in conjunction with the message broker TimeoutControl and
TimeoutNotification nodes. You can use it with any parser.

CSV message definition
This message definition models a CSV (comma separated value) format
message. It can be used with the MRM parser.

New message definition file wizard: Create a new message
definition file from an XML DTD file
You can create a new message definition file from an XML DTD file.

Create a new message definition file from an XML DTD file

When you choose to create a new message definition file from an XML DTD file,
you are presented with a panel with the following fields:

Select an XML DTD file

Message set
Use this field to choose the message set project that will contain the
message definition file that you create. Message set projects are filtered to
only show artifacts in the active working set.

Message definition file name
Use this field for the name of the message definition file that you want to
create.

Select file from workspace
Choose this option if the XML DTD file that you want to add to the
message definition file that you are creating is in the current workspace,
and select the file from the displayed content of the workspace. XML DTD
files are filtered to only show artifacts in the active working set.

Select file from outside workspace
Choose this option if the XML DTD file that you want to add to the
message definition file that you are creating is not in the current
workspace, and specify the location of the XML DTD file that you want to
add.

Copy source file into the ’importFiles’ directory of the message set project
Select this check box to copy the source file into the ’importFiles’ directory
of the message set project.

804 Message Models



Create an appropriate physical format if one does not already exist
Select this check box to automatically create the message set physical
format that is needed by the pre-canned schema that you have selected for
import.

New message definition file wizard: Create a new message
definition file from a C header file
You can create a new message definition file from a C header file.

Create a new message definition file from a C header file

When you choose to create a new message definition file from a C header file, you
are presented with a panel with the following fields:

Select a C header file

Message set
Use this field to choose the message set project that will contain the
message definition file that you create. Message set projects are filtered to
only show artifacts in the active working set.

Message definition file name
Use this field for the name of the message definition file that you want to
create.

Target namespace
Use this field for the name of the target namespace for the message
definition file that you want to create.

Select file from workspace
Choose this option if the C header file that you want to add to the
message definition file that you are creating is in the current workspace,
and select the file from the displayed content of the workspace. C header
files are filtered to only show artifacts in the active working set.

Select file from outside workspace
Choose this option if the C header file that you want to add to the
message definition file that you are creating is not in the current
workspace, and specify the location of the C header file that you want to
add.

Copy source file into the ’importFiles’ directory of the message set project
Select this check box to copy the source file into the ’importFiles’ directory
of the message set project.

Create an appropriate physical format if one does not already exist
Select this check box to automatically create the message set physical
format that is needed by the pre-canned schema that you have selected for
import.

C header file options

Include paths

Preserve case in variable names
Select this check box if you want to preserve the case of the
characters that form the names of the variables.

Select the pre-processing option to apply
Choose an option from the list.

Message model reference information 805



New message definition file wizard: Create a new message
definition file from a COBOL file
You can create a new message definition file from a COBOL file.

Create a new message definition file from a COBOL file

When you choose to create a new message definition file from a COBOL file, you
are presented with a panel with the following fields:

Select a COBOL file

Message set
Use this field to choose the message set project that will contain the
message definition file that you create. Message set projects are filtered to
only show artifacts in the active working set.

Message definition file name
Use this field for the name of the message definition file that you want to
create.

Target namespace
Use this field for the name of the target namespace for the message
definition file that you want to create.

Select file from workspace
Choose this option if the COBOL file that you want to add to the message
definition file that you are creating is in the current workspace, and select
the file from the displayed content of the workspace. COBOL files are
filtered to only show artifacts in the active working set.

Select file from outside workspace
Choose this option if the COBOL file that you want to add to the message
definition file that you are creating is not in the current workspace, and
specify the location of the COBOL file that you want to add.

Copy source file into the ’importFiles’ directory of the message set project
Select this check box to copy the source file into the ’importFiles’ directory
of the message set project.

Create an appropriate physical format if one does not already exist
Select this check box to automatically create the message set physical
format that is needed by the pre-canned schema that you have selected for
import.

COBOL file options

Preserve case in variable names
Select this check box if you want to preserve the case of the
characters that form the names of the variables.

New message definition file wizard: Create a new message
definition file from a WSDL file
You can create a new message definition file from a WSDL file.

Create a new message definition file from a WSDL file

When you choose to create a new message definition file from a WSDL file, you
are presented with a panel with the following fields:

806 Message Models



Select a WSDL file

Message set
Use this field to choose the message set project that will contain the
message definition file that you create. Message set projects are filtered to
only show artifacts in the active working set.

Message definition file name
Use this field for the name of the message definition file that you want to
create.

Select file from workspace
Choose this option if the WSDL file that you want to add to the message
definition file that you are creating is in the current workspace, and select
the file from the displayed content of the workspace. WSDL files are
filtered to only show artifacts in the active working set.

Select file from outside workspace
Choose this option if the WSDL file that you want to add to the message
definition file that you are creating is not in the current workspace, and
specify the location of the WSDL file that you want to add.

Copy source file into the ’importFiles’ directory of the message set project
Select this check box to copy the source file into the ’importFiles’ directory
of the message set project.

Create an appropriate physical format if one does not already exist
Select this check box to automatically create the message set physical
format that is needed by the pre-canned schema that you have selected for
import.

Add SOAP and XMLNSC to supported message domains if they do not exist
Select this check box to add the SOAP and XMLNSC message domains to
the list of supported message domains that the message definition
supports.

Generate WSDL wizard
The Generate WSDL wizard creates a WSDL definition from a message set.

The following links provide further information in relation to the panels and fields
that form the Generate WSDL wizard. Some panels only appear if certain
conditions are met. These are marked as (optional).

Open the Generate WSDL wizard

To open the Generate WSDL wizard:
1. Switch to the Broker Application Development perspective.
2. In the Broker Development view, right-click the folder that contains the

message set file from which you want to generate a web service definition, and
select Generate → WSDL Definition. This starts the Generate WSDL wizard.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:
v Select the action you wish to perform
v Select a message set folder and destination directory
v Specify WSDL details

Message model reference information 807



v Add operations to the WSDL definition
v Configure binding details - SOAP/HTTP
v Configure binding details - SOAP/JMS (optional)
v Summary of tasks

Generate WSDL wizard: Select the action you wish to perform
Use this panel to select how you want to generate the WSDL definition.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:
v Select the action you wish to perform
v Select a message set folder and destination directory
v Specify WSDL details
v Add operations to the WSDL definition
v Configure binding details - SOAP/HTTP
v Configure binding details - SOAP/JMS (optional)
v Summary of tasks

Panel properties

A choice of three options is presented.

Generate a new WSDL definition from existing message definitions
Select this option to generate a new WSDL definition from existing
message definitions. This is the default option.

Export an existing WSDL definition to another directory in the workspace or file
system.

Select this option to load the Export WSDL wizard.

Generate a new WSDL definition from existing message definitions using
message categories (deprecated)

Select this option to generate a new WSDL definition using existing
message definitions and message categories. This option is available to
provide compatibility with previous releases of WebSphere Message
Broker.

Generate WSDL wizard: Select a message set folder and
destination directory
Use Generate WSDL wizard to select both the source of the WSDL definition and
where you want the generated WSDL definition to be placed.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:
v Select the action you wish to perform
v Select a message set folder and destination directory
v Specify WSDL details
v Add operations to the WSDL definition
v Configure binding details - SOAP/HTTP
v Configure binding details - SOAP/JMS (optional)
v Summary of tasks

808 Message Models



Panel properties

Select the message set folder from which to generate the WSDL definition:
Specify the message set folder from which to generate the WSDL
definition.

Choose one of the following radio buttons to select the destination for the
generated WSDL definition:

Create in a workspace directory
Select from your workspace directory the message set folder that will
contain the generated WSDL definition.

Export to an external directory
Specify the address of the directory, outside your workspace, that you
want to contain the generated WSDL definition.

Options
Specify the structure of the generated XML schema

Choose one of the following radio buttons to specify the structure of the generated
XML schema:

Generate XML schema definitions with current directory structure
Generates the schema definition using the current directory structure; this
is the default.

Generate XML schema definitions with flat structure
Generates the schema definition as a single level directory structure.

Generate WSDL wizard: Specify WSDL details
Use this panel to describe some details of the WSDL definition that you want to
generate.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:
v Select the action you wish to perform
v Select a message set folder and destination directory
v Specify WSDL details
v Add operations to the WSDL definition
v Configure binding details - SOAP/HTTP
v Configure binding details - SOAP/JMS (optional)
v Summary of tasks

Panel properties

File Format
Select from:
v Generate as a single WSDL file

The WSDL definition is written to a single file. This format is widely
understood by external applications and SOAP toolkits.

v Generate as a single WSDL file with all XML schema inlined

The WSDL definition is written to a single file with the XML added.
v Generate as three WSDL files (one each for port type, service, and

binding)

Message model reference information 809



The WSDL definition is split into multiple files. This format offers better
reuse of the component files.

WSDL Version
Select the required version of WSDL.

SOAP Version
Select the required version of SOAP

Style The style determines the format of the runtime SOAP messages described
by the generated WSDL. The choices are:
v rpc
v document

WSDL Namespace
This must be a valid URI and becomes the target namespace for the WSDL
definitions. This value has no particular significance outside of the WSDL
definition itself and does not correspond to the namespace of SOAP
messages described by the generated WSDL. A default value of
http://tempuri.org/<message set name> is set.

RPC Namespace
This field is only enabled if you selected the Style as rpc. It is the
namespace for the immediate children of your SOAP body. The value must
be a valid URI. A default value of http://tempuri.org/<message set name>
is set.

Definition Name
This is used in deriving the names of the WSDL file or files that are
created. The default value is the name of your message set.

Documentation
Optional: This text is included as documentation for the PortType element
on the generated WSDL. It has no implications for the SOAP messages that
are described by the generated WSDL.

Generate WSDL wizard: Add operations to the WSDL details
Use this panel to define the operations that you want to add to the WSDL
definition.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:
v Select the action you wish to perform
v Select a message set folder and destination directory
v Specify WSDL details
v Add operations to the WSDL definition
v Configure binding details - SOAP/HTTP
v Configure binding details - SOAP/JMS (optional)
v Summary of tasks

Panel properties

The panel is divided into two panes.

The top pane is read-only and displays a table that describes the operations that
you have defined. The table has four columns with the following headings:

810 Message Models



Operation
The name that you have given to the operation.

Input message
The name of the input message. This might be blank if the operation is a
Notification type operation.

Output message
The name of the output message. This might be blank if no output
message is specified for this operation.

Operation Type
The type of operation. Examples of operation type are:

Request-response
One-way
Solicit-response
Notification

The bottom pane is where you describe a new operation. The following fields
describe the operation:

Name The name that you have given to the operation.

Operation Type
The type of operation. Examples of operation type are:

Request-response
One-way
Solicit-response
Notification

Input The name of the input message. This is omitted for a Notification operation.

Output
The name of the output message. This is omitted for a One-way operation.

Fault The name of the fault message. This is omitted for a Notification operation.
Otherwise, you can specify one or more fault messages.

Generate WSDL wizard: Configure binding details - SOAP/HTTP
Use this panel to specify your SOAP/HTTP binding details, or to go to the panel
that allows you to specify your SOAP/JMS binding details instead.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:
v Select the action you wish to perform
v Select a message set folder and destination directory
v Specify WSDL details
v Add operations to the WSDL definition
v Configure binding details - SOAP/HTTP
v Configure binding details - SOAP/JMS (optional)
v Summary of tasks

Panel properties

A choice of two options is presented:

Message model reference information 811



SOAP/HTTP
Select this option to generate a new WSDL definition using existing
message definitions. This is the default option.

SOAP/JMS
Select this option to load the WSDL export wizard.

If you select SOAP/HTTP, the following properties are displayed:

SOAP action
This defines the value for the HTTP SoapAction header. It is possible that
an application will use the SoapAction as a mechanism for relating a SOAP
message to an implementation method. This is often true with rpc-style
WSDL.

If the WSDL definition is to contain multiple operations and they use
different SOAP actions, you must add the unique SOAP action values to
the WSDL after it has been generated. If all operations use the same SOAP
action, specify the value here.

Service name
The Service Name will be the value of the name attribute on the service
element in the generated WSDL. The exact use of the name depends on
products that subsequently use the WSDL such as the SOAP toolkits and
UDDI repositories. For example if you subsequently use a SOAP toolkit to
generate Java from your WSDL, the Service Name is likely to become the
Java interface name.

Port name
This is the name of a specific WSDL port for this service and would
usually be derived from the Service Name. One convention would be to
provide a Service Name of <xyz> Service and a Port Name of <xyz>
Provider.

The Port Name will be the value of the name attribute on the port element
in the generated WSDL. The exact use of the name depends on products
that subsequently use the WSDL such as SOAP toolkits and UDDI
repositories. For example if you use a SOAP toolkit to generate Java from
your WSDL, the Port Name could become a Java class name.

Port address
This defines the address at which the service will be made available. It
must be a valid URL and it must include the port number, if this is
different from the default HTTP port. An example of a port address is:
http://localhost:9080/wassoap/servlet/router

If you select SOAP/JMS, the SOAP/JMS panel is displayed. See “Generate WSDL
wizard: Configure binding details - SOAP/JMS (optional).”

Generate WSDL wizard: Configure binding details - SOAP/JMS
(optional)
Use this panel to specify your SOAP/JMS binding details.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:
v Select the action you wish to perform
v Select a message set folder and destination directory
v Specify WSDL details

812 Message Models

|
|
|
|



v Add operations to the WSDL definition
v Configure binding details - SOAP/HTTP
v Configure binding details - SOAP/JMS (optional)
v Summary of tasks

Panel properties

This panel is displayed only when you have selected SOAP/JMS from the previous
panel.

SOAP/HTTP
Select this option to generate a new WSDL definition using existing
message definitions. This option is shown as not selected.

SOAP/JMS
Select this option to load the WSDL export wizard. This option is shown as
selected.

The following properties are displayed for you to specify the bindings for
SOAP/JMS:

Destination Style
This field is predefined as ’queue’ and cannot be edited.

Initial Context Factory
This is the name of a Java class which will allows the SOAP client or
server to perform naming and directory service functions through the
standard JNDI interface to a particular type of repository.

The following predefined Java classes are offered, or the user can enter
their own:
v com.ibm.websphere.naming.WsnInitialContextFactory - This corresponds

to a repository type of WebSphere Application Server Common Object
Services Name Server (part of the CORBA standard)

v com.sun.jndi.ldap.LdapCtxFactory - This has a repository type of LDAP
(Lightweight Directory Access Protocol)

v com.sun.jndi.fscontext.RefFSContextFactory - This has a file system
repository type.

The named class must be available on the classpath for a SOAP client or
server using this WSDL binding.

If one of these is selected, the corresponding JNDI Provider Type is
selected automatically . If a user-defined value is supplied for the Initial
Context Factory, the Provider Type field defaults to LDAP.

Note: The value of this field will determine the Provider Type and
additional details that you will need to provide in the JNDI Provider
Type Properties section of this wizard panel.

JNDI Connection Factory
This is the JNDI name used to bind to the JMS connection factory and
must match your JMS configuration.

JNDI Destination Name
This is the JNDI name for the JMS destination factory and must match
your JMS configuration.

Message model reference information 813



Host Name
The host name or IP address of the machine hosting the JNDI provider

Port Number
The port number on the host machine at which the JNDI provider can be
contacted

Target Context
The JNDI context in which the search is to be performed

JNDI Provider URL
This is the resulting URL as used by JNDI and is read only. It is comprised
of the host name and port number and optionally the target context. For
example, iiop://hostname[:port] /[?TargetContext=ctx] (where [] define
what is optional and should not be included in the string).

Service Name
The Service Name will be the value of the name attribute on the service
element in the generated WSDL. The exact use of the name depends on
products that subsequently use the WSDL such as the SOAP toolkits and
UDDI repositories. For example if you subsequently use a SOAP toolkit to
generate Java from your WSDL, the Service Name is likely to become the
Java interface name.

Port Name
This is the name of a specific WSDL port for this service and would
usually be derived from the Service Name. One convention would be to
provide a Service Name of <xyz> Service and a Port Name of <xyz>
Provider.

The Port Name will be the value of name attribute on the port element in
the generated WSDL. The exact use of the name depends on products that
subsequently use the WSDL such as the SOAP toolkits and UDDI
repositories. For example if you use a SOAP toolkit to generate Java from
your WSDL, the Port Name could become a Java class name.

Generate WSDL Definition wizard: Summary of tasks
Generate WSDL Definition wizard: provides a summary of the actions that will
occur on finalizing the wizard.

Generate WSDL wizard

The following panels are shown by the Generate WSDL wizard:
v Select the action you wish to perform
v Select a message set folder and destination directory
v Specify WSDL details
v Add operations to the WSDL definition
v Configure binding details - SOAP/HTTP
v Configure binding details - SOAP/JMS (optional)
v Summary of tasks

Summary information

This panel consists of two panes. The top pane displays a summary of the
selections you have made and the bottom pane lists the message definition files
generated.

814 Message Models



The selected message set
The message set you selected on the Select a message set folder and
destination directory panel.

The generated WSDL files will go into:
The destination directory you selected on the Select a message set folder
and destination directory panel.

The version of WSDL to be generated
The version you selected on the Specify WSDL details panel.

The version of SOAP to be generated
The version you selected on the Specify WSDL details panel.

The selected style for WSDL generation:
The style you selected on the Specify WSDL details panel.

The WSDL namespace:
The namespace you selected on the Specify WSDL details panel.

If you selected rpc as the style there is an entry for RPC namespace.

The following bindings are selected:

SOAP over HTTP
See Configure binding details - SOAP/HTTP for further details.

SOAP over JMS
See Configure binding details - SOAP/HTTP for further details.

The following WSDL files will be generated:
The name of the generated file.

Export WSDL wizard
The Export WSDL wizard exports a WSDL definition from a message set.

The following links provide further information in relation to the panels and fields
that form the Export WSDL wizard.

Export WSDL wizard

The following panels are shown by the Export WSDL wizard:
v Select the WSDL definition you wish to export
v Specify the export location

Export WSDL wizard: Select the WSDL definition you wish to
export
Use this panel of the Export WSDL wizard to select the WSDL definition that you
want to export from a message set.

The following links provide further information in relation to the panels and fields
that form the Export WSDL wizard.

Export WSDL wizard

The following panels are shown by the Export WSDL wizard:
v Select the WSDL definition you wish to export
v Specify the export location

Message model reference information 815



Panel properties

The top pane of the panel shows a map of your workspace. Select the WSDL
definition that you want to export.

Export file format
Choose one of the following options:
v Export to a single WSDL file

The WSDL definition is written to a single file. This format is widely
understood by external applications and SOAP toolkits.

v Export to a single WSDL file with all XML schema inlined

The WSDL definition is written to a single file. This format is widely
understood by external applications and SOAP toolkits.

v Export to three WSDL files (one each for port type, service, and
binding)

The WSDL definition is split into multiple files. This format offers better
reuse of the component files.

v Export based on the existing file structure

The WSDL definition is written to a single file. This format is widely
understood by external applications and SOAP toolkits.

WSDL definition name
Select a name for the exported WSDL.

Export WSDL wizard: Specify the export location
Use this panel of the Export WSDL wizard to specify the location for the WSDL
definition that you want to export from a message set.

The following links provide further information in relation to the panels and fields
that form the Export WSDL wizard.

Export WSDL wizard

The following panels are shown by the Export WSDL wizard:
v Select the WSDL definition you wish to export
v Specify the export location

Panel properties

Choose one of the following options:

Export to a workspace directory
The structure of the workspace is displayed. Click the folder that you want
the WSDL definition to be exported to.

Export to an external directory
Specify the name of the external directory that you want the WSDL
definition to be exported to.

Select the Overwrite existing files without warning check box if you do not want
to be warned that a file with the name that you specified is being overwritten. By
default, the check box is cleared; if a file exists with the same name as the name
that you have selected, you are prompted to confirm whether you want this file to
be overwritten by the file that you are exporting.

816 Message Models



Configure New Web Service Usage wizard
This provides additional reference information in relation to the Configure New
Web Service Usage wizard.

You can launch this wizard by dragging deployable WSDL onto the message flow
canvas.

The following links provide further information in relation to the panels and fields
that form the Configure New Web Service Usage wizard.

Configure New Web Service Usage wizard

List of panels:
v Configure web service usage
v File generation details

Configure New Web Service Usage wizard: Configure web
service usage details
Use this panel of the Configure New Web Service Usage wizard to configure a new
Web service.

The following links provide further information in relation to the panels and fields
that form the Configure New Web Service Usage wizard.

Configure New Web Service Usage wizard

List of panels:
v Configure web service usage
v File generation details

Panel properties

Web service usage
Select from:
v Expose message flow as web service

The message flow is exposed as a web service to its clients.
v Invoke web service from message flow

The web service is invoked from the message flow.

Web service parameters
Configure the WSDL-related fields:
v Port type

Port type must be specified, and lists all the port types defined in the
WSDL document.
By default, the drop down is populated with all the port types from the
WSDL, in the order in which they appear in the WSDL file. The initially
selected port type is the first port type that has at least one http binding
associated with it.

v Binding

Binding must be specified and lists all SOAP bindings with HTTP
transport, associated with the selected port type.
Bindings related to the selected port type are populated in the order in
which they appear in the WSDL file. The initially selected binding is the

Message model reference information 817



one that has at least one port and one operation associated with it; if
there is no such binding, the first binding with at least one port is
selected.
If no binding has ports associated with it, the first binding in the list is
selected.

v Service port

Lists all WSDL ports that point to the selected binding.
v Binding operations

Lists all operations defined by the selected port type. Note, that only
those operations implemented by the selected binding are selected by
default.
For every selected operation, the subflow generation process produces
an output terminal, in the generated subflow.
If you select an operation, that is not implemented by the selected
binding, you receive a warning message; however, you can continue
with the selection.

Configure New Web Service Usage wizard: File generation
details
Configure New Web Service Usage wizard, specify file generation details

Configure New Web Service Usage wizard

List of panels:
v Configure web service usage
v File generation details

Panel properties

Flow Generation Details
Only one file is generated, namely the subflow. The subflow name is
constructed as follows:

Format of the generated subflow name

Request operation OperationName_WSDLFileName_MainFlow.msgflow

Extract operation WSDLFileName_MainFlow.msgflow

This page of the wizard lists the name of the file to be generated together
with its location.

Typically, this file represents the subflow that is about to be generated. The
default subflow name is prefixed by the name of the selected WSDL file,
however, you have the option to change the name.

If the file to be generated already exists in the workspace, a warning is
issued and the Finish button is no longer enabled.

You either have to change the name of the file, or select the Overwrite
existing file checkbox.

Node type to be used by the Web service flows
Select from:
v SOAP nodes

Select this option to use the SOAP domain and the SOAP nodes. This is
the default option.

818 Message Models



Using SOAP nodes is WSDL driven and allows you to take advantage of
various WS_* standards; for example WS_Security and WS_Addressing.
If the message set does not support the SOAP domain you receive a
warning.

v HTTP nodes

Select this option if you want to use HTTP nodes rather than SOAP
nodes.
You can select this option only if the message set supports the XMLNSC,
MRM, or XMLNS domains.
If you select HTTP nodes, you see a message explaining the advantages
of the SOAP nodes together with a suggestion that you import WSDL
files.
If you use the ImportFiles folder as your source, you can only select
HTTP node generation.

Details
This pane appears if any additional warnings about the subflow that is
generated apply. Possible warnings are as follows:
v When Service Definition is not found in the WSDL file, the URL

property is not set on the node.
v You have selected one or more operations that are not implemented by

the selected binding.
v When message domain is MRM, but XML wire format not found,

message format property is not set on the HTTPInput or Request node.

Message model reference information 819



820 Message Models



Part 3. Appendixes

© Copyright IBM Corp. 2000, 2009 821



822 Message Models



Appendix. Notices for WebSphere Message Broker

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this information
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032,
Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2000, 2009 823



IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information includes examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not

824 Message Models



been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks in the WebSphere Message Broker information center

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Adobe is a registered trademark of Adobe Systems Incorporated in the United
States, and/or other countries.

Intel, Itanium, and Pentium are trademarks of Intel Corporation in the United
States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix. Notices for WebSphere Message Broker 825

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml


826 Message Models



Index

A
ACORD AL3 messages 740
attribute group reference

CWF properties 216
logical properties 187
message models, adding to 106
TDS format properties 231
XML wire format properties 223

attribute reference
CWF properties 216
logical properties 187
message models, adding to 101
TDS format properties 231
XML wire format properties 223

attributes 21
complex type, adding 111
simple type, adding 111

attributes, changing the type of 110

C
C language

importing from C: supported
features 789

importing message definitions 129
COBOL

importing from COBOL: supported
features 791

importing message definitions 131
command line

importing message definitions
C header files 130
COBOL copybooks 132
WSDL 135
XML DTDs 137
XML Schema 140

complex type
message models, adding to 104

complex types 16
attribute, adding to an 111
content validation properties 294
CWF properties 217
element, adding to an 111
logical properties 188

combinations of composition and
content validation 295

repeats and duplicates 295
TDS format properties 232
XML wire format properties 223

compound elements
complex type CWF properties 604
complex type logical properties 603
complex type TDS format

properties 606
complex type XML wire format

properties 605
CWF properties 604
logical properties 600

value constraints 603
TDS format properties 606

compound elements (continued)
XML wire format properties 605

configuration
CWF physical properties

message model objects 116
message sets 87

documentation properties
message model objects 115
message sets 92

logical properties
message model objects 114
message sets 85

message category file properties 126
message model objects 107
message set preferences 82
physical properties

message model objects 116
message sets 86

TDS Format physical properties
message model objects 117
message sets 88

XML Wire Format physical properties
message model objects 118
message sets 89

Configure New Web Service Usage
wizard, panel properties 817

CSV messages 742
CWF 40

data conversion 42
model integrity 41
multipart messages 42
NULL handling 42
NULL handling options 733
physical format layers, adding 86
physical properties

configuring for message model
objects 116

configuring for message sets 87
relationship to the logical model 43

CWF properties
attribute group reference 216
attribute reference 216
complex types 217
compound elements 604

complex types 604
deprecated message model

objects 604
element reference 217
embedded simple types 604
global attribute 218
global attribute group 218
global elements 218
global group 218
group reference 218
key 219
keyref 219
local attribute 219
local elements 220
local group 221
message 222
message model objects 216

CWF properties (continued)
message sets 154
simple types 222
unique 222
wildcard attribute 222
wildcard elements 222

D
data conversion

CWF 42
TDS format 59

data structures, importing 127
data types

MRM message 731
dateTime formats 765

component defaults 773
CWF binary data 771
CWF encoded values 772
defaults by logical type 772
message set defaults 773
string data 765

Daylight Savings Time U.S. 2007
changes 91

deploying XML Schemas 79
deprecated message model objects

CWF properties 604
logical properties 600
physical properties 604
properties by object 607
TDS format properties 606
XML wire format properties 605

documentation properties
message model objects,

configuring 115
message sets, configuring 92

E
EDIFACT messages 737
element reference

CWF properties 217
message models, adding to 99
TDS format properties 235
XML wire format properties 223

element references
logical properties 192

elements 15
complex type, adding 111
predefined 31
self-defining 31
simple type, adding 111

elements, changing the type of 110
embedded messages 121
embedded simple types

CWF properties 604
logical properties 603
TDS format properties 607
XML wire format properties 605

© Copyright IBM Corp. 2000, 2009 827



environment variables
MQSI_USE_NEW_DST 91

Export WSDL wizard, panel
properties 815

F
facets 15
field names, IDOC parser 780
file systems, importing into

workbench 127
FIX messages 742

G
Generate WSDL wizard, panel

properties 807
Generate XML Schema wizard 143
Generate XML Schemas wizard 142
generating message model

representations 77
documentation 81
message dictionary 78
WSDL 79
XML Schema 78

global attribute
CWF properties 218
message models, adding to 100
TDS format properties 236
XML wire format properties 224

global attribute group
CWF properties 218
logical properties 196
message models, adding to 105
TDS format properties 236
XML wire format properties 225

global attribute groups 23
global attributes

logical properties 193
global elements

CWF properties 218
logical properties 197
TDS format properties 236
XML wire format properties 225

global group
CWF properties 218
logical properties 200
message models, adding to 104
TDS format properties 237
XML wire format properties 226

global groups 20
global type

message models, adding to 98
group reference

CWF properties 218
logical properties 202
message models, adding to 106
TDS format properties 240
XML wire format properties 226

H
HL7 messages 738

I
IBM supplied messages, importing

message definitions 133
IDOC domain 778
IDoc messages 743

building the message model 744
IDOC parser

building the message model 778
Import wizard 127
importing

copying and pasting 127
dragging and dropping 127
from C header files 129
from COBOL copybooks 131
from command line

C header files 130
COBOL copybooks 132
WSDL 135
XML DTDs 137
XML Schema 140

from IBM supplied messages 133
from WSDL 134
from XML DTD 136
from XML schema 138
Import wizard 127
message definitions 127
other model representations 67

from C 72
from COBOL 74
from IBM supplied messages 70
from WSDL 75
from XML DTD 70
from XML schema 67

K
key

CWF properties 219
logical properties 202
TDS format properties 241
XML wire format properties 226

keyref
CWF properties 219
logical properties 202
TDS format properties 241
XML wire format properties 226

L
local attribute

CWF properties 219
logical properties 203
message models, adding to 101
TDS format properties 241
XML wire format properties 226

local element
message models, adding to 99

local elements
CWF properties 220
logical properties 206
TDS format properties 242
XML wire format properties 227

local group
CWF properties 221
logical properties 210
message models, adding to 105

local group (continued)
TDS format properties 242
XML wire format properties 228

logical model
relationship to CWF 43
relationship to TDS format 59
relationship to XML Wire Format 64

logical properties
attribute group reference 187
attribute reference 187
complex types 188

combinations of composition and
content validation 295

content validation 294
repeats and duplicates 295

compound elements 600
complex types 603
value constraints 603

configuring
message model objects 114
message sets 85

deprecated message model
objects 600

element references 192
embedded simple types 603
global attribute group 196
global attributes 193
global elements 197
global group 200
group reference 202
key 202
keyref 202
local attribute 203
local elements 206
local group 210
message 213
message model objects 187
message sets 152
simple types 213

value constraints 214
unique 214
wildcard attribute 214
wildcard elements 215

logical tree structures 7

M
message

CWF properties 222
global complex types, adding

from 98
global elements, adding from 97
logical properties 213
message models, adding to 97
TDS format properties 246
XML wire format properties 228

message categories 32
member properties 186
properties 185

Message Category editor
adding messages to message

categories 125
message category file properties,

configuring 126
message category file properties,

viewing 126
message category files, opening 124

828 Message Models



message category files
creating 123
deleting 126
message

adding 125
deleting 126

opening 124
properties, configuring 126
properties, viewing 126
working with 123

Message Definition editor
message definition files, opening 93
message model objects, adding 96
message model objects,

configuring 107
message definition files 11

adding an import 122
adding an include 122
configuring 107
creating 94
creating by importing 127
creating from a C header file 95
creating from a COBOL file 95
creating from a WSDL file 95
creating from an existing resource 95
creating from an IBM supplied

message 95
creating from an XML DTD file 95
creating from an XML Schema file 95
creating from scratch 94
deleting 95
deleting objects 120
imports properties 184
includes properties 184
linking 122
multipart messages 121
opening 93
properties 183
redefines properties 184
working with 93
XML schema 12

extensions 13
restrictions 12

message definitions
creating 66
generating WSDL, relationship to the

message model 80
importing from C 72
importing from COBOL 74
importing from IBM supplied

messages 70
importing from other model

representations 67
importing from WSDL 75

relationship to the message
model 76

importing from XML DTD 70
importing from XML schema 67

message sets with namespaces
disabled 69

message domains 7
message flows

data types
MRM message 731

field names, IDOC parser 780
generating documentation from 141

message model object properties
attribute group reference 247
attribute reference 248
complex types 290
compound elements 607
element reference 299
embedded simple types 675
global attribute 352
global attribute group 381
global elements 382
global group 418
group reference 424
key 427
keyref 427
local attribute 428
local elements 491
local group 572
message 579
simple types 582
unique 597
wildcard attribute 597
wildcard elements 598

message model objects 13
adding 96
attribute groups 23
attributes 21
changing the type of an attribute 110
changing the type of an element 110
complex types 16
configuring 107

documentation properties 115
logical properties 114
physical properties 116

copying 109
CWF properties 216
default physical format settings,

applying 119
deleting 120
elements 15
groups 20
identification 25
lists 17
logical properties 187
messages 14
pasting 109
physical properties 216
properties by object 247
renaming 108
reordering 108
restrictions 17
simple types 17

lists 17
restrictions 17
unions 17
value constraints 23

TDS format properties 231
type inheritance 19
types 16
unions 17
value constraints, setting 112
wildcard attributes 23
wildcard elements 22
working with 96
XML wire format properties 222

message model reference
information 149

message modeling 3

message modeling (continued)
advantages of modeling messages 6
concepts 4
logical tree structures 7
message domains 7
parsers 7

message models 7
attribute group reference, adding 106
attribute reference, adding 101
complex type, adding 104
developing 3
documentation, generating 81
element reference, adding 99
global attribute group, adding 105
global attribute, adding 100
global groups, adding 104
global type, adding 98
group reference, adding 106
IDOC parser 778
local attribute, adding 101
local element, adding 99
local group, adding 105
message categories 32
message definition files 11
message dictionary, generating 78
message sets 9

identification 10
recommendations 10
resources 9
versions and keywords 10

message, adding 97
message, adding from global complex

types 98
message, adding from global

elements 97
model integrity 38
model representations, generating 77
namespaces 33

non-XML messages 36
reusing message definition

files 37
specifying in a message type 37
XML messages 35

object cardinality 30
simple type, adding 102
substitution groups 31
task list errors

applying a quick fix 93
quick fix list 782

wildcard attribute, adding 102
wildcard elements, adding 100
WSDL, generating 79
XML Schema, deploying 79
XML Schema, generating 78
XML Schema, validating 79

Message Set editor
configuring physical formats 86
documentation properties,

configuring 92
logical properties 85
message sets, opening 82

message set projects
creating 83
deleting 81
working with 81

message sets 9
adding CWF layers 86

Index 829



message sets (continued)
adding TDS Format layers 87
adding XML Wire Format layers 89
configuring

CWF properties 87
documentation properties 92
logical properties 85
physical format layers 86
preferences 82
TDS Format properties 88
XML Wire Format properties 89

creating 83
CWF properties 154
daylight savings time U.S. 2007 91
default physical format settings,

applying 90
deleting 92
documentation properties 183
generating documentation from 141
identification 10
importing

from C: supported features 789
from COBOL: supported

features 791
from WSDL: generated

objects 796
from WSDL: restrictions 796
from XML Schema: unsupported

features 799
supported and unsupported

features 789
logical properties 152
opening 82
physical format layers

adding 86
removing 91
renaming 90

preferences 149
editors 149
validation 150
XML Schema importer 151

recommendations 10
resources 9
TDS format properties 160

defaults 170
TDS mnemonics 168

versions and keywords 10
working with 82
XML wire format properties 176

In-line DTDs and the DOCTYPE
text property 182

messages 14
embedding 121
message category file

adding to 125
deleting from 126

multipart 26
identifying using Message

Identity 27
identifying using Message

Path 29
predefined 31
self-defining 31

MIME domain 774
parser restrictions 777
parser use 777
standard header fields 774

model integrity
CWF 41
TDS format 57
XML Wire Format 63

modeling messages 3
advantages of modeling messages 6
concepts 4

MQSI_USE_NEW_DST environment
variable 91

MRM domain 729
additional CWF information 732

data conversion 732
NULL handling options 733

additional logical format, MRM model
restrictions 730

additional TDS format
information 736

industry standard formats 736
message characteristics in the

MRM 745
message model integrity 755
NULL handling options 753
regular expressions to parse data

elements 759
additional XML wire format

information 733
NULL handling options 733

MRM: Generated model
representations 784

document generation 784
WSDL generation 784
XML Schema generation 786

multipart messages 26
creating 121
CWF 42
identifying using Message

Identity 27
identifying using Message Path 29
TDS format 58
XML Wire Format 64

N
namespaces 33

non-XML messages 36
reusing message definition files 37
specifying in a message type 37
XML messages 35

namespaces in the MRM domain 35
New Message Category File wizard 123
New Message Definition File From

wizard 95
New Message Definition File wizard 94

panel properties 800
New Message Set Web Service Definition

wizard 144
New Message Set wizard 83
NULL handling

CWF 42
CWF options 733
TDS format 58
TDS format options 753
XML Wire Format 63
XML wire format options 733

NULL element and
NULLValAttr 735

NULL handling (continued)
XML wire format options (continued)

NULL representation for Binary
data 735

NULL value 735

P
performance

regular expressions to parse TDS
messages 764

physical format layers 39
CWF 40

data conversion 42
model integrity 41
multipart messages 42
NULL handling 42
relationship to the logical

model 43
CWF layers

adding 86
daylight savings time U.S. 2007 91
default settings, applying 90
message model object properties,

configuring 116
message sets, adding 86
removing 91
renaming 90
TDS Format 44

data conversion 59
data element separation 47
model integrity 57
multipart messages 58
NULL handling 58
relationship to the logical

model 59
TDS Format layers

adding 87
XML Wire Format 62

model integrity 63
multipart messages 64
NULL handling 63
relationship to the logical

model 64
xsi:type attributes 65

XML Wire Format layers, adding 89
physical formats, applying default

settings to message model objects 119
physical properties

configuring
message model objects 116
message sets 86

deprecated message model
objects 604

message model objects 216
preferences

message sets 149
configuring 82
editors 149
validation 150
XML Schema importer 151

projects
message sets 8

properties
deprecated message model

objects 600
documentation, message sets 183

830 Message Models



properties (continued)
message categories 185
message category members 186
message definition file imports 184
message definition file includes 184
message definition file redefines 184
message definition files 183
message model objects 186
message sets, documentation 183

Q
quick fix, applying to task list errors 93

S
simple type

message models, adding to 102
value constraints

setting 112
simple types 17

attribute, adding to an 111
CWF properties 222
element, adding to an 111
lists 17
logical properties 213

value constraints 214
restrictions 17
TDS format properties 246
unions 17
value constraints 23
XML wire format properties 230

substitution groups 31
SWIFT messages 739

T
task list errors, applying a quick fix 93
TDS format 44

data conversion 59
data element separation 47

data pattern separation types 56
delimited separation types 52
fixed length separation types 48
tagged separation types 49

message model integrity 755
general rules 755
omission and truncation of

elements 758
restrictions for nesting complex

types 757
model integrity 57
multipart messages 58
NULL handling 58
NULL handling options 753
physical format layers, adding 87
physical properties

configuring for message model
objects 117

configuring for message sets 88
regular expressions to parse data

elements 759
multiple delimiters 763
performance considerations 764
syntax 761
variable number of repeats 764

TDS format (continued)
relationship to the logical model 59
simple data values

determining the length of 46
TDS format properties

attribute group reference 231
attribute reference 231
complex types 232
compound elements 606

complex types 606
deprecated message model

objects 606
element reference 235
embedded simple types 607
global attribute 236
global attribute group 236
global elements 236
global group 237
group reference 240
key 241
keyref 241
local attribute 241
local elements 242
local group 242
message 246
message model objects 231
message set defaults 170
message sets 160

TDS mnemonics 168
simple types 246
unique 246
white space characters 246
wildcard attribute 247
wildcard elements 247

TDS industry standard formats 736
ACORD AL3 messages 740

fixed length AL3 741
tagged encoded length to support

reversioning 742
CSV messages 742
EDIFACT messages 737
FIX messages 742
HL7 messages 738
SWIFT messages 739
TLOG messages 740
X12 messages 740

TDS message characteristics in the
MRM 745

data element separation 746
special characters to model a

message 749
mnemonics as special

characters 750
TDS mnemonics 751

TLOG messages 740
trademarks 825

U
unique

CWF properties 222
logical properties 214
TDS format properties 246
XML wire format properties 231

V
value constraints, setting 112

W
Web Service Definitions

message set, generating from 144
white space characters, TDS format

properties 246
wildcard attribute

CWF properties 222
logical properties 214
message models, adding to 102
TDS format properties 247
XML wire format properties 231

wildcard attributes 23
wildcard element

message models, adding to 100
wildcard elements 22

CWF properties 222
logical properties 215
TDS format properties 247
XML wire format properties 231

WSDL 144
importing from WSDL

generated objects 796
restrictions 796

importing message definitions 134
relationship to the message model

generating WSDL 80
importing WSDL 76

X
X12 messages 740
XML DTD, importing message

definitions 136
XML messages

validating against a schema 79
XML namespaces in the MRM

domain 33
XML rendering options 735
XML schema 12

extensions 13
importing 138
restrictions 12

XML Schema
facets 15
message definition file, generating

from 143
message editor only features 730

XML Schemas
message set, generating from 142

XML Schemas, generating 141
XML wire format

NULL handling options 733
NULL element and

NULLValAttr 735
NULL representation for Binary

data 735
NULL value 735

XML rendering options 735
XML Wire Format 62

model integrity 63
multipart messages 64
NULL handling 63

Index 831



XML Wire Format (continued)
physical format layers, adding 89
physical properties

configuring for message model
objects 118

configuring for message sets 89
relationship to the logical model 64
xsi:type attributes 65

XML wire format properties
attribute group reference 223
attribute reference 223
complex types 223
compound elements 605

complex types 605
deprecated message model

objects 605
element reference 223
embedded simple types 605
global attribute 224
global attribute group 225
global elements 225
global group 226
group reference 226
key 226
keyref 226
local attribute 226
local elements 227
local group 228
message 228
message model objects 222
message sets 176

In-line DTDs and the DOCTYPE
text property 182

simple types 230
unique 231
wildcard attribute 231
wildcard elements 231

832 Message Models





����

Printed in USA


	Contents
	About this topic collection
	Part 1. Developing message models
	Developing message models
	Message modeling
	Message modeling concepts
	Why model messages?
	Message domains and parsers
	The message model
	Physical formats in the MRM domain
	Ways to create message definitions
	Generate model representations

	Working with a message set project
	Deleting a message set project

	Working with a message set
	Configuring message set preferences
	Opening an existing message set
	Creating a message set
	Configuring logical properties: Message sets
	Working with physical formats
	Observing 2007 U.S. changes to Daylight Saving Time
	Configuring documentation properties: Message sets
	Deleting a message set
	Applying a Quick Fix to a task list error

	Working with a message definition file
	Opening an existing message definition file
	Creating a message definition file
	Deleting a message definition file

	Working with message model objects
	Adding message model objects
	Configuring message model objects
	Deleting objects

	Creating a multipart message
	Linking from one message definition file to another
	Include
	Import

	Working with a message category file
	Creating a message category file
	Opening an existing message category file
	Adding a message to a message category
	Deleting a message from a message category
	Viewing or configuring message category file properties
	Deleting a message category file

	Working with data structures
	Importing file systems into the workbench
	Importing from C
	Importing from COBOL copybooks
	Importing from IBM supplied messages
	Importing from WSDL
	Importing from XML DTD
	Importing from XML Schema

	Generating documentation from message sets and message flows
	Generating XML Schemas
	Generating XML Schemas
	Generating an XML Schema

	Generating a WSDL definition from a message set

	Part 2. Reference
	Message model reference information
	Message set preferences
	Message Set Editor and Message Definition Editor preferences
	Validation of the message model
	XML Schema Importer

	Message set properties
	Custom Wire Format message set properties
	TDS Format message set properties
	XML Wire Format message set properties
	Documentation properties for a message set

	Message definition file properties
	Message definition file includes properties
	Message definition file imports properties
	Message definition file redefines properties
	Documentation properties for all message set objects

	Message category properties
	Message category member properties

	Message model object properties
	Logical properties for message model objects
	Physical properties for message model objects
	Documentation properties for all message set objects
	Message model object properties by object

	Deprecated message model object properties
	Logical properties for deprecated message model objects
	Physical properties for deprecated message model objects
	Documentation properties for all message set objects
	Deprecated message model object properties by object

	Additional MRM domain information
	MRM restrictions
	Data types for elements in an MRM message
	Additional CWF information
	Additional XML information
	Additional TDS information
	DateTime formats

	Additional MIME domain information
	MIME standard header fields
	MIME parser use and restrictions

	Additional IDOC domain information
	Building the message model for the IDOC parser
	Field names of the IDOC parser structures

	Message model task list errors that have a quick fix
	Generated model representations
	Document generation
	WSDL generation
	XML Schema generation

	Import formats
	Importing from C: supported features
	Importing from COBOL: supported features
	Importing from WSDL: generated objects and restrictions
	Importing from XML Schema: unsupported features

	Message model wizards
	New message definition file wizards
	Generate WSDL wizard
	Export WSDL wizard
	Configure New Web Service Usage wizard


	Part 3. Appendixes
	Appendix. Notices for WebSphere Message Broker
	Trademarks in the WebSphere Message Broker information center

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	P
	Q
	S
	T
	U
	V
	W
	X


