
WebSphere Message Broker

User-defined Extensions

Version 6 Release 0

���

WebSphere Message Broker

User-defined Extensions

Version 6 Release 0

���

Note

Before using this information and the product it supports, read the information in the Notices appendix.

First Edition (September 2005)

This edition applies to IBM® WebSphere® Message Broker Version 6.0 and to all subsequent releases and

modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this topic collection v

Part 1. Developing user-defined

extensions 1

Developing user-defined extensions . . 3

User-defined extensions 4

Implementing the provided samples 33

Creating a user-defined extension in C 34

Creating a user-defined extension in Java 59

Installing a user-defined extension on a broker

domain 79

Changing a user-defined extension 80

Deleting a user-defined extension 81

Creating the user interface representation of a

user-defined node in the workbench 81

The specific type of a syntax element 86

Testing a user-defined node 87

Distributing a user-defined node 88

Using event logging from a user-defined extension 89

Part 2. Reference 93

User-defined extensions 95

Sample node files 95

Sample parser files 97

Header files 97

C user-defined node API 97

C user-defined parser API 167

C node and parser implementation functions . . . 222

C node and parser utility functions 225

C skeleton code 250

Utility function return codes and values 253

Available parsers 255

XML and MRM parser constants 257

Trace logging from a user-defined C extension . . 259

National language support considerations for

message catalogs 260

Part 3. Appendixes 263

Appendix. Notices 265

Trademarks 267

Index 269

© Copyright IBM Corp. 2000, 2005 iii

iv User-defined Extensions

About this topic collection

This PDF has been created from the WebSphere Message Broker Version 6.0 GA

(September 2005) information center topics. Always refer to the WebSphere

Message Broker online information center to access the most current information.

The information center is periodically updated on the document update site and

this PDF and others that you can download from that Web site might not contain

the most current information.

The topic content included in the PDF does not include the ″Related Links″

sections provided in the online topics. Links within the topic content itself are

included, but are active only if they link to another topic in the same PDF

collection. Links to topics outside this topic collection are also shown, but these

attempt to link to a PDF that is called after the topic identifier (for example,

ac12340_.pdf) and therefore fail. Use the online information to navigate freely

between topics.

Feedback: do not provide feedback on this PDF. Refer to the online information to

ensure that you have access to the most current information, and use the Feedback

link that appears at the end of each topic to report any errors or suggestions for

improvement. Using the Feedback link provides precise information about the

location of your comment.

The content of these topics is created for viewing online; you might find that the

formatting and presentation of some figures, tables, examples, and so on are not

optimized for the printed page. Text highlighting might also have a different

appearance.

© Copyright IBM Corp. 2000, 2005 v

ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs

vi User-defined Extensions

Part 1. Developing user-defined extensions

Developing user-defined extensions 3

User-defined extensions 4

Planning user-defined extensions 5

User-defined extensions in the runtime

environment 6

Designing user-defined extensions 8

Node and parser factory behavior 15

User-defined input nodes 16

User-defined message processing nodes 20

User-defined output nodes 28

User-defined parsers 29

Implementing the provided samples 33

Creating a user-defined extension in C 34

Creating an input node in C 34

Creating a message processing or output node in

C 41

Creating a parser in C 48

Compiling a C user-defined extension 54

Creating a user-defined extension in Java 59

Restrictions when creating Java nodes 59

Creating an input node in Java 59

Creating a message processing or output node in

Java 66

Compiling a Java user-defined node 75

Installing a user-defined extension on a broker

domain 79

Changing a user-defined extension 80

Deleting a user-defined extension 81

Creating the user interface representation of a

user-defined node in the workbench 81

Creating a new user-defined node project . . . 82

Creating a new user-defined node plug-in . . . 83

The specific type of a syntax element 86

Testing a user-defined node 87

Distributing a user-defined node 88

Using event logging from a user-defined extension 89

Building and installing a Windows event source 90

© Copyright IBM Corp. 2000, 2005 1

2 User-defined Extensions

Developing user-defined extensions

This section contains details on how to implement a user-defined node or parser to

enhance the functionality of WebSphere Message Broker.

You can write user-defined nodes in C or Java. You can write user-defined parsers

only in C. For information on designing and creating user-defined nodes and

user-defined extensions, see the following topics:

v “Designing user-defined extensions” on page 8

v “Creating a user-defined extension in C” on page 34

v “Creating a user-defined extension in Java” on page 59

The files you create and then distribute are:

On Windows systems, a dynamic link library (DLL), named with a file type of ’.lil’.

On Linux systems, a shared object, again with a file type of ’.lil’.

On UNIX systems, a shared object, again with a file type of ’.lil’.

On z/OS, a shared object, with a file type of ’.lil’.

For Java nodes, a Java Archive file (JAR), with a file type of ’.jar’.

A C user-defined extension implements a node or parser factory that can support

multiple nodes or parser types. Java users do not need to write a node factory. For

more information refer to node and parser factory behavior.

The system loads the user-defined extension when the broker initializes. This

invokes the registration functions in the user-defined extension so that the broker

understands what nodes or parsers the user-defined extension supports.

There are some restrictions and factors for consideration when developing

user-defined extensions:

v Interfacing a C user-defined node to Java and wrappering it in JNI is not

supported. This is because the broker internally initializes a JVM, which is not

available through the user-defined extension interface. The JVM initializes with

various parameters that are specific to the broker’s requirements. Because there

is only one JVM in a process, whoever initializes it first specifies these

parameters. If a user-defined node uses Java, and the broker is initialized first,

these parameters might not be suitable for the user-defined node. If the

user-defined node creates the JVM before the broker starts, the broker might not

function correctly.

v User-defined nodes can be deployed in WebSphere Event Broker. When creating

user-defined nodes for WebSphere Event Broker users, you must ensure that you

do not expose users to the ability to evaluate ESQL code. For example, nodes

that expose the input to mbSQLStatement as a node attribute would effectively

be emulating a compute node. Use of ESQL inWebSphere Event Broker is not

supported.

v Avoid using operating system specific functions. This enables the user-defined

extensions to work on a variety of platforms without requiring changes to the

source code.

© Copyright IBM Corp. 2000, 2005 3

The following table shows the topics that you must read based on the type of

user-defined extension that you want to create:

 To use one of the Java

sample nodes:

1. “Compiling a Java user-defined node” on page 75

2. “Installing a user-defined extension on a broker domain”

on page 79

3. “Creating the user interface representation of a

user-defined node in the workbench” on page 81

4. “Testing a user-defined node” on page 87

To use one of the C sample

nodes:

1. “Compiling a C user-defined extension” on page 54

2. “Installing a user-defined extension on a broker domain”

on page 79

3. “Creating the user interface representation of a

user-defined node in the workbench” on page 81

4. “Testing a user-defined node” on page 87

To use the sample parser: 1. “Compiling a C user-defined extension” on page 54

2. “Installing a user-defined extension on a broker domain”

on page 79

To create your own Java

node using the workbench:

1. “Creating an input node in Java” on page 59 or “Creating

a message processing or output node in Java” on page 66

2. “Using event logging from a user-defined extension” on

page 89

3. “Compiling a Java user-defined node” on page 75

4. “Testing a user-defined node” on page 87

5. “Distributing a user-defined node” on page 88

To create your own C node: 1. “Creating an input node in C” on page 34 or “Creating a

message processing or output node in C” on page 41

2. “Using event logging from a user-defined extension” on

page 89

3. “Compiling a C user-defined extension” on page 54

4. “Installing a user-defined extension on a broker domain”

on page 79

5. “Creating the user interface representation of a

user-defined node in the workbench” on page 81

6. “Testing a user-defined node” on page 87

7. “Distributing a user-defined node” on page 88

To create your own parser: 1. “Creating a parser in C” on page 48

2. “Using event logging from a user-defined extension” on

page 89

3. “Compiling a C user-defined extension” on page 54

4. “Installing a user-defined extension on a broker domain”

on page 79

User-defined extensions

A user-defined extension is a component that you can design and implement to

add to the function of your implementation of WebSphere Message Broker.

With WebSphere Message Broker, you can create and implement the following

types of user-defined extensions:

4 User-defined Extensions

v User-defined Input nodes

v User-defined message processing nodes

v User-defined output nodes

v User-defined parsers

User-defined nodes and parsers that you create can be used in conjunction with

both the nodes and parsers supplied with the product, and with third-party

supplied nodes and parsers. You can also configure a user-defined node to use a

user-defined parser that you have written rather than one of the supplied parsers.

A user-defined parser must be written in the C programming language.

User-defined nodes can be written in the C or Java programming language.

User-defined nodes and parsers written in C must be compiled into a loadable

implementation library, that is, a shared library on Linux and UNIX, or a Windows

DLL. User-defined nodes written in Java must be packaged as a jar file. You must

integrate any user-defined extension you create into the WebSphere Message

Broker tooling before you can use it.

If you plan to program using the supplied plug-in interface, you must install the

″Samples and SDK″ optional component on at least one system. The SDK provides

the required header files and contains samples that you can modify to your own

requirements.

You can use your new node types on more than one operating system, if you make

them platform independent. You can achieve this platform independence by using

the ANSI standard C or Java programming languages, and by avoiding the use of

platform specific code in your user-defined extension.

You can deploy user-defined nodes in WebSphere Event Broker. When creating

user-defined nodes for WebSphere Event Broker users, you must ensure that you

do not expose users to the ability to evaluate ESQL code. For example, nodes that

expose the input to mbSQLStatement as a node attribute would effectively be

emulating a compute node. Use of ESQL inWebSphere Event Broker is not

supported

For information on each type of user-defined extension that you can create, see the

relevant topics in this section of the help. The topics in this section will help you

understand how your user-defined extension interact with other components of

WebSphere Message Broker, such as message flows and their associated execution

groups. A good understanding of the broker architecture will help you to plan and

construct your user-defined extensions more effectively.

Planning user-defined extensions

Before you start to create your user-defined extension, be clear about what you

want it for. Most tasks can be performed using the functions already provided with

WebSphere Message Broker, so it might not be necessary to create a user-defined

extension for your particular task.

To write user-defined extensions you need to be a skilled programmer, with some

knowledge of WebSphere Message Broker and its architecture, so make sure you

have the skills and knowledge required. You also need the time to test and debug

your user-defined node or parser, and a safe environment in which to do this.

Developing user-defined extensions 5

Also bear in mind that the maintenance and servicing of your own user-defined

extensions is your responsibility. You should ensure that there will be someone

available who can perform future updates or fixes.

A user-defined extension might be appropriate in the following situations:

v When you cannot manipulate the supplied nodes or parsers to perform the

function you require. For example, you might want to connect to another

software component in your message flow outside of WebSphere MQ. If there is

no supplied node for doing this, you would need to create your own.

v When you can improve performance, ease of use, or reliability by using your

own user-defined extensions in place of the supplied nodes or parsers.

v If the available choices are not appropriate for your requirement. You can create

user-defined extensions to handle internal, customer-specific, or generic

commercial messages formats.

There are a number of general design and development considerations that you

should consider and understand when you are planning or writing a user-defined

node or parser, and considerations that are specific to the type of user-defined

extension you want to create. You should be familiar with the concepts covered in

the topics below before designing a user-defined extension.

v General design considerations

– “Errors and exception handling” on page 8

– “Storage management” on page 10

– “String handling” on page 11

– “Threading” on page 11
v Specific design considerations

– “Planning user-defined input nodes” on page 19

– “Planning user-defined message processing nodes” on page 24

– “Planning user-defined output nodes” on page 28

– “Planning user-defined parsers” on page 31

User-defined extensions in the runtime environment

Before you design and implement user-defined extensions, you should familiarize

yourself with the core components and ensure you understand the basic

WebSphere Message Broker runtime architecture.

You should ensure that you are familiar with the following runtime components

and concepts:

v Runtime environment

v Broker domains

v Configuration Manager

v Brokers

v Execution groups

v “Execution model” on page 7

You should also make sure you understand the following concepts:

v Message flows overview

When you have gained an understanding of the WebSphere Message Broker

runtime environment, you need to understand how any user-defined extensions

6 User-defined Extensions

that you develop will interact with the components in that environment. The

following topics will help you understand how your user-defined extension

interacts with the WebSphere Message Broker runtime components.

v “C user-defined input node life cycle” on page 16

v “Java user-defined input node life cycle” on page 18

v “C user-defined message processing nodes life cycle” on page 21

v “Java user-defined message processing nodes life cycle” on page 23

v “User-defined output node life cycle” on page 28

v “User-defined parser life cycle” on page 29

Execution model

The WebSphere Message Broker execution model is the system used to execute

message flows through a series of nodes.

When an execution group is initialized, the appropriate LILs are made available to

the runtime. The Execution Group runtime process starts, and spawns a dedicated

configuration thread. In the message flow execution environment, the message

flow is thread-safe. You can concurrently run message flows on many threads,

without having to consider serialization issues. Any user-defined nodes that you

implement should not compromise this threading model. Note the following

points:

v An input message sent to a message flow is only processed by the thread that

received it. No thread or context switching takes place during message

processing

v Data structures accessed by message flows are only visible to a single thread,

and these data structures exist only for the lifetime of the message being

processed.

v A single instance of a message flow is shared between all the threads in the

message flow thread pool. This is related to the behavior of a message flow node

in that it does not have state.

v The memory requirements of an Execution Group are not unduly affected by

running message flows on more OS threads.

v The message flow execution environment is conceptually similar to procedural

programming. Nodes that you insert into a message flow are like subroutines

called using a function call interface. However, rather than a ″call-return″

interface, in which parameters are passed in the form of input message data, in

WebSphere Message Broker the execution model is referred to as a ″propagation

and return″ model.

v A WebSphere Message Broker message flow is inherently thread-safe, and

message flows can be run concurrently on more than one thread

If, for example, you are using a user-defined node to process messages, and you

are also using a user-defined parser to parse the incoming messages, both the node

and parser will contain implementation functions. The broker calls these

implementation functions, or callbacks, when certain events occur.

When an input message is received into the broker at that input node, it is sent to

the user-defined node.

v For C nodes, the broker calls the cniEvaluate function for the user-defined node.

See “cniCreateNodeContext” on page 115 for information on the cniEvaluate

function.

v For Java nodes, the broker calls the evaluate method that is implemented by the

user-defined node.

Developing user-defined extensions 7

If the node wants to query the message to decide what to do with it, it calls a C

utility function or a Java method, as appropriate for the language in which the

node is written. The broker then invokes the user-defined parser on one of its

implementation functions. This instructs the parser to start building the WebSphere

Message Broker parse tree. The parser starts building the tree by invoking utility

functions that create elements in the parse tree. The parser can be called multiple

times by the broker, rather than just once.

Designing user-defined extensions

When you are writing user-defined extensions, there are a number of general

planning and design issues that you should bear in mind. These issues are covered

in the topics in this section.

The topics in this section deal mainly with design issues you need to consider

when developing user-defined extensions for WebSphere Message Broker in the C

programming language. If you are developing user-defined extensions using the

Java programming language, you should consider these as you would normally

when developing Java applications.

Errors and exception handling

This topic deals with issues relating to errors and exception handling that you

need to consider when developing user-defined extensions for WebSphere Message

Broker in the C programming language. If you are developing user-defined

extensions using the Java programming language, you can use standard Java error

and exception handling methods. If, for example, WebSphere Message Broker

throws an exception internally, a Java exception of class MbException is made

available.

Correct handling of errors and exceptions is important for correct broker operation.

You should be aware of and understand how and when your user-defined

extension needs to handle errors and exceptions.

The message broker generates C++ exceptions to handle error conditions. These

exceptions are caught in the relevant software layers in the broker and handled

accordingly. However, programs written in C cannot catch C++ exceptions, and

any exceptions thrown will, by default, bypass any C user-defined extension code

and be caught in a higher layer of the message broker.

Utility functions, by convention, normally use the return value to pass back

requested data, for example, the address or handle of a broker object. The return

value will sometimes indicate that a failure occurred. For example, if the address

or handle of a broker object could not be retrieved, then zero (CCI_NULL_ADDR)

is returned. Additionally, the reason for an error condition is stored in the return

code output parameter, which is, by convention, part of the function prototype of

all utility functions. If the utility function completed successfully and returnCode

was not null, returnCode will contain CCI_SUCCESS. Otherwise, it will contain one

of the return codes described below. The value of returnCode can always be tested

safely to determine whether a utility function was successful.

If the invocation of a utility function causes the broker to generate an exception,

this will be visible to the user-defined extension only if it specified a value for the

returnCode parameter to that utility function. If a null value was specified for

returnCode, and an exception occurs:

v The user-defined extension will not be aware of that exception

8 User-defined Extensions

v The utility function will not return to the user-defined extension

v Execution control will pass to higher layers in the broker stack to process the

exception

This means that a user-defined extension would be unable to perform any of its

own error recovery. If, however, the returnCode parameter is specified, and an

exception occurs, a return code of CCI_EXCEPTION is returned. In this case,

cciGetLastExceptionData or cciGetLastExceptionDataW (the difference being that

cciGetLastExceptionDataW returns a CCI_EXCEPTION_WIDE_ST which can

contain Unicode trace text) can be used to obtain diagnostic information on the

type of exception that occurred. The data is returned in the CCI_EXCEPTION_ST

or CCI_EXCEPTION_WIDE_ST structure.

If there are no resources to be released, you are recommended to avoid setting the

returnCode argument in your user-defined extension. Not setting this argument

will allow exceptions to bypass your user-defined extensions. These exceptions can

then be handled higher up the WebSphere Message Broker stack, by the broker.

Message inserts can be returned in the CCI_STRING_ST members of the

CCI_EXCEPTION_ST structure. The CCI_STRING_ST allows the user-defined

extension to provide a buffer to receive any required inserts. The broker will copy

the data into this buffer and will return the number of bytes output and the actual

length of the data. If the buffer is not large enough, no data is copied and the

″dataLength″ member can be used to increase the size of the buffer, if needed.

The user-defined extension can perform any error recovery, if required. If

CCI_EXCEPTION is returned, all exceptions must be passed back to the message

broker for additional error recovery to be performed. This is done by invoking

cciRethrowLastException, which causes the C interface to re-throw the last

exception so that it can be handled by other layers in the message broker.

If an exception occurs and is caught by a user-defined extension, the extension

must not call any utility functions except cciGetLastExceptionData,

cciGetLastExceptionDataW or cciRethrowLastException. An attempt to call other

utility functions will result in unpredictable behavior which might compromise the

integrity of the broker.

If a user-defined extension encounters a serious error, cciThrowException or

cciThrowExceptionWcan be used to generate an exception that is processed by the

message broker in the correct manner. The generation of such an exception causes

the supplied information to be written to the system log (syslog or Eventviewer) if

the exception is not handled. The information is also written to Broker trace if trace

is active.

Types of exception and broker behavior: The broker generates a set of exceptions

that can be advised to a user-defined extension. These exceptions can also be

generated by a user-defined extension when an error condition is encountered. The

exception classes are:

Fatal Fatal exceptions are generated when a condition occurs that prevents the

broker process from continuing execution safely, or where it is broker

policy to terminate the process. Examples of fatal exceptions are a failure

to acquire a critical system resource, or an internally caught severe

software error. The broker process terminates following the throwing of a

fatal exception.

Developing user-defined extensions 9

Recoverable

These are generated for errors which, although not terminal in nature,

mean that the processing of the current message flow has to be ended.

Examples of recoverable exceptions are invalid data in the content of a

message, or a failure to write a message to an output node. When a

recoverable exception is thrown, the processing of the current message is

aborted on that thread, but the thread recommences execution at its input

node.

Configuration

Configuration exceptions are generated when a configuration request fails.

This can be because of an error in the format of the configuration request,

or an error in the data. When a configuration exception is thrown, the

request is rejected and an error response message is returned.

Parser These are generated by message parsers for errors which prevent the

parsing of the message content or creating a bit stream. A parser exception

is treated as a recoverable exception by the broker.

Conversion

These are generated by the broker character conversion functions if invalid

data is found when trying to convert to another data type. A conversion

exception is treated as a recoverable exception by the broker.

User These are generated when a Throw node throws a user-defined exception.

Database

These are generated when a database management system reports an error

during broker operation. A database exception is treated as a recoverable

exception by the broker.

Storage management

This topic deals with issues relating to storage management that you need to

consider when developing user-defined extensions for WebSphere Message Broker

in the C programming language. If you are developing user-defined extensions

using the Java programming language, you can use standard Java storage

management methods.

All memory allocated by a user-defined extension must be released by the

user-defined extension. The construction of a node at run-time causes

cniCreateNodeContext to be invoked, which allows the user-defined extension to

allocate node instance specific data areas to store a context. The address of the

context is returned to the message broker, and is passed back from the broker

when an internal method causes a user-defined extension function to be invoked;

thus, the C user-defined extension can locate and use the correct context for the

function processing.

The message broker will pass addresses of C++ objects to the user-defined

extension. These are simply intended to be used as a handle to be passed back on

subsequent function calls. You should not allow your C user-defined extension to

try to manipulate or use this pointer in any way, by trying to release storage using

the free function, for example. Such actions will cause unpredictable behavior in

the message broker.

The cniCreateNodeContext implementation function is invoked whenever the

underlying node object has been constructed internally. This occurs when a broker

is defined with a message flow that uses a user-defined node. It is important to

note that this is not necessarily the same activity as creating (or reusing) a thread

to execute a message flow instance containing the node. In fact, the

10 User-defined Extensions

cniCreateNodeContext function will be called only once, during the configuration

of the message flow, regardless of how many threads are executing the message

flow.

Similar considerations apply to user-defined parsers, and the corresponding

implementation function cpiCreateContext.

String handling

This topic deals with issues relating to string handling that you need to consider

when developing user-defined extensions for WebSphere Message Broker in the C

programming language.

If you are developing user-defined extensions using the Java programming

language, you can use standard Java string handling methods.

To enable a WebSphere Message Broker broker to handle messages in all languages

at the same time, text processing within the broker is done in UCS-2 Unicode.

UCS-2 Unicode character strings are also used across the plug-in interfaces to pass

and return character data. Attributes are received in XML configuration messages

as character strings, regardless of data type. If the true data type of an attribute is

not a string, the cniSetAttribute function must perform the necessary verification

and conversion before storing the attribute value. Similarly, when an attribute

value is retrieved using cniGetAttribute2, conversion must be performed to a

UCS-2 Unicode character string before returning the result.

CciChar defines a 16-bit character with UCS-2 Unicode representation. A CciChar*

is a string of such characters terminated with a CciChar of 0. By default, a CciChar

is represented by type wchar_t. However, some platforms do not have a convenient

way of representing UCS-2 constants in source code, typically because of 4-byte

wchar_t or EBCDIC representation. For example, a source-code constant such as

L″ABC″ expands to 12 bytes on Solaris.

For this reason, WebSphere Message Broker provides the utility functions

cciMbsToUcs and cciUcsToMbs. Use these functions, where appropriate, to ensure

portability of your user-defined nodes.

Threading

Message processing nodes and parsers must work in a multi-instance,

multithreaded environment. There can be many node objects or parser objects each

with many syntax elements, and there can be many threads executing methods on

these objects. The message broker design ensures that a message object and any

objects it owns are used only by the thread that receives and processes the message

through the message flow.

An instance of a message flow processing node is shared and used by all the

threads that service the message flow in which the node is defined. For parsers, an

instance of a parser is used only by a single message flow thread.

A user-defined extension should adhere to this model, and should avoid the use of

global data or resources that require semaphores to serialize access across threads.

Such serialization can result in performance bottlenecks.

User-defined extension implementation functions must be reentrant, and any

functions they invoke must also be reentrant. All user-defined extension utility

functions are fully reentrant.

Developing user-defined extensions 11

Although a user-defined extension can spawn additional threads if required, it is

essential that the same thread returns control to the broker on completion of an

implementation function. Failure to do this will compromise the integrity of the

broker and will produce unpredictable results.

Execution model: When an execution group is initialized, the appropriate lils are

made available to the runtime. The Execution Group runtime process starts, and

spawns a dedicated configuration thread. In the message flow execution

environment, the message flow is thread-safe. You can concurrently run message

flows on many OS threads, without having to consider serialization issues. Any

user-defined nodes that you implement should not compromise this threading

model. Note the following points:

v An input message sent to a message flow is only processed by the thread that

received it. No thread or context switching takes place during message

processing

v Data structures accessed by message flows are only visible to a single thread,

and these data structures exist only for the lifetime of the message being

processed.

v A single instance of a message flow is shared between all the threads in the

message flow thread pool. This is related to the behavior of a message flow node

in that it does not have state.

v The memory requirements of an Execution Group are not unduly affected by

running message flows on more OS threads.

Threading model: The following message flow example will help you understand

some of the threading considerations you should be aware of when designing and

implementing your own user-defined nodes. It considers the example of a

user-defined input node.

A message flow can be configured to run on a set of threads. This is determined by

the number of input nodes in the message flow, and the value of the

additionalInstances property of the message flow. These two elements determine

the maximum capacity of the thread pool the message flow can use. Therefore, if

your message flow has particular processing requirements that dictate single

threaded execution, you need to ensure that this is the case.

A typical order of events for input node processing looks like this:

 1. Input node construction takes place

 2. A thread is demanded from the thread pool

 3. The allocated thread starts in the node’s run method

 4. Configuration (or reconfiguration) is committed

 5. Initialization processing is performed on the thread’s context

 6. The thread connects to the broker’s queue manager

 7. A message group and buffer object are created

 8. A queue open request for the input queue is sent to the queue manager. This

queue is kept open for the duration of the thread’s lifetime.

 9. The input node enters a message processing loop

10. When a message is received, the data buffer contains the header and body of

the message

11. Message objects are created and attached to the thread’s group

12. Thread dispatching is activated if multiple threads are specified

13. Message data is propagated downstream.

12 User-defined Extensions

You should note the following:

v Your input node will implement the chosen message flow threading model.

v Your input node will always have at least one thread either reading from its

input source or actively processing a message received by it. If a message flow

has multiple input nodes, then any additional thread instances are available to

service any of the input nodes, as determined by the dispatching policy of that

input node.

Threads can be demanded or requested. When your message flow is deployed, the

input node demands an initial thread. Although the message flow has a pool of

threads associated with it, it is the input node that is responsible for the

dispatching policy. This means that it always needs to ensure that one instance of

itself is running on a thread. Because the default value of the additionalInstances

property is zero, any further requests for a thread will fail if you have defined

multiple input nodes. This means that it is possible for a message flow to consume

more threads that you expect. Also, this could mean that if you have defined

multiple input nodes, one of the input nodes could be starved of threads.

Allowing the broker to start additional copies of the message flow in separate

threads using the additionalInstances property is the most efficient way of

preventing the input queue from becoming a bottleneck. However, creating

separate threads allows parallel processing of messages from the message queue,

so you should only use this property when the order messages are processed is not

important.

Threads are created as a result of input node construction and operation. A thread

remains active or idle in the thread pool, and idle threads remain in the pool until

they are dispatched by an input node, or the broker is shut down.

The figure below illustrates thread allocation in a message flow.

Developing user-defined extensions 13

Initially, Thread 1 is demanded (A), and waits for messages. When a message

arrives (B), Thread 1 propagates the message, and dispatches Thread 2. Thread 2

receives a message immediately (C), and propagates, and dispatches Thread 3,

which waits for a message (D). Thread 1 completes (E), and returns to the thread

pool. Thread 3 then receives a message (F), dispatches Thread 1, and propagates

the message. Thread 1 now waits for a message to arrive on the queue (G).

It is worth noting the point marked H. At this instance in the message flow,

Thread 1 acquires a message, but because all other threads are active at that time,

it cannot dispatch. The message is propagated.

After this message has been propagated, Thread 2 completes (I), receives a new

message from the queue, and propagates this new message. Thread 3 then

completes (J), and returns to the pool. Thread 2 then also completes (K). Because it

did not dispatch, when Thread 1 completes (L), it cannot return to the thread pool

even though there are no messages on the queue, and instead waits for a message

to arrive on the queue.

Note the following points about thread behavior in WebSphere Message Broker:

v Threads are only created if required by the workload. This means that an

execution group process can use fewer threads than it has been configured for.

v Unless all available threads are actively processing within a message flow, one

thread will always be reading the input queue.

v If the workload increases at any point, other input nodes in the same message

flow will be able to acquire threads that have been returned to the thread pool.

Thread allocation in a message flow

Thread 1 Thread 2 Thread 3

A

B C

E

G

H

L

M

D

F

J

K

I

T
im

e

Propagation

T
im

e

Propagation

T
im

e

Propagation

14 User-defined Extensions

If a thread acquires a message, but all other threads are active at the time, it cannot

dispatch. The message is propagated. When this thread completes, because it did

not dispatch, it cannot return to the thread pool even though there are no

messages on the queue.

ODBC restrictions

The ODBC environment cannot be accessed using the plug-in node interface.

Database access must be performed using the supplied processing nodes, or by

using the following implementation functions supplied for that purpose:

v cniSqlCreateStatement

v cniSqlExecute

v cniSqlSelect

v cniSqlDeleteStatement

Java Database Connectivity

Type 4 JDBC drivers are supported.

Node and parser factory behavior

This topic provides information on the role of the node factory and parser factory

for declaring a node to the broker or defining a parser.

Each LIL has one node factory, or one parser factory, or has both. A node factory

can identify many nodes, and a parser factory can identify many parsers.

When the broker loads the LIL, the following functions are called:

v bipGetMessageflowNodeFactory

The initialization function, bipGetMessageflowNodeFactory, is called by the

broker after the LIL has been loaded and initialized by the operating system.

The bipGetMessageflowNodeFactory function calls the utility function

cniCreateNodeFactory, which passes back a factory name (or group name) for all

the nodes that your LIL supports.

v bipgetparserfactory

The initialization function, bipgetparserfactory, is called by the broker after the

LIL has been loaded and initialized by the operating system. The

bipgetparserfactory function defines the name of the factory that the

user-defined parser supports and the classes of objects, or shared object,

supported by the factory. bipgetparserfactory calls the utility function

cpiCreateParserFactory, which passes back a factory name (or group name) for

all the parsers that your LIL supports.

Before the node factory or parser factory is returned, the following functions are

called

1. cniCreateNodeFactory

This function creates a single instance of the node factory in the message

broker.

2. cndDefineNodeClass

This function defines the name of a node class that is supported by a node

factory, and identifies the nodes that the node factory can create.
1. cpiCreateParserFactory

This function creates a single instance of the named parser factory in the

message broker.

Developing user-defined extensions 15

2. cpiDefineParserClass

This function defines the name of a parser class that is supported by a parser

factory, and identifies the parsers that the factory can create.

See the following topics for information on these functions:

v “cniCreateNodeFactory” on page 116

v “cpiCreateParserFactory” on page 180

v “cniDefineNodeClass” on page 118

v “cpiDefineParserClass” on page 181

User-defined input nodes

A user-defined input node is an extension to the broker that provides a new input

node in addition to those supplied with the product. You create user-defined input

nodes using either the C or Java programming language, to provide message input

to a message flow from a message queue when you want your broker to accept

messages from a transport protocol other than WebSphere MQ.

You can use a user-defined input node to receive data from an external data source

and to allow that data to be processed within a message broker. In this way, you

can complement the primitive input node types provided by WebSphere Message

Broker

You cannot use a user-defined input node to provide the in terminal to a message

subflow. If you want to provide the in terminal to a subflow, you must use the

supplied Input node.

Before writing a user-defined node, you should make sure you are familiar with

the concepts introduced in “Planning user-defined extensions” on page 5 and

“User-defined extensions in the runtime environment” on page 6.

C user-defined input node life cycle

This topic guides you through the various stages in the life of a user-defined input

node written using the C programming language. It covers the following stages in

an input node’s life cycle:

v Registration

v Instantiation

v Processing

v Destruction

Registration: During the registration phase, the broker discovers which resources

are available and which LILs can provide them. In this instance, the resources

available are nodes. The phase starts when an execution group starts. The LILs are

loaded on the startup of an execution group, and the broker queries them to find

out what resources they can provide.

A CciFactory structure is created during the registration phase, when the

user-defined node calls cniCreateNodeFactory.

The following APIs are called by the broker during this stage:

v biGetMessageflowNodeFactory

v bipGetParserFactory

The following API is called by the user-defined node during this stage:

16 User-defined Extensions

v cniCreateNodeFactory

Instantiation: An instance of a user-defined Input node is created when the

mqsistart command starts or restarts the execution group process, or when a

message flow that is associated with the node is deployed.

The following APIs are called during this phase:

v cniCreateNodeContext. This API allocates memory for the instantiation of the

user-defined node to hold the values for configured attributes. This API is called

once for each message flow that is using the user-defined Input node.

v cniCreateInputTerminal. This API is invoked within the cniCreateNodeContext

API, and is used to tell the broker what input terminals, if any, your

user-defined input node has.

Note: Your user-defined input node will only have input terminals if it is also

acting as a message processing node. If this is the case, it is usually better

to use a separate user-defined message processing node to perform the

message processing, rather than combine both operations in one, more

complex, node.

v cniCreateOutputTerminal. This API is invoked within the cniCreateNodeContext

API, and is used to tell the broker what output terminals your user-defined

input node has.

v cniSetAttribute. This API is called by the broker to establish the values for the

configured attributes of the user-defined node.

During this phase, a CciTerminal structure is created. This structure is created

when cniCreateTerminal is called.

Processing: The processing phase begins when the cniRun function is called by

the broker. The broker uses the cniRun function to determine how to process a

message, including determining the domain in which a message is defined, and

invoking the relevant parser for that domain.

A thread is demanded from the message flow’s thread pool, and is started in the

run method of the input node. The thread connects to the broker’s queue manager,

and retains this connection for its lifetime. When a thread has been allocated, the

node enters a message processing loop while it waits to receive a message. It will

remain in the loop until a message is received. If the message flow is configured to

use multiple threads, thread dispatching is activated.

The message data can now be propagated downstream.

The following APIs are called by the broker during this phase:

v cniRun. This function is called by the broker to determine how to process the

input message.

v cniSetInputBuffer. This function provides an input buffer, or tells the broker

where the input buffer is, and associates it with a message object.

Destruction: A user-defined input node is destroyed when the message flow is

redeployed, or when mqsistop is used to stop the execution group process. You can

destroy the node by implementing the cniDeleteNodeContext function.

When a user-defined input node is destroyed in one of these ways, you should free

any memory used by the node, and release any held resources, such as sockets.

Developing user-defined extensions 17

The following APIs are called by the broker during this phase:

v cniDeleteNodeContext. This function is called by the broker to destroy the

instance of the input node.

Java user-defined input node life cycle

This topic guides you through the various stages in the life of a user-defined input

node written using the Java programming language. It covers the following stages

in an input node’s life cycle:

v Registration

v Instantiation

v Processing

v Destruction

Registration: During the registration phase a user-defined input node written in

Java makes itself known to the broker. The node is registered with the broker

through the static getNodeName method. Whenever a broker starts, it loads all the

relevant Java classes. The static method getNodeName is called at this point, and

the broker registers the input node with the node name specified in the

getNodeName method. If you do not specify a node name, the broker

automatically creates a name for the node based on the package in which it is

contained.

Using a static method here means that the method can be called by the broker

before the node itself is instantiated.

Instantiation: A Java User-defined input node is instantiated when a broker

deploys a message flow containing the user-defined input node. When the node is

instantiated, the constructor of the input node’s class is called.

When a node is instantiated, any terminals that you have specified are created. A

message processing node can have any number of input and output terminals

associated with it. You must include the createInputTerminal and

createOutputTerminal methods in your node constructor in order to declare these

terminals.

If you want to handle exceptions that are passed back to your input node, you

should use createOutputTerminal to create a catch terminal for your input node.

When the input node catches an error, the catch terminal will process it in the

same way that a regular MQInput node would. You can allow most exceptions,

such as exceptions caused by deployment problems, to pass back to the broker,

and the broker will warn the user of any possible configuration errors.

As a minimum, your constructor class needs only to create these output terminals

on your input node. However, if you need to initialize attribute values, such as

defining the parser that will initially parse a message passed from the input node,

you should also include that code at this point in your input node.

Processing: Message processing for an input node begins when the broker calls

the run method. The run method creates the input message, and should contain

the processing function for the input node.

The run method is defined in MbInputNodeInterface, which is the interface used

in a user-defined input node that defines it as an input node. You must include a

run method in your node. If you do not include a run method in your user-defined

input node, then the node source code will not compile.

18 User-defined Extensions

When a message flow containing a user-defined input node is deployed

successfully, the broker calls the node’s run implementation method, and continues

to call this method while it waits for messages to process.

When a message flow starts, a single thread is dispatched by the broker, and is

called into the input node’s run method. If the dispatchThread() method is called,

further threads can also be created in the same run method. These new threads

immediately call into the input node’s run method, and can be treated the same as

the original thread. The number of new threads that can be created is defined by

the additionalInstances property. The recommended model is to make sure that

threads are dispatched after a message has been created and before it is

propagated. This ensures that only one thread at a time is waiting for a new

message.

The user-defined input node can choose a different threading model and is

responsible for implementing the chosen model. If the input node supports the

additionalInstances property, and dispatchThread() is called, then the code must be

fully re-entrant, and any functions that are invoked by the node should also be

re-entrant. If the input node forces single threading, that is, it does not call

dispatchThread(), then it should be made clear to the user of that node that setting

the additionalInstances property will have no effect on the input node.

For more information on the threading model for User-defined Input nodes, see

“Threading” on page 11.

Destruction: A Java user-defined input node is destroyed when the node is

deleted or the broker is shut down. You do not need to include anything in your

code that specifies the node should be physically deleted, because this can be

handled by the garbage collector.

However, if you want notification that a node is about to be deleted, you can use

the onDelete method. You might want to do this if there are resources that you

want to delete, other than those that will be garbage collected. For example, if you

have opened a socket, this will not be properly closed when the node is

automatically deleted. You can include this instruction in your onDelete method to

ensure that the socket is closed properly.

Planning user-defined input nodes

This topic outlines the planning and design considerations you should think about

before developing a user-defined input node.

Analysis: Before developing a user-defined Input node, you should consider the

following:

v Do you need to create a custom input node?

You must include at least one input node in a message flow. (For more

information about using more than one input node, see Using more than one

input node. The one you choose depends on the source of the input messages:

– If the messages arrive at the broker on a WebSphere MQ queue, use the

supplied MQInput node.

– If the messages are sent by SCADA devices, use the SCADAInput node.

– If the message source is any other, you must use a user-defined input node.
v To successfully input the data concerned, will the input node have to interface

with third-party software? If so does the API enabling access to this software

break your threading model?

Developing user-defined extensions 19

v Do you need a new user-defined parser to interpret the body (payload) of the

message generated by this input node or can it be parsed by a standard built in

parser?

v Do you need the user-defined input node to operate the message flow instance

in which it resides under transactional control as a globally co-ordinated

transaction?

v Do you need the new user-defined input node to offer configuration options?

v Do you need messages propagated by this input node to be processed by the

following primitives?

– All primitive output nodes

– reset content descriptor nodes

Design considerations: Before developing and implementing your input node,

you should decide on the following factors:

v The message parser that initially parses the input message.

v Whether to override the default message parser attribute values for this input

node.

v The appropriate threading model for the input node.

v End of message processing and transaction support that the node supports.

v The configuration attributes required by the input node that should be

externalized for alteration by the message flow designer.

v Optional node APIs the user-defined node provides.

v General development issues:

– “Threading” on page 11

– “Storage management” on page 10

– “String handling” on page 11

– “Errors and exception handling” on page 8

– expected message formats for primitive nodes that expect specific header

folders.
v When designing nodes to be run as extensions to WebSphere Event Broker, the

following restrictions must be considered:

– User-defined input nodes can only support XML, BLOB and the MQ parsers.

The MRM is not shipped with WebSphere Event Broker and there is no

support for plug-in parsers.

– User-defined nodes should not expose to users the ability to evaluate user

ESQL code. For example, nodes that expose the input to MbSQLStatement as

a node attribute are effectively emulating a compute node. Use of ESQL in

WebSphere Event Broker is not supported.

User-defined message processing nodes

A user-defined message processing node is a node you can create to complement

the primitive node types provided by WebSphere Message Broker. You can use a

user-defined message processing node to provide some specific processing on

receipt of a message that is not provided for by the primitive node types provided

by WebSphere Message Broker.

You might want to use a user-defined message processing node in the following

situations:

v If your messages need additional transformation not provided by the primitive

nodes. For example, you might need a currency converter node.

20 User-defined Extensions

v If you want to write messages into a flat file on the local system for later

processing by another application or utility program.

You can use your new node types with existing primitive node types to create

message flows to achieve the processing your messages require.

C user-defined message processing nodes life cycle

This topic guides you through the various stages in the life of a user-defined

message processing node for the C programming language. It covers the objects

that are created and destroyed, and the implementation functions and classes that

are called in the following stages:

v Registration

v Instantiation

v Processing

v Destruction

The information in this topic applies to both output nodes and message processing

nodes. Both of these node types can be considered together, because although a

message processing node is typically used to process a message, and an output

node is used to provide an output in the form of a bitstream, you can use either

type of node to perform either of these functions.

Registration: A user-defined message processing node is registered with the

broker when the LIL that contains the node has been loaded and initialized by the

operating system.

The broker calls bipGetMessageflowNodeFactory to establish the function of the

LIL, and how the LIL should be called.

The bipGetMessageflowNodeFactory function in turn calls the

cniCreateNodeFactory function, which returns a factory or group name for all of

the nodes that are supported by your LIL.

The LIL should then call the utility function cniDefineNodeClass to pass both the

name of each node and a virtual function table of the function pointers of the

implementation functions.

Instantiation: During the instantiation phase, an instance of a user-defined

message processing node is created. The phase starts when the broker creates a

message flow and calls the cniCreateNodeContext function for each instantiation of

the user-defined node in that message flow. The cniCreateNodeContext function is

that which is specified in the iFpCreateNodeContext field of the CNI_VFT struct

passed to cniDefineNodeClass for that node type. This function should allocate the

resources required for that node, including memory such that the instantiation of

the user-defined node can hold the values for the configured attributes.

The broker will create a node instance and call cniCreateNodeContext on the

following occasions:

v Message flow is created:

– Broker is being started (user has run mqsistart). Any message flows

previously deployed are recreated when the broker starts.

– Execution group is being reloaded (user has run mqsireload). Any message

flows that have been deployed previously are recreated when the execution

group reloads.

Developing user-defined extensions 21

– A severe error has occurred within the execution group which results in the

execution group being restarted.
v Message flow is redeployed. When a message flow is changed and redeployed,

the broker processes redeploy by deleting all nodes in the flow and then

recreating them with the new configuration.

Note: A message flow is not created when starting an execution group. Stopping

an execution group simply stops all flows and does not delete the flow or

bring the process down. Restarting an execution group, starts the message

flows but does not recreate the message flows.

Within cniCreateContext, the user-defined extension calls the two functions

cniCreateInputTerminal and cniCreateOutputTerminal in order to establish what

input and output terminals the message processing node has.

Processing: During the processing phase of the life cycle of a user-defined

message processing node, the message is transformed in some way, when some

processing operation takes place on the input message.

When the broker retrieves a message from the queue and that message arrives at

the input terminal of your user-defined node, the broker calls the implementation

function cniEvaluate. This function is used to decide what to do with the message.

You can use a range of node utility functions in your user-defined message

processing node to perform a range of message processing functions, such as

accessing the message data, accessing ESQL, transforming a message object, and

propagating a message. You should include the node utility functions you are

going to use to process the message within the cniEvaluate function.

This interface does not automatically generate a properties subtree for a message. It

is not a requirement for a message to have a properties subtree, although you

might find it useful to create one to provide a consistent message tree structure

regardless of input node. If you want a properties subtree to be created in a

message, and you are also using a user-defined input node, you must do this

yourself

Destruction: When a user-defined message processing node has processed a

message, you should ensure that it is destroyed, to release any system resources

that it used, and to release any data areas specific to the node instance, such as

context, that were acquired when the message was constructed or processed.

An instance of a user-defined message processing node is destroyed when the

broker calls the cniDeleteNodeContext function.

The broker calls cniDeleteNodeContext when the instance of the node is deleted.

The following events can cause a node to be deleted:

v Controlled termination of the execution group process:

– Broker is being stopped (user has run mqsistop)

– Execution group is being reloaded (user has run mqsireload)

– A severe error has occurred within the execution group, which results in the

execution group being restarted.

Note: This does NOT include stopping an execution group. Stopping an

execution group simply stops all flows, and does not delete the flow or

bring the process down.

22 User-defined Extensions

v Message flow is deleted. For example, a message flow is deleted from the

tooling’s Broker Administration perspective.

v Message flow is redeployed. When a message flow is changed and redeployed,

the broker processes redeploy by deleting all nodes in the flow and then

recreating them with the new configuration.

Java user-defined message processing nodes life cycle

This topic guides you through the various stages in the life of a user-defined

message processing node for the Java programming language. It covers the objects

that are created and destroyed, and the methods and classes that are called in the

following stages:

v Registration

v Instantiation

v Processing

v Destruction

The information in this topic applies to both output nodes and message processing

nodes. Both of these node types can be considered together, because although a

message processing node is typically used to process a message, and an output

node is used to provide an output, in the form of a bitstream, from a message, you

can use either type of node to perform either of these functions.

Registration: The registration phase occurs when a user-defined message

processing node that is written in Java makes itself known to the broker, or

registers with the broker.

Whenever a broker starts, it loads all relevant LILs and Java classes. To ensure that

a message processing node is registered with the broker, you must provide the

broker with a class that implements the MbNodeInterface interface and is

contained in the broker’s classpath.

Instantiation: A Java user-defined message processing node is instantiated when

a broker deploys a message flow that contains the user-defined message processing

node. When the node is instantiated, the constructor of the message processing

node’s class is called.

When a node is instantiated, any terminals that you have specified are created. A

message processing node can have any number of input and output terminals

associated with it. You must include the createInputTerminal and

createOutputTerminal methods in your node constructor in order to declare these

terminals.

Output terminals include out, failure, and catch terminals. Use the

createOutputTerminal class within the node class constructor in order to create as

many output terminals as you require.

As a minimum, you need only to create these output terminals by using your

constructor class. However, if you need to initialize attribute values, you should

also include that code at this point in your message processing node.

If you want to handle exceptions that are passed back to your message processing

node, it is good practice to do this by creating a failure terminal for your

user-defined message processing node, by using the createOutputTerminal method.

It is sensible to use the failure terminal for this process because that is to where

WebSphere Message Broker errors are propagated.

Developing user-defined extensions 23

Make sure that any exceptions that are caught by the message processing node are

dealt with properly. If you do not include a failure terminal, the message

processing node will not attempt to handle the exception. If your message flow

does not contain any method of exception handling, any exceptions thrown are

passed back to the input node, where the input node deals with the exceptions.

If you do catch exceptions, make sure that you re-throw any exceptions that the

message processing node cannot deal with. This will cause the exception to be

passed back to the input node for handling, for example, when you want to

rollback a transaction.

Processing: During the processing phase of the life cycle of a user-defined

message processing node, the message processing node takes the logical hierarchy

of the message and processes it in some way.

Destruction: A Java user-defined message processing node is destroyed when the

node is deleted or the broker is shut down. You do not need to include anything in

your code to specify that the node should be physically deleted because this can be

handled by the garbage collector.

However, if you want notification that a node is about to be deleted, you can use

the onDelete method. You might want to do this if there are resources that you

want to delete, other than those that will be garbage collected. For example, if you

have opened a socket, this will not be properly closed when the node is

automatically deleted. You can include this instruction in your onDelete method to

ensure that the socket is closed properly.

Planning user-defined message processing nodes

This topic provides guidance for writing your message processing node to ensure

that it functions correctly. It explains how you can use your message processing

node to navigate a message.

Design considerations: Before developing and implementing your message

processing node, you should decide on the following:

v The message parser that will parse the message

v Whether to override the default message parser attribute values for this message

processing node.

v The appropriate threading model for the message processing node

v End of message processing and transaction support that the node will support

v The configuration attributes required by the message processing node that

should be externalised for alteration by the message flow designer.

v Optional node APIs the user-defined node will provide

v General development issues:

– “Threading” on page 11

– “Storage management” on page 10

– “String handling” on page 11

– “Errors and exception handling” on page 8

– expected message formats for primitive nodes that expect specific header

folders.

24 User-defined Extensions

Syntax element navigation: The broker infrastructure provides functions that

enable a message processing node implementation to traverse the tree

representation of the message, with functions and methods to allow navigation

from the current element to its:

v Parent

v First child

v Last child

v Previous (or left) sibling

v Next (or right) sibling

As shown in the figure below. Other functions and methods support the

manipulation of the elements themselves, with functions and methods to create

elements, to set or query their values, to insert new elements into the tree and to

remove elements from the tree. See “C node utility functions” on page 99 and “C

parser utility functions” on page 169, or the Javadoc for more information.

The next figure describes a simple syntax element tree that shows a full range of

interconnections between the elements.

A syntax element with connections to other elements

Developing user-defined extensions 25

The element A is the root element of the tree. It has no parent because it is the root.

It has a first child of element B. Because A has no other children, element B is also

the last child of A.

Element B has three children: elements C, D, and E. Element C is the first child of

B; element E is the last child of B.

Element C has two siblings: elements D and E. The next sibling of element C is

element D. The next sibling of element D is element E. The previous sibling of

element E is element D. The previous sibling of element D is element C.

The figure below shows the first generation of syntax elements of a typical

message received by WebSphere Message Broker. (Note that not all messages will

have an MQRFH2 header.)

These elements at the first generation are often referred to as ″folders″, in which

syntax elements that represent message headers and message content data are

stored. In this example, the first child of root is the Properties folder. The next

sibling of Properties is the folder for the MQMD of the incoming WebSphere MQ

Syntax element tree

First generation of syntax elements in a typical message

26 User-defined Extensions

messages. The next sibling is the folder for the MQRFH2 header. Finally, there is

the folder that represents the message content, which (in this example) is an XML

message.

The figure above includes an MQMD and an MQRFH2 header. All messages

received by an MQmessage processing node include an MQMD header, there are a

number of other headers than can also be included.

Navigating an XML message: Suppose we have the following XML message:

 <Business>

 <Product type=’messaging’></Product>

 <Company>

 <Title>IBM</Title>

 <Location>Hursley</Location>

 <Department>WebSphere MQ</Department>

 </Company>

 </Business>

In this example, the elements are of the following types:

Name element

Business, Product, Company, Title, Location, Department

Value element

IBM, Hursley, WebSphere MQ

Name-value element

type=’messaging’

You can use node utility functions and methods (or the similar parser utility

functions) to navigate through a message. Taking the XML message shown above,

you need to call cniRootElement first, with the message received by the node as

input to this function. In Java you need to call getRootElement on the incoming

MbMessage. This returns an MbElement that represents the root of the element.

The root element should not be modified by a plug-in node.

The figure above shows that the last child of the root element is the folder

containing the XML parse tree. You can navigate to this folder by calling

cniLastChild (with the output of the previous call as input to this function) in a C

node, or by calling the method getLastChild on the root element, in a Java node.

There is one element only (<Business>) at the top level of the message, so calling

cniFirstChild (in C) or getFirstChild (in Java) moves to this point in the tree. You

can use cniElementType or getElementType to get its type (which is name),

followed by cniElementName or getName to return the name itself (Business).

<Business> has two children, <Product> and <Company>, so you can use

cniFirstChild or getFirstChild followed by cniNextSibling or getNextSiblingto

navigate to them in turn.

<Product> has an attribute (type=’messaging’), which is a child element. Use

cniFirstChild or getFirstChildagain to navigate to this element, and

cniElementType or getType to return its type (which is name-value). Use

cniElementName or getName as before to get the name. To get the value, call

cniElementValueType to return the type, followed by the appropriate function in

the cniElementValue group. In this example it will be cniElementCharacterValue.

In Java use the method getValue, which will return a Java object representing the

element value.

Developing user-defined extensions 27

<Company> has three children, each one having a child that is a value element (IBM,

Hursley, and WebSphere MQ). You can use the functions already described to

navigate to them and access their values.

Other functions are available to copy the element tree (or part of it). The copy can

then be modified by adding or removing elements, and changing their names and

values, to create an output message.

User-defined output nodes

A user-defined output node is an extension to the broker that provides a new

message flow output node in addition to those supplied with the product.

If you want your message flow to send messages using a protocol that is not

supported by WebSphere Message Broker you can create your own output node to

do this.

WebSphere Message Broker provides the following output nodes:

v MQOutput - deliver an output message from a message flow to a WebSphere

MQ queue

v MQReply - send a response to the originator of the input message.

v SCADAOutput - sends a message to a client connecting using the MQIsdp

protocol

v Publication - filter output messages from a message flow and transmit them to

subscribers who have registered an interest in a particular set of topics.

If the target application expects to receive message in any other way, you must use

a user-defined output node.

User-defined output nodes can be considered together with user-defined message

processing nodes. Conceptually, these two kinds of user-defined nodes are the

same. Although a message processing node is typically used to process a message,

and an output node is used to provide an output, in the form of a bitstream, from

a message, you construct output nodes and message processing nodes in a similar

way, and you can use either type of node to perform either function.

For more information on user-defined output nodes, read the topics that cover

user-defined message processing nodes.

User-defined output node life cycle

For information on the life cycle of a user-defined output node, you should read

the corresponding topics for user-defined message processing nodes.

The information in these topics applies to both output nodes and message

processing nodes. Both of these node types can be considered together, because

although a message processing node is typically used to process a message, and an

output node is used to provide an output in the form of a bitstream, you can use

either type of node to perform either of these functions.

Planning user-defined output nodes

For information on planning user-defined output nodes you should read the

corresponding topic for user-defined message processing nodes.

The information in that topic applies to both output nodes and message processing

nodes. Both of these node types can be considered together, because although a

message processing node is typically used to process a message, and an output

28 User-defined Extensions

node is used to provide an output, in the form of a bitstream, from a message, you

construct output nodes and message processing nodes in a similar way, and you

can use either type of node to perform either function.

User-defined parsers

A user-defined parser is a program that interprets the bit stream of an incoming

message and creates an internal representation of the message in a tree structure. A

user-defined parser can also regenerate a bit stream for an outgoing message from

the internal message tree representation

In addition to the parsers provided by WebSphere Message Broker, you can

provide alternative and complementary message parsers that are accessible to the

broker and its message processing nodes through a standard set of parsing and

construction interfaces.

If you need to process messages that do not conform to any of the defined

message domains you can use the C language programming interface to create a

user-defined parser.

User-defined parser life cycle

This topic guides you through the various stages in the life of a user-defined

message flow parser. The stages are as follows:

v Registration

v Instantiation

v Processing

v Destruction

This topic will help you understand the interactions that take place between

WebSphere Message Broker components when you run a user-defined parser. It

explains each stage in terms of the events that cause, occur during, and after of

each stage, and the APIs that are called. Understanding the concepts in this topic

will allow you to design and develop your parser more effectively.

Registration: The first phase in the user-defined parser’s life cycle is the

registration phase. The purpose of the registration phase is to register the

user-defined parser with the broker. This phase is triggered by the initialization

phase of the start-up of the execution group process.

Instantiation: The parser is created during the instantiation phase of the parser

life cycle. When an input message is received, or an output message is built in a

compute node, the relevant parser is identified, and parser requirements are taken

from the message header, such as MQMD. The broker starts, loads the Loadable

Implementation Library (LIL), and the parser factory. The execution group process

creates an instance of the parser, and the broker makes a call to cpiCreateContext

to allow the parser object to acquire the appropriate section of the message.

Before this function is called, the broker will have created a name element as the

effective root element for the parser. However, this element is not named. The

parser should name this element in the cpiSetElementName function.

The broker then makes a call to cpiParseBuffer. The purpose of cpiParseBuffer at

this stage is to perform any necessary initialization, and to return the length of the

message content that the parser is taking ownership of. The parser assesses how

much of the message data to parse, and claims the appropriate number of bytes.

Developing user-defined extensions 29

Whenever an instance of a user-defined parser object is created, the context

creation implementation function cpiCreateContext is also invoked by the message

broker. This allows the parser to allocate instance data associated with the parser.

A cpiDeleteContext function to delete the context of the parser object is also

required.

Processing: The purpose of the processing phase is to manipulate, alter, and

reference elements within a message object that the parser is interpreting. The

message flow processing phase begins when any message processing activity

occurs, such as navigation, that requires access to an element within a message that

does not exist in the broker’s internal model representation of the message

concerned.

During the message flow processing phase, the parser is invoked in response to

attempts to navigate into the message tree. The parser examines the buffer

allocated when cpiParseBuffer was called, and creates any necessary message

elements.

The parser can then navigate through the message elements, using any or all of the

following parser implementation functions:

v cpiParseFirstChild

v cpiParseLastChild

v cpiParsePreviousSibling

v cpiParseNextSibling

These functions are invoked when any form of navigation is made, such as a filter

expression that specifies a message field, into the part of the syntax element tree

that logically represents the data for a message format supported by a user-defined

parser. This occurs when an operation within the broker requires a syntax element

tree to be built or extended.

You should be aware of the following points when deciding how best to navigate

the syntax element tree:

v A Syntax element has five pointers to its parents, siblings, and first and last

children. This means that you have available a finite set of navigations

v The same internal classes are used to perform all of these navigations

v The parser does not control the navigation. The ESQL or a user-defined node

makes the decision about which direction to navigate in, and the order in which

the navigational parser implementation functions are invoked. The user-defined

parser has no control over this, and needs to respond correctly to the chosen

navigation scheme. This could mean parsing right to left, as well as left to right,

for instance.

v When writing a user-defined parser, it is expected that you place the actual

parser code in a parseNextItem function. This function should build the syntax

element tree one element at a time, setting names, values and complete flags

appropriately. How you implement this function depends on the nature of the

bitstream to be parsed. The sample parser supplied with WebSphere Message

Broker demonstrates this.

When the parser has finished parsing the relevant parts of the syntax element tree,

it calls cpiWriteBuffer. This function appends its portion of the syntax element tree

to the bitstream in the message buffer associated with the parser object. This

creates the output message.

30 User-defined Extensions

Destruction: The Destruction phase is the final phase in the user-defined parser

life cycle. When the parser has written its portion of the syntax element tree to the

bitstream and created the output message, the system resources that were created

by the broker for the parser to use need to be released.

The destruction phase begins when the mqsistop command is used to stop the

execution process.

Planning user-defined parsers

This topic introduces you to concepts you should consider before developing a

user-defined parser. When you are ready, use the instructions in “Creating a parser

in C” on page 48 to construct your parser.

Analysis: Before you start to create your own parser, be clear about what you

want it for. You can perform most tasks using the functions already provided with

WebSphere Message Broker, so you might not need to create a user-defined parser

for your particular task.

Before you construct and implement a user-defined parser, you need to consider

the following:

v Do you need to create a user-defined parser?

Most tasks you need to perform can be performed using functions provided

with WebSphere Message Broker. You should make sure that the task you want

to perform cannot be done using built-in WebSphere Message Broker function

before creating your own parser. If the available parsers in WebSphere Message

Broker are not appropriate for your needs, you can define your own parser to

parse internal, customer-specific, or generic commercial message formats.

v Does WebSphere Message Broker already provide a parser for the domain or

message header?

For details of message domains that the supplied WebSphere Message Broker

parser can accept input messages in, and message headers that the supplied

parser can work with, see Parsers.

v Does the syntax of the in-house or commercial message dictate a format that can

be parsed?

v To successfully parse the message concerned, will the parser have to interface

with third-party software ? If so does the API enabling access to this software

break your threading model

v Do you need to process multi-part multi-format messages?

WebSphere Message Broker does not support multi-part multi-format messages.

A multi-part MRM message must consist of messages which are all in the same

format

v What type of parsing strategy will provide best performance?

WebSphere Message Broker supports partial parsing, which allows your parser

to only parse relevant fields in a message. Using partial parsing can save system

resources.

Partial and full parsing: WebSphere Message Broker supports what is called

partial parsing. If an individual message contains hundreds or even thousands of

individual fields, the parsing operation will require considerable memory and

processor resources to complete. Because an individual message flow might

reference only a few of these fields, or none at all, it is inefficient to parse every

input message completely. For this reason, WebSphere Message Broker allows

Developing user-defined extensions 31

parsing of messages on an as-needed basis. (This does not prevent a parser from

processing the entire message all at once, and some parsers are written to do

exactly this.)

Each syntax element in a logical message has two bits that indicate whether or not

all the elements on either side of an element are complete, and whether its children

are complete as well. Parsing is normally completed in a bottom to top, left to

right manner. When a parser has completed the siblings of a particular element

that precede the given element and the first child, it sets the first completion bit to

one. Similarly, when the pointer to the next sibling of an element is complete, as

well as its last child pointer, the other completion bit is set to a one.

In partial parsing, the broker waits until a part of the message is referenced, and

invokes the parser to parse that part of the message. WebSphere Message Broker

message processing nodes refer to fields within a message using hierarchical

names. The name begins at the root of the message and proceeds down the

message tree until the particular element is located. If an element is encountered

without its completion bits set, and further navigation from this element is

required, then the appropriate parser entry point is called to parse the necessary

part of the message. The relevant part of the message is parsed, appropriate

elements are added to the logical message tree, and the element in question is

marked as complete.

If you do not need to parse the full bitstream, you can use partial parsing, also

known as lazy parsing. During partial parsing, a parser is called recursively until

the requested element is returned, or until the message tree has been marked as

complete and the requested element is known not to exist.

Whether you choose to perform a full or partial parse very much depends on how

you anticipate the message will be processed within WebSphere Message Broker. If

most field elements within the message are likely to be accessed during processing

within WebSphere Message Broker, then performing a full parse of the message

when an attempt is made to access it will probably prove more efficient. This is

more likely to be true for smaller messages.

However, if most field elements within the message are not likely to be accessed

during processing within WebSphere Message Broker, then performing a lazy parse

of the message when an attempt is made to access a specific field would probably

prove more efficient. This is especially true as the message size grows.

Specific types

Specific types are used when a parser needs additional information that is

associated with some or with all of the syntax elements in a tree in order to

generate the bitstream.

In the case of the XML parser, the specific type information is used to mark special

elements such as components, processing instructions, and CDATA sections. The

methods getSpecificType and setSpecificType allow user-defined nodes to query

this information and to generate message trees that use these special types.

Developers of user-defined parsers can generate their own specific type values in

order to control special handling characteristics in their parser code. This is done

by using the existing C user-defined parser interface. The getSpecificType and

setSpecificType methods enable Java user-defined nodes to fully exploit this parser

capability.

32 User-defined Extensions

Implementing the provided samples

WebSphere Message Broker provides some sample code to help you understand

how to write user-defined nodes and parsers. The samples consist of a sample

parser, and the following sample nodes:

 Switch A node, implemented in both C and Java versions, that propagates an

input message to one of several output terminals depending on the

message content.

Transform A node, implemented in both C and Java versions, that performs a

simple message transformation.

Each sample node consists of the source files and some files that you can use to

test each node. For the sample parser there are only source files. See “Sample node

files” on page 95 and “Sample parser files” on page 97 for details of the sample

files and where to find them.

To implement the supplied samples:

1. Compile the samples. For information on how to compile a Java node, see

“Compiling a Java user-defined node” on page 75. For information on how to

compile a C node or parser, see “Compiling a C user-defined extension” on

page 54.

2. Install the user-defined extension on a broker domain. For instructions on

completing this step, see “Installing a user-defined extension on a broker

domain” on page 79

3. Stop your broker, using the mqsistop command, and then restart your broker,

using the mqsistart command, to read the new files.

This is all you need to do to implement a user-defined parser. The following

additional steps apply only to user-defined nodes:

4. On the Windows machine hosting the workbench, unzip the

SampleNodesProject.zip file, which is located in the

install_dir\sample\extensions\com.ibm.samples.nodes directory, and copy the

resulting directory structure into the install_dir\eclipse\plugins directory.

5. Open the workbench and switch to the Broker Application Development

perspective. The category called ″Sample nodes″ is now visible in the palette,

and the sample nodes are shown below them. Documentation about the sample

nodes is also visible in the help system under ″Samples″.

6. Include the sample nodes in a message flow (see Adding a node).

7. Deploy the message flow (see Deploying).

8. For the Switch and Transform nodes, you can put a message to the input queue

of the message flow and observe the results, as follows:

a. Make sure that the message flow containing the sample node is deployed

successfully (see Checking the results of deployment).

b. Use the Enqueue message function to put the sample input messages (the

.xml files listed above) to the input queue named on the input node of the

message flow (see Putting a test message).

You can also use a Trace node or the Flow debugger to see what is happening

in your message flow.

Developing user-defined extensions 33

Creating a user-defined extension in C

You can write user-defined nodes and user-defined parsers in C.

This section contains the following topics that describe how to create user-defined

extensions in C:

v “Creating an input node in C”

v “Creating a message processing or output node in C” on page 41

v “Creating a parser in C” on page 48

v “Compiling a C user-defined extension” on page 54

Creating an input node in C

Before you start

Ensure that you have read and understood the following topics:

v “Planning user-defined extensions” on page 5

v “Designing user-defined extensions” on page 8

v “User-defined input nodes” on page 16

A loadable implementation library, or a LIL, is the implementation module for a C

node (or parser). A LIL is implemented as a dynamic link library (DLL). It does not

have the file extension .dll but .lil.

The implementation functions that have to be written by the developer are listed in

“C node implementation functions” on page 98. The utility functions that are

provided by WebSphere Message Broker to aid this process are listed in “C node

utility functions” on page 99.

WebSphere Message Broker provides the source for two sample user-defined nodes

called SwitchNode and TransformNode. You can use these nodes in their current

state, or you can modify them.

This topic describes the steps you need to take to create an input node using C. It

outlines the following steps:

1. “Initializing the node”

2. “Defining the node as an input node” on page 35

3. “Creating an instance of the node” on page 36

4. “Setting attributes” on page 37

5. “Implementing the node functionality” on page 37

6. “Overriding the default message parser attributes (optional)” on page 38

7. “Deleting an instance of the node” on page 39

Initializing the node

The following procedure shows you how to initialize your node:

1. The initialization function, bipGetMessageflowNodeFactory, is called by the

broker after the LIL has been loaded and initialized by the operating system.

The broker calls this function to understand what your LIL is able to do and

how the broker should call the LIL. For example:

34 User-defined Extensions

CciFactory LilFactoryExportPrefix * LilFactoryExportSuffix

bipGetMessageflowNodeFactory()

2. The bipGetMessageflowNodeFactory function then calls the utility function

cniCreateNodeFactory. This function passes back a factory name (or group

name) for all the nodes that your LIL supports. For example:

{

 CciFactory* factoryObject;

 int rc = 0;

 CciChar factoryName[] = L"SwitchNodeFactory";

 CCI_EXCEPTION_ST exception_st;

 /* Create the Node Factory for this node */

 factoryObject = cniCreateNodeFactory(0, factoryName);

 if (factoryObject == CCI_NULL_ADDR) {

 if (rc == CCI_EXCEPTION) {

 /* Get details of the exception */

 cciGetLastExceptionData(&rc, &exception_st);

 /* Any local error handling can go here */

 /* Rethrow the exception */

 cciRethrowLastException(&rc);

 }

 /* Any further local error handling can go here */

 }

 else {

 /* Define the nodes supported by this factory */

 defineSwitchNode(factoryObject);

 }

 /* Return address of this factory object to the broker */

 return(factoryObject);

}

In this example, if trace information is required in UTF-16, you should replace

CCI_EXCEPTION_ST with CCI_EXCEPTION_WIDE_ST and

cciGetLastExceptionData with cciGetLastExceptionDataW.

3. The LIL should then call the utility function cniDefineNodeClass to pass the

name of each node, and a virtual function table of the addresses of the

implementation functions. For example, to define a single node called

InputxNode and its function table:

void defineInputxNode(void* factoryObject){

 static CNI_VFT vftable = {CNI_VFT_DEFAULT};

 /* Setup function table with pointers to node implementation functions */

 vftable.iFpCreateNodeContext = _createNodeContext;

 vftable.iFpDeleteNodeContext = _deleteNodeContext;

 vftable.iFpGetAttributeName2 = _getAttributeName2;

 vftable.iFpSetAttribute = _setAttribute;

 vftable.iFpGetAttribute2 = _getAttribute2;

 vftable.iFpRun = _run;

 cniDefineNodeClass(0, factoryObject, L"InputxNode", &vftable);

 return;

}

Defining the node as an input node

A user-defined node identifies itself as providing the capability of an input node

by implementing the cniRun implementation function. User-defined input nodes

have to implement a cniRun function, otherwise the broker does not load the

Developing user-defined extensions 35

user-defined node, and the cniDefineNodeClass utility function fails, returning

CCI_MISSING_IMPL_FUNCTION. When a message flow containing a user-defined

input node is deployed successfully, the broker calls the node’s cniRun

implementation function at regular intervals.

For example:

int cniRun(

 CciContext* context,

 CciMessage* destinationList,

 CciMessage* exceptionList,

 CciMessage* message

){

 ...

 /* Get data from external source */

 return CCI_SUCCESS_CONTINUE;

}

The return value should be used to return control periodically to the broker.

When a message flow containing a user-defined input node is deployed

successfully, the node’s cniRun function is called for each message passed through

the message flow.

Input nodes can also implement cniEvaluate, however this is not recommended.

Creating an instance of the node

The following procedure shows you how to instantiate your node:

1. When the broker has received the table of function pointers, it calls the function

cniCreateNodeContext for each instantiation of the user-defined node. If you

have three message flows that are using your user-defined node, your

cniCreateNodeContext function is called for each of them. This function should

allocate memory for that instantiation of the user-defined node to hold the

values for the configured attributes. For example:

a. Call the cniCreateNodeContext function:

CciContext* _Switch_createNodeContext(

 CciFactory* factoryObject,

 CciChar* nodeName,

 CciNode* nodeObject

){

 static char* functionName = (char *)"_Switch_createNodeContext()";

 NODE_CONTEXT_ST* p;

 CciChar buffer[256];

b. Allocate a pointer to the local context and clear the context area:

 p = (NODE_CONTEXT_ST *)malloc(sizeof(NODE_CONTEXT_ST));

 if (p) {

 memset(p, 0, sizeof(NODE_CONTEXT_ST));

c. Save the node object pointer in the context:

 p->nodeObject = nodeObject;

d. Save the node name:

 CciCharNCpy((CciChar*)&p->nodeName, nodeName, MAX_NODE_NAME_LEN);

2. An input node has a number of output terminals associated with it, but does

not typically have any input terminals. Use the utility function

cniCreateOutputTerminal to add output terminals to an input node when the

36 User-defined Extensions

node is instantiated. These functions must be invoked within the

cniCreateNodeContext implementation function. For example, to define an

input node with three output terminals:

 {

 const CciChar* ucsOut = CciString("out", BIP_DEF_COMP_CCSID) ;

 insOutputTerminalListEntry(p, (CciChar*)ucsOut);

 free((void *)ucsOut) ;

 }

 {

 const CciChar* ucsFailure = CciString("failure", BIP_DEF_COMP_CCSID) ;

 insOutputTerminalListEntry(p, (CciChar*)ucsFailure);

 free((void *)ucsFailure) ;

 }

 {

 const CciChar* ucsCatch = CciString("catch", BIP_DEF_COMP_CCSID) ;

 insOutputTerminalListEntry(p, (CciChar*)ucsCatch);

 free((void *)ucsCatch) ; }

Setting attributes

Attributes are set whenever you start the broker, or when you redeploy the

message flow with new values.

Following the creation of output terminals, the broker calls the cniSetAttribute

function to pass the values for the configured attributes of the user-defined node.

For example:

 {

 const CciChar* ucsAttr = CciString("nodeTraceSetting", BIP_DEF_COMP_CCSID) ;

 insAttrTblEntry(p, (CciChar*)ucsAttr, CNI_TYPE_INTEGER);

 _setAttribute(p, (CciChar*)ucsAttr, (CciChar*)constZero);

 free((void *)ucsAttr) ;

 }

 {

 const CciChar* ucsAttr = CciString("nodeTraceOutfile", BIP_DEF_COMP_CCSID) ;

 insAttrTblEntry(p, (CciChar*)ucsAttr, CNI_TYPE_STRING);

 _setAttribute(p, (CciChar*)ucsAttr, (CciChar*)constSwitchTraceLocation);

 free((void *)ucsAttr) ;

 }

Implementing the node functionality

When the broker knows that it has an input node, it calls the cniRun function of

this node at regular intervals. The cniRun function must then decide what course

of action it should take. If data is available for processing, the cniRun function

should call cniDispatchThread and process the message, or return with

CCI_TIMEOUT so that the broker can continue to process other messages on other

threads. If a thread is not dispatched, the broker spends all of its time within this

thread, which stops it from doing anything else.

For example, to configure the node to call cniDispatchThread and process the

message, or return with CCI_TIMEOUT:

If (anything to do)

 CniDispatchThread;

 /* do the work */

 If (work done O.K.)

 Return CCI_SUCCESS_CONTINUE;

 Else

 Return CCI_FAILURE_CONTINUE;

Else

 Return CCI_TIMEOUT;

Developing user-defined extensions 37

Overriding the default message parser attributes (optional)

An input node implementation normally determines what message parser initially

parses an input message. For example, the primitive MQInput node dictates that

an MQMD parser is required to parse the MQMD header. A user-defined input

node can select an appropriate header or message parser, and the mode in which

the parsing is controlled, by using the following attributes that are included as

default, which you can override:

rootParserClassName

Defines the name of the root parser that parses message formats supported

by the user-defined input node. It defaults to GenericRoot, a supplied root

parser that causes the broker to allocate and chain parsers together. It is

unlikely that a node would need to modify this attribute value.

firstParserClassName

Defines the name of the first parser, in what might be a chain of parsers

that are responsible for parsing the bitstream. It defaults to XML.

messageDomainProperty

An optional attribute that defines the name of the message parser required

to parse the input message. The supported values are the same as those

supported by the MQInput node. (See MQInput node for more information

about the MQInput node.)

messageSetProperty

An optional attribute that defines the message set identifier, or the message

set name, in the Message Set field, only if the MRM parser was specified

by the messageDomainProperty attribute.

messageTypeProperty

An optional attribute that defines the identifier of the message in the

MessageType field, only if the MRM parser was specified by the

messageDomainProperty attribute.

messageFormatProperty

An optional attribute that defines the format of the message in the Message

Format field, only if the MRM parser was specified by the

messageDomainProperty attribute.

If you have written a user-defined input node that always begins with data of a

known structure, you can ensure that a certain parser deals with the start of the

data. For example, the MQInputNode only reads data from WebSphere MQ

queues, so this data always has an MQMD at the beginning, and the

MQInputNode sets firstParserClassName to MQHMD. If your user-defined node

always deals with data that begins with a structure that can be parsed by a certain

parser, say ″MYPARSER″, you set firstParserClassName to MYPARSER as follows:

1. Declare the implementation functions:

CciFactory LilFactoryExportPrefix * LilFactoryExportSuffix bipGetMessageflowNodeFactory()

{

 CciFactory* factoryObject;

 factoryObject = cniCreateNodeFactory(0, (unsigned short *)constPluginNodeFactory);

 ...

 vftable.iFpCreateNodeContext = _createNodeContext;

 vftable.iFpSetAttribute = _setAttribute;

 vftable.iFpGetAttribute = _getAttribute;

 ...

38 User-defined Extensions

cniDefineNodeClass(&rc, factoryObject, (CciChar*)constSwitchNode, &vftable);

 ...

 return(factoryObject);

}

2. Set the attribute in the cniCreateNodeContext implementation function:

CciContext* _createNodeContext(

 CciFactory* factoryObject,

 CciChar* nodeName,

 CciNode* nodeObject

){

 NODE_CONTEXT_ST* p;

 ...

 /* Allocate a pointer to the local context */

 p = (NODE_CONTEXT_ST *)malloc(sizeof(NODE_CONTEXT_ST));

 /* Create attributes and set default values */

 {

 const CciChar* ucsAttrName = CciString("firstParserClassName", BIP_DEF_COMP_CCSID) ;

 const CciChar* ucsAttrValue = CciString("MYPARSER", BIP_DEF_COMP_CCSID) ;

 insAttrTblEntry(p, (CciChar*)ucsAttrName, CNI_TYPE_INTEGER);

 /*see sample BipSampPluginNode.c for implementation of insAttrTblEntry*/

 _setAttribute(p, (CciChar*)ucsAttrName, (CciChar*)ucsAttrValue);

 free((void *)ucsAttrName) ;

 free((void *)ucsAttrValue) ;

 }

Deleting an instance of the node

Nodes are destroyed when a message flow is redeployed, or when the execution

group process is stopped (using the mqsistop command). When a node is

destroyed, it should free any used memory and release any held resources. You do

this using the cniDeleteNodeContext function. For example:

void _deleteNodeContext(

 CciContext* context

){

 static char* functionName = (char *)"_deleteNodeContext()";

 return;

}

Extending the capability of a C input node

Before you start

Ensure that you have read and understood the following topic:

v “Creating an input node in C” on page 34

After you have created a user-defined node, the following options are available:

1. “Receiving external data into a buffer”

2. “Controlling threading and transactions” on page 40

3. “Propagating the message” on page 41

Receiving external data into a buffer:

An input node can receive data from any type of external source, such as a file

system or FTP connections, as long as the output from the node is in the correct

format. For connections to queues or databases, you should use the IBM primitive

Developing user-defined extensions 39

nodes and the API calls supplied, principally because the primitive nodes are

already set up for error handling. Do not use the mqget or mqput commands for

direct access to database tables.

You must provide an input buffer (or bitstream) to contain input data, and

associate it with a message object. In the C API, the buffer is attached to the

CciMessage object representing the input message by using the cniSetInputBuffer

utility function. For example:

{

 static char* functionName = (char *)"_Input_run()";

 void* buffer;

 CciTerminal* terminalObject;

 int buflen = 4096;

 int rc = CCI_SUCCESS;

 int rcDispatch = CCI_SUCCESS;

 char xmlData[] = "<A>data";

 buffer = malloc(buflen);

 memcpy(buffer, &xmlData, sizeof(xmlData));

 cniSetInputBuffer(&rc, message, buffer, buflen);

}

/*propagate etc*/

free(buffer);

The above example illustrates an area of memory being allocated (buffer =

malloc(buflen);). When programming in C, whenever you allocate memory you

must free it when you no longer need it. The broker might attempt to access this

memory at any time whilst the message is being propagated through the flow, so

you should free the memory only after calling cniPropagate on the same

CciMessage.

Controlling threading and transactions:

An input node has a responsibility to perform appropriate end of message

processing when a message has been propagated through a message flow.

Specifically, the input node needs to cause any transactions to be committed or

rolled back, and return threads to the thread pool.

Each message flow thread is allocated from a pool of threads maintained for each

message flow, and starts execution in the cniRun function. You determine the

behavior of a thread using the cniDispatchThread utility function together with the

appropriate return value.

The term transaction is used generically here to describe either a globally

coordinated transaction or a broker controlled transaction. Globally coordinated

transactions are coordinated by either WebSphere MQ as an XA compliant

Transaction Manager, or Resource Recovery Service (RRS) on z/OS . WebSphere

Message Broker controls transactions by committing (or rolling back) any database

resources and then committing any WebSphere MQ units of work, however, if a

user-defined node is used, any resource updates cannot be automatically

committed by the broker. The user-defined node uses return values to indicate

whether a transaction has been successful, and to control whether transactions are

committed or rolled-back. Any unhandled exceptions are caught by the broker

infrastructure, and the transaction is rolled back.

The following table describes each of the supported return values, the affect each

one has on any transactions, and what the broker does with the current thread.

40 User-defined Extensions

Return value Affect on transaction Broker action on the thread

CCI_SUCCESS_CONTINUE committed Calls the same thread again

in the cniRun function.

CCI_SUCCESS_RETURN committed Returns the thread to the

thread pool.

CCI_FAILURE_CONTINUE rolled back Calls the same thread again

in the cniRun function.

CCI_FAILURE_RETURN rolled back Returns the thread to the

thread pool.

CCI_TIMEOUT Not applicable. The function

periodically times out while

waiting for an input

message.

Calls the same thread again

in the cniRun function.

The following is an example of using the SUCCESS_RETURN return code with the

cniDispatchThread function:

{

 ...

 cniDispatchThread(&rcDispatch, ((NODE_CONTEXT_ST *)context)->nodeObject);

 ...

 if (rcDispatch == CCI_NO_THREADS_AVAILABLE) return CCI_SUCCESS_CONTINUE;

 else return CCI_SUCCESS_RETURN;

}

Propagating the message:

Before you propagate a message, you have to decide what message flow data you

want to propagate, and what terminal is to receive the data.

The terminalObject is derived from a list that the user-defined node maintains

itself.

For example, to propagate the message to the output terminal, you use the

cniPropagate function:

 if (terminalObject) {

 if (cniIsTerminalAttached(&rc, terminalObject)) {

 if (rc == CCI_SUCCESS) {

 cniPropagate(&rc, terminalObject, destinationList, exceptionList, message);

 }

 }

In the above example, the cniIsTerminalAttached function is used to test whether

the message can be propagated to the specified terminal. If you do not use the

cniIsTerminalAttached function, and the terminal is not attached to another node

by a connector, the message is not propagated. If you do use this function, you can

modify the node’s behavior when a terminal is not connected.

Creating a message processing or output node in C

Before you start

Ensure that you have read and understood the following topics:

v “Planning user-defined extensions” on page 5

v “Designing user-defined extensions” on page 8

Developing user-defined extensions 41

v “User-defined message processing nodes” on page 20

v “User-defined output nodes” on page 28

A loadable implementation library, or a LIL, is the implementation module for a C

node (or parser). A LIL is implemented as a dynamic link library (DLL). It does not

have the file extension .dll but .lil.

The implementation functions that have to be written by the developer are listed in

“C node implementation functions” on page 98. The utility functions that are

provided by WebSphere Message Broker to aid this process are listed in “C node

utility functions” on page 99.

WebSphere Message Broker provides the source for two sample user-defined nodes

called SwitchNode and TransformNode. You can use these nodes in their current

state, or you can modify them. There is also the User-defined Extension sample for

you to use.

Conceptually, a message processing node is used to process a message in some

way, and an output node is used to output a message as a bitstream. However,

when you code a message processing node or an output node, they are essentially

the same thing. You can perform message processing within an output node, and

likewise you can output a message to a bitstream using a message processing

node. For simplicity, this topic mainly refers to the node as a message processing

node, however, it discusses the functionality of both types of node.

The functions of both types of node are covered in this topic. It outlines the

following steps:

1. “Declaring your node to the broker”

2. “Defining the node as a message processing node” on page 43

3. “Creating an instance of the node” on page 44

4. “Setting attributes” on page 45

5. “Implementing the node functionality” on page 45

6. “Deleting an instance of the message processing node” on page 45

Declaring your node to the broker

The following procedure shows you how to declare your node to the broker:

1. The initialization function, bipGetMessageflowNodeFactory, is called by the

broker after the LIL has been loaded and initialized by the operating system.

This is called from the broker configuration thread. The broker calls this

function to understand what your LIL is able to do and how the broker should

call the LIL. For example:

CciFactory LilFactoryExportPrefix * LilFactoryExportSuffix

bipGetMessageflowNodeFactory()

2. The bipGetMessageflowNodeFactory function then calls the utility function

cniCreateNodeFactory. This function passes back a factory name (or group

name) for all the nodes that your LIL supports. For example:

{

 CciFactory* factoryObject;

 int rc = 0;

 CciChar factoryName[] = L"SwitchNodeFactory";

 CCI_EXCEPTION_ST exception_st;

 /* Create the Node Factory for this node */

 factoryObject = cniCreateNodeFactory(0, factoryName);

42 User-defined Extensions

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.ude.res

if (factoryObject == CCI_NULL_ADDR) {

 if (rc == CCI_EXCEPTION) {

 /* Get details of the exception */

 cciGetLastExceptionData(&rc, &exception_st);

 /* Any local error handling can go here */

 /* Rethrow the exception */

 cciRethrowLastException(&rc);

 }

 /* Any further local error handling can go here */

 }

 else {

 /* Define the nodes supported by this factory */

 defineSwitchNode(factoryObject);

 }

 /* Return address of this factory object to the broker */

 return(factoryObject);

}

In this example, if trace information is required in UTF-16, you should replace

CCI_EXCEPTION_ST with CCI_EXCEPTION_WIDE_ST and

cciGetLastExceptionData with cciGetLastExceptionDataW.

Defining the node as a message processing node

The LIL should then call the utility function cniDefineNodeClass to pass the name

of each node and a virtual function table of the addresses of the implementation

functions. For example, to define a single node called SwitchNode, and its function

table:

void defineSwitchNode(void* factoryObject){

 static CNI_VFT vftable = {CNI_VFT_DEFAULT};

 /* Setup function table with pointers to node implementation functions */

 vftable.iFpCreateNodeContext = _createNodeContext;

 vftable.iFpDeleteNodeContext = _deleteNodeContext;

 vftable.iFpGetAttributeName2 = _getAttributeName2;

 vftable.iFpSetAttribute = _setAttribute;

 vftable.iFpGetAttribute2 = _getAttribute2;

 vftable.iFpEvaluate = _evaluate;

 cniDefineNodeClass(0, factoryObject, L"SwitchNode", &vftable);

 return;

}

This is called from the configuration thread.

A user-defined node identifies itself as providing the capability of a message

processing or output node by implementing the cniEvaluate function. User-defined

nodes have to either implement a cniEvaluate or a cniRun implementation

function, or both, otherwise the broker does not load the user-defined node, and

the cniDefineNodeClass utility function fails, returning

CCI_MISSING_IMPL_FUNCTION.

When a message flow containing a user-defined message processing node is

deployed successfully, the node’s cniEvaluate function is called for each message

passed through the message flow.

Message flow data is received at the input terminal of the node, that is, the

message, global environment, local environment, and exception list.

Developing user-defined extensions 43

For example:

void cniEvaluate(

 CciContext* context,

 CciMessage* destinationList,

 CciMessage* exceptionList,

 CciMessage* message

){

 ...

}

Creating an instance of the node

The following procedure shows you how to instantiate your node:

1. When the broker has received the table of function pointers, it calls the function

cniCreateNodeContext for each instantiation of the user-defined node. If you

have three message flows that are using your user-defined node, your

cniCreateNodeContext function is called for each of them. This function should

allocate memory for that instantiation of the user-defined node to hold the

values for the configured attributes. For example:

a. The user function cniCreateNodeContext is called:

CciContext* _Switch_createNodeContext(

 CciFactory* factoryObject,

 CciChar* nodeName,

 CciNode* nodeObject

){

 static char* functionName = (char *)"_Switch_createNodeContext()";

 NODE_CONTEXT_ST* p;

 CciChar buffer[256];

b. Allocate a pointer to the local context and clear the context area:

 p = (NODE_CONTEXT_ST *)malloc(sizeof(NODE_CONTEXT_ST));

 if (p) {

 memset(p, 0, sizeof(NODE_CONTEXT_ST));

c. Save the node object pointer in the context:

 p->nodeObject = nodeObject;

d. Save the node name:

 CciCharNCpy((CciChar*)&p->nodeName, nodeName, MAX_NODE_NAME_LEN);

2. The broker calls the appropriate utility functions to find out about the node’s

input terminals and output terminals. A node has a number of input terminals

and output terminals associated with it. Within the user function

cniCreateNodeContext, calls should be made to cniCreateInputTerminal and

cniCreateOutputTerminal to define the user node’s terminals. These functions

must be invoked within the cniCreateNodeContext implementation function.

For example, to define a node with one input terminal and two output

terminals:

 {

 const CciChar* ucsIn = CciString("in", BIP_DEF_COMP_CCSID) ;

 insInputTerminalListEntry(p, (CciChar*)ucsIn);

 free((void *)ucsIn) ;

 }

 {

 const CciChar* ucsOut = CciString("out", BIP_DEF_COMP_CCSID) ;

 insOutputTerminalListEntry(p, (CciChar*)ucsOut);

 free((void *)ucsOut) ;

 }

 {

44 User-defined Extensions

const CciChar* ucsFailure = CciString("failure", BIP_DEF_COMP_CCSID) ;

 insOutputTerminalListEntry(p, (CciChar*)ucsFailure);

 free((void *)ucsFailure) ;

 }

Setting attributes

Attributes are set whenever you start the broker, or when you redeploy a message

flow with new values. Attributes are set by the broker calling user code on the

configuration thread. The user code needs to store these attributes in its node

context area, for use when processing messages later.

Following the creation of input and output terminals, the broker calls the

cniSetAttribute function to pass the values for the configured attributes for this

instantiation of the user-defined node. For example:

 {

 const CciChar* ucsAttr = CciString("nodeTraceSetting", BIP_DEF_COMP_CCSID) ;

 insAttrTblEntry(p, (CciChar*)ucsAttr, CNI_TYPE_INTEGER);

 _setAttribute(p, (CciChar*)ucsAttr, (CciChar*)constZero);

 free((void *)ucsAttr) ;

 }

 {

 const CciChar* ucsAttr = CciString("nodeTraceOutfile", BIP_DEF_COMP_CCSID) ;

 insAttrTblEntry(p, (CciChar*)ucsAttr, CNI_TYPE_STRING);

 _setAttribute(p, (CciChar*)ucsAttr, (CciChar*)constSwitchTraceLocation);

 free((void *)ucsAttr) ;

 }

Implementing the node functionality

When the broker retrieves a message from the queue and that message arrives at

the input terminal of your user-defined message processing or output node, the

broker calls the implementation function cniEvaluate. This function is called on the

message processing thread and it should decide what to do with the message. This

function might be called on multiple threads, especially if additional instances are

used.

Deleting an instance of the message processing node

To delete an instance of a node, you use the cniDeleteNodeContext function. For

example:

void _deleteNodeContext(

 CciContext* context

){

 static char* functionName = (char *)"_deleteNodeContext()";

 return;

}

The cniDeleteNodeContext function is provided by the user, and is called by the

broker when a message flow is deleted.

Extending the capability of a C message processing or output

node

Before you start

Ensure that you have read and understood the following topic:

v “Creating a message processing or output node in C” on page 41

Developing user-defined extensions 45

After you have created a user-defined node, the following options are available:

1. “Accessing message data”

2. “Transforming a message object”

3. “Accessing ESQL” on page 47

4. “Propagating a message” on page 47

5. “Writing to an output device” on page 48

Accessing message data:

In many cases, the user-defined node needs to access the contents of the message

received on its input terminal. The message is represented as a tree of syntax

elements. Groups of utility functions are provided for message management,

message buffer access, syntax element navigation, and syntax element access. (See

“C node utility functions” on page 99 for details of the utility functions.)

The types of query you are likely to want to perform include:

v Obtaining the root element of the required message object

v Accessing the bitstream representation of an element tree

v Navigate or query the tree by asking for child or sibling elements by name

v Getting the type of the element

v Getting the value of the element

For example, to query the name and type of the first child of body:

void cniEvaluate(...

){

 ...

/* Navigate to the target element */

 rootElement = cniRootElement(&rc, message);

 bodyElement = cniLastChild(&rc, rootElement);

 bodyFirstChild = cniFirstChild(&rc, bodyElement);

/* Query the name and value of the target element */

 cniElementName(&rc, bodyFirstChild, (CciChar*)&elementname, sizeof(elementName));

 bytes = cniElementCharacterValue(

 &rc, bodyfirstChild, (CciChar*)&eValue, sizeof(eValue));

 ...

}

To access the bitstream representation of an element tree you can use the

cniElementAsBitstream function. Using this function, you can obtain the bitstream

representation of any element in a message. See “cniElementAsBitstream” on page

121 for details of how to use this function and sample code.

Transforming a message object:

The received input message is read-only, so before a message can be transformed,

you must write it to a new output message using the cniCreateMessage function.

You can copy elements from the input message, or you can create new elements

and attach them to the message. New elements are generally in a parser’s domain.

For example:

1. To write the incoming message to a new message:

46 User-defined Extensions

{

 ...

 context = cniGetMessageContext(&rc, message));

 outMsg = cniCreateMessage(&rc, context));

 ...

}

2. To modify the value of a target element:

 cniSetElementIntegerValue(&rc, targetElement, L"newValue", 8);

3. After finalizing and propagating the message, you must delete the output

message using the cniDeleteMessage function:

 cniDeleteMessage(&rc, outMsg);

As part of the transformation it might be necessary to create a new message body.

To create a new message body, the following functions are available:

cniCreateElementAsFirstChildUsingParser

cniCreateElementAsLastChildUsingParser

cniCreateElementAfterUsingParser

cniCreateElementBeforeUsingParser

These functions should be used because they are specific for assigning a parser to

a message tree folder.

When creating a message body, do not use the following functions because they do

not associate an owning parser with the folder:

cniCreateElementAsFirstChild

cniCreateElementAsLastChild

cniCreateElementAfter

cniCreateElementBefore

Accessing ESQL:

Nodes can invoke ESQL expressions using Compute node ESQL syntax. You can

create and modify the components of the message using ESQL expressions, and

you can refer to elements of both the input message and data from an external

database using the cniSqlCreateStatement, cniSqlSelect, cniSqlDeleteStatement and

cniSqlExecute functions.

For example, to populate the Result element from the contents of a column in a

database table:

{

 ...

 sqlExpr = cniSqlCreateStatement(&rc,

 (NODE_CONTEXT_ST *)context->nodeObject,

 L"DB", CCI_SQL_TRANSACTION_AUTO,

 L"SET OutputRoot.XML.Result[] = (SELECT T.C1 AS Col1 FROM Database.TABLE AS T;");

 ...

 cniSqlSelect(&rc, sqlExpr, destinationList, exceptionList, message, outMsg);

 cniSqlDeleteStatement(&rc, sqlExpr);

 ...

}

For more information about ESQL, see ESQL overview.

Propagating a message:

Before you propagate a message, you have to decide what message flow data you

want to propagate, and what terminal is to receive the data.

Developing user-defined extensions 47

1. If the message has changed, you should finalize the message before you

propagate it using the cniFinalize function. For example:

 cniFinalize(&rc, outMsg, CCI_FINALIZE_NONE);

2. The terminalObject is derived from a list that the user-defined node maintains

itself. To propagate the message to the output terminal, use the cniPropagate

function:

 if (terminalObject) {

 if (cniIsTerminalAttached(&rc, terminalObject)) {

 if (rc == CCI_SUCCESS) {

 cniPropagate(&rc, terminalObject, destinationList, exceptionList, outMsg);

 }

 }

3. If you created a new output message using cniCreateMessage, after

propagating the message, you must delete the output message using the

cniDeleteMessage function:

 cniDeleteMessage(&rc, outMsg);

Writing to an output device:

A transformed message needs to be serialized to a bitstream. The bitstream can

then be accessed and written to an output device. You write the message to a

bitstream using the cniWriteBuffer function. For example:

{

 ...

 cniWriteBuffer(&rc, message);

 writeToDevice(cniBufferPointer(&rc, message), cniBufferSize(&rc, message));

 ...

}

A message can be serialized only once.

Note: You must use the supplied MQOutput node when writing to WebSphere

MQ queues, because the broker internally maintains a WebSphere MQ

connection and open queue handles on a thread-by-thread basis, and these

are cached to optimize performance. In addition, the broker handles

recovery scenarios when certain WebSphere MQ events occur, and this

would be adversely affected if WebSphere MQ MQI calls were used in a

user-defined output node.

Creating a parser in C

Before you start

Ensure that you have read and understood the following topics:

v “Planning user-defined extensions” on page 5

v “Designing user-defined extensions” on page 8

v “User-defined parsers” on page 29

A loadable implementation library, or a LIL, is the implementation module for a C

parser (or node). A LIL is a Linux or UNIX shared object or Windows dynamic link

library (DLL), that does not have the file extension .dll but .lil.

48 User-defined Extensions

The implementation functions that have to be written by the developer are listed in

“C parser implementation functions” on page 168. The utility functions that are

provided by WebSphere Message Broker to aid this process are listed in “C parser

utility functions” on page 169.

WebSphere Message Broker provides the source for a sample user-defined parser

called BipSampPluginParser.c. This is a simple pseudo-XML parser that you can

use in its current state, or you can modify.

The task of writing a parser varies considerably according to the complexity of the

bitstream to be parsed. Only the basic steps are described here. They are described

in the following sections:

1. “Defining the parser during broker initialization”

2. “Creating an instance of the parser” on page 50

3. “Deleting an instance of the user-defined parser” on page 51

Defining the parser during broker initialization

The user-defined parser initialization function is invoked automatically during

broker initialization. The user-defined parser is responsible for:

v Creating and naming the message parser factory that is implemented by the

user-defined parser. The parser factory is a container for related parser

implementations. Parser factory names must be unique within a broker.

v Defining the supported message parser class names, and supplying a pointer to

a virtual function table that contains pointers to the user-defined parser

implementation functions. Parser class names must be unique within a broker.

Each LIL that implements a user-defined parser must export a function called

bipGetParserFactory as its initialization function. The initialization function defines

the name of the factory that the user-defined parser supports and the classes of

objects, or shared object, supported by the factory.

The initialization function must also create the factory object and define the names

of all parsers supported by the LIL. A factory can support any number of object

classes (parsers). When a parser is defined, a list of pointers to the implementation

functions for that parser is passed to the broker. If a parser of the same name

already exists, the request is rejected.

For example, to define the parser:

1. Export the bipGetParserFactory initialization function:

void LilFactoryExportPrefix * LilFactoryExportSuffix bipGetParserFactory()

{

2. Declare the variables:

 CciFactory* factoryObject;

 int rc;

 static CPI_VFT vftable = {CPI_VFT_DEFAULT};

3. Initialize all the static constants:

 initParserConstants();

4. Setup function table with pointers to parser implementation functions:

 vftable.iFpCreateContext = cpiCreateContext;

 vftable.iFpParseBufferEncoded = cpiParseBufferEncoded;

 vftable.iFpParseFirstChild = cpiParseFirstChild;

 vftable.iFpParseLastChild = cpiParseLastChild;

 vftable.iFpParsePreviousSibling = cpiParsePreviousSibling;

 vftable.iFpParseNextSibling = cpiParseNextSibling;

Developing user-defined extensions 49

vftable.iFpWriteBufferEncoded = cpiWriteBufferEncoded;

 vftable.iFpDeleteContext = cpiDeleteContext;

 vftable.iFpSetElementValue = cpiSetElementValue;

 vftable.iFpElementValue = cpiElementValue;

 vftable.iFpNextParserClassName = cpiNextParserClassName;

 vftable.iFpSetNextParserClassName = cpiSetNextParserClassName;

 vftable.iFpNextParserEncoding = cpiNextParserEncoding;

 vftable.iFpNextParserCodedCharSetId = cpiNextParserCodedCharSetId;

The initialization function must then create a parser factory by invoking

cpiCreateParserFactory. The parser classes supported by the factory are defined by

calling cpiDefineParserClass. The address of the factory object (returned by

cpiCreateParserFactory) must be returned to the broker as the return value from

the initialization function.

For example:

1. Create the parser factory using the cpiCreateParserFactory function:

 factoryObject = cpiCreateParserFactory(&rc, constParserFactory);

2. Define the classes of message supported by the factory using the

cpiDefineParserClass function:

if (factoryObject) {

 cpiDefineParserClass(&rc, factoryObject, constPXML, &vftable);

 }

else {

 /* Error: Unable to create parser factory */

 }

3. Return the address of this factory object to the broker:

 return(factoryObject);

}

Creating an instance of the parser

Whenever an instance of a user-defined parser object is created, the context

creation implementation function cpiCreateContext is invoked by the message

broker. This allows the user-defined parser to allocate instance data associated with

the parser.

For example:

1. Call cpiCreateContext:

CciContext* cpiCreateContext(

 CciParser* parser

){

 PARSER_CONTEXT_ST *p;

2. Allocate a pointer to the local context:

 p = (PARSER_CONTEXT_ST *)malloc(sizeof(PARSER_CONTEXT_ST));

3. Clear the context area:

 if (p) {

 memset(p, 0, sizeof(PARSER_CONTEXT_ST));

 }

 else {

 /* Error: Unable to allocate memory */

 }

4. Return the pointer to the local context:

 return((CciContext*)p);

}

50 User-defined Extensions

Deleting an instance of the user-defined parser

To delete an instance of a parser, you use the cpiDeleteContext function. For

example:

void cpiDeleteContext(

 CciParser* parser,

 CciContext* context

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int rc = 0;

 return;

}

Extending the capability of a C parser

Before you start

Ensure that you have read and understood the following topic:

v “Creating a parser in C” on page 48

You can extend the capability of a C parser in the following ways:

v “Implementing the parser functionality”

v “Implementing input functions”

v “Implementing parse functions” on page 52

v “Implementing output functions” on page 52

v “Messages with multiple message formats” on page 53

Implementing the parser functionality:

A parser needs to implement the following types of implementation function:

1. input functions

2. parse functions

3. output functions

Each type of function is described below.

Implementing input functions:

The input functions (for example, cpiParseBuffer) are invoked by the broker when

a parser is required to parse an input message. The parser must tell the broker

how much of the input bitstream buffer that it claims to own. In the case of a

fixed-size header, the parser claims the size of the header. If the parser is intended

to handle the whole message, it claims the remainder of the buffer.

For example:

1. Invoke the cpiParseBufferEncoded function:

int cpiParseBufferEncoded(

 CciParser* parser,

 CciContext* context,

 int encoding,

 int ccsid

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int rc;

Developing user-defined extensions 51

2. Get a pointer to the message buffer and set the offset using the cpiBufferPointer

function:

 pc->iBuffer = (void *)cpiBufferPointer(&rc, parser);

 pc->iIndex = 0;

3. Save the format of the buffer:

 pc->iEncoding = encoding;

 pc->iCcsid = ccsid;

4. Save the size of the buffer using the cpiBufferSize function:

 pc->iSize = cpiBufferSize(&rc, parser);

5. Prime the first byte in the stream using the cpiBufferByte function:

 pc->iCurrentCharacter = cpiBufferByte(&rc, parser, pc->iIndex);

6. Set the current element to the root element using the cpiRootElement function:

 pc->iCurrentElement = cpiRootElement(&rc, parser);

7. Reset the flag to ensure parsing is reset correctly:

 pc->iInTag = 0;

8. Claim ownership of the remainder of the buffer:

 return(pc->iSize);

}

Implementing parse functions:

General parse functions (for example, cpiParseFirstChild) are those invoked by the

broker when the syntax element tree needs to be created in order to evaluate an

ESQL expression. For example, a filter node uses an ESQL field reference in an

ESQL expression. This field reference must be resolved in order to evaluate the

expression. Your parser’s general parse function is called, perhaps repeatedly, until

the requested element is either created or is known by the parser to not exist.

For example:

void cpiParseFirstChild(

 CciParser* parser,

 CciContext* context,

 CciElement* element

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int rc;

 if ((!cpiElementCompleteNext(&rc, element)) &&

 (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME)) {

 while ((!cpiElementCompleteNext(&rc, element)) &&

 (!cpiFirstChild(&rc, element)) &&

 (pc->iCurrentElement))

 {

 pc->iCurrentElement = parseNextItem(parser, context, pc->iCurrentElement);

 }

 }

 return;

}

Implementing output functions:

The output functions (for example, cpiWriteBuffer) are invoked by the broker when

a parser is required to serialize a syntax element tree to an output bitstream. For

example, a Compute node might have created a tree in the domain of your

user-defined parser. When this tree needs to be output by, for example, an

52 User-defined Extensions

MQOutput node, the parser is responsible for appending the output bitstream

buffer with data that represents the tree that has been built.

For example:

int cpiWriteBufferEncoded(

 CciParser* parser,

 CciContext* context,

 int encoding,

 int ccsid

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int initialSize = 0;

 int rc = 0;

 const void* a;

 CciByte b;

 initialSize = cpiBufferSize(&rc, parser);

 a = cpiBufferPointer(&rc, parser);

 b = cpiBufferByte(&rc, parser, 0);

 cpiAppendToBuffer(&rc, parser, (char *)"Some test data", 14);

 return cpiBufferSize(0, parser) - initialSize;

}

Messages with multiple message formats:

Normally, the incoming message data is of a single message format, so one parser

is responsible for parsing the entire contents of the message. The class name of the

parser that is needed is defined in the Format field in the MQMD or the MQRFH2

header of the input message.

However, the message might consist of multiple formats, for example where there

is a header in one format followed by data in another format. In this case, the first

parser has to identify the class name of the parser that is responsible for the next

format in the chain, and so on. In a user-defined parser, the implementation

function cpiNextParserClassName is invoked by the broker when it needs to

navigate down a chain of parser classes for a message comprising multiple

message formats.

If your user-defined parser supports parsing a message format that is part of a

multiple message format, the user-defined parser must implement the

cpiNextParserClassName function.

For example:

1. Call the cpiNextParserClassName function:

void cpiNextParserClassName(

 CciParser* parser,

 CciContext* context,

 CciChar* buffer,

 int size

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int rc = 0;

2. Copy the name of the next parser class to the broker:

 CciCharNCpy(buffer, pc->iNextParserClassName, size);

 return;

}

Developing user-defined extensions 53

Compiling a C user-defined extension

Before you start

You must have a user-defined extension written in C. This can be one of the

provided sample nodes described in “Sample node files” on page 95, the sample

parser described in “Sample parser files” on page 97, or a node or parser that you

have created yourself using the instructions in “Creating a message processing or

output node in C” on page 41, “Creating an input node in C” on page 34, or

“Creating a parser in C” on page 48. The name of the user-defined node must be

in the form <nodename>.lil.

This section provides information on how to compile user-defined extensions for

all supported platforms.

The filenames used in these instructions are those of the supplied samples. If you

are compiling your own user-defined extensions, you must replace these filenames

with your own filenames.

Prerequisites

Before you attempt to compile your user-defined extension, make sure you have an

appropriate compiler that is supported by your operating system. Examples of

appropriate compilers are:

For Windows, Microsoft Visual Studio Version 7.1

For AIX, VisualAge® C++ for AIX Version 5.0.2

For HP-UX, HP ANSI C 03.37

For Linux, gcc Version 2.95.3

For Solaris, SparcCompiler SC6.2

For z/OS, z/OS Version 1.3 or Version 1.4

Header files

The C interfaces are defined by the following header files:

BipCni.h

Message processing nodes

BipCpi.h

Message parsers

BipCci.h

Interfaces common to both nodes and parsers

BipCos.h

Platform-specific definitions

Existing customer or third-party supplied user-defined extension libraries will run

on a WebSphere Message Broker broker with no modification or recompilation,

however you do have to create them manually in the workbench.

54 User-defined Extensions

Compilation

Compiling the source for your user-defined extension on each of the supported

platforms creates the loadable implementation library (LIL) file that the broker

needs to implement your user-defined extension.

Move to the directory where the user-defined extension code is located. For

example:

 cd install_dir\sample\extensions\nodes\ (Windows)

 cd install_dir/sample/extensions/nodes (Linux and UNIX platforms)

Compiling on Windows

Compile the user-defined node on Windows (assuming the Microsoft 32-bit C/C++

Compiler, available in Microsoft Visual Studio C++ Version 7.1), using the

command:

 cl /VERBOSE /LD /MD /Zi /I. /I..\..\..\include\plugin SwitchNode.c

BipSampPluginUtil.c Common.c NodeFactory.c TransformNode.c -link

/DLL ..\..\..\lib\imbdfplg.lib /OUT:SwitchNode.lil

Note: Due to the length of this command, it has been necessary to show the

command extending over several lines. When entering the command, ensure

that you include a space between SwitchNode.c and BipSampPluginUtil.c,

and also between -link and /DLL.

Compiling on AIX

Compile and link the user-defined node on AIX as follows, using a supported C

compiler:

xlc_r \

 -I. \

 -I /opt/IBM/mqsi/6.0/include/plugin \

 -c SwitchNode.c \

 -o SwitchNode.o

xlc_r \

 -I. \

 -I /opt/IBM/mqsi/6.0/include/plugin \

 -c BipSampPluginUtil.c \

 -o BipSampPluginUtil.o

xlc_r \

 -I. \

 -I /opt/IBM/mqsi/6.0/include/plugin \

 -c Common.c \

 -o Common.o

xlc_r \

 -I. \

 -I /opt/IBM/mqsi/6.0/include/plugin \

 -c NodeFactory.c \

 -o NodeFactory.o

xlc_r -qmkshrobj \

 -bM:SRE \

 -bexpall \

 -bnoentry \

 -o SwitchNode.lil SwitchNode.o BipSampPluginUtil.o Common.o NodeFactory.o \

Developing user-defined extensions 55

-L /opt/IBM/mqsi/6.0/lib

 -l imbdfplg

chmod a+r SwitchNode.lil

Compiling on HP-UX

Compile and link the user-defined node on HP-UX as follows, using a supported C

compiler:

cc +z \

-I. \

 -I<install_dir>/include \

 -I<install_dir>/include/plugin \

 -c BipSampPluginUtil.c \

 -o <output_dir>/BipSampPluginUtil.o

cc +z \

-I. \

 -I<install_dir>/include \

 -I<install_dir>/include/plugin \

 -c Common.c \

 -o <output_dir>/Common.o

cc +z \

-I. \

 -I<install_dir>/include \

 -I<install_dir>/include/plugin \

 -c NodeFactory.c \

 -o <output_dir>/NodeFactory.o

cc +z \

-I. \

 -I<install_dir>/include \

 -I<install_dir>/include/plugin \

 -c SwitchNode.c \

 -o <output_dir>/SwitchNode.o

cc +z \

-I. \

 -I<install_dir>/include \

 -I<install_dir>/include/plugin \

 -c TransformNode.c \

 -o <output_dir>/TransformNode.o

ld -b \

 -o <output_dir>/SwitchNode.lil \

 <output_dir>/BipSampPluginUtil.o \

 <output_dir>/Common.o \

 <output_dir>/NodeFactory.o \

 <output_dir>/SwitchNode.o \

 <output_dir>/TransformNode.o \

 -L <install_dir>/lib \

 -L <install_dir>/xml4c/lib \

 -L <install_dir>/merant/lib \

 -L <java_home>/jre/lib/PA_RISC2.0 \

 -L <java_home>/jre/lib/PA_RISC2.0/server \

 -l imbdfplg

chmod a+r <output_dir>/SwitchNode.lil

56 User-defined Extensions

Compiling on Linux

Compile and link the user-defined node on Linux as follows, using a supported C

compiler. Note that the lines have been split to improve readability. Enter each

command as a single line of input.

/usr/bin/gcc -c -fpic -MD -trigraphs -I. -I/opt/mqsi/include

 -I/opt/mqsi/include/plugin -DLINUX -D__USE_GNU

 -D_GNU_SOURCE TransformNode.c

/usr/bin/gcc -c -fpic -MD -trigraphs -I. -I/opt/mqsi/include

 -I/opt/mqsi/include/plugin -DLINUX -D__USE_GNU

 -D_GNU_SOURCE SwitchNode.c /usr/bin/gcc -c -fpic -MD -trigraphs -I. -I/opt/mqsi/include

 -I/opt/mqsi/include/plugin -DLINUX -D__USE_GNU

 -D_GNU_SOURCE BipSampPluginUtil.c

/usr/bin/gcc -c -fpic -MD -trigraphs -I. -I/opt/mqsi/include

 -I/opt/mqsi/include/plugin -DLINUX -D__USE_GNU

 -D_GNU_SOURCE Common.c

/usr/bin/gcc -c -fpic -MD -trigraphs -I. -I/opt/mqsi/include

 -I/opt/mqsi/include/plugin -DLINUX -D__USE_GNU

 -D_GNU_SOURCE NodeFactory.c

/usr/bin/gcc -o samples.lil

 TransformNode.o SwitchNode.o BipSampPluginUtil.o Common.o NodeFactory.o

 -shared -lc -lnsl -ldl -L/opt/mqsi/lib -limbdfplg

These commands create the file samples.lil, which provides TransformNode and

SwitchNode objects. If an exception occurs in the node, it is not handled correctly;

and the broker abends and is restarted.

Compiling on Solaris

Compile and link the user-defined node on Solaris as follows, using a supported C

compiler:

cc -mt \

 -I. \

 -I<install_dir>/include \

 -I<install_dir>/include/plugin \

 -c SwitchNode.c \

 -o <output_dir>/SwitchNode.o

cc -mt \

 -I. \

 -I<install_dir>/include \

 -I<install_dir>/include/plugin \

 -c BipSampPluginUtil.c \

 -o <output_dir>/BipSampPluginUtil.o

cc -mt \

 -I. \

 -I<install_dir>/include \

 -I<install_dir>/include/plugin \

 -c NodeFactory.c \

 -o <output_dir>/NodeFactory.o

cc -mt \

 -I. \

 -I<install_dir>/include \

 -I<install_dir>/include/plugin \

 -c Common.c \

 -o <output_dir>/Common.o

cc -G \

 -o <output_dir>/SwitchNode.lil \

 <output_dir>/SwitchNode.o \

 <output_dir>/BipSampPluginUtil.o \

 <output_dir>/NodeFactory.o \

Developing user-defined extensions 57

<output_dir>/Common.o \

 -L <install_dir>/lib /

 -l imbdfplg

chmod a+r <output_dir>/SwitchNode.lil

Compiling on z/OS

Force your link to use prelinker or linker by setting the _CC_STEPS variable to -1, as

follows:

export _CC_STEPS=-1

Alternatively you can add these two lines to your makefile to export it, as follows:

_CC_STEPS=-1

.EXPORT : _CC_STEPS

Compile and link the user-defined node on z/OS as follows, using a supported C

compiler:

cc -c \

 -Wc,DLL -g -W0,long,langlvl\(extended\),EXPORTALL,TARGET\(OSV2R8\) \

 -W0,LIST\(./SwitchNode.lst\) \

 -I. -I${install_dir}/include \

 -I${install_dir}/include/plugin \

 -I${install_dir}/sample/include \

 -I${install_dir}/sample/plugin \

 -o ./SwitchNode.o ./SwitchNode.c

cc -c \

 -Wc,DLL -g -W0,long,langlvl\(extended\),EXPORTALL,TARGET\(OSV2R8\) \

 -W0,LIST\(./SwitchNode.lst\) \

 -I. -I${install_dir}/include \

 -I${install_dir}/include/plugin \

 -I${install_dir}/sample/include \

 -I${install_dir}/sample/plugin \

 -o ./BipSampPluginUtil.o ./BipSampPluginUtil.c

cc -c \

 -Wc,DLL -g -W0,long,langlvl\(extended\),EXPORTALL,TARGET\(OSV2R8\) \

 -W0,LIST\(./SwitchNode.lst\) \

 -I. -I${install_dir}/include \

 -I${install_dir}/include/plugin \

 -I${install_dir}/sample/include \

 -I${install_dir}/sample/plugin \

 -o ./Common.o ./Common.c

cc -c \

 -Wc,DLL -g -W0,long,langlvl\(extended\),EXPORTALL,TARGET\(OSV2R8\) \

 -W0,LIST\(./SwitchNode.lst\) \

 -I. -I${install_dir}/include \

 -I${install_dir}/include/plugin \

 -I${install_dir}/sample/include \

 -I${install_dir}/sample/plugin \

 -o ./NodeFactory.o ./NodeFactory.c

cc \

 -Wl,DLL -g -Wl,p,map -Wl,LIST=ALL,MAP,XREF,REUS=RENT \

 -o ./SwitchNode.lil ./SwitchNode.o ./BipSampPluginUtil.o \

 ./Common.o ./NodeFactory.o \

 ${install_dir}/lib/libimbdfplg.x

Set the file permissions of the user-defined extension to group read and execute by

issuing the following command:

chmod a+rx {output_dir}/SwitchNode.lil

Note: -g becomes -2 for optimized builds.

58 User-defined Extensions

Creating a user-defined extension in Java

You can write user-defined nodes in Java. However, user-defined parsers can be

written in C only.

This section contains the following topics that describe how to create user-nodes in

Java:

v “Creating an input node in Java”

v “Creating a message processing or output node in Java” on page 66

v “Compiling a Java user-defined node” on page 75

v “Packaging a Java user-defined node” on page 76

Restrictions when creating Java nodes

When creating Java nodes, be aware of the following restrictions:

v “System.exit(...) not supported”

v “Developing nodes on z/OS”

System.exit(...) not supported

Within Java user-defined nodes, and the Java compute node, calling the

System.exit(...) method is not supported. Calling this method results in a

SecurityException.

Developing nodes on z/OS

Do not develop Java nodes on z/OS that you intend to deploy to a broker on a

distributed platform. This is because the level of Java on z/OS might not produce

code that is compatible with the level of Java on the distributed platform.

Creating an input node in Java

Before you start

Ensure that you have read and understood the following topics:

v “Planning user-defined extensions” on page 5

v “Designing user-defined extensions” on page 8

v “User-defined input nodes” on page 16

WebSphere Message Broker provides the source for two sample user-defined nodes

called SwitchNode and TransformNode. You can use these nodes in their current

state, or you can modify them.

A Java user-defined node is distributed as a .jar file. This topic describes the steps

you need to take to create an input node using Java. It outlines the following steps:

1. “Creating a new Java project” on page 60

2. “Declaring the input node class” on page 60

3. “Defining the node constructor” on page 61

4. “Declaring the node name” on page 61

5. “Declaring attributes” on page 61

6. “Implementing the node functionality” on page 62

Developing user-defined extensions 59

7. “Deleting an instance of the node” on page 63

Do not develop Java nodes on z/OS that you intend to deploy to a broker on a

distributed platform. This is because the level of Java on z/OS might not produce

code that is compatible with the level of Java on the distributed platform.

Creating a new Java project

You can create Java nodes from within the workbench, using the provided plug-in

development environment (PDE). To do this, you must create a new Java project,

as follows:

1. Switch to the Plug-in Development perspective.

2. Click File > New > Project. Select Java from the left menu, and then select Java

Project from the right menu

3. Give the project a name.

The Java Settings panel is displayed.

4. Select the Libraries tab, and click Add External JARs.

5. Select install_dir\classes\jplugin2.jar.

6. Follow the prompts on the other tabs to define any other build settings.

7. Click Finish.

You can then develop the source for your Java node within this project.

Declaring the input node class

Any class that implements the MbInputNodeInterface, and is contained in the

broker’s classpath (or LIL path) is registered with the broker as an input node.

When you implement the MbInputNodeInterface, you also need to implement a

run method for this class. The run method represents the start of the message flow,

contains the data that formulates the message, and propagates it down the flow.

The broker calls the run method when threads become available in accordance

with your specified threading model.

For example, to declare the input node class:

package com.ibm.jplugins;

import com.ibm.broker.plugin.*;

public class BasicInputNode extends MbInputNode implements MbInputNodeInterface

{

...

You can do this in the workbench as follows:

1. Click File > New > Class.

2. Set the package and class name fields to appropriate values.

3. Delete the text in the Superclass text field and click the Browse button

4. Select MbInputNode.

5. Click the Add button next to Interfaces text field, and select

MbInputNodeInterface.

6. Click Finish.

60 User-defined Extensions

Defining the node constructor

When the node is instantiated, the constructor of the user’s node class is called.

This is where you create the terminals of the node, and initialize any default

values for the attributes.

An input node has a number of output terminals associated with it, but does not

typically have any input terminals. Use the createOutputTerminal method to add

output terminals to a node when the node is instantiated. For example, to create a

node with three output terminals:

public BasicInputNode() throws MbException

{

 createOutputTerminal ("out");

 createOutputTerminal ("failure");

 createOutputTerminal ("catch");

 setAttribute ("firstParserClassName","myParser");

 attributeVariable = new String ("none");

}

Declaring the node name

You need to declare the name of the node as it will be identified by the

workbench. All node names must end with ″Node″. You declare the name using

the following method:

public static String getNodeName()

{

 return "BasicInputNode";

}

If this method is not declared, the Java API framework creates a default node

name using the following rules:

v The class name is appended to the package name.

v The dots are removed, and the first letter of each part of the package and class

name are capitalized.

For example, by default, the following class is assigned the node name

″ComIbmPluginsamplesBasicInputNode″:

package com.ibm.pluginsamples;

public class BasicInputNode extends MbInputNode implements MbInputNodeInterface

{

 ...

Declaring attributes

You declare node attributes in the same way as Java Bean properties. You are

responsible for writing getter and setter methods for the attributes, and the API

framework infers the attribute names using the Java Bean introspection rules. For

example, if you declare the following two methods:

private String attributeVariable;

public String getFirstAttribute()

{

 return attributeVariable;

}

publc void setFirstAttribute(String value)

{

 attributeVariable = value;

}

Developing user-defined extensions 61

The broker infers that this node has an attribute called firstAttribute. This name is

derived from the names of the get or set methods, not from any internal class

member variable names. Attributes can only be exposed as strings, so you must

convert any numeric types to and from strings in the get or set methods. For

example, the following method defines an attribute called timeInSeconds:

int seconds;

public String getTimeInSeconds()

{

 return Integer.toString(seconds);

}

public void setTimeInSeconds(String value)

{

 seconds = Integer.parseInt(value);

}

Implementing the node functionality

As already described, the run method is called by the broker to create the input

message. This method should provide all the processing function for the input

node.

Overriding default message parser attributes (optional)

An input node implementation normally determines what message parser initially

parses an input message. For example, the primitive MQInput node dictates that

an MQMD parser is required to parse the MQMD header. A user-defined input

node can select an appropriate header or message parser, and the mode in which

the parsing is controlled, by using the following attributes that are included as

default, which you can override:

rootParserClassName

Defines the name of the root parser that parses message formats supported

by the user-defined input node. It defaults to GenericRoot, a supplied root

parser that causes the broker to allocate and chain parsers together. It is

unlikely that a node would need to modify this attribute value.

firstParserClassName

Defines the name of the first parser, in what might be a chain of parsers

that are responsible for parsing the bitstream. It defaults to XML.

messageDomainProperty

An optional attribute that defines the name of the message parser required

to parse the input message. The supported values are the same as those

supported by the MQInput node. (See MQInput node for more information

about the MQInput node.)

messageSetProperty

An optional attribute that defines the message set identifier, or the message

set name, in the Message Set field, only if the MRM parser was specified

by the messageDomainProperty attribute.

messageTypeProperty

An optional attribute that defines the identifier of the message in the

MessageType field, only if the MRM parser was specified by the

messageDomainProperty attribute.

62 User-defined Extensions

messageFormatProperty

An optional attribute that defines the format of the message in the Message

Format field, only if the MRM parser was specified by the

messageDomainProperty attribute.

Deleting an instance of the node

An instance of the node is deleted when either:

v You shutdown the broker.

v You remove the node or the message flow containing the node, and redeploy the

configuration.

During node deletion, the node might want to be informed so that it can perform

any cleanup operations, such as closing sockets. If the node implements the

optional onDelete method, this is called by the broker just before the node is

deleted.

You implement the onDelete method as follows:

public void onDelete()

{

 // perform node cleanup if necessary

}

Extending the capability of a Java input node

Before you start

Ensure that you have read and understood the following topics:

v “Creating an input node in Java” on page 59

v “Restrictions when creating Java nodes” on page 59

After you have created a user-defined node, the following functions are available:

1. “Receiving external data into a buffer”

2. “Propagating the message” on page 64

3. “Controlling threading and transactionality” on page 64

4. “Handling exceptions” on page 65

Receiving external data into a buffer:

An input node can receive data from any type of external source, such as a file

system, a queue or a database, in the same way as any other Java program, as long

as the output from the node is in the correct format.

You provide an input buffer (or bit stream) to contain input data, and associate it

with a message object. You create a message from a byte array using the

createMessage method of the MbInputNode class, and then generate a valid

message assembly from this message. For details of these methods, see theJava

API. For example, to read the input from a file:

1. Create an input stream to read from the file:

FileInputStream inputStream = new FileInputStream("myfile.msg");

2. Create a byte array the size of the input file:

byte[] buffer = new byte[inputStream.available()];

3. Read from the file into the byte array:

inputStream.read(buffer);

Developing user-defined extensions 63

com/ibm/broker/plugin/package-overview.html
com/ibm/broker/plugin/package-overview.html

4. Close the input stream:

inputStream.close();

5. Create a message to put on the queue:

MbMessage msg = createMessage(buffer);

6. Create a new message assembly to hold this message:

msg.finalizeMessage(MbMessage.FINALIZE_VALIDATE);

MbMessageAssembly newAssembly =

 new MbMessageAssembly(assembly, msg);

Propagating the message:

When you have created a message assembly, you can then propagate it to one of

the node’s terminals.

For example, to propagate the message assembly to the ″out″ terminal :

MbOutputTerminal out = getOutputTerminal("out");

out.propagate(newAssembly);

Controlling threading and transactionality:

The broker infrastructure handles transaction issues such as controlling the commit

of any WebSphere MQ or database unit of work when message processing has

completed. However, if a user-defined node is used, any resource updates cannot

be automatically committed by the broker.

Each message flow thread is allocated from a pool of threads maintained for each

message flow, and starts execution in the run method.

The user-defined node uses return values to indicate whether a transaction has

been successful, to control whether transactions are committed or rolled-back, and

to control when the thread is returned to the pool. Any unhandled exceptions are

caught by the broker infrastructure, and the transaction is rolled back.

You determine the behavior of transactions and threads using an appropriate

return value from the following:

MbInputNode.SUCCESS_CONTINUE

The transaction is committed and the broker calls the run method again

using the same thread.

MbInputNode.SUCCESS_RETURN

The transaction is committed and the thread is returned to the thread pool,

assuming that it is not the only thread for this message flow.

MbInputNode.FAILURE_CONTINUE

The transaction is rolled back and the broker calls the run method again

using the same thread.

MbInputNode.FAILURE_RETURN

The transaction is rolled back and the thread is returned to the thread pool,

assuming that it is not the only thread for this message flow.

MbInputNode.TIMEOUT

The run method must not block indefinitely while waiting for input data to

arrive. While the flow is blocked by user code, you cannot shutdown or

reconfigure the broker. The run method must yield control to the broker

periodically by returning from the run method. If input data has not been

received after a certain period (for example, 5 seconds), the method should

64 User-defined Extensions

return with the TIMEOUT return code. Assuming that the broker does not

need to reconfigure or shutdown, the input node’s run method gets called

again straight away.

To create multithreaded message flows, you call the dispatchThread method after a

message has been created, but before the message is propagated to an output

terminal. This ensures that only one thread is waiting for data while other threads

are processing the message. New threads are obtained from the thread pool up to

the maximum limit specified by the additionalInstances attribute of the message

flow. For example:

public int run(MbMessageAssembly assembly) throws MbException

{

 byte[] data = getDataWithTimeout(); // user supplied method

 // returns null if timeout

 if(data == null)

 return TIMEOUT;

 MbMessage msg = createMessage(data);

 msg.finalizeMessage(MbMessage.FINALIZE_VALIDATE);

 MbMessageAssembly newAssembly =

 new MbMessageAssembly(assembly, msg);

 dispatchThread();

 getOutputTerminal("out").propagate(newAssembly);

 return SUCCESS_RETURN;

}

Handling exceptions:

You use the mbException class to catch and access exceptions. The mbException

class returns an array of exception objects representing the children of an exception

in the broker exception list. Each element returned specifies its exception type. An

empty array is returned if an exception has no children. The following code sample

shows an example of the usage of the MbException class.

public void evaluate(MbMessageAssembly assembly, MbInputTerminal inTerm) throws MbException

 {

 try

 {

 // plug-in functionality

 }

 catch(MbException ex)

 {

 traverse(ex, 0);

 throw ex; // if re-throwing, it must be the original exception that was caught

 }

 }

 void traverse(MbException ex, int level)

 {

 if(ex != null)

 {

 // Do whatever action here

 System.out.println("Level: " + level);

 System.out.println(ex.toString());

 System.out.println("traceText: " + ex.getTraceText());

 // traverse the hierarchy

 MbException e[] = ex.getNestedExceptions();

Developing user-defined extensions 65

int size = e.length;

 for(int i = 0; i < size; i++)

 {

 traverse(e[i], level + 1);

 }

 }

 }

Refer to the javadoc for more details of using the mbException class.

You can develop a user-defined message processing or output node in such a way

that it can access all current exceptions. For example, to catch database exceptions

you can use the MbSQLStatement class. This class sets the value of the

’throwExceptionOnDatabaseError’ attribute, which determines broker behavior

when it encounters a database error. When it is set to true, if an exception is

thrown, it can be caught and handled by the user-defined extension.

The following code sample shows an example of how to use the MbSQLStatement

class.

public void evaluate(MbMessageAssembly assembly, MbInputTerminal inTerm) throws MbException

 {

 MbMessage newMsg = new MbMessage(assembly.getMessage());

 MbMessageAssembly newAssembly = new MbMessageAssembly(assembly, newMsg);

 String table =

 assembly.getMessage().getRootElement().getLastChild().getFirstChild().getName();

 MbSQLStatement state = createSQLStatement("dbName",

 "SET OutputRoot.XML.integer[] = PASSTHRU(’SELECT * FROM " + table + "’);");

 state.setThrowExceptionOnDatabaseError(false);

 state.setTreatWarningsAsErrors(true);

 state.select(assembly, newAssembly);

 int sqlCode = state.getSQLCode();

 if(sqlCode != 0)

 {

 // Do error handling here

 System.out.println("sqlCode = " + sqlCode);

 System.out.println("sqlNativeError = " + state.getSQLNativeError());

 System.out.println("sqlState = " + state.getSQLState());

 System.out.println("sqlErrorText = " + state.getSQLErrorText());

 }

 getOutputTerminal("out").propagate(assembly);

 }

Creating a message processing or output node in Java

Before you start

Ensure that you have read and understood the following topics:

v “Planning user-defined extensions” on page 5

v “Designing user-defined extensions” on page 8

v “User-defined message processing nodes” on page 20

v “User-defined output nodes” on page 28

v “Restrictions when creating Java nodes” on page 59

66 User-defined Extensions

WebSphere Message Broker provides the source for two sample user-defined nodes

called SwitchNode and TransformNode. You can use these nodes in their current

state, or you can modify them.

Conceptually, a message processing node is used to process a message in some

way, and an output node is used to output a message as a bit stream. However,

when you code a message processing node or an output node, they are essentially

the same thing. You can perform message processing within an output node, and

likewise you can output a message to a bit stream using a message processing

node. For simplicity, this topic mainly refers to the node as a message processing

node, however, it discusses the functionality of both types of node.

The functions of both types of node are covered in this topic. It outlines the

following steps:

1. “Creating a new Java project”

2. “Declaring the message processing node class”

3. “Defining the node constructor” on page 68

4. “Declaring the node name” on page 68

5. “Declaring attributes” on page 68

6. “Implementing the node functionality” on page 69

7. “Deleting an instance of the node” on page 69

Creating a new Java project

You can create Java nodes from within the workbench, using the provided plug-in

development environment (PDE). To do this, you must create a new Java project,

as follows:

1. Switch to the Plug-in Development perspective.

2. Click File > New > Project. Select Java from the left menu, and then select Java

Project from the right menu

3. Give the project a name.

The Java Settings panel is displayed.

4. Select the Libraries tab, and click Add External JARs.

5. Select install_dir\classes\jplugin2.jar.

6. Follow the prompts on the other tabs to define any other build settings.

7. Click Finish.

You can then develop the source for your Java node within this project.

Declaring the message processing node class

Any class that implements the MbNodeInterface and is contained in the broker’s

classpath (or LIL path) is registered with the broker as a message processing node.

When you implement the MbNodeInterface, you must also implement an evaluate

method for this class. The evaluate method is called by the broker for each

message that is passed through the flow.

For example, to declare the message processing node class:

package com.ibm.jplugins;

import com.ibm.broker.plugin.*;

public class BasicNode extends MbNode implements MbNodeInterface

Developing user-defined extensions 67

You can do this in the workbench as follows:

1. Click File > New > Class.

2. Set the package and class name fields to appropriate values.

3. Delete the text in the Superclass text field and click the Browse button

4. Select MbNode and click OK.

5. Click the Add button next to Interfaces text field, and select MbNodeInterface.

6. Click Finish.

Defining the node constructor

When the node is instantiated, the constructor of the user’s node class is called.

This is where you create the terminals of the node, and initialize any default

values for attributes.

A message processing node has a number of input terminals and output terminals

associated with it. The methods createInputTerminal and createOutputTerminal are

used to add terminals to a node when the node is instantiated. For example, to

create a node with one input terminal and two output terminals:

public MyNode() throws MbException

{

 // create terminals here

 createInputTerminal ("in");

 createOutputTerminal ("out");

 createOutputTerminal ("failure");

}

Declaring the node name

You need to declare the name of the node as it will be identified by the

workbench. All node names must end with ″Node″. You declare the name using

the following method:

public static String getNodeName()

{

 return "BasicNode";

}

If this method is not declared, the Java API framework creates a default node

name using the following rules:

v The class name is appended to the package name.

v The dots are removed, and the first letter of each part of the package and class

name are capitalized.

For example, by default, the following class is assigned the node name

″ComIbmPluginsamplesBasicNode″:

package com.ibm.pluginsamples;

public class BasicNode extends MbNode implements MbNodeInterface

{

 ...

Declaring attributes

You declare node attributes in the same way as Java Bean properties. You are

responsible for writing getter and setter methods for the attributes, and the API

framework infers the attribute names using the Java Bean introspection rules. For

example, if you declare the following two methods:

68 User-defined Extensions

private String attributeVariable;

public String getFirstAttribute()

{

 return attributeVariable;

}

publc void setFirstAttribute(String value)

{

 attributeVariable = value;

}

The broker infers that this node has an attribute called firstAttribute. This name is

derived from the names of the get or set methods, not from any internal class

member variable names. Attributes can only be exposed as strings, so you must

convert any numeric types to and from strings in the get or set methods. For

example, the following method defines an attribute called timeInSeconds:

int seconds;

public String getTimeInSeconds()

{

 return Integer.toString(seconds);

}

public void setTimeInSeconds(String value)

{

 seconds = Integer.parseInt(value);

}

Implementing the node functionality

As described earlier, for message processing or output nodes, you must implement

the evaluate method, defined in MbNodeInterface. This is called by the broker to

process the message. This method should provide all the processing function for

the node.

The evaluate method has two parameters that are passed in by the broker:

1. The MbMessageAssembly, which contains the following objects that are

accessed using the appropriate methods:

v The incoming message

v The local environment

v The global environment

v The exception list
2. The input terminal on which the message has arrived.

The message flow data, that is, the message, global environment, local

environment, and exception list, is received at the input terminal of the node.

Deleting an instance of the node

An instance of the node is deleted when either:

v You shutdown the broker.

v You remove the node or the message flow containing the node, and redeploy the

configuration.

Developing user-defined extensions 69

During node deletion, the node might want to be informed so that it can perform

any cleanup operations, such as closing sockets. If the node implements the

optional onDelete method, this is called by the broker just before the node is

deleted.

You implement the onDelete method as follows:

public void onDelete()

{

 // perform node cleanup if necessary

}

Extending the capability of a Java message processing or output

node

Before you start

Ensure that you have read and understood the following topic:

v “Creating a message processing or output node in Java” on page 66

After you have created a user-defined node, the following functions are available:

1. “Accessing message data”

2. “Transforming a message object” on page 71

3. “Accessing ESQL” on page 72

4. “Handling exceptions” on page 72

5. “Propagating the message” on page 74

6. “Writing to an output device” on page 74

Accessing message data:

In many cases, the user-defined node needs to access the contents of the message

received on its input terminal. The message is represented as a tree of syntax

elements. Groups of utility functions are provided for message management,

message buffer access, syntax element navigation, and syntax element access.

The MbElement class provides the interface to the syntax elements. For further

details of the Java API, see the Javadoc.

For example:

1. To navigate to the relevant syntax element in the XML message:

 MbElement rootElement = assembly.getMessage().getRootElement();

 MbElement switchElement =

 rootElement.getLastChild().getFirstChild().getFirstChild();

2. To select the terminal indicated by the value of this element:

 String terminalName;

 String elementValue = (String)switchElement.getValue();

 if(elementValue.equals("add"))

 terminalName = "add";

 else if(elementValue.equals("change"))

 terminalName = "change";

 else if(elementValue.equals("delete"))

 terminalName = "delete";

 else if(elementValue.equals("hold"))

 terminalName = "hold";

 else

 terminalName = "failure";

 MbOutputTerminal out = getOutputTerminal(terminalName);

70 User-defined Extensions

Transforming a message object:

The received input message is read-only, so before a message can be transformed,

you must write it to a new output message. You can copy elements from the input

message, or you can create new elements and attach them to the message. New

elements are generally in a parser’s domain.

The MbMessage class provides the copy constructors, and methods to get the root

element of the message. The MbElement class provides the interface to the syntax

elements.

For example, where you have an incoming message assembly with embedded

messages:

1. Create a new copy of the message assembly and its embedded messages:

 MbMessage newMsg = new MbMessage(assembly.getMessage());

 MbMessageAssembly newAssembly = new MbMessageAssembly(assembly, newMsg);

2. Navigate to the relevant syntax element in the XML message:

 MbElement rootElement = newAssembly.getMessage().getRootElement();

 MbElement switchElement =

 rootElement.getFirstElementByPath("/XML/data/action");

3. Change the value of an existing element:

 String elementValue = (String)switchElement.getValue();

 if(elementValue.equals("add"))

 switchElement.setValue("change");

 else if(elementValue.equals("change"))

 switchElement.setValue("delete");

 else if(elementValue.equals("delete"))

 switchElement.setValue("hold");

 else

 switchElement.setValue("failure");

4. Add a new tag as a child of the switch tag:

 MbElement tag = switchElement.createElementAsLastChild(MbElement.TYPE_NAME,

 "PreviousValue",

 elementValue);

5. Add an attribute to this new tag:

 tag.createElementAsFirstChild(MbElement.TYPE_NAME_VALUE,

 "NewValue",

 switchElement.getValue());

 MbOutputTerminal out = getOutputTerminal("out");

As part of the transformation it might be necessary to create a new message body.

To create a new message body, the following methods are available:

createElementAfter

createElementAsFirstChild

createElementAsLastChild

createElementBefore

createElementAsLastChildFromBitstream

These methods should be used because they are specific for assigning a parser to a

message tree folder.

When creating a message body, do not use the following methods because they do

not associate an owning parser with the folder:

createElementAfter

createElementAfter

createElementAsFirstChild

createElementAsFirstChild

Developing user-defined extensions 71

createElementAsLastChild

createElementAsLastChild

createElementBefore

createElementBefore

Accessing ESQL:

Nodes can invoke ESQL expressions using Compute node ESQL syntax. You can

create and modify the components of the message using ESQL expressions, and

you can refer to elements of both the input message and data from an external

database.

The following procedure demonstrates how to control transactions in your

user-defined node using ESQL:

1. Set the name of the ODBC data source to use. For example:

String dataSourceName = "myDataSource";

2. Set the ESQL statement to execute:

String statement =

 "SET OutputRoot.XML.data =

 (SELECT Field2 FROM Database.Table1 WHERE Field1 = 1);";

Or, if you want to execute a statement that returns no result:

String statement = "PASSTHRU(

 ’INSERT INTO Database.Table1 VALUES(

 InputRoot.XML.DataField1,

 InputRoot.XML.DataField2)’);";

3. Select the type of transaction you want from the following:

MbSQLStatement.SQL_TRANSACTION_COMMIT

Immediately commit the transaction upon execution of the ESQL

statement.

MbSQLStatement.SQL_TRANSACTION_AUTO

Commit the transaction when the message flow has completed.

(Rollbacks are performed if necessary.)

For example:

int transactionType = MbSQLStatement.SQL_TRANSACTION_AUTO;

4. Get the ESQL statement. For example:

MbSQLStatement sql =

 createSQLStatement(dataSourceName, statement, transactionType);

You can use the method createSQLStatement(dataSource, statement) to

default the transaction type to MbSQLStatement.SQL_TRANSACTION_AUTO).

5. Create the new message assembly to be propagated:

MbMessageAssembly newAssembly =

 new MbMessageAssembly(assembly, assembly.getMessage());

6. Execute the ESQL statement:

sql.select(assembly, newAssembly);

Or, if you want to execute an ESQL statement that returns no result:

sql.execute(assembly);

For more information about ESQL, see ESQL overview.

Handling exceptions:

72 User-defined Extensions

You use the mbException class to catch and access exceptions. The mbException

class returns an array of exception objects representing the children of an exception

in the broker exception list. Each element returned specifies its exception type. An

empty array is returned if an exception has no children. The following code sample

shows an example of the usage of the MbException class.

public void evaluate(MbMessageAssembly assembly, MbInputTerminal inTerm) throws MbException

 {

 try

 {

 // plug-in functionality

 }

 catch(MbException ex)

 {

 traverse(ex, 0);

 throw ex; // if re-throwing, it must be the original exception that was caught

 }

 }

 void traverse(MbException ex, int level)

 {

 if(ex != null)

 {

 // Do whatever action here

 System.out.println("Level: " + level);

 System.out.println(ex.toString());

 System.out.println("traceText: " + ex.getTraceText());

 // traverse the hierarchy

 MbException e[] = ex.getNestedExceptions();

 int size = e.length;

 for(int i = 0; i < size; i++)

 {

 traverse(e[i], level + 1);

 }

 }

 }

Refer to the javadoc for more details of using the mbException class.

You can develop a user-defined message processing or output node in such a way

that it can access all current exceptions. For example, to catch database exceptions

you can use the MbSQLStatement class. This class sets the value of the

’throwExceptionOnDatabaseError’ attribute, which determines broker behavior

when it encounters a database error. When it is set to true, if an exception is

thrown, it can be caught and handled by the user-defined extension.

The following code sample shows an example of how to use the MbSQLStatement

class.

public void evaluate(MbMessageAssembly assembly, MbInputTerminal inTerm) throws MbException

 {

 MbMessage newMsg = new MbMessage(assembly.getMessage());

 MbMessageAssembly newAssembly = new MbMessageAssembly(assembly, newMsg);

 String table =

 assembly.getMessage().getRootElement().getLastChild().getFirstChild().getName();

 MbSQLStatement state = createSQLStatement("dbName",

 "SET OutputRoot.XML.integer[] = PASSTHRU(’SELECT * FROM " + table + "’);");

 state.setThrowExceptionOnDatabaseError(false);

Developing user-defined extensions 73

state.setTreatWarningsAsErrors(true);

 state.select(assembly, newAssembly);

 int sqlCode = state.getSQLCode();

 if(sqlCode != 0)

 {

 // Do error handling here

 System.out.println("sqlCode = " + sqlCode);

 System.out.println("sqlNativeError = " + state.getSQLNativeError());

 System.out.println("sqlState = " + state.getSQLState());

 System.out.println("sqlErrorText = " + state.getSQLErrorText());

 }

 getOutputTerminal("out").propagate(assembly);

 }

Propagating the message:

Before you propagate a message, you have to decide what message flow data you

want to propagate, and which of the node’s terminals is to receive the data. You

should finalize the message before you propagate it. After propagating a message,

you must delete the output message.

For example:

1. To propagate the message to the output terminal ″out″:

MbOutputTerminal out = getOutputTerminal("out");

 out.propagate(newAssembly);

2. To delete the output message:

 newMsg.clearMessage();

Writing to an output device:

To write to an output device, the logical (hierarchical) message needs to be

converted back into a bitstream. You do this using the getBuffer method in

MbMessage, as follows:

public void evaluate(MbMessageAssembly assembly, MbInputTerminal in)

 throws MbException

{

 MbMessage msg = assembly.getMessage();

 byte[] bitstream = msg.getBuffer();

 // write the bitstream out somewhere

 writeBitstream(bitstream); // user method

 }

Typically, for an output node the message is not propagated to any output

terminal, so you can just return at this point.

Note: You must use the supplied MQOutput node when writing to WebSphere

MQ queues, because the broker internally maintains a WebSphere MQ

connection and open queue handles on a thread-by-thread basis, and these

are cached to optimize performance. In addition, the broker handles

recovery scenarios when certain WebSphere MQ events occur, and this

would be adversely affected if WebSphere MQ MQI calls were used in a

user-defined output node.

74 User-defined Extensions

Compiling a Java user-defined node

Before you start

You must have a user-defined node written in Java. This can be one of the

provided sample nodes described in “Sample node files” on page 95, or a node

you have created yourself using the instructions in either “Creating a message

processing or output node in Java” on page 66 or “Creating an input node in Java”

on page 59.

You can compile a Java user-defined node either from the command line, or from

within the project itself. This topic outlines both options.

When you compile a Java user-defined node on a distributed platform, you need

the IBM Software Developer Kit for Java, Version 1.3.1. On z/OS you need the IBM

SDK for z/OS Java 2 Technology Edition, Version 1.4.

Compiling a Java user-defined node from the workbench

Use the following procedure to compile your Java user-defined node from the

workbench:

1. Switch to the Java Development Perspective, if it is not already active.

2. In the Package Explorer, select the /src directory inside your node project, and

click File > Export....

3. From the list displayed, select JAR file. Click Next.

4. The resources that are available for you to export as a JAR file are listed. Verify

that the /src folder and all its Java contents are checked.

5. Verify that Export generated class files and resources is checked.

6. Specify a name and location for your JAR file. You should place the file inside

the root directory of your node project, and give the file the same name as the

name of the project (with a .jar extension).

7. You can use the default values for the rest of the options. Click Finish.

The created .jar file appears in your node project. The .jar file is then ready for you

to install in a broker domain (see “Installing a user-defined extension on a broker

domain” on page 79) or to package for distribution (see “Distributing a

user-defined node” on page 88).

Compiling a Java user-defined node from the command line

Use the following procedure to compile your Java user-defined node from the

command line:

1. Add the location of jplugin2.jar to the CLASSPATH. The location of the

jplugin2.jar file for each platform is shown below:

On Windows: install_dir\classes\jplugin2.jar

On Linux: install_dir/classes/jplugin2.jar

On UNIX: install_dir/classes/jplugin2.jar

On z/OS: install_dir/classes/jplugin2.jar

2. Change to the following directory:

c:\install_dir\sample\extensions\JavaPlugin

c:/install_dir/sample/extensions/JavaPlugin

c:/install_dir/sample/extensions/JavaPlugin

Developing user-defined extensions 75

c:/install_dir/sample/extensions/JavaPlugin

3. Compile the .java file using the javac command, for example:

javac com/ibm/jsamples/nodename.java

4. Package the resulting .class file into a .par file. See “Packaging a Java

user-defined node”

The .par file you have created is then ready for you to install on a broker domain

(see “Installing a user-defined extension on a broker domain” on page 79) or to

package for distribution (see “Distributing a user-defined node” on page 88).

Packaging a Java user-defined node

Before you start

You must have a user-defined node written in Java. This can be one of the

provided sample nodes described in “Sample node files” on page 95, or a node

you have created yourself using the instructions in either “Creating a message

processing or output node in Java” on page 66 or “Creating an input node in Java”

on page 59.

There are two ways to package a user-defined node:

v PAR

A Plug-in Archive (PAR) is the deployment unit for Java user-defined nodes. The

PAR contains the user-defined node classes and, if required as dependencies, can

contain JAR files. A PAR file is a zip file with a .par file extension. The directory

structure in the .par file has the following format:

– /classes

The user-defined node classes are stored in this location.

– /lib

JAR files that are required by the user-defined node are stored in this

location. This directory is optional because it will not always be necessary to

include JAR files.

The following procedure describes how to package an example user-defined

node, parexamplenode. In this example, the PAR is to be contained in

par.example.parexamplenode.class with a JAR file dependency dependency.jar.

1. Create the directory structure; for example,

– /classes/par/example/parexamplenode.class

– /lib/dep.jar

2. Issue a zip utility command to create the PAR; for example,

jar cvf parexample.par classes lib

The PAR should be placed in the LIL path that is specified in “Installing a

user-defined extension on a broker domain” on page 79.

v JAR

User-defined nodes can be packaged using a simple JAR. For example, if your

node is defined in example/jarexamplenode.class, create the JAR by using the

jar cvf jarexample.jar example command.

The preferred way to package a Java user-defined node is to use a PAR file. This

is because all dependencies can be packaged with the node, and each node is

loaded in a separate classloader. Refer to “User-defined node classloading” on

page 77 for information on classloading.

Deployment dependencies:

76 User-defined Extensions

If a user-defined node requires an external package, this can be deployed in one of

following ways:

v The external packages can be added to the /lib directory in the deployed PAR.

v For external packages that are shared between several node types, the packages

can be added to one of the following locations:

– The<workpath>/shared-classes/ directory.

– The CLASSPATH environment variable, where all user-defined nodes that are in

the broker installation can access the packages.

User-defined node classloading

When a Java user-defined node is packaged as a PAR file, the Java user-defined

node is loaded in a separate classloader. The classloader loads any class that is

packaged within the deployed PAR. The classes that are placed in the JAR override

any classes that are in the shared classes directory or the CLASSPATH environment

variable. If the deployed PAR contains more than one node type, the nodes share

the same classloader. Therefore, a set of user-defined nodes that share static data

should be packaged in a single PAR file. Java user-defined nodes that are packaged

as simple JAR files are loaded in the same classloader. The classes and the location

from which they are loaded are written to user trace, so you can use this

information to check that the correct classes are being loaded.

The broker uses the following classloader tree:

Bootstrap

System

Common

Broker Shared

JVM classloaders

Grouped

NodeType1 NodeTypeN

Java plug-in nodes

...

The following describes the components in the classloader tree:

v Common classloader: This loads the classes that are shared between the broker

and user code. For example, the classes that are contained in jplugin2.jar are

common to the broker and the user code.

v Broker classloader: This loads the broker internal classes. These classes can not

be accessed by user classes.

Developing user-defined extensions 77

v Shared classloader : This loads classes from JAR files that have been placed in

the <WorkPath>/shared-classes/ directory. These are classes that are available to

all user-defined nodes within the broker.

The broker classloader and the shared classloader are children of the common

classloader. Therefore, the contents of the shared classloader are not visible to

the broker classloader. The following should not be placed in this directory:

– User-defined nodes

– Classes, which have a dependency on other classes that have been deployed

with a user-defined node.
v Grouped classloader: This loads all user-defined nodes that are packaged as

JAR files. User-defined nodes that have been packaged for previous versions of

WebSphere Message Broker will be loaded using this loader. User-defined nodes

that are packaged in JAR files are loaded into one loader, and therefore can

share static data.

User-defined nodes classloading search paths:

User-defined nodes package in a PAR

The broker uses the following search path to find user-defined node classes:

1. /classes to locate classes in the deployed PAR.

2. /lib to locate any JAR files in the deployed PAR.

3. <WorkPath>/shared-classes/ to locate any JAR files.

4. CLASSPATH environment variable.

User-defined nodes package in a JAR

The broker uses the following search path to find user-defined node classes:

1. The deployed JAR file.

2. <WorkPath>/shared-classes/ to locate any JAR files

3. CLASSPATH environment variable.

Endorsed standards for overriding classes

The endorsed standards overriding mechanism allows the following standard

packages to be overridden in the JRE:

v javax.rmi.CORBA

v org.omg.CORBA

v org.omg.CORBA.DynAnyPackage

v org.omg.CORBA.ORBPackage

v org.omg.CORBA.portable

v org.omg.CORBA.TypeCodePackage

v org.omg.CORBA_2_3

v org.omg.CORBA_2_3.portable

v org.omg.CosNaming

v org.omg.CosNaming.NamingContextExtPackage

v org.omg.CosNaming.NamingContextPackage

v org.omg.Dynamic

v org.omg.DynamicAny

v org.omg.DynamicAny.DynAnyFactoryPackage

78 User-defined Extensions

v org.omg.DynamicAny.DynAnyPackage

v org.omg.IOP

v org.omg.IOP.CodecFactoryPackage

v org.omg.IOP.CodecPackage

v org.omg.Messaging

v org.omg.PortableInterceptor

v org.omg.PortableInterceptor.ORBInitInfoPackage

v org.omg.PortableServer

v org.omg.PortableServer.CurrentPackage

v org.omg.PortableServer.POAManagerPackage

v org.omg.PortableServer.POAPackage

v org.omg.PortableServer.portable

v org.omg.PortableServer.ServantLocatorPackage

v org.omg.SendingContext

v org.omg.stub.java.rmi

v org.w3c.dom

v org.xml.sax

v org.xml.sax.ext

v org.xml.sax.helpers

Refer to the Endorsed Standards Override Mechanism for more information.

To override these packages in the broker, place the JAR files for the API standards

in the /lib directory of the PAR.

JNDI context: When looking up a JNDI context, the context classloader is used. If

the lookup uses classes that are packaged with the user-defined node, the context

classloader must be the same as the classloader that is being used to load the

user-defined node. To ensure that each thread uses the same classloader, the

following code can be included in the user-defined node class:

Thread.currentThread.setContextClassLoader(this.getClass().getClassLoader());

Installing a user-defined extension on a broker domain

Before you start

You must have a compiled user-defined extension, which was compiled using the

procedure described in “Compiling a Java user-defined node” on page 75, or

“Compiling a C user-defined extension” on page 54.

1. Put a copy of your compiled or packaged user-defined extension file on every

broker system from which you intend to use it.

If all of your brokers are on the same machine type, you can build the

user-defined extension file once and distribute it to each of your systems (see

“Distributing a user-defined node” on page 88 for details of how to do this). If

you have a cluster that consists of one AIX, one Solaris, and one Windows

broker, you must build the files separately on each machine type.

Use either the mqsichangebroker command or the mqsicreatebroker command

to specify to the broker the directory that contains the user-defined extension

file.

Developing user-defined extensions 79

http://java.sun.com/j2se/1.4.2/docs/guide/standards/

Note: Do not save the .lil or .jar file in the WebSphere Message Broker install

directory.

For C user-defined extensions, it is recommended that the .pdb file, which

corresponds to the .lil file, is also stored in the chosen directory. The .pdb file

provides symbolic information that is used by WebSphere Message Broker

when displaying stack diagnostic information in the event of access violations

or other software malfunctions.

2. Stop and start each broker. This is to ensure that the existence of a new file is

detected.

There are two situations where a broker restart is not necessary:

v If you have created an execution group in the Toolkit, and there is nothing

yet deployed to it, you can add the .lil, .pdb, and .jar file to your chosen

directory.

v If something has already been deployed to the execution group you that

want to use, add the .lil, .pdb, and .jar file to your chosen directory and then

use the mqsireload command to restart the group. It is not possible to

overwrite an existing file on the Windows platform when the broker is

running because of the file lock that is put in place by the operating system.

These two approaches should be used with caution because any execution

group that is connected to the same broker will also detect the new .lil, .pdb,

and .jar files when that execution group is restarted, or when something is first

deployed to that execution group. By using the more conventional way of

restarting the broker, you ensure that anyone with an interest in a particular

execution group is made aware that recent changes have been made to the

broker.

These two situations assume that you have already completed the previous

step, and have therefore used either the mqsichangebroker command or the

mqsicreatebroker command to notify the broker of the directory in which the

user-defined extension files have been placed.

When you have installed a user-defined node, it is referred to by its schema

and name, just like a message flow.

Changing a user-defined extension

On all systems, you can change a user-defined extension file by completing the

following steps:

1. Stop the broker by using the mqsistop command.

2. Update or overwrite the .lil or .jar file.

3. Start the broker by using the mqsistart command.

There are two situations where it is not necessary to stop and start the broker:

v If have created an execution group in the Toolkit, and there is nothing yet

deployed to it, you can add the .lil, .pdb, and .jar file to your chosen directory.

v If something has already been deployed to the execution group you that want to

use, add the lil/pdb/jar file to your chosen directory and then use the

mqsireload command to restart the group. It is not possible to overwrite an

existing file on the Windows platform when the broker is running because of the

file lock that is put in place by the operating system.

These two approaches should be used with caution because any execution group

that is connected to the same broker will also detect the new .lil, .pdb, and .jar files

when that execution group is restarted, or when something is first deployed to it.

80 User-defined Extensions

By using the more conventional way of restarting the broker, you ensure that

anyone with an interest in a particular execution group is made aware that recent

changes have been made to the broker.

These two situations assume that you have already completed the previous step,

and have therefore used either the mqsichangebroker command or the

mqsicreatebroker command to notify the broker of the directory in which the

user-defined extension files have been placed.

Deleting a user-defined extension

On all types of system, you can remove a user-defined extension file from the

broker as follows:

1. Stop the broker, using the mqsistop command.

2. Delete the .lil or .jar file from the appropriate directory. This is one of the

following:

For C user-defined extensions:

 Platform Location

Windows

install_dir\bin

Linux install_dir/lil

UNIX

install_dir/lil

z/OS

install_dir/lil

For Java user-defined nodes:

 Platform Location

Windows

install_dir\jplugin

Linux install_dir/jplugin

UNIX

install_dir/jplugin

z/OS

install_dir/lil

3. Restart the broker using the mqsistart command.

Creating the user interface representation of a user-defined node in

the workbench

For user-defined nodes only, you need to create the user interface representation of

it in the workbench.

This section contains the following topics to help you to do this:

1. “Creating a new user-defined node project” on page 82

2. “Creating a new user-defined node plug-in” on page 83

Developing user-defined extensions 81

If you have a user-defined node from Version 2.1, you must migrate the node to

Version 6.0 using the mqsimigratemsgflows command, as described in Migrating a

message flow, and then follow the instructions in this section.

For user-defined parsers, you only have to install the compiled .lil file. You do not

manipulate parsers from within the workbench; they are only referenced to from

within a message flow. Therefore you do not create a user interface representation

of user-defined parsers.

Creating a new user-defined node project

The project is the container for user-defined nodes and their supporting files. You

must create the project before you can create the interface for the node.

To create a new project for your user-defined node:

 1. Switch to the Broker Application Development perspective.

 2. Launch the Plug-in node project wizard, or click File > New > Project >

Message Flow Node Development > Message Flow Plug-in Node Project.

 3. Click Next.

 4. Specify the name of the category for the nodes you are creating. This is the

name that is displayed on the palette in the Broker Application Development

perspective. For example, for the samples, the category is called ″IBM sample

nodes″.

 5. Click Next.

 6. Specify a name for your project. To be consistent with the supplied nodes, and

to avoid conflict with other ISVs node project names, use your organization’s

Internet domain name as part of the name. For example, the name should be

of the form com.ibm.nodegroup. You can save any number of nodes in a single

project.

 7. Click Next.

 8. On the Plug-in Project Structure panel you are asked to specify a plug-in

runtime library and source folder. These fields are both optional. If you intend

to develop Property Editors or write a compiler class for your node, specify

the JAR file name you want to use. If you want to do any Java development,

accept the defaults or specify the source folder in which to store your Java

source. If you do not want to do any Java development, you can either accept

the default values or remove them.

 9. Clear the ″Generate the Java class that controls the plug-in’s life cycle

(recommended)″ checkbox.

10. Click Next.

11. On the Plug-in Project Structure panel, click Create a blank plug-in project,

then click Finish.

12. If there are any task-list warnings associated with the newly created project,

perform the following steps.

a. Go to Window > Preferences

b. Expand Plug-In Development and select Target Platform

c. Click Not In Workspace to select all loaded plugins

d. Click OK

e. Select your user-defined node project in the Package Explorer, and click

Project > Clean Project.

82 User-defined Extensions

A project folder containing all the supporting files that are needed for your

user-defined node is displayed in the Package Explorer.

The project is stored in the file system as:

install_dir\eclipse\workspace\project_name

Creating a new user-defined node plug-in

When you have created the plug-in node project, you can then create the visual

representation of your node in the workbench. You need to perform the following

tasks to do this:

1. “Creating the plug-in files”

2. “Defining the properties”

You can also perform the following optional tasks:

v “Optional: Adding help to the node” on page 84

v “Optional: Creating node icons” on page 85

v “Optional: Adding a property editor or compiler” on page 85

When you have created the node, you cannot move it to another folder.

Creating the plug-in files

1. Switch to the Broker Application Development perspective.

2. Launch the Plug-in node wizard, or right-click your newly created project and

click New > Other > Message Flow Node Development > Message Flow

Plug-in Node.

3. Specify a filename for the node. The node name must be the name of the node,

excluding the Node at the end. For example, if you have created a node called

BasicNode, the filename should be Basic.

4. Click Finish A .msgnode file for this new node is opened in the message node

editor.

Defining the properties

 1. Add the terminals for your node. You must define an input terminal. Output

terminals are optional. For each input terminal you want, put your cursor in

the In Terminals field, and click the Add button. Likewise, for each output

terminal you want, put your cursor in the Out Terminals field, and click the

Add button.

 2. To rename each terminal, right-click on the terminal name and click Rename.

 3. Click on the Properties tab at the bottom of the editor area. From here you can

add the node’s attributes, such as a database name, a host server name, or a

password. The attributes you set here must match the attributes specified in

the user-defined node itself using the get and set methods. You can also

customize the text that appears in the node properties view for each property.

To set the text, open the nodename.properties file, and edit the line:

Property.<propertyName>=<descriptive text>.

 4. If the node is an input node, select the node name in the hierarchy and check

the Input node checkbox. From here you can also specify that you want the

node to initialize with the broker’s default values by checking the Use broker

defaults checkbox.

 5. Right-click on Basic in the hierarchy and click Add Property. To create

separate pages of properties, you can use the Add Property Group function.

Developing user-defined extensions 83

6. Select the correct attribute type. This can be one of the built-in types, or a type

to match the list of values the property can have.

 7. Enter any default values. This value applies as if the flow developer had set

this value themselves. It will be shown in the Properties dialog.

 8. If you want to generate a property editor or a compiler, specify the location

for these resources in the relevant field.

 9. Specify the system property for each attribute that you define. This can be one

of the following:

v Hidden: The property is not displayed in the properties or promotion

dialogs.

v Read only: The property is displayed, but cannot be changed.

v Mandatory: A value is required. The field cannot be left blank. Boolean and

enum properties are always mandatory.

v Configurable: The property can be configured at deployment time.
10. Close the nodename.msgnode file.

You can change the order in which the properties are listed by reordering them

using drag-and-drop.

If you do not want to add any of the optional features, you can test your node at

this point. To do this you need to launch another instance of the workbench, and

select Run > Run as > Runtime Workbench. See the PDE Guide for more

information about testing using the Runtime Workbench.

Optional: Adding help to the node

1. Add online help to the node. You can create a help.html file within the project

to contain the online help that explains what the node does and how to use it.

If you have several files, you might want to consider creating a separate doc

subdirectory in the plugin project and storing the online help files in there. You

can make the node’s online help appear integrated with the product-supplied

information. In the WebSphere Message Broker product information, under

Reference > Message flows, there is a leaf node called ″User-defined nodes″. To

make the online help for your node appear at that point, you need to:

a. Modify the plugin.xml file to include the following extension point to the

WebSphere Message Broker product documentation:

<extension point="org.eclipse.help.toc">

 <toc file="toc.xml"/>

</extension>

b. Create a toc.xml file in your plugin node project, and modify the link_to

attribute to link to the ″UDNodes″ anchor that is already defined in the

WebSphere Message Broker documentation table of contents as follows:

<toc label="My Plugin Node" topic="my_node.htm"

 link_to="../com.ibm.etools.mft.doc/toc.xml#UDNodes">

 <topic label="Mytopic 1" href="topic1.htm>

</toc>

You should then be able to see your help topic under Reference > Message

flows > User-defined nodes in the table of contents.

The sample nodes provided with the product demonstrate this feature.

For further explanation of extension points and how to use them, see the

PDE Guide.

84 User-defined Extensions

2. Add context sensitive (F1) help to the node. This is the help that you see when

you click on a node in the Broker Application Development perspective and

press F1.

When a node is created, a HelpContexts.xml file is created. This assigns a

context id based on the name of the node. You can modify the

HelpContexts.xml file for your node by changing the text on the description

field. The name of the HelpContexts.xml file must be unique within the project

but can contain multiple context entries, for example, if you had several nodes

within a single project, each node can have its context-sensitive help in the file.

Context-sensitive help is limited in length. A useful way of providing more

help to the user is to link from the F1 help to an HTML file containing further

information, for example, to the node’s online help, described above. The link

should be coded as follows:

<topic href"../plugin directory/html file" label="Link title">

3. Add hover help (tooltip help) to the node. When a node is created, a

palette.properties file is created. You can modify this file to contain hover help

for your node, which is used to show the node name when the palette is not

wide enough to display it all.

If you do not want to add any of the optional features, you can test your node at

this point. To do this you need to launch another instance of the workbench, and

select Run > Run as > Runtime Workbench. See the PDE Guide for more

information about testing using the Runtime Workbench.

Optional: Creating node icons

When a node is created, a set of default icons are created: clc16.gif and obj16.gif

are used for the node in the palette on the Broker Application Development

perspective, obj30.gif is used for the node in the Message Flow Editor (that is,

when it is dragged-and dropped into a message flow). To change the default icons

to your own icons, replace the supplied .gif files with your files in the icons

subdirectory of the plug-in project.

You can test your node at this point. To do this you need to launch another

instance of the workbench, and select Run > Run as > Runtime Workbench. See

the PDE Guide for more information about testing using the Runtime Workbench.

Optional: Adding a property editor or compiler

If you need to control how the properties of your node are displayed, you can

create a property editor by implementing the IPropertyEditor interface. A property

editor is not limited in content. It can contain many controls, like text fields, lists,

and so on.

If you want to create a custom compiler, for example to encrypt a value before

sending it to the server, you can create a compiler by implementing the

IPropertyCompiler interface.

Importing the plugin API into the workbench:

To create a property editor or compiler, you must first import the plugin API into

the workbench, as follows:

 1. Click File > Import > External Plugins and Fragments.

 2. Click Next.

 3. Select the com.ibm.etools.mft.api plugin.

Developing user-defined extensions 85

4. When the plug-in is imported in the workspace, right-click on the plugin, and

click Update Classpath.

 5. The com.ibm.etools.mft.api plugin is selected. Click Finish.

 6. From the Window menu, click Preferences.

 7. Expand Plug-in development and select Target Platform.

 8. Click Not in Workspace to select all plug-ins except the

com.ibm.etools.mft.api plugin that you have just imported into the

workbench.

 9. Click OK.

10. Switch to the Java perspective.

11. Select your user-defined node project in the Package Explorer, and click

Project > Clean Project.

12. Right-click on your user-defined node project, and click Update Classpath.

Creating the Java class using WebSphere Message Broker Version 6.0:

To create a new Java class for your property editor or compiler, complete the

following steps.

1. Switch to the Java perspective.

2. Select your user-defined node project in the Package Explorer, and click Project

> Clean Project

3. Right-click on your user-defined node project, and click Update Classpath...

4. In the UDN project, select the /src directory, and click File > New > Class.

5. Type a name for your class in the Name text field.

6. Perform the following steps, according to whether you are creating a property

editor or a property compiler.

v If you are creating a property editor:
a. Delete any text in the Superclass text field, and click Browse....

b. Select the AbstractPropertyEditor class and click OK.
v If you are creating a property compiler:
a. Click Add... next to the Interfaces text field.

b. Select the IPropertyCompiler interface and click OK.
7. Click Finish.

Testing your property editor or compiler:

If you want to test your property editor, launch another instance of the workbench,

and select Run > Run as > Runtime Workbench. See the PDE Guide for more

information about testing using the Runtime Workbench.

If you want to test your compiler, deploy the flow containing your user-defined

node on a broker.

The specific type of a syntax element

There are two methods available for setting and getting the specific type of a

syntax element. You can use these methods to update the specific type of an XML

syntax element, for example:

1. Call getSpecificType on the syntax element.

86 User-defined Extensions

The getSpecificType method does not take any parameters, but does return the

specific type of the element as an int value.

2. Call setSpecificType on the syntax element.

The setSpecificType method takes one parameter of the type int, which will be

the specific type that you want the syntax element to be. There is no return

value for this method.

Specific type values for the IBM XML and MRM parsers are listed in “XML and

MRM parser constants” on page 257

Testing a user-defined node

You must deploy the files that make up your user-defined node project to your

workbench before your user-defined node is available for use. You can do this in a

test environment by using the Plug-in Development Perspective in the workbench.

Use the Run > Run as > Runtime Workbench option to start a new copy of the

workbench with the extra nodes included. For more information on this

perspective see PDE Guide.

You should see the new nodes in the palette when you open your Message Flow

editor. To test your new node, add it to a message flow (see Adding a node) and

deploy as usual. Once you are happy with your node definition, add the new node

into your normal palette of nodes in the Message Flow editor (see “Distributing a

user-defined node” on page 88). Until you do this, the new nodes will be available

only in your test workbench session.

When you have set up and deployed a message flow containing your user-defined

node, and sent a test message to it, there are a number of diagnostic tools available

for you to determine whether your node works, or if not, where it went wrong.

1. Check the event log (see Event Log editor for information about this).

2. Add a Trace node to your message flow, and check the output from it (see

Trace node for information about Trace nodes).

3. Use the flow debugger to debug the flow containing your node (see Testing

and debugging message flow applications for information about this).

The following debug messages are available to help you to understand the

execution of your user-defined nodes and parsers:

v BIP2233 and BIP2234: a pair of messages traced before and after a user-defined

extension implementation function is invoked. These messages report the input

parameters and the returned value.

In these messages, an ″implementation function″ can be interpreted as either a C

implementation function or a Java implementation method.

v BIP3904: a message traced before invoking the Java evaluate() method of a

user-defined node.

v BIP3905: a message traced before invoking the C cniEvaluate() implementation

function (iFpEvaluate member of CNI_VFT) of a user-defined node.

v BIP4142: a debug message that is traced when invoking a user-defined node

utility function, where the utility function alters the state of a syntax element.

This includes all utility functions that start with cniSetElement*, where *

represents all nodes with that stem.

v BIP4144 and BIP4145: a pair of messages traced by certain implementation

functions that, when invoked by a user-defined extension, can modify the

Developing user-defined extensions 87

internal state of a message broker’s object. Possible message broker objects

include syntax element, node, and parser.

In these messages, an ″implementation function″ can be interpreted as either a C

implementation function or a Java implementation method.

v BIP4146: a debug message that is traced when invoking a user-defined parser

utility function, where the utility function alters the state of a syntax element.

This includes all utility functions that start with cpiSetElement*, where *

represents all nodes with that stem.

For information on the C user-defined API, see the “C user-defined parser API”

on page 167 and the “C user-defined node API” on page 97.

v BIP4147: an error message that is traced when a user-defined extension passes

an invalid input object to a user-defined extension utility API function.

v BIP4148: an error message that is traced when a user-defined extension damages

a broker’s object.

v BIP4149: an error message that is traced when a user-defined extension passes

an invalid input data pointer to a user-defined extension utility API function.

v BIP4150: an error message that is traced out when a user-defined extension

passes invalid input data to a user-defined extension utility API function.

See Resolving problems with user-defined extensions for a full list of

implementation functions.

Switch on user trace at debug level in order to see these trace entries. See Using

trace for more information.

Distributing a user-defined node

Before you start

1. You must have compiled your user-defined node, as described in “Compiling a

Java user-defined node” on page 75 or “Compiling a C user-defined extension”

on page 54.

2. You must have tested your user-defined node as described in “Testing a

user-defined node” on page 87.

The node project is an Eclipse plug-in. It sits in the workbench while it is being

developed. Each user of the workbench needs to have the node project in their

install_dir\eclipse\plugins directory to be able to add the node to their message

flows. When the project is tested to your satisfaction, you can prepare it for

distribution.

1. Switch to the Plug-in Development perspective.

2. Right-click on the node project you want to package for distribution.

3. Click File > Export.

4. From the list displayed, select Zip file.

5. Click Next.

6. The resources that are available for you to export as a zip file are listed. Select

your user-defined node by checking the box next to its project name.

7. Deselect the following files and directories (all are selected as default):

v .classpath

v .project

v build.properties

88 User-defined Extensions

v build.xml

v /bin

v /src

v /temp.folder
8. Specify a name and location for your zip file. The name should be the same as

the UDN project name.

9. Click Finish.

The zip file is saved to the location you specified. If you developed your Java

source code within the project, this is included in the zip file. You can add your C

source code or compiled files to the zip file using any zip utility. You then have a

self-contained package that you can distribute to all internal users.

When another developer receives the zip file, they need to:

1. Stop their workbench.

2. Unzip the file into the WBIMB_install_dir\evtoolkit\eclipse\plugins directory.

3. Compile the source code, if it is not already compiled.

4. Install the user-defined extension on a broker domain. For instructions on

completing this step, see “Installing a user-defined extension on a broker

domain” on page 79.

5. Restart their workbench.

6. Stop and restart the broker.

When the workbench has restarted, the new category of nodes appears on the

palette of the flow editor.

If you want to distribute your node commercially, please see the PDE Guide for

information about issues such as versioning and updating your plug-in.

Using event logging from a user-defined extension

Message processing nodes and parsers are unlikely to need to write directly to the

local error log, because it is recommended that a plug-in reports errors using

exceptions. However, you can choose to write significant events, error or

otherwise, for problem determination and operational purposes in the same

manner as WebSphere Message Broker.

With C code, you use the utility function CciLog to do this. Two of the arguments

accepted by this function, messageSource and messageNumber, define the event

source and the actual integer representation of a message within that source,

respectively.

For Java code, the class MbService provides static methods to log information to

the event log. To log messages to the event log, you need to package your

messages into a standard Java resource bundle. You can use one of the three

logging methods, passing in the resource bundle name and the message key. The

message is fully resolved and is then inserted as a single insert into the

appropriate broker message as shown below:

v logInformation(...) - BIP4360 Java plug-in node information: user message

v logWarning(...) - BIP4361 Java plug-in node warning: user message

v logError(...) - BIP4362 Java plug-in node error: user message

Developing user-defined extensions 89

For Windows systems, the messages are written to the Windows event log, and

your message catalog must be delivered as a Windows DLL.

For Linux and UNIX systems, these messages are written to the SYSLOG facility,

and your message catalog must be delivered as an XPG4 message catalog.

The above covers exceptions raised during normal processing. You must also

provide for exceptions raised when deploying and configuring a message flow.

Messages resulting from these configuration exceptions are reported back to the

workbench for display to the workbench user. To facilitate this, you must create an

appropriately named Java properties file and copy it to each workbench.

Building and installing a Windows event source

On Windows, the message catalog is delivered as a Windows DLL, which you

must create as described below. This contains definitions of your event messages to

enable the event viewer to display a readable format, based on the event message

written by your application. When you compile a message catalog, a header file is

created, which defines symbolic values for each event message number you have

created. This header file is included by your application.

To create an event source for the Windows Event Log Service:

1. Create a message compiler input (.mc) file with the source for your event

messages. Refer to the Microsoft website, http://msdn.microsoft.com, and

search on .mc file for details on the format of this input file.

2. Compile this message file, to create a resource compiler input file, by issuing

the command:

mc -v -w -s -h c:\mymessages -r c:\mymessages mymsg.mc

Where c:\mymessages is the path and directory for the output files and

mymsg.mc is the name of the input file.

The message compiler produces an output header (.h) file which contains

symbolic #defines that map to each message number coded in the input.mc file.

This header file must be included when compiling a plug-in source file that

uses the CciLog utility function to write an event message you have defined.

The messageNumber argument to CciLog must use the appropriate value

hash-defined in the output header file.

3. Compile the output file (.rc) from the message compiler to create a resource

(.res) file by issuing the command:

RC /v <filename>.rc

4. Create a resource DLL using the .res file by issuing the command:

LINK /DLL /NOENTRY <filename>.res

To install the event source into the Windows Event Log Service:

1. Start the Windows Registry Editor by issuing the command:

regedit

2. Create a new registry subkey for your plug-in application under the existing

structure defined in:

HKEY_LOCAL_MACHINE

 SYSTEM

 CurrentControlSet

 Services

 EventLog

 Application

90 User-defined Extensions

Right-click on Application and select New->Key. The new key is created

immediately under the Application key (not under the WebSphere Message

Broker key). You must give the key the name that you specify on the

messageSource parameter of the CciLog invocation.

You must create the following values for this entry:

v The EventMessageFile String value must contain the fully qualified path for

the .dll you have created to contain your messages. This is the message

catalog used by CciLog.

v The TypesSupported DWORD value must contain the value ″7″.

Developing user-defined extensions 91

92 User-defined Extensions

Part 2. Reference

User-defined extensions 95

Sample node files 95

SupportPacs 97

Sample parser files 97

SupportPacs 97

Header files 97

C user-defined node API 97

C node implementation functions 98

C node utility functions 99

cniAddAfter 101

cniAddasFirstChild 101

cniAddasLastChild 102

cniAddBefore 103

cniBufferByte 103

cniBufferPointer 104

cniBufferSize 104

cniCopyElementTree 105

cniCreateElementAfter 105

cniCreateElementAfterUsingParser 106

cniCreateElementAsFirstChild 107

cniCreateElementAsFirstChildUsingParser . . . 107

cniCreateElementAsLastChild 108

cniCreateElementAsLastChildFromBitstream . . 109

cniCreateElementAsLastChildUsingParser . . . 111

cniCreateElementBefore 112

cniCreateElementBeforeUsingParser 113

cniCreateInputTerminal 114

cniCreateMessage 114

cniCreateNodeContext 115

cniCreateNodeFactory 116

cniCreateOutputTerminal 117

cniDefineNodeClass 118

cniDeleteMessage 119

cniDeleteNodeContext 119

cniDetach 120

cniDispatchThread 120

cniElementAsBitstream 121

cniElementName 126

cniElementNamespace 127

cniElementType 128

cniElementValue group 129

cniElementValueState 130

cniElementValueType 131

cniElementValueValue 131

cniEvaluate 132

cniFinalize 133

cniFirstChild 133

cniGetAttribute 134

cniGetAttribute2 135

cniGetAttributeName 136

cniGetAttributeName2 137

cniGetBrokerInfo 138

cniGetEnvironmentMessage 138

cniGetMessageContext 139

cniGetParserClassName 139

cniGetParserClassName 140

cniGetThreadContext 141

cniIsTerminalAttached 142

cniLastChild 142

cniNextSibling 143

cniParent 143

cniPreviousSibling 144

cniPropagate 144

cniRootElement 145

cniRun 146

cniSearchElement group 148

cniSearchElementInNamespace group 149

cniSetAttribute 152

cniSetElementName 152

cniSetElementNamespace 153

cniSetElementType 154

cniSetElementValue group 154

cniSetElementValueValue 156

cniSetInputBuffer 156

cniSqlCreateStatement 157

cniSqlDeleteStatement 158

cniSqlExecute 159

cniSqlSelect 159

cniSqlCreateReadOnlyPathExpression 160

cniSqlCreateModifyablePathExpression 162

cniSqlNavigatePath 164

cniSqlDeletePathExpression 166

cniWriteBuffer 167

C user-defined parser API 167

C parser implementation functions 168

C parser utility functions 169

cpiAddAfter 170

cpiAddAsFirstChild 171

cpiAddAsLastChild 172

cpiAddBefore 172

cpiAppendToBuffer 173

cpiBufferByte 174

cpiBufferPointer 175

cpiBufferSize 176

cpiCreateAndInitializeElement 177

cpiCreateContext 178

cpiCreateElement 179

cpiCreateParserFactory 180

cpiDefineParserClass 181

cpiDeleteContext 183

cpiElementCompleteNext 183

cpiElementCompletePrevious 184

cpiElementName 185

cpiElementNameSpace 186

cpiElementType 187

cpiElementValue 188

cpiElementValue group 188

cpiElementValueValue 190

cpiFirstChild 191

cpiLastChild 191

cpiNextParserClassName 192

cpiNextParserCodedCharSetId 193

© Copyright IBM Corp. 2000, 2005 93

cpiNextParserEncoding 194

cpiNextSibling 195

cpiParent 195

cpiParseBuffer 197

cpiParseBufferEncoded 198

cpiParseBufferFormatted 199

cpiParseFirstChild 201

cpiParseLastChild 202

cpiParseNextSibling 203

cpiParsePreviousSibling 204

cpiParserType 205

cpiRootElement 206

cpiSetCharacterValueFromBuffer 207

cpiSetElementCompleteNext 208

cpiSetElementCompletePrevious 209

cpiSetElementName 210

cpiSetElementNamespace 211

cpiSetElementType 212

cpiSetElementValue 213

cpiSetElementValue group 214

cpiSetElementValueValue 215

cpiSetNameFromBuffer 217

cpiSetNextParserClassName 218

cpiWriteBuffer 219

cpiWriteBufferEncoded 220

cpiWriteBufferFormatted 221

C node and parser implementation functions . . . 222

cciRegCallback 222

C node and parser utility functions 225

cciGetLastExceptionData 225

cciGetLastExceptionDataW 227

cciLog 228

cciLogW 229

cciMbsToUcs 230

cciRethrowLastException 231

cciThrowException 232

cciThrowExceptionW 233

cciRegisterForThreadStateChange 234

cciUcsToMbs 237

cciUserTrace 238

cciUserTraceW 240

cciUserDebugTrace 241

cciUserDebugTraceW 243

cciServiceTrace 245

cciServiceTraceW 246

cciServiceDebugTrace 247

cciServiceDebugTraceW 248

ccilsTraceActive 249

C skeleton code 250

Utility function return codes and values 253

Available parsers 255

XML and MRM parser constants 257

XML parser constants 257

MRM parser constants 258

Trace logging from a user-defined C extension . . 259

National language support considerations for

message catalogs 260

National language support considerations on

Windows 260

National language support considerations on

Linux and UNIX 261

National language support considerations on

z/OS 261

94 User-defined Extensions

User-defined extensions

The following information is contained within this section:

v “Sample node files”

v “Sample parser files” on page 97

v “Header files” on page 97

v “C user-defined node API” on page 97

v “C user-defined parser API” on page 167

v “C node and parser implementation functions” on page 222

v “C node and parser utility functions” on page 225

v Java user-defined node API

v “Utility function return codes and values” on page 253

v “Available parsers” on page 255

v “XML and MRM parser constants” on page 257

v “Trace logging from a user-defined C extension” on page 259

v “National language support considerations for message catalogs” on page 260

Sample node files

On Windows, the following sample node files are in the

install_dir\sample\extensions\nodes directory.

On Linux, the following files are in the install_dir/sample/extensions/nodes

directory.

On UNIX, the following files are in the install_dir/sample/extensions/nodes

directory.

On z/OS, the following files are in the install_dir/sample/extensions/nodes

directory.

 SwitchNode.c C source file containing a sample

implementation of a message processing

node that routes a message to one of five

output terminals, depending on the content.

SwitchNode.h The header file for the SwitchNode.c file.

TransformNode.c C source file containing a sample

implementation of a simple fixed

transformation of an input message into an

output message.

TransformNode.h The header file for the TransformNode.c file.

BipSampPluginUtil.c Sample utility functions used by the Switch

and Transform nodes.

BipSampPluginUtil.h The header file for BipSampPluginNode and

BipSampPluginUtil.

NodeFactory.c Common C functions for SwitchNode.c,

TransformNode.c, and BipSampPluginUtil.c

© Copyright IBM Corp. 2000, 2005 95

com/ibm/broker/plugin/package-overview.html

NodeFactory.h The header file for NodeFactory.c

Common.c Common C functions for SwitchNode.c,

TransformNode.c, and BipSampPluginUtil.c

Common.h The header file for Common.c

PluginSample.add.xml A sample XML input message that you can

use to test the C sample nodes.

PluginSample.change.xml A sample XML input message that you can

use to test the C sample nodes.

PluginSample.delete.xml A sample XML input message that you can

use to test the C sample nodes.

JavaPlugin.add.xml A sample XML input message that you can

use to test the Java sample nodes.

JavaPlugin.change.xml A sample XML input message that you can

use to test the Java sample nodes.

JavaPlugin.delete.xml A sample XML input message that you can

use to test the Java sample nodes.

JavaPlugin.hold.xml A sample XML input message that you can

use to test the Java sample nodes.

On Windows, the following sample node files are in the

install_dir\sample\Javaplugin\com\ibm\samples directory.

On Linux, the following files are in the

install_dir/sample/Javaplugin/com/ibm/samples directory.

On UNIX, the following files are in the

install_dir/sample/Javaplugin/com/ibm/samples directory.

On z/OS, the following files are in the

install_dir/sample/Javaplugin/com/ibm/samples directory.

 JavaSwitchPluginNode.java Java source file containing a sample

implementation of a message processing

node that routes a message to one of five

output terminals, depending on the content.

JavaTransformPluginNode.java Java source file containing a sample

implementation of a simple fixed

transformation of an input message into an

output message.

The files that the workbench needs to recognize the Switch node and Transform

node are in the install_dir\sample\extensions\nodes\com.ibm.samples.nodes

directory. You can add this directory to your workspace using the Update Manager,

or you can copy it across to your workspace directory and restart the workbench

to see the nodes. The help files (HelpContexts.xml, SwitchNode.htm and

TransformNode.htm) demonstrate some features of Eclipse help by adding

themselves into the main topic tree, referencing topics in the main tree, and so on.

There are also a number of gif files that are used to represent the sample nodes in

the workbench, which you can use, or replace with your own. The gif files come in

three different sizes and can be found in individual directories under the

sample\extensions\nodes\com.ibm.samples.nodes\icons\full\ directory.

96 User-defined Extensions

SupportPacs

Many other sample nodes are available as SupportPacs. For a complete list of

available SupportPacs see WebSphere MQ SupportPacs Web page.

Sample parser files

On Windows, the following sample parser files are in the

install_dir\sample\extensions\parser directory.

On Linux, the following sample parser files are in the

install_dir/sample/extensions/parser directory:

On UNIX, the following sample parser files are in the

install_dir/sample/extensions/parser directory:

On z/OS, the following sample parser files are in the

install_dir/sample/extensions/parser directory:

 BipSampPluginParser.c C source file containing sample implementations of a

simple pseudo-XML parser.

BipSampPluginParser.h The header file for the BipSampPluginParser.c file.

SupportPacs

Many other sample parsers are available as SupportPacs. For a complete list of

available SupportPacs see

http://www.ibm.com/software/integration/support/supportpacs/.

Header files

The C interfaces are defined by the following header files:

v BipCni.h: this header file contains functions for user-defined nodes that have

been written in C. For a list of functions, refer to the “C user-defined node API.”

v BipCpi.h: this header file contains functions for user-defined parsers that have

been written in C. For a list of functions, refer to the “C user-defined parser

API” on page 167.

v BipCci.h: this header file contains utility functions common to both user-defined

nodes and parsers that have been written in C. For a list of functions, refer to “C

node and parser utility functions” on page 225. This file also contains definitions

for utility function return codes and values. See “Utility function return codes

and values” on page 253 for more information.

v BipCos.h: this header file contains operating specific functions for user-defined

nodes that have been written in C.

C user-defined node API

The interface for a user-defined node consists of:

User-defined extensions 97

http://www.ibm.com/software/integration/support/supportpacs
http://www.ibm.com/software/integration/support/supportpacs/

1. A set of implementation functions that provide the functionality of the

user-defined node. These functions are invoked by the message broker. The

implementation functions are mandatory, and if they are not supplied by the

developer, an exception is thrown at runtime.

2. A set of utility functions that create resources in the message broker, or request

a service of the broker. These utility functions are invoked by a user-defined

node.

Most of the utilities are shared by any type of node, however there are a few that

are specific to input nodes. These are marked in the text.

These functions are defined in the BipCni.h header file.

This section covers the following topics:

“C node implementation functions”

“C node utility functions” on page 99

C node implementation functions

The user-defined node implements a function interface for the message broker to

invoke during runtime execution. This includes functions to create a local context

whenever a node instance is created, functions to set and retrieve attribute values,

the function to actually perform the processing of the node itself, and functions to

examine messages.

These implementation functions are called by the broker and implemented by the

node.

For certain implementation functions, it might be necessary to specify the name of

a parser supplied with WebSphere Message Broker. When doing so you must use

the correct class name of the parser. The following table provides a summary of

the parsers, root element names, and class names for different headers.

 Parser Root element name Class name

BLOB BLOB NONE

IDOC IDOC IDOC

JMSMap JMSMap JMS_MAP

JMSStream JMSStream JMS_STREAM

MIME MIME MIME

MQCFH MQPCF MQPCF

MQCIH MQCIH MQCICS

MQDLH MQDLH MQDEAD

MQIIH MQIIH MQIMS

MQMD MQMD MQHMD

MQMDE MQMDE MQHMDE

MQRFH MQRFH MQHRF

MQRFH2 MQRFH2 MQHRF2

MQRMH MQRMH MQHREF

MQSAPH MQSAPH MQHSAP

98 User-defined Extensions

Parser Root element name Class name

MQWIH MQWIH MQHWIH

MRM MRM MRM

Properties Properties PropertyParser

SMQ_BMH SMQ_BMH SMQBAD

XML XML xml

XMLNS XMLNS xmlns

XMLNSC XMLNSC xmlnsC

This section covers the following functions:

Mandatory function

“cniCreateNodeContext” on page 115

Optional and conditional functions

v “cniDeleteNodeContext” on page 119

v Either “cniEvaluate” on page 132 (for message processing and output

nodes), or “cniRun” on page 146 (for input nodes)

v “cniGetAttribute” on page 134

v “cniGetAttribute2” on page 135

v “cniGetAttributeName” on page 136

v “cniGetAttributeName2” on page 137

v “cniSetAttribute” on page 152

C node utility functions

Using the following system-provided functions, a C user-defined node can create

or define message broker objects, such as node factories, nodes, and terminals.

Functions are also provided to send messages to an output terminal for

propagation to connected nodes, and to examine message content.

These utility functions are called by the node, and implemented by the broker.

This section covers the following topics:

Initialization and resource creation

v “cniCreateNodeFactory” on page 116

v “cniDefineNodeClass” on page 118

v “cniDispatchThread” on page 120 (for input nodes only)

v “cniCreateInputTerminal” on page 114

v “cniCreateOutputTerminal” on page 117

v “cniIsTerminalAttached” on page 142

v “cniGetBrokerInfo” on page 138

Message management

v “cniCreateMessage” on page 114

v “cniDeleteMessage” on page 119

v “cniFinalize” on page 133

v “cniGetMessageContext” on page 139

User-defined extensions 99

v “cniGetEnvironmentMessage” on page 138

v “cniPropagate” on page 144

Message buffer access

v “cniBufferByte” on page 103

v “cniBufferPointer” on page 104

v “cniBufferSize” on page 104

v “cniSetInputBuffer” on page 156 (for input nodes only)

v “cniWriteBuffer” on page 167

Syntax element navigation

v “cniRootElement” on page 145

v “cniParent” on page 143

v “cniNextSibling” on page 143

v “cniPreviousSibling” on page 144

v “cniFirstChild” on page 133

v “cniLastChild” on page 142

v “cniSearchElement group” on page 148

v “cniSearchElementInNamespace group” on page 149

v “cniSqlCreateReadOnlyPathExpression” on page 160

v “cniSqlCreateModifyablePathExpression” on page 162

v “cniSqlNavigatePath” on page 164

v “cniSqlDeletePathExpression” on page 166

Syntax element access

v “cniAddAfter” on page 101

v “cniAddBefore” on page 103

v “cniAddasFirstChild” on page 101

v “cniAddasLastChild” on page 102

v “cniCopyElementTree” on page 105

v “cniCreateElementAfter” on page 105

v “cniCreateElementAfterUsingParser” on page 106

v “cniCreateElementBefore” on page 112

v “cniCreateElementBeforeUsingParser” on page 113

v “cniCreateElementAsFirstChild” on page 107

v “cniCreateElementAsFirstChildUsingParser” on page 107

v “cniCreateElementAsLastChild” on page 108

v “cniCreateElementAsLastChildFromBitstream” on page 109

v “cniCreateElementAsLastChildUsingParser” on page 111

v “cniDetach” on page 120

v “cniElementAsBitstream” on page 121

v “cniElementName” on page 126

v “cniElementNamespace” on page 127

v “cniElementType” on page 128

v “cniElementValue group” on page 129

v “cniElementValueState” on page 130

v “cniElementValueType” on page 131

100 User-defined Extensions

v “cniElementValueValue” on page 131

v “cniGetParserClassName” on page 139

v “cniSetElementName” on page 152

v “cniSetElementNamespace” on page 153

v “cniSetElementType” on page 154

v “cniSetElementValue group” on page 154

v “cniSetElementValueValue” on page 156

SQL statement handling

v “cniSqlCreateStatement” on page 157

v “cniSqlExecute” on page 159

v “cniSqlSelect” on page 159

v “cniSqlDeleteStatement” on page 158

Miscellaneous

v “cniGetThreadContext” on page 141

cniAddAfter

Adds an unattached syntax element after a specified syntax element. The currently

unattached syntax element, and any child elements it possesses, is connected to the

syntax element tree after the specified target element. The newly added element

becomes the next sibling of the target element. The target element must be attached

to a tree (that is, it must have a parent element).

Syntax

void cniAddAfter(

int* returnCode,

CciElement* targetElement,

CciElement* newElement);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

The address of the target syntax element object (input).

newElement

The address of the new syntax element object that is to be added to the tree

structure (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

cniAddasFirstChild

Adds an unattached syntax element as the first child of a specified syntax element.

The currently unattached syntax element, and any child elements it possesses, is

User-defined extensions 101

connected to the syntax element tree as the first child of the specified target

element. The target element need not be attached to a tree.

Syntax

void cniAddAsFirstChild(

 int* returnCode,

 CciElement* targetElement,

 CciElement* newElement);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

The address of the target syntax element object (input).

newElement

The address of the new syntax element object that is to be added to the tree

structure (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

cniAddasLastChild

Adds an unattached syntax element as the last child of a specified syntax element.

The currently unattached syntax element, and any child elements it possesses, is

connected to the syntax element tree as the last child of the specified target

element. The new element need not be attached to a tree.

Syntax

void cniAddAsLastChild(

 int* returnCode,

 CciElement* targetElement,

 CciElement* newElement);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

The address of the target syntax element object (input).

newElement

The address of the new syntax element object that is to be added to the tree

structure (input).

102 User-defined Extensions

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

cniAddBefore

Adds an unattached syntax element before a specified syntax element. The

currently unattached syntax element, and any child elements it possesses, is

connected to the syntax element tree before the specified target element. The newly

added element becomes the previous sibling of the target element. The target

element must be attached to a tree (that is, it must have a parent element).

Syntax

void cniAddBefore(

 int* returnCode,

 CciElement* targetElement,

 CciElement* newElement);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

The address of the target syntax element object (input).

newElement

The address of the new syntax element object that is to be added to the tree

structure (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

cniBufferByte

Gets a single byte from the data buffer associated with (and owned by) the

message object specified in the message argument. The value of the index

argument indicates which byte in the byte array is to be returned.

Syntax

CciByte cniBufferByte(

 int* returnCode,

 CciMessage* message,

 CciSize index);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_MESSAGE_OBJECT

User-defined extensions 103

message

The address of the message object for which the size of the data buffer is to be

returned (input).

index

The offset to use as an index into the buffer (input).

Return values

The requested byte is returned. If an error occurred, the returnCode parameter

indicates the reason for the error.

cniBufferPointer

Gets a pointer to the data buffer associated with (and owned by) the message

object specified in the message argument. This function is normally used by output

nodes.

Syntax

const CciByte* cniBufferPointer(

 int* returnCode,

 CciMessage* message);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_MESSAGE_OBJECT

message

The address of the message object for which the address of the data buffer is to

be returned (input).

Return values

If successful, the address of the data buffer is returned. Otherwise, zero

(CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the reason

for the error.

cniBufferSize

Gets the size of the data buffer associated with (and owned by) the message object

specified in the message argument.

Syntax

CciSize cniBufferSize(

 int* returnCode,

 CciMessage* message);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_MESSAGE_OBJECT

104 User-defined Extensions

message

The address of the message object for which the size of the data buffer is to be

returned (input).

Return values

The size of the buffer in bytes, or zero if no buffer exists. If an error occurred,

(CCI_FAILURE) is returned, and the returnCode parameter indicates the reason for

the error.

cniCopyElementTree

Copies a part of the element tree from the source element to the target element.

Only the child elements of the source element are copied. All existing child

elements of the target element are deleted, and are replaced by the child elements

of the source element.

Syntax

void cniCopyElementTree(

 int* returnCode,

 CciElement* sourceElement,

 CciElement* targetElement);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

sourceElement

The address of the source syntax element object (input).

targetElement

The address of the target syntax element object (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

 cniCopyElementTree(&rc, inRootElement, outRootElement);

cniCreateElementAfter

Creates a new syntax element and inserts it after the specified syntax element. The

new element becomes the next sibling of the specified element.

cniCreateElementAfter should not be used when creating a message body folder

(such as XML, XMLNS, MRM, BLOB), because it does not associate an owning

parser with the folder. To create a message body folder, you can use any of the

following functions:

 cniCreateElementAsFirstChildUsingParser

 cniCreateElementAsLastChildUsingParser

 cniCreateElementAfterUsingParser

 cniCreateElementBeforeUsingParser

User-defined extensions 105

When the message body folder has been created, cniCreateElementAfter can be

used to create elements under the folder. cniCreateElementAfter can be used

because the parser, which is associated with the message body folder, is inherited.

Syntax

CciElement* cniCreateElementAfter(

 int* returnCode,

 CciElement* targetElement);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

The address of the element object (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value

of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the

reason for the error.

cniCreateElementAfterUsingParser

Creates a new syntax element, inserts it after the specified syntax element, and

associates it with the specified parser class name. The new element becomes the

next sibling of the specified element.

A portion of the syntax element tree that is owned by a parser can only have its

effective root at the first generation of elements (that is, as immediate children of

root). The user-defined node interface does not restrict the ability to create a

subtree that appears to be owned by a different parser. However, it is not possible

to serialize these element trees into a bitstream when outputting a message.

If you specify the name of a parser supplied with WebSphere Message Broker, you

must use the correct class name of the parser.

The internal name for the BLOB parser is none. Therefore, if you use this function

to create a BLOB parser folder, the associated parser name should be none.

Syntax

CciElement* cniCreateElementAfterUsingParser(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* parserClassName);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

106 User-defined Extensions

v CCI_INV_PARSER_NAME

TargetElement

The address of the element object (input).

parserClassName

The name of the parser class (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value

of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the

reason for the error.

cniCreateElementAsFirstChild

Creates a new syntax element as the first child of the specified syntax element.

cniCreateElementAsFirstChild should not be used when creating a message body

folder (such as XML, XMLNS, MRM, BLOB), because it does not associate an

owning parser with the folder. To create a message body folder, you can use any of

the following functions:

 cniCreateElementAsFirstChildUsingParser

 cniCreateElementAsLastChildUsingParser

 cniCreateElementAfterUsingParser

 cniCreateElementBeforeUsingParser

When the message body folder has been created, cniCreateElementAsFirstChild

can be used to create elements under the folder. cniCreateElementAsFirstChild

can be used because the parser, which is associated with the message body folder,

is inherited.

Syntax

CciElement* cniCreateElementAsFirstChild(

 int* returnCode,

 CciElement* targetElement);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

The address of the element object (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value

of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the

reason for the error.

cniCreateElementAsFirstChildUsingParser

Creates a new syntax element as the first child of the specified syntax element, and

associates it with the specified parser class name.

User-defined extensions 107

A portion of the syntax element tree that is owned by a parser can only have its

effective root at the first generation of elements (that is, as immediate children of

root). The user-defined node interface does not restrict the ability to create a

subtree that appears to be owned by a different parser. However, it is not possible

to serialize these element trees into a bitstream when outputting a message.

If you specify the name of a parser supplied with WebSphere Message Broker, you

must use the correct class name of the parser.

The internal name for the BLOB parser is none. Therefore, if you use this function

to create a BLOB parser folder, the associated parser name should be none.

Syntax

CciElement* cniCreateElementAsFirstChildUsingParser(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* parserClassName);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_PARSER_NAME

targetElement

The address of the element object (input).

parserClassName

The name of the parser class (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value

of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the

reason for the error.

cniCreateElementAsLastChild

Creates a new syntax element as the last child of the specified syntax element.

cniCreateElementAsLastChild should not be used when creating a message body

folder (such as XML, XMLNS, MRM, BLOB), because it does not associate an

owning parser with the folder. To create a message body folder, you can use any of

the following functions:

 cniCreateElementAsFirstChildUsingParser

 cniCreateElementAsLastChildUsingParser

 cniCreateElementAfterUsingParser

 cniCreateElementBeforeUsingParser

When the message body folder has been created, cniCreateElementAsLastChild can

be used to create elements under the folder. cniCreateElementAsLastChild can be

used because the parser, which is associated with the message body folder, is

inherited.

108 User-defined Extensions

Syntax

CciElement* cniCreateElementAsLastChild(

 int* returnCode,

 CciElement* targetElement);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

The address of the element object (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value

of zero (CCI_NULL_ADDR) is returned and the returnCode parameter indicates the

reason for the error.

Example

 CciElement* lastChild = cniCreateElementAsLastChild(&rc, outRootElement);

 cniSetElementName(&rc, lastChild, elementName);

cniCreateElementAsLastChildFromBitstream

Creates a new syntax element tree as the last child of the specified syntax element,

and associates it with the specified parser. The new syntax element tree is

populated by parsing the specified bitstream. During the execution of this function,

the bitstream is copied, so the caller can free or reuse the memory allocated to hold

the original bitstream. You can use this function only to create a message body,

that is, the last child of the message root. An output message should already exist.

The root element of this output message should be passed in as the target element

parameter. Because this call is only designed to be used to create a message body,

you cannot use it to build successive elements. For example, it should not be used

to create an RFH2 as the last child of root and then an XML message as the last

child of root, after the RFH2.

Syntax

CciElement* cniCreateElementAsLastChildFromBitstream (

 int* returnCode,

 CciElement* targetElement,

 const struct CciByteArray* value,

 const CciChar* parserClassName,

 CciChar* messageType,

 CciChar* messageSet,

 CciChar* messageFormat,

 int encoding,

 int ccsid,

 int options);

Parameters

returnCode

The return code from the function (output). Specifying a NULL pointer

signifies that the node does not want to deal with errors. If input is not NULL,

the output signifies the success status of the call. Any exceptions thrown

User-defined extensions 109

during the execution of this call are re-thrown to the next upstream node in the

flow. Call cciGetLastExceptionData for details of the exception. Possible return

codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_PARSER_NAME

v CCI_INV_DATA_POINTER

targetElement

The syntax element under which the new syntax element tree is created

(input). This must be the message root.

parserClassName

The name of the parser class to use to parse the bitstream (input). You must

use the same parser that was used to parse the whole bitstream.

value

A pointer to a CciByteArray struct containing a pointer to the bitstream to be

parsed, and also the size in CciBytes of this bitstream (output).

messageType

The message type definition used to create the element tree from the bitstream

(input). A NULL pointer means that this parameter is ignored. Also, if the

parser specified has no interest in this value, for example if it is a generic XML

parser, the parameter is ignored.

messageSet

The message set definition used to create the element tree from the bitstream

(input). A NULL pointer means that this parameter is ignored. Also, if the

parser specified has no interest in this value, for example if it is a generic XML

parser, the parameter is ignored.

messageFormat

The format used to create the element tree from the bitstream (input). A NULL

pointer means that this parameter is ignored. Also, if the parser specified has

no interest in this value, for example if it is a generic XML parser, the

parameter is ignored.

encoding

The encoding to use when parsing the bitstream (input). This parameter is

mandatory. You can specify a value of 0 to indicate that the queue manager’s

encoding should be used.

ccsid

The coded character set identifier to use when parsing the bitstream (input).

This parameter is mandatory. You can specify a value of 0 to indicate that the

queue manager’s ccsid should be used.

options

This is a place holder to allow message validation support at a later date

(input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value

zero (CCI_NULL_ADDR) is returned and the return code parameter indicates the

reason for the error. If an exception occurs during execution, returnCode is set to

CCI_EXCEPTION

110 User-defined Extensions

Example

 outMQMD = cniCreateElementAsFirstChildUsingParser(&rc,

 outRootElement,

 CciString("MQHMD",BIP_DEF_COMP_CCSID));

 checkRC(rc);

 cniCopyElementTree(&rc, inMQMD, outMQMD);

 checkRC(rc);

 outBlobRoot = cniCreateElementAsLastChildFromBitstream(

 &rc,

 outRootElement,

 &bitstream,

 inParserClassName,

 messageType,

 messageSet,

 messageFormat,

 encoding,

 ccsid,

 0);

 checkRC(rc);

 ...

 return;

}

cniCreateElementAsLastChildUsingParser

Creates a new syntax element as the last child of the specified syntax element, and

associates it with the specified parser class name.

A portion of the syntax element tree that is owned by a parser can only have its

effective root at the first generation of elements (that is, as immediate children of

root). The user-defined node interface does not restrict the ability to create a

subtree that appears to be owned by a different parser. However, it is not possible

to serialize these element trees into a bitstream when outputting a message.

If you specify the name of a parser supplied with WebSphere Message Broker, you

must use the correct class name of the parser. See “C node implementation

functions” on page 98 for a list of the supplied parsers.

If you use this function to create a BLOB parser folder, the internal name for the

BLOB parser is none. Therefore, if you use this function to create a BLOB parser

folder, the associated parser name should be none.

The internal name for the BLOB parser is none. Therefore, if you use this function

to create a BLOB parser folder, the associated parser name should be none.

Syntax

CciElement* cniCreateElementAsLastChildUsingParser(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* parserClassName);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

User-defined extensions 111

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_PARSER_NAME

targetElement

The address of the element object (input).

parserClassName

The name of the parser class (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value

of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the

reason for the error.

Example

 cniElementName(&rc, firstChild, elementName);

 CciElementType type = cniElementType(&rc, firstChild);

 CciElement* lastChild = cniCreateElementAsLastChildUsingParser(

 &rc,

 outRootElement,

 parserName);

 cniSetElementName(&rc, lastChild, elementName);

 cniSetElementType(&rc, lastChild, elementType);

cniCreateElementBefore

Creates a new syntax element and inserts it before the specified syntax element.

The new element becomes the previous sibling of the specified element, and shares

the same parent element.

cniCreateElementBefore should not be used when creating a message body folder

(such as XML, XMLNS, MRM, BLOB), because it does not associate an owning

parser with the folder. To create a message body folder, you can use any of the

following functions:

 cniCreateElementAsFirstChildUsingParser

 cniCreateElementAsLastChildUsingParser

 cniCreateElementAfterUsingParser

 cniCreateElementBeforeUsingParser

When the message body folder has been created, cniCreateElementBefore can be

used to create elements under the folder. cniCreateElementBefore can be used

because the parser, which is associated with the message body folder, is inherited.

Syntax

CciElement* cniCreateElementBefore(

 int* returnCode,

 CciElement* targetElement);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

112 User-defined Extensions

targetElement

The address of the target element object (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value

of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the

reason for the error.

cniCreateElementBeforeUsingParser

Creates a new syntax element, inserts it before the specified syntax element, and

associates it with the specified parser class name. The new element becomes the

previous sibling of the specified element.

A portion of the syntax element tree that is owned by a parser can only have its

effective root at the first generation of elements (that is, as immediate children of

root). The user-defined node interface does not restrict the ability to create a

subtree that appears to be owned by a different parser. However, it is not possible

to serialize these element trees into a bitstream when outputting a message.

If you specify the name of a parser supplied with WebSphere Message Broker, you

must use the correct class name of the parser.

The internal name for the BLOB parser is none. Therefore, if you use this function

to create a BLOB parser folder, the associated parser name should be none.

Syntax

CciElement* cniCreateElementBeforeUsingParser(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* parserClassName);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_PARSER_NAME

targetElement

The address of the element object (input).

parserClassName

The name of the parser class (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value

of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the

reason for the error.

User-defined extensions 113

cniCreateInputTerminal

Creates an input terminal on an instance of a node object, returning the address of

the terminal object that was created. The terminal object is destroyed by the

message broker when its owning node is destroyed.

This function must be called only from within the implementation function

cniCreateNodeContext.

Syntax

CciTerminal* cniCreateInputTerminal(

 int* returnCode,

 CciNode* nodeObject,

 CciChar* name);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_NODE_OBJECT

v CCI_INV_TERMINAL_NAME

nodeObject

Specifies the address of the instance of the node object on which the input

terminal is to be created (input). The address is returned from

cniCreateNodeContext.

name

Specifies a name for the terminal being created (input).

Return values

If successful, the address of the node terminal object is returned. Otherwise, a

value of zero (CCI_NULL_ADDR) is returned.

Example

 entry->handle = cniCreateInputTerminal(

 &rc,

 context->nodeObject,

 (CciChar*)terminalName);

cniCreateMessage

Creates a new output message object. For every call to this function, there should

be a matching call to cniDeleteMessage to return allocated resources when the

processing on the output message has been completed.

Syntax

CciMessage* cniCreateMessage(

 int* returnCode,

 CciMessageContext* messageContext);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

114 User-defined Extensions

v CCI_SUCCESS

v CCI_FAILURE

v CCI_EXCEPTION

v CCI_INV_MESSAGE_CONTEXT

messageContext

The address of the context for the message (input). Use cniGetMessageContext

to get the context from an incoming message (for example, one received in the

cniEvaluate function).

Return values

If successful, the address of the message object is returned. Otherwise, a value of

zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the

reason for the error.

Example

 outMsg = cniCreateMessage(&rc, cniGetMessageContext(&rc, message));

cniCreateNodeContext

Creates any context for an instance of a node object. It is invoked by the message

broker whenever an instance of a node object is constructed. Nodes are constructed

when a message flow is deployed by the broker, or when the execution group is

started.

The responsibilities of the node at this point are to:

1. (Optionally) verify that the name of the node specified in the nodeName

parameter is supported by the factory.

2. Allocate any node instance specific data areas that might be required (for

example: context, attribute data, and terminals).

3. Perform any additional resource acquisition or initialization that might be

required for the processing of the node.

4. Return the address of the context to the calling function. Whenever an

implementation function for this node instance is invoked, the appropriate

context is passed as an argument to that function. This means that a

user-defined node developed in C need not maintain its own static pointers to

per-instance data areas.

 Defined In Type Member

CNI_VFT Mandatory iFpCreateNodeContext

Syntax

CciContext* cniCreateNodeContext(

 CciFactory* factoryObject,

 CciChar* nodeName,

 CciNode* nodeObject);

Parameters

factoryObject

The address of the factory object that owns the node being created (input).

nodeName

The name of the node being created (input).

User-defined extensions 115

nodeObject

The address of the node object that has just been created (input).

Return values

If successful, the address of the node context is returned. Otherwise, a value of

zero (CCI_NULL_ADDR) is returned.

Example

 static char* functionName = (char *)"_Switch_createNodeContext()";

 NODE_CONTEXT_ST* p;

 /* Allocate a pointer to the local context */

 p = (NODE_CONTEXT_ST *)malloc(sizeof(NODE_CONTEXT_ST));

 if (p) {

 /* Clear the context area */

 memset(p, 0, sizeof(NODE_CONTEXT_ST));

 /* Save our node object pointer in our context */

 p->nodeObject = nodeObject;

 /* Save our node name */

 CciCharNCpy((CciChar*) &p->nodeName, nodeName, MAX_NODE_NAME_LEN);

}

 else

 /* Handle errors */

cniCreateNodeFactory

Creates a node factory in the message broker engine. A single instance of the

named message flow node factory is created.

This function must be invoked only in the initialization function

bipGetMessageFlowNodeFactory, which is called when the LIL is loaded by the

message broker. If cniCreateNodeFactory is invoked at any other time, the results

are unpredictable.

Syntax

CciFactory* cniCreateNodeFactory(

 int* returnCode,

 CciChar* name);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_FAILURE

v CCI_EXCEPTION

v CCI_INV_FACTORY_NAME

v CCI_INV_OBJECT_NAME

name

The name of the factory being created (input).

116 User-defined Extensions

Return values

If successful, the address of the node factory object is returned. Otherwise, a value

of zero (CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the

reason for the error.

Example

 factoryObject = cniCreateNodeFactory(0, (unsigned short *)constPluginNodeFactory);

 if (factoryObject == CCI_NULL_ADDR) {

 /* Handle errors */

cniCreateOutputTerminal

Creates an output terminal on an instance of a node object, returning the address

of the terminal object that was created. The terminal object is destroyed when its

owning node is destroyed.

This function must be called only from within the implementation function

cniCreateNodeContext.

Syntax

CciTerminal* cniCreateOutputTerminal(

 int* returnCode,

 CciNode* nodeObject,

 CciChar* name);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_NODE_OBJECT

v CCI_INV_TERMINAL_NAME

nodeObject

The address of the instance of the node object on which the output terminal is

to be created (input). The address is returned from cniCreateNodeContext.

name

The name of the terminal being created (input).

Return values

If successful, the address of the node terminal object is returned. Otherwise, a

value of zero (CCI_NULL_ADDR) is returned.

Example

 entry->handle = cniCreateOutputTerminal(

 &rc,

 context->nodeObject

 (CciChar*)terminalName);

User-defined extensions 117

cniDefineNodeClass

Defines a node class, as specified by the name parameter, which is supported by

the node factory specified as the factoryObject parameter. This function is called by

the node during execution of bipGetMessageFlowNodeFactory, when the LIL is

loaded.

If both cniGetAttribute and cniGetAttribute2 or cniGetAttributeName and

cniGetAttributeName2 are implemented, cniDefineNodeClass fails with

CCI_INV_IMPL_FUNCTION.

Syntax

void cniDefineNodeClass(

 int* returnCode,

 CciFactory* factoryObject,

 CciChar* name,

 CNI_VFT* functbl);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_FACTORY_OBJECT

v CCI_INV_NODE_NAME

v CCI_INV_OBJECT_NAME

v CCI_INV_VFTP

v CCI_MISSING_IMPL_FUNCTION

v CCI_NAME_EXISTS

factoryObject

The address of the factory object that supports the named node. The address is

returned from cniCreateNodeFactory (input).

name

The name of the node to be defined. The name of the node must end with the

characters Node (input).

functbl

The address of the CNI_VFT structure that contains pointers to the node

implementation functions (input). Here is an example of a function table:

vftable.iFpCreateNodeContext = _Transform_createNodeContext;

vftable.iFpDeleteNodeContext = _deleteNodeContext;

vftable.iFpGetAttributeName2 = _getAttributeName2;

vftable.iFpSetAttribute = _setAttribute;

vftable.iFpGetAttribute2 = _getAttribute2;

vftable.iFpEvaluate = _Transform_evaluate; /* if not an input node */

vftable.iFRun = _run /* if an input node */

You would typically define only one of the last 2 entries, that is, you define

vftable.iFpEvaluate = _Transform_evaluate; for a message processing node,

or you define vftable.iFpRun = _run; for an input node.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

118 User-defined Extensions

cniDeleteMessage

Deletes the specified message object. For every call to the cniCreateMessage

function, there should be a matching call to cniDeleteMessage to return allocated

resources when the processing on the output message has been completed.

Syntax

void cniDeleteMessage(

 int* returnCode,

 CciMessage* message);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_MESSAGE_OBJECT

message

The address of the message object to be deleted (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

 cniDeleteMessage(0, outMsg);

cniDeleteNodeContext

Deletes any context for an instance of a user-defined node object. It is invoked by

the message broker whenever an instance of a node object is destroyed, when a

message flow is deleted, or when a configuration is redeployed. A message flow

node might also be deleted when reconfiguring or redeploying a broker.

The responsibilities of the node at this point are to:

1. Release any node instance specific data areas (such as context) that were

acquired at construction or during node processing.

2. Release any additional resources that might have been acquired for the

processing of the node.

 Defined In Type Member

CNI_VFT Optional iFpDeleteNodeContext

Syntax

void cniDeleteNodeContext(CciContext* context);

Parameters

context

The address of the context for the instance of the node, as created and returned

by the cniCreateNodeContext function (input).

User-defined extensions 119

Example

void _deleteNodeContext(

 CciContext* context

){

 static char* functionName = (char *)"_deleteNodeContext()";

 return;

}

cniDetach

Detaches the specified syntax element from the syntax element tree. The element is

detached from its parent and siblings, but any child elements are left attached.

Syntax

void cniDetach(

 int* returnCode,

 CciElement* targetElement);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

The address of the syntax element object to be detached (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

cniDispatchThread

This function dispatches a new message flow thread to invoke another thread

instance to run the user-defined message flow input node. This message flow

thread is allocated from a pool of threads maintained for each message flow, under

control of the Additional Instances property of the message flow. If there are no

threads available because they are all in use, CCI_SUCCESS is returned and

returnCode is set to CCI_NO_THREADS_AVAILABLE. This is not an error, but

means one of the following:

v The message flow was not configured to run with additional threads.

v All additional threads configured are currently running.

The cniDispatchThread function can only be issued from an input node. If it is

issued at any other time, CCI_FAILURE is returned and returnCode is set to

CCI_INV_NODE_ENV.

Syntax

int cniDispatchThread(

 int* returnCode,

 CciNode* nodeObject);

120 User-defined Extensions

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_NO_THREADS_AVAILABLE

v CCI_INV_NODE_OBJECT

v CCI_INV_NODE_ENV

nodeObject

The address of the node object that is run when WebSphere Message Broker

creates or reuses the thread. This is passed to the node when its

cniCreateNodeContext implementation function is invoked (input).

Return values

v If a thread was successfully allocated, CCI_SUCCESS is returned and returnCode

is set to CCI_SUCCESS.

v If a thread could not be dispatched because there were insufficient threads in the

message flow thread pool to satisfy the request, CCI_SUCCESS is returned, and

returnCode is set to CCI_NO_THREADS_AVAILABLE.

v If the function was not issued from within an input node, CCI_FAILURE is

returned and returnCode is set to CCI_INV_NODE_ENV.

v For any other error conditions, CCI_FAILURE is returned, and returnCode

indicates the reason for the error.

Example

 cniDispatchThread(&rcDispatch, ((NODE_CONTEXT_ST *)context)->nodeObject);

cniElementAsBitstream

Gets the bitstream representation of the specified element. The parser associated

with the element serializes the element and all its children. The result is copied to

memory allocated by the caller. In the special case where all options specified

match those of the original bitstream, for example, a bitstream read from a

WebSphere MQ queue by the MQInput node, and the message has not been

modified since receiving the original bitstream, this original bitstream is copied

into the memory allocated by the user. In this case, the parser is not required to

parse and re-serialize the message.

The algorithm used to generate the bitstream depends on the parser being used,

and the options specified. All parsers support the following modes:

v RootBitStream, in which the bitstream generation algorithm is the same as that

used by an output node. In this mode, a meaningful result is obtained only if

the element pointed to is at the head of a subtree with an appropriate structure.

v EmbeddedBitStream, in which not only is the bitstream generation algorithm the

same as that used by an output node, but also the following are determined, if

not explicitly specified, in the same way as the output node, which means they

are determined by searching the previous siblings of element on the assumption

that these represent headers:

– Encoding

– CCSID

– Message set

User-defined extensions 121

– Message type

– Message format

In this way, the algorithm for determining these properties is essentially the

same as that used for the ESQL BITSTREAM function.

Some parsers also support another mode, FolderBitStream, which generates a

meaningful bitstream for any subtree, provided that the field pointed to represents

a folder.

Syntax

CciSize cniElementAsBitstream(

 int* returnCode,

 CciElement* element,

 const struct CciByteArray* value,

 CciChar* messageType,

 CciChar* messageSet,

 CciChar* messageFormat,

 int encoding,

 int ccsid,

 int options);

Parameters

returnCode

The return code from the function (output). Specifying a NULL pointer

signifies that the node does not want to deal with errors. If input is not NULL,

the output signifies the success status of the call. Any exceptions thrown

during the execution of this call are re-thrown to the next upstream node in the

flow. Call cciGetLastExceptionData for details of the exception. Possible return

codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

v CCI_INV_DATA_BUFLEN

v CCI_INV_BUFFER_TOO_SMALL

element

The syntax element to be serialized (input.)

 The syntax element to be serialized (input.) Must be last child of the message

root.

value

A pointer to a CciByteArray struct containing a pointer to a region of memory

allocated by the caller, and the size in CciBytes of this memory (output).

messageType

The message type definition used to create the bitstream from the element tree

(input). A NULL pointer means that this parameter is ignored. Also, if the

parser associated with the element has no interest in this value, for example, if

it is a generic XML parser, the parameter is ignored.

messageSet

The message set definition used to create the bitstream from the element tree

(input). A NULL pointer means that this parameter is ignored. Also, if the

parser associated with the element has no interest in this value, for example, if

it is a generic XML parser, the parameter is also ignored.

122 User-defined Extensions

messageFormat

The format used to create the bitstream from the element tree (input). A NULL

pointer means that this parameter is ignored. Also, if the parser associated

with the element has no interest in this value, for example, if it is a generic

XML parser, the parameter is ignored.

encoding

The encoding to use when writing the bitstream (input). This parameter is

mandatory. You can specify a value of 0 to indicate that the queue manager’s

encoding should be used.

ccsid

The coded character set identifier to use when writing the bitstream (input).

This parameter is mandatory. You can specify a value of 0 to indicate that the

queue manager’s ccsid should be used. A ccsid of -1 indicates that the

bitstream is to be generated using ccsid information contained in the subtree

consisting of the field pointed to by element and its children. Currently no

parsers support this option.

options

Integer value which specifies which bitstream generation mode should be

used. It can take one of the following values:

v CCI_BITSTREAM_OPTIONS_ROOT

v CCI_BITSTREAM_OPTIONS_EMBEDDED

v CCI_BITSTREAM_OPTIONS_FOLDER

Return values

v If successful, the correct size of memory needed to hold the bitstream is

returned.

v If the memory allocated by the caller was insufficient, returnCode is set to

CCI_BUFFER_TOO_SMALL.

v If an exception occurs during execution, returnCode is set to CCI_EXCEPTION.

Example

The following example demonstrates how the options parameter should be used to

generate the bitstream for different parts of the message tree.

This code can be copied into the _evaluate function of the sample Transform node.

For an input message such as:

MQMD

RFH2

<test><data><stuff>things</stuff></data></test>

the node will propagate 3 messages, one containing a copy of the input message in

the BLOB domain. One containing a copy of the input RFH2 as the message body

in the BLOB domain. One containing the <data></data> folder as the message

body in the BLOB domain.

CciMessage* outMsg[3];

 CciTerminal* terminalObject;

 CciElement* bodyChild;

 CciElement* inRootElement;

 CciElement* inSourceElement[3];

 CciElement* outRootElement;

 CciElement* outBlobElement;

 CciElement* outBody;

 struct CciByteArray bitstream[3];

 int bitstreamOptions[3];

User-defined extensions 123

int retvalue;

 int rc = 0;

 int loopCount;

 CCI_EXCEPTION_ST exception_st = {CCI_EXCEPTION_ST_DEFAULT};

 const CciChar* constBLOBParserName =

 cciString("NONE",BIP_DEF_COMP_CCSID);

 const CciChar* constBLOBElementName =

 cciString("BLOB",BIP_DEF_COMP_CCSID);

 const CciChar* constEmptyString =

 cciString("",BIP_DEF_COMP_CCSID);

 /*build up and propagate 3 output messages*/

 /*first message has bitstream for input message body*/

 /*second message has bitstream for input RFH2*/

 /*third message has bitstream for sub element from input message*/

 /* Get the root element of the input message */

 inRootElement = cniRootElement(&rc, message);

 /*CCI_CHECK_RC();*/

 checkRC(rc);

 /*set up the array of source elements and bitstream options*/

 /*message body*/

 inSourceElement[0] = cniLastChild(&rc,inRootElement);

 checkRC(rc);

 /*This is the root of the message body so we use RootBitStream mode*/

 bitstreamOptions[0] = CCI_BITSTREAM_OPTIONS_ROOT;

 /*last header*/

 inSourceElement[1] = cniPreviousSibling(&rc,inSourceElement[0]);

 checkRC(rc);

 /*This is the root of the RFH2 so we use RootBitStream mode*/

 bitstreamOptions[1] = CCI_BITSTREAM_OPTIONS_ROOT;

 /*body.FIRST(first child of message body) */

 inSourceElement[2] = cniFirstChild(&rc,inSourceElement[0]);

 checkRC(rc);

 /*body.FIRST.FIRST */

 inSourceElement[2] = cniFirstChild(&rc,inSourceElement[2]);

 checkRC(rc);

 /*This is a sub tree within the message body so we use FolderBitStream mode*/

 bitstreamOptions[2] = CCI_BITSTREAM_OPTIONS_FOLDER;

 for (loopCount=0;loopCount<3;loopCount++) {

 int bufLength;

 /* Create new message for output */

 outMsg[loopCount] = cniCreateMessage(&rc, cniGetMessageContext(&rc, message));

 checkRC(rc);

 /* Get the root element of the output message */

 outRootElement = cniRootElement(&rc, outMsg[loopCount]);

 checkRC(rc);

 /* Copy the contents of the input message to the output message */

 cniCopyElementTree(&rc, inRootElement, outRootElement);

 checkRC(rc);

 /* Get the last child of root (ie the body) */

124 User-defined Extensions

bodyChild = cniLastChild(&rc, outRootElement);

 checkRC(rc);

 /*throw away the message body which was copied from the input message*/

 cniDetach(&rc,

 bodyChild);

 checkRC(rc);

 /*create the new output message body in the BLOB domain*/

 outBody = cniCreateElementAsLastChildUsingParser(&rc,

 outRootElement,

 constBLOBParserName);

 checkRC(rc);

 /*create the BLOB element*/

 outBlobElement = cniCreateElementAsLastChild(&rc,

 outBody);

 checkRC(rc);

 cniSetElementName(&rc,

 outBlobElement,

 constBLOBElementName);

 checkRC(rc);

 /*Set the value of the blob element by obtaining the bitstream for the

 element */

 bitstream[loopCount].size=512;

 bitstream[loopCount].pointer=(CciByte*)malloc(sizeof(CciByte) * 512);

 bufLength = cniElementAsBitstream(&rc,

 inSourceElement[loopCount],

 &bitstream[loopCount],

 constEmptyString,/*assume XML message so no interest in*/

 constEmptyString,/* type, set or format*/

 constEmptyString,

 0,/*Use Queue Manager CCSID & Encoding*/

 0,

 bitstreamOptions[loopCount]);

 if (rc==CCI_BUFFER_TOO_SMALL)

 {

 free(bitstream[loopCount].pointer);

 bitstream[loopCount].size=bufLength;

 bitstream[loopCount].pointer=(CciByte*)malloc(sizeof(CciByte) * bitstream[loopCount].size);

 bufLength = cniElementAsBitstream(&rc,

 inSourceElement[loopCount],

 &bitstream[loopCount],

 constEmptyString,/*assume XML message so no interest in*/

 constEmptyString,/* type, set or format*/

 constEmptyString,

 0,/*Use Queue Manager CCSID & Encoding*/

 0,

 bitstreamOptions[loopCount]);

 }

 checkRC(rc);

 bitstream[loopCount].size=bufLength;

 cniSetElementByteArrayValue(&rc,

 outBlobElement,

 &bitstream[loopCount]);

 checkRC(rc);

 }

 /* Get handle of output terminal */

 terminalObject = getOutputTerminalHandle((NODE_CONTEXT_ST *)context,

User-defined extensions 125

(CciChar*)constOut);

 /* If the terminal exists and is attached, propagate to it */

 if (terminalObject) {

 if (cniIsTerminalAttached(&rc, terminalObject)) {

 /* As this is a new, and changed message, it should be finalized... */

 cniFinalize(&rc, outMsg[0], CCI_FINALIZE_NONE);

 cniFinalize(&rc, outMsg[1], CCI_FINALIZE_NONE);

 cniFinalize(&rc, outMsg[2], CCI_FINALIZE_NONE);

 retvalue = cniPropagate(&rc, terminalObject, destinationList, exceptionList, outMsg[0]);

 retvalue = cniPropagate(&rc, terminalObject, destinationList, exceptionList, outMsg[1]);

 retvalue = cniPropagate(&rc, terminalObject, destinationList, exceptionList, outMsg[2]);

 if (retvalue == CCI_FAILURE) {

 if (rc == CCI_EXCEPTION) {

 /* Get details of the exception */

 memset(&exception_st, 0, sizeof(exception_st));

 cciGetLastExceptionData(&rc, &exception_st);

 /* Any local error handling may go here */

 /* Ensure message is deleted prior to return/throw */

 cniDeleteMessage(0, outMsg[0]);

 cniDeleteMessage(0, outMsg[1]);

 cniDeleteMessage(0, outMsg[2]);

 /* We must "rethrow" the exception; note this does not return */

 cciRethrowLastException(&rc);

 }

 else {

 /* Some other error...the plugin might choose to log it using the CciLog() */

 /* utility function */

 }

 }

 else {

 }

 }

 }

 else {

 /* Terminal did not exist...severe internal error. The plugin may wish to */

 /* log an error here using the cciLog() utility function. */

 }

 /* Delete the messages we created now we have finished with them */

 cniDeleteMessage(0, outMsg[0]);

 cniDeleteMessage(0, outMsg[1]);

 cniDeleteMessage(0, outMsg[2]);

 free((void*) constBLOBParserName);

 free((void*) constBLOBElementName);

 free((void*) constEmptyString);

 return;

cniElementName

Gets the value of the name attribute for the specified syntax element. The syntax

element name will have been set previously using cniSetElementName or

cpiSetElementName.

126 User-defined Extensions

Syntax

CciSize cniElementName(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* value,

 Ccisize length);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

v CCI_INV_DATA_BUFLEN

v CCI_INV_BUFFER_TOO_SMALL

targetElement

The address of the target syntax element object (input).

value

The address of a buffer into which the element name is copied (input).

length

The length, in characters, specified by the value parameter (input).

Return values

v If successful, the element name is copied into the supplied buffer and the

number of CciChar characters copied is returned.

v If the buffer is not large enough to contain the attribute value, returnCode is set

to CCI_BUFFER_TOO_SMALL, and the number of CciChars required is

returned.

v For any other failures, CCI_FAILURE is returned, and returnCode indicates the

reason for the error.

cniElementNamespace

Gets the value of the namespace attribute for the specified syntax element. The

syntax element name will have been set previously using cniSetElementNamespace

or cpiSetElementNamespace.

This is used when converting a message that belongs to a namespace-aware

domain to a bitstream.

Syntax

CciSize cniElementNamespace(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* value,

 CciSize length)

Parameters

returnCode

The return code from the function (output). Specifying a NULL pointer

signifies that the node does not want to deal with errors. If input is not NULL,

the output signifies the success status of the call. Any exceptions thrown

User-defined extensions 127

during the execution of this call are re-thrown to the next upstream node in the

flow. Call cciGetLastExceptionData for details of the exception. Possible return

codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

v CCI_INV_DATA_BUFLEN

v CCI_INV_BUFFER_TOO_SMALL

targetElement

Specifies the address of the target syntax element object (input).

value

Specifies the address of a buffer into which the element namespace value is

copied (output). A string of characters (including a NULL terminator)

representing the namespace value is copied into this buffer. The buffer should

be a portion of memory previously allocated by the caller.

length

The length, in characters, of the buffer specified by the value parameter (input).

Return values

v If successful, the number of CciChars copied into the buffer is returned.

v If the buffer is not large enough to contain the attribute value, returnCode is set

to CCI_BUFFER_TOO_SMALL, and the number of CciChars required is

returned.

v If an exception occurs during execution, returnCode is set to CCI_EXCEPTION.

Example

 if (element != 0) {

 /*get name*/

 cniElementName(&rc, element, (CciChar*)&elementName, sizeof(elementName));

 /*get namespace*/

 elementNamespace=(CciChar*)malloc(sizeof(CciChar) * elementNamespaceLength);

 elementNamespaceLength = cniElementNamespace(&rc,

 element,

 elementNamespace,

 elementNamespaceLength);

 if (rc==CCI_BUFFER_TOO_SMALL){

 free(elementNamespace);

 elementNamespace=(CciChar*)malloc(sizeof(CciChar) * elementNamespaceLength);

 elementNamespaceLength = cniElementNamespace(&rc,

 element,

 elementNamespace,

 elementNamespaceLength);

 }

 checkRC(rc);

cniElementType

Gets the value of the type attribute for the specified syntax element. The syntax

element type will have been set previously using cniSetElementType or

cpiSetElementType.

128 User-defined Extensions

Syntax

CciElementType cniElementType(

 int* returnCode,

 CciElement* targetElement);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

The address of the target syntax element object (input).

Return values

The value of the target element type is returned. If an error occurs, CCI_FAILURE

is returned, and the returnCode parameter indicates the reason for the error.

cniElementValue group

These functions retrieve the value of the specified syntax element.

Syntax

CciSize cniElementBitArrayValue(

 int* returnCode,

 CciElement* targetElement,

 const struct CciBitArray* value);

CciBool cniElementBooleanValue(

 int* returnCode,

 CciElement* targetElement);

CciSize cniElementByteArrayValue(

 int* returnCode,

 CciElement* targetElement,

 const struct CciByteArray* value);

CciSize cniElementCharacterValue(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* value,

 CciSize length);

struct CciDate cniElementDateValue(

 int* returnCode,

 CciElement* targetElement);

CciSize cniElementDecimalValue(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* value,

 CciSize length);

struct CciTimestamp cniElementGmtTimestampValue(

 int* returnCode,

 CciElement* targetElement);

struct CciTime cniElementGmtTimeValue(

 int* returnCode,

 CciElement* targetElement);

CciInt cniElementIntegerValue(

 int* returnCode,

 CciElement* targetElement);

User-defined extensions 129

CciReal cniElementRealValue(

 int* returnCode,

 CciElement* targetElement);

struct CciTimestamp cniElementTimestampValue(

 int* returnCode,

 CciElement* targetElement);

struct CciTime cniElementTimeValue(

 int* returnCode,

 CciElement* targetElement);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

v CCI_INV_DATA_BUFLEN

v CCI_INV_BUFFER_TOO_SMALL

targetElement

The address of the target syntax element object (input).

value

The address of an output buffer into which the value of the syntax element is

stored (input). Used on relevant function calls only.

length

The length of the output buffer, in characters, specified by the value parameter

(input). Used on relevant function calls only.

Return values

v If successful, the value of the target element is returned.

v If the size of an element’s data can vary, the correct data size is returned.

v If the specified length is too small, the error code is set to

CCI_BUFFER_TOO_SMALL.

v If an error occurs, the returnCode parameter indicates the reason for the error.

Example

 numberOfChars = cniElementCharacterValue(

 &rc, firstChild, (CciChar*)&elementValue, sizeof(elementValue)

);

if (rc==CCI_BUFFER_TOO_SMALL) {

 free(elementValue);

 elementValue = (CciChar*)malloc(numberOfChars * sizeof(CciChar));

 numberOfChars = cniElementCharacterValue(

 &rc, firstChild, (CciChar*)&elementValue, sizeof(elementValue));

 }

cniElementValueState

Gets the state of the value of the specified syntax element.

130 User-defined Extensions

Syntax

CciValueState cniElementValueState(

 int* returnCode,

 CciElement* targetElement);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

The address of the target syntax element object (input).

Return values

The state of the value of the target syntax element is returned. If an error occurs,

CCI_VALUE_STATE_UNDEFINED is returned, and the returnCode parameter

indicates the reason for the error.

cniElementValueType

Gets the type attribute for the value of the specified syntax element. The state of an

element after creation is undefined. When the value of the element is set, its state

becomes valid.

Syntax

CciValueType cniElementValueType(

 int* returnCode,

 CciElement* targetElement);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

The address of the target syntax element object (input).

Return values

The type of the value of the target syntax element is returned. If an error occurs,

CCI_ELEMENT_TYPE_UNKNOWN is returned, and the returnCode parameter

indicates the reason for the error.

cniElementValueValue

Gets the address of the value object owned by the specified syntax element.

Syntax

const CciElementValue* cniElementValueValue(

 int* returnCode,

 CciElement* targetElement);

User-defined extensions 131

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

targetElement

The address of the target syntax element object (input).

Return values

The address of the value object of the target syntax element is returned. If an error

occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode parameter

indicates the reason for the error.

cniEvaluate

Performs node processing. It is invoked by the message broker when a message is

received on one of the input terminals of an instance of a node object. This

function forms the main processing logic of the message flow or output node. It is

not used with input nodes.

You need to have defined a function table before calling this function, or it will not

work.

The responsibilities of the node at this point are to:

1. Process the message in accordance with the values of any attributes on the

node instance.

2. Process the message based on content, if desired.

3. Propagate the message to any appropriate output terminals.

4. Throw an exception if an error occurs.

 Defined In Type Member

CNI_VFT Conditional iFpEvaluate

Syntax

void cniEvaluate(

 CciContext *context,

 CciMessage *destinationList,

 CciMessage *exceptionList,

 CciMessage *message);

Parameters

context

The address of the context for the instance of the node, as created by the node

and returned by the cniCreateNodeContext function (input).

destinationList

The address of the input destination list object (input).

exceptionList

The address of the exception list for the message (input).

132 User-defined Extensions

message

The address of the input message object (input).

cniFinalize

Causes the broker to request parsers that support the finalize feature to perform

their finalize processing on the specified message. The behavior of this processing

is specific to each parser.

If the options parameter is set to CCI_FINALIZE_VALIDATE, a parser should also

perform validation processing to ensure that the element tree owned by it is of the

correct structure. This helps prevent messages with incorrectly formed element

trees being propagated to other nodes in the message flow.

It is recommended that cniFinalize is called before propagating a message (for

example, before calling cniWriteBuffer).

Syntax

void cniFinalize(

 int* returnCode,

 CciMessage* message,

 int options);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_MESSAGE_OBJECT

message

The address of the message object for which the element tree is to be finalized

(input).

options

Specifies bit flags to identify the finalize or validate options to be used (input).

This parameter is optional. You can set it to CCI_FINALIZE_VALIDATE.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

 cniFinalize(&rc, outMsg, CCI_FINALIZE_NONE);

 retvalue = cniPropagate(

 &rc,

 terminalObject,

 destinationList,

 exceptionList,

 outMsg);

 /* Handle errors */

cniFirstChild

Returns the address of the syntax element object that is the first child of the

specified syntax element.

User-defined extensions 133

Syntax

CciElement* cniFirstChild(

 int* returnCode,

 CciElement* targetElement);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

The address of the target syntax element object (input).

Return values

v If successful, the address of the requested syntax element object is returned.

v If there is no first child, zero is returned, and returnCode is set to CCI_SUCCESS.

v If an error occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode

parameter indicates the reason for the error.

Example

 if (element != 0) {

 cniElementName(&rc, element, (CciChar*)&elementName, sizeof(elementName));

 firstChild = cniFirstChild(&rc, element);

cniGetAttribute

Restriction: This function imposes a restriction on the length of the attribute value.

This function is provided for backward compatibility only. You should

implement cniGetAttribute2.

This function gets the value of an attribute on a specific node instance. It is

invoked by the message broker when a report request is received that retrieves the

value of a node attribute. The broker verifies that the attribute name is valid for

the node.

The responsibilities of the node at this point are to:

1. Return a character representation of the attribute value.

2. Throw an exception if an error occurs.

If both cniGetAttribute and cniGetAttribute2 are implemented,

cniDefineNodeClass fails with CCI_INV_IMPL_FUNCTION.

 Defined In Type Member

CNI_VFT Optional iFpGetAttribute

Syntax

int cniGetAttribute(

 CciContext* context,

 CciChar* attrName,

 CciChar* buffer,

 int bufsize);

134 User-defined Extensions

Parameters

context

The address of the context for the instance of the node, as created by the node

and returned by the cniCreateNodeContext function (input).

attrName

The name of the attribute for which the value is to be retrieved (input).

buffer

The address of a buffer into which the attribute value is copied (output).

bufsize

The length, in bytes, of the buffer specified in the buffer parameter (input).

Return values

If successful, zero is returned, and the character representation of the value of the

attribute is returned in the specified buffer. If the name of the attribute does not

identify one supported by the node, a non-zero value is returned.

cniGetAttribute2

This function gets the value of an attribute on a specific node instance. It is

invoked by the message broker after all of the attributes that the user deploys are

set. The results are written to the broker’s persistent configuration store in order to

ensure that the node is configured correctly after the execution group process is

stopped and started.

The responsibilities of the node at this point are to:

1. Return a character representation of the attribute value.

2. Throw an exception if an error occurs.

If both cniGetAttribute and cniGetAttribute2 are implemented,

cniDefineNodeClass fails with CCI_INV_IMPL_FUNCTION.

 Defined In Type Member

CNI_VFT Optional iFpGetAttribute2

Syntax

CciSize cniGetAttribute2(

 int returnCode,

 CciContext* context,

 CciChar* attrName,

 CciChar* buffer,

 int bufsize);

Parameters

context

The address of the context for the instance of the node, as created by the node

and returned by the cniCreateNodeContext function (input).

returnCode (output)

Pointer to an int. On return, the node should ensure that this int stores a value

that describes the status of completion. Possible return codes are:

v CCI_SUCCESS

v CCI_ATTRIBUTE_UNKNOWN

User-defined extensions 135

v CCI_BUFFER_TOO_SMALL

attrName

The name of the attribute for which the value is to be retrieved (input).

buffer

The address of a buffer into which the attribute value is copied (output).

bufsize

The length, in CciChars, of the buffer specified in the buffer parameter (input).

Return values

v If successful, the attribute value is copied into the supplied buffer and the

number of CciChar characters copied is returned.

v If the buffer is not large enough to contain the attribute value, returnCode is set

to CCI_BUFFER_TOO_SMALL, and the number of CciChars required is

returned.

v If the attrName is not known to this node, returnCode is set to

CCI_ATTRIBUTE_UNKNOWN.

cniGetAttributeName

Restriction: This function imposes a restriction on the length of the attribute value.

This function is provided for backward compatibility only. You should

implement cniGetAttributeName2.

Returns the name of a node attribute specified by an index. It is invoked by the

message broker when the broker requires the names of attributes supported by a

particular instance of a node. The function must guarantee to return the attributes

in a known, defined order, and to return the attribute name represented by the

index parameter.

If both cniGetAttributeName and cniGetAttributeName2 are implemented,

cniDefineNodeClass fails with CCI_INV_IMPL_FUNCTION.

 Defined In Type Member

CNI_VFT Optional iFpGetAttributeName

Syntax

int cniGetAttributeName(

 CciContext* context,

 int index,

 CciChar* buffer,

 int bufsize);

Parameters

context

The address of the context for the instance of the node, as created by the node

and returned by the cniCreateNodeContext function (input).

index

Specifies the index of the attribute name (input). The index of the attributes

starts from zero.

buffer

The address of a buffer into which the attribute name is copied (output).

136 User-defined Extensions

bufsize

The length, in bytes, of the buffer specified in the buffer parameter (input).

Return values

If successful, zero is returned, and the name of the attribute is returned in the

specified buffer. If the end of the list of attributes is reached, a non-zero value is

returned.

cniGetAttributeName2

This function returns the name of a node attribute specified by an index. It is

invoked by the message broker when the broker requires the names of the

attributes that are supported by a particular instance of a node. The function must

guarantee to return the attributes in a known, defined order, and to return the

attribute name that is represented by the index parameter.

If both cniGetAttributeName and cniGetAttributeName2 are implemented,

cniDefineNodeClass fails with CCI_INV_IMPL_FUNCTION.

 Defined In Type Member

CNI_VFT Optional iFpGetAttributeName2

Syntax

CciSize cniGetAttributeName2(

 int returnCode,

 CciContext* context,

 int index,

 CciChar* buffer,

 int bufsize);

Parameters

context

The address of the context for the instance of the node, as created by the node

and returned by the cniCreateNodeContext function (input).

returnCode (output)

Pointer to an int. On return, the node should ensure that this int stores a value

that describes the status of completion. Possible return codes are:

v CCI_SUCCESS

v CCI_ATTRIBUTE_UNKNOWN

v CCI_BUFFER_TOO_SMALL

index

Specifies the index of the attribute name (input). The index of the attributes

starts from zero.

buffer

The address of a buffer into which the attribute name is copied (output).

bufsize

The length, in CciChars, of the buffer specified in the buffer parameter (input).

Return values

v If successful, the attribute name is copied into the supplied buffer and the

number of CciChar characters copied is returned.

User-defined extensions 137

v If the buffer is not large enough to contain the attribute name, returnCode is set

to CCI_BUFFER_TOO_SMALL, and the number of CciChars required is

returned.

v If the end of the list of attributes is reached and the attribute name is not found,

returnCode is set to CCI_ATTRIBUTE_UNKNOWN. For example, when index is

greater than n-1, where n is the number of attributes for this node.

cniGetBrokerInfo

Queries the current broker environment (for example, for information about broker

name and message flow name). The information is returned in a structure of type

CNI_BROKER_INFO_ST.

Syntax

void cniGetBrokerInfo(

 int* returnCode,

 CciNode* nodeObject,

 CNI_BROKER_INFO_ST* broker_info_st);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_NODE_OBJECT

nodeObject

The message flow processing node for which broker environment information

is being requested (input).

broker_info_st

The address of a CNI_BROKER_INFO_ST structure that is used to return a

message that represents the input destination (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

 cniGetBrokerInfo(0, ((NODE_CONTEXT_ST *)context)->nodeObject, &broker_info_st);

cniGetEnvironmentMessage

Gets the CciMessage object corresponding to the Environment for the message

flow.

Syntax

CciMessage ImportExportPrefix * ImportExportSuffix

 cniGetEnvironmentMessage(

 int* returnCode,

 CciMessage* message);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

138 User-defined Extensions

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_MESSAGE_OBJECT

message

The address of the message object for which the environment is to be obtained.

This might be an input message received as an argument to the cniEvaluate

implementation function, or a message created using the cniCreateMessage

utility function.

Return values

If successful, the address of the message object corresponding to the Environment

is returned. Otherwise, a value of zero is returned, and the returnCode parameter

indicates the reason for the error.

cniGetMessageContext

Gets the address of the message context associated with the specified message. The

context of an existing message is used to create an output message, for example

using the cniCreateMessage function.

Syntax

CciMessageContext* cniGetMessageContext(

 int* returnCode,

 CciMessage* message);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_INV_MESSAGE_OBJECT

message

The address of the message object (input).

Return values

If successful, the address of the message context is returned. Otherwise, zero

(CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the reason

for the error.

Example

 outMsg = cniCreateMessage(&rc, cniGetMessageContext(&rc, message));

cniGetParserClassName

Gets the parser class name associated with the specified syntax element.

Syntax

CciSize cniGetParserClassName(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* value,

 CciSize length);

User-defined extensions 139

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

v CCI_INV_DATA_BUFLEN

v CCI_INV_BUFFER_TOO_SMALL

targetElement

The address of the element for which the parser class name is to be returned

(input).

value

The address of an output buffer into which the parser class name is stored

(input).

length

The length of the output buffer, expressed as the number of CciChar

characters, specified in the value parameter (input).

Return values

v If successful, the returnCode parameter indicates CCI_SUCCESS, and the number

of characters written to the buffer is returned.

v If the buffer is not large enough to retain the returned name, the returnCode

parameter indicates CCI_BUFFER_TOO_SMALL, and the returned value

indicates the number of characters required to store the name.

v If any other error occurs, CCI_FAILURE is returned, and the returnCode

parameter indicates the reason for the error.

cniGetParserClassName

Gets the parser class name associated with the specified syntax element.

Syntax

CciSize cniGetParserClassName(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* value,

 CciSize length);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

v CCI_INV_DATA_BUFLEN

v CCI_INV_BUFFER_TOO_SMALL

140 User-defined Extensions

targetElement

The address of the element for which the parser class name is to be returned

(input).

value

The address of an output buffer into which the parser class name is stored

(input).

length

The length of the output buffer, expressed as the number of CciChar

characters, specified in the value parameter (input).

Return values

v If successful, the returnCode parameter indicates CCI_SUCCESS, and the number

of characters written to the buffer is returned.

v If the buffer is not large enough to retain the returned name, the returnCode

parameter indicates CCI_BUFFER_TOO_SMALL, and the returned value

indicates the number of characters required to store the name.

v If any other error occurs, CCI_FAILURE is returned, and the returnCode

parameter indicates the reason for the error.

cniGetThreadContext

Returns the thread context for the current thread.

Syntax

CciThreadContext *cniGetThreadContext(

 int *returnCode,

 CciMessageContext *msgContext);

Parameters

returnCode

This is the return code from the function (output). If the input is NULL, this

signifies that errors are silently handled or are ignored by the broker. If the

input is not NULL, the output signifies the success status of the call. If the

msgContext parameter is not valid, then *returnCode is set to

CCI_INV_MESSAGE_CONTEXT and a NULL CciThreadContext is returned.

msgContext

This provides the message context from which to acquire the thread-specific

context. It is expected that this parameter is obtained by using the

cniGetMessageContext utility function.

Return values

If this function is successful, it returns a handle to the CciThreadContext for the

current thread.

The cciMessageContext value must correspond to a cciMessage, where the

cciMessage is passed in to the cniEvaluate or cniRun function on the current

thread.

Example

CciMessageContext* messageContext = cniGetMessageContext(NULL,message);

CciThreadContext* threadContext = cniGetThreadContext(NULL,messageContext);

User-defined extensions 141

cniIsTerminalAttached

Checks whether a terminal is attached to another node by a connector. It returns

an integer value that specifies whether the specified terminal object is attached to

one or more terminals on other message flow nodes. You can use it to test whether

a message can be propagated to a terminal. However, it is not necessary to call this

function before propagating a message with the cniPropagate utility function.

Using the cniIsTerminalAttached function, a node can modify its behavior when a

terminal is not connected.

Syntax

int cniIsTerminalAttached(

 int* returnCode,

 CciTerminal* terminalObject);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_TERMINAL_OBJECT

terminalObject

The address of the input or output terminal to be checked for an attached

connector (input). The address is returned from cniCreateOutputTerminal.

Return values

v If the terminal is attached to another node by a connector, a value of 1 is

returned.

v If the terminal is not attached, or a failure occurred, a value of zero is returned.

v If a failure occurred, the value of the returnCode parameter indicates the reason

for the error.

Example

 if (terminalObject) {

 if (cniIsTerminalAttached(&rc, terminalObject)) {

 if (rc == CCI_SUCCESS) {

 retvalue = cniPropagate(

 &rc,

 terminalObject,

 destinationList,

 exceptionList,

 message);

cniLastChild

Returns the address of the syntax element object that is the last child of the

specified syntax element.

Syntax

CciElement* cniLastChild(

 int* returnCode,

 CciElement* targetElement);

142 User-defined Extensions

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_MESSAGE_OBJECT

targetElement

The address of the target syntax element object (input).

Return values

v If successful, the address of the requested syntax element object is returned.

v If there is no last child, zero is returned, and returnCode is set to CCI_SUCCESS.

v If an error occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode

parameter indicates the reason for the error.

Example

 bodyChild = cniLastChild(&rc, outRootElement);

cniNextSibling

Returns the address of the syntax element object that is the next sibling (right

sibling) of the specified syntax element.

Syntax

CciElement* cniNextSibling(

 int* returnCode,

 CciElement* targetElement);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

The address of the target syntax element object (input).

Return values

v If successful, the address of the requested syntax element object is returned.

v If there is no next sibling, zero is returned, and returnCode is set to

CCI_SUCCESS.

v If an error occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode

parameter indicates the reason for the error.

Example

 nextSibling = cniNextSibling(&rc, element);

cniParent

Returns the address of the syntax element object that is the parent of the specified

syntax element.

User-defined extensions 143

Syntax

CciElement* cniParent(

 int* returnCode,

 CciElement* targetElement);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

The address of the target syntax element object (input).

Return values

v If successful, the address of the requested syntax element is returned.

v If there is no parent element, zero is returned.

v If an error occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode

parameter indicates the reason for the error.

cniPreviousSibling

Returns the address of the syntax element object that is the previous sibling (left

sibling) of the specified syntax element.

Syntax

CciElement* cniPreviousSibling(

 int* returnCode,

 CciElement* targetElement);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

The address of the target syntax element object (input).

Return values

v If successful, the address of the requested syntax element object is returned.

v If there is no previous sibling, zero is returned, and returnCode is set to

CCI_SUCCESS.

v If an error occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode

parameter indicates the reason for the error.

cniPropagate

Propagates a message to a specified terminal object. If the terminal is not attached

to another node by a connector, the message is not propagated, and the function is

regarded as a no-op. Therefore, it is not necessary to check whether the terminal is

144 User-defined Extensions

attached before propagating the message, unless the action that the node takes

would be different (in which case you can use cniIsTerminalAttached to check

whether the terminal is connected).

Syntax

int cniPropagate(

 int* returnCode,

 CciTerminal* terminalObject,

 CciMessage* destinationList,

 CciMessage* exceptionList,

 CciMessage* message);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_TERMINAL_OBJECT

v CCI_INV_MESSAGE_OBJECT

terminalObject

The address of the output terminal to receive the message (input). The address

is returned by cniCreateOutputTerminal.

destinationList

The address of the destination list object to be sent with the message (input).

 This message object is used by the publish/subscribe node supplied by the

message broker.

exceptionList

The address of the exception list for the message (input).

message

The address of the message object to be sent (input). If the message being sent

is the same as the input message, this address is the one passed on the

cniEvaluate implementation function.

Return values

If successful, CCI_SUCCESS is returned. Otherwise, CCI_FAILURE is returned, and

the returnCode parameter indicates the reason for the error.

Example

 if (terminalObject) {

 if (cniIsTerminalAttached(&rc, terminalObject)) {

 if (rc == CCI_SUCCESS) {

 cniPropagate(&rc, terminalObject, destinationList, exceptionList, message);

cniRootElement

Gets the root syntax element associated with a specified message. It returns the

root element that is associated with (and owned by) the message object identified

by the message parameter. When a message object is constructed by the broker, a

root element is automatically created.

User-defined extensions 145

Syntax

CciElement* cniRootElement(

 int* returnCode,

 CciMessage* message);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_MESSAGE_OBJECT

message

The address of the message object (input).

Return values

If successful, the address of the root element object is returned. Otherwise, zero

(CCI_NULL_ADDR) is returned, and the returnCode parameter indicates the reason

for the error.

Example

 inRootElement = cniRootElement(&rc, message);

cniRun

This function declares the node as an input node. It is not used by message

processing or output nodes, and you do not need to call cniEvaluate. WebSphere

Message Broker allocates a thread and invokes this function on that thread.

 Defined In Type Member

CNI_VFT Conditional iFpRun

Syntax

int cniRun(

 CCiContext* context,

 CCiMessage* destinationList,

 CciMessage* exceptionList,

 CciMessage* message

);

Parameters

context

The address of the context for the instance of the node, as created by the node

and returned by the cniCreateNodeContext function (input).

destinationList

The address of the input destination list object (input).

exceptionList

The address of the exception list for the message (input).

message

The address of the message object to which the data is attached (input).

 The user-defined node can associate a bit stream with this message through

calling cniSetInputBuffer. Populating the tree of this message is not

146 User-defined Extensions

supported, therefore calls to functions such as cniAddAsLastChild or

cniCreateElementAsLastChildFromBitstream will be ineffective. To build parts

of the tree instead of providing a buffer to be parsed as the whole message,

you should create a new message using cniCreateMessage.

 For example, if you have a bit stream that is to be used as the payload part of

the message and you also want to add a header then you should complete the

following steps:

1. Create a new message using cniCreateMessage.

2. Create the header part in this new message by using the Syntax Element

Access Utility functions, for example

cniCreateElementAsLastChildUsingParser, and passing in the root element

of this new message.

3. Add fields to the header by using functions such as

cniCreateElementAsLastChild.

4. Create the body of the message by parsing your bit stream through calling

cniCreateElementAsLastChildFromBitstream, and passing in the root

element of this new message.

Return values

This function is called by the broker as part of a loop. The meaning of the return

value is as shown below.

CCI_TIMEOUT

The input node did not receive its input data and it requires that control be

returned to WebSphere Message Broker in case message flow reconfiguration is

being requested. A user-defined input node should return reasonably

frequently to give control back to WebSphere Message Broker.

CCI_SUCCESS_CONTINUE

A message was successfully processed. Default transaction commit processing

is performed by WebSphere Message Broker. The input node’s cniRun

implementation function is called immediately so that the node can continue

processing.

CCI_SUCCESS_RETURN

A message has been successfully processed. Default transaction commit

processing is performed by WebSphere Message Broker. The input node has

determined that the thread is not required and it is returned to the message

flow thread pool. If this is performed on the only thread, or the last active

thread, WebSphere Message Broker prevents this last thread being returned to

the pool, otherwise there would be no other active threads that can dispatch

another thread. In this situation, WebSphere Message Broker invokes the

cniRun implementation function immediately, as if CCI_SUCCESS_CONTINUE

was returned.

CCI_FAILURE_CONTINUE

An error was detected in the processing of a message and the node is

requesting that transaction rollback processing is performed. The input node’s

cniRun implementation function is called immediately.

CCI_FAILURE_RETURN

An error was detected in the processing of a message, and the node is

requesting that transaction rollback processing is performed. However, the

input node has determined that the thread is not required and it can be

returned to the message flow thread pool. If this is performed on the last

active thread, WebSphere Message Broker prevents this last thread being

User-defined extensions 147

returned to the pool, otherwise there would be no other active threads that can

dispatch another thread. In this situation WebSphere Message Broker invokes

the cniRun implementation function immediately, as if

CCI_FAILURE_CONTINUE was returned.

cniSearchElement group

Searches previous siblings of the specified element for an element matching

specified criteria. The search is performed starting at the syntax element specified

in the targetElement parameter, and each of the four functions provides a search in

a different tree direction:

1. cniSearchFirstChild searches the immediate child elements of the starting

element from the first child, until either a match is found, or the end of the

child element chain is reached.

2. cniSearchLastChild searches the immediate child elements of the starting

element from the last child, until either a match is found, or the end of the

child element chain is reached.

3. cniSearchNextSibling searches from the starting element to the next siblings,

until either a match is found, or the end of the sibling chain is reached.

4. cniSearchPreviousSibling searches from the starting element to the previous

siblings, until either a match is found, or the start of the sibling chain is

reached.

If you use this command to search for an element within a message that belongs to

a namespace-aware domain, the search is only performed on those elements whose

namespace is an empty string. If you want to perform a search for elements in any

namespace, use one of the cniSearchElementNamespace commands.

Syntax

CciElement* cniSearchFirstChild(

 int* returnCode,

 CciElement* targetElement,

 CciCompareMode* mode,

 CciElementType type,

 CciChar name);

CciElement* cniSearchLastChild(

 int* returnCode,

 CciElement* targetElement,

 CciCompareMode* mode,

 CciElementType type,

 CciChar name);

CciElement* cniSearchNextSibling(

 int* returnCode,

 CciElement* targetElement,

 CciCompareMode* mode,

 CciElementType type,

 CciChar name);

CciElement* cniSearchPreviousSibling(

 int* returnCode,

 CciElement* targetElement,

 CciCompareMode* mode,

 CciElementType type,

 CciChar name);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

148 User-defined Extensions

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

The address of the syntax element object from which the search starts (input).

mode

The search mode to use (input). This indicates what combination of element

type and element name is to be searched for. The possible values are:

v CCI_COMPARE_MODE_FULL

v CCI_COMPARE_MODE_FULL_TYPE

v CCI_COMPARE_MODE_GENERIC_TYPE

v CCI_COMPARE_MODE_SPECIFIC_TYPE

v CCI_COMPARE_MODE_NAME

v CCI_COMPARE_MODE_NAME_SPECIFIC_TYPE

v CCI_COMPARE_MODE_NAME_GENERIC_TYPE

v CCI_COMPARE_MODE_NAME_FULL_TYPE

v CCI_COMPARE_MODE_NULL

type

The element type to search for (input). This is used only if the search mode

involves a match on the type.

name

The element name to search for (input). This is used only if the search mode

involves a match on the name.

Example

 int rc;

 CciElement* firstChild = cniSearchFirstChild(

 &rc,

 inRootElement,

 CCI_COMPARE_MODE_NAME,

 elementName,

 0);

Return values

v If successful, the address of the requested syntax element object is returned.

v If there is no matching element, zero is returned.

v If an error occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode

parameter indicates the reason for the error.

cniSearchElementInNamespace group

Searches for an element matching the specified criteria. The search starts at the

syntax element specified in the element argument, and each of the four functions

provides a search in a different tree direction:

1. cniSearchFirstChildInNamespace searches the immediate child elements of the

starting element from the first child, until either a match is found, or the end of

the child element chain is reached.

2. cniSearchLastChildInNamespace searches the immediate child elements of the

starting element from the last child, until either a match is found, or the end of

the child element chain is reached.

User-defined extensions 149

3. cniSearchNextSiblingInNamespace searches from the starting element to the

next siblings, until either a match is found, or the end of the sibling chain is

reached.

4. cniSearchPreviousSiblingInNamespace searches from the starting element to the

previous siblings, until either a match is found, or the start of the sibling chain

is reached.

This is used when searching a message that belongs to a namespace-aware

domain.

Syntax

void cniSearchFirstChildInNamespace(

 int* returnCode,

 CciElement* targetElement,

 CciCompareMode mode,

 const CciChar* nameSpace,

 const CciChar* name,

 CciElementType type)

void cniSearchLastChildInNamespace(

 int* returnCode,

 CciElement* targetElement,

 CciCompareMode mode,

 const CciChar* nameSpace,

 const CciChar* name,

 CciElementType type)

void cniSearchNextSiblingInNamespace(

 int* returnCode,

 CciElement* targetElement,

 CciCompareMode mode,

 const CciChar* nameSpace,

 const CciChar* name,

 CciElementType type)

void cniSearchPreviousSiblingInNamespace(

 int* returnCode,

 CciElement* targetElement,

 CciCompareMode mode,

 CciElementType type,

 const CciChar* nameSpace,

 const CciChar* name)

Parameters

returnCode

The return code from the function (output). Specifying a NULL pointer

signifies that the node does not want to deal with errors. If input is not NULL,

the output signifies the success status of the call. Any exceptions thrown

during the execution of this call are re-thrown to the next upstream node in the

flow. Call cciGetLastExceptionData for details of the exception. The return code

from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

The address of the syntax element object from which the search starts (input).

150 User-defined Extensions

mode

The search mode to use (input). This indicates what combination of element

namespace, element name and element type is to be searched for. The possible

values are:

v CCI_COMPARE_MODE_SPACE

v CCI_COMPARE_MODE_SPACE_FULL_TYPE

v CCI_COMPARE_MODE_SPACE_GENERIC_TYPE

v CCI_COMPARE_MODE_SPACE_SPECIFIC_TYPE

v CCI_COMPARE_MODE_SPACE_NAME

v CCI_COMPARE_MODE_SPACE_NAME_FULL_TYPE

v CCI_COMPARE_MODE_SPACE_NAME_GENERIC_TYPE

v CCI_COMPARE_MODE_SPACE_NAME_SPECIFIC_TYPE

v CCI_COMPARE_MODE_NULL

When the compare mode does not involve a match on the namespace, all

namespaces are searched. This is different behavior to that of the

cniSearchElement group, where only the empty string namespace is searched.

When you specify one of the above modes, set the nameSpace parameter to

empty string.

type

The element type to search for (input). This is used only if the search mode

involves a match on the type.

nameSpace

The namespace to search (input). This is used only if the search mode involves

a match on the namespace.

name

The name to search for (input). This is used only if the search mode involves a

match on the name.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

 mode=CCI_COMPARE_MODE_SPACE ;

 ...

 if (forward) {

 firstChild = cniSearchFirstChildInNamespace(&rc, element, mode, space, 0,0);

 }else{

 firstChild = cniSearchLastChildInNamespace(&rc, element, mode, space, 0,0);

 }

 if (firstChild) {

 depth++;

 traceElement(firstChild,forward,space);

 depth--;

 }

 currentElement = firstChild;

 do{

 if (forward) {

 nextSibling = cniSearchNextSiblingInNamespace(&rc, currentElement,mode,space,0,0);

 }else{

 nextSibling = cniSearchPreviousSiblingInNamespace(&rc, currentElement,mode,space,0,0);

User-defined extensions 151

}

 if (nextSibling) {

 traceElement(nextSibling,forward,space);

 currentElement=nextSibling;

 }

 }while (nextSibling) ;

 }

cniSetAttribute

Sets the value of an attribute on a specific node instance. It is invoked by the

message broker when a configuration request is received that attempts to set the

value of a node attribute, or during initialization of the node. A node receives

requests to set attributes for the base. If an unknown attribute value is received,

this function must return a non-zero value so that the broker processes the request

correctly.

The responsibilities of the node at this point are to:

1. Verify that the value of the attribute is correctly specified. If not, a

configuration exception should be thrown using the cciThrowException

function.

2. Store the value of the attribute within the context, which should have been

allocated in the cniCreateNodeContext function.

3. Throw a configuration exception if an error occurs, using the

cciThrowException function.

 Defined In Type Member

CNI_VFT Optional iFpSetAttribute

Syntax

int cniSetAttribute(

 CciContext* context,

 CciChar* attrName,

 CciChar* attrValue);

Parameters

context

The address of the context for the instance of the node, as created by the node

and returned by the cniCreateNodeContext function (input).

attrName

The name of the attribute whose value is to be set (input).

attrValue

The value of the attribute (input).

Return values

If successful, zero is returned. If the name of the attribute does not identify one

supported by the node, a non-zero value is returned.

cniSetElementName

Sets the name of the specified syntax element.

152 User-defined Extensions

Syntax

void cniSetElementName(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* name);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

targetElement

The address of the target syntax element object (input).

name

The name of the element (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

 CciElement* lastChild = cniCreateElementAsLastChild(&rc, outRootElement);

 cniSetElementName(&rc, lastChild, elementName);

 cniSetElementType(&rc, lastChild, CCI_ELEMENT_TYPE_NAME);

cniSetElementNamespace

Sets the namespace attribute for the specified syntax element.

This is used when manipulating a message that belongs to a namespace-aware

domain.

Syntax

void cniSetElementNamespace(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* nameSpace)

Parameters

returnCode

The return code from the function (output). Specifying a NULL pointer

signifies that the node does not want to deal with errors. If input is not NULL,

the output signifies the success status of the call. Any exceptions thrown

during the execution of this call are re-thrown to the next upstream node in the

flow. Call cciGetLastExceptionData for details of the exception. Possible return

codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

User-defined extensions 153

targetElement

Specifies the address of the target syntax element object (input).

value

Specifies the address of a null terminated string of CciChars representing the

namespace value (output). An empty string is a valid value for namespace. By

default, elements are created in the empty string namespace, so you could

specify an empty string as the namespace, but it only has an effect if the

element was previously in another namespace and you want to change the

namespace value to empty string.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

cniSetElementType

Sets the type of the specified syntax element.

Syntax

void cniSetElementType(

 int* returnCode,

 CciElement* targetElement,

 CciElementType type);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

The address of the target syntax element object (input).

type

The type of the element (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

 CciElement* lastChild = cniCreateElementAsLastChild(&rc, outRootElement);

 cniSetElementName(&rc, lastChild, elementName);

 cniSetElementType(&rc, lastChild, CCI_ELEMENT_TYPE_NAME);

cniSetElementValue group

Functions to set a value into the specified syntax element.

Syntax

void cniSetElementBitArrayValue(

 int* returnCode,

 CciElement* targetElement,

 const struct CciBitArray* value);

154 User-defined Extensions

void cniSetElementBooleanValue(

 int* returnCode,

 CciElement* targetElement,

 CciBool value);

void cniSetElementByteArrayValue(

 int* returnCode,

 CciElement* targetElement,

 const struct CciByteArray* value);

void cniSetElementCharacterValue(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* value,

 CciSize length);

void cniSetElementDateValue(

 int* returnCode,

 CciElement* targetElement,

 const struct CciDate* value);

void cniSetElementDecimalValue(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* value);

void cniSetElementGmtTimestampValue(

 int* returnCode,

 CciElement* targetElement,

 const struct CciTimestamp* value);

void cniSetElementGmtTimeValue(

 int* returnCode,

 CciElement* targetElement,

 const struct CciTime* value);

void cniSetElementIntegerValue(

 int* returnCode,

 CciElement* targetElement,

 CciInt value);

void cniSetElementRealValue(

 int* returnCode,

 CciElement* targetElement,

 CciReal value);

void cniSetElementTimestampValue(

 int* returnCode,

 CciElement* targetElement,

 const struct CciTimestamp* value);

void cniSetElementTimeValue(

 int* returnCode,

 CciElement* targetElement,

 const struct CciTime* value);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

v CCI_INV_DATA_BUFLEN

targetElement

The address of the target syntax element object (input).

value

The value to store in the syntax element (input).

User-defined extensions 155

length

The length of the data value (input). Used on relevant function calls only.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

 static char* functionName = (char *)"_Input_run()";

 void* buffer;

 CciTerminal* terminalObject;

 int buflen = 4096;

 int rc = CCI_SUCCESS;

 int rcDispatch = CCI_SUCCESS;

 char xmlData[] = "<A>data";

 buffer = malloc(buflen);

 memcpy(buffer, &xmlData, sizeof(xmlData));

 cniSetInputBuffer(&rc, message, buffer, buflen);

cniSetElementValueValue

Sets the value object of the specified syntax element.

Syntax

void cniSetElementValueValue(

 int* returnCode,

 CciElement* targetElement,

 CciElementValue* value);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

targetElement

The address of the target syntax element object (input).

value

The address of a value object that is used to set the value of the syntax

element specified by the targetElement parameter (input). The address of the

value object is obtained using cniElementValueValue.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

cniSetInputBuffer

Using this function, the caller can supply a buffer. It is used by input nodes only.

The address is specified by the source parameter as an input bitstream of the input

message to the broker. By supplying a buffer, an input node can read data into the

156 User-defined Extensions

bitstream representing an input message from an external data source. The broker

can access this buffer at any time while the message object it is attached to is being

propagated through a message flow.

Syntax

int cniSetInputBuffer(

 void* returnCode,

 CciMessage* message,

 Void* source,

 CCiInt length);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_MESSAGE_OBJECT

v CCI_INV_DATA_POINTER

v CCI_INV_DATA_BUFLEN

message

The message object that uses the buffer described by the source parameter to

represent the input bitstream. (input)

source

The address of the buffer to be used as input. (input)

length

The length of the input buffer described by the source parameter. (input)

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

 cniSetInputBuffer(&rc, message, buffer, buflen);

cniSqlCreateStatement

Creates an SQL expression object representing the statement specified by the

statement argument, using the syntax as defined for the Compute message flow

processing node. This function returns a pointer to the SQL expression object,

which is used as input to the functions that execute the statement, namely

cniSqlExecute and cniSqlSelect. You can create multiple SQL expression objects in a

single message flow processing node. Although you can create these objects at any

time, you would typically create them when the message flow processing node is

instantiated, within the implementation function cniCreateNodeContext.

Syntax

CciSqlExpression* cniSqlCreateStatement(

 int* returnCode,

 CciNode* nodeObject,

 CciChar* dataSourceName,

 CciSqlTransaction transaction,

 CciChar* statement);

User-defined extensions 157

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_NODE_OBJECT

v CCI_INV_TRANSACTION_TYPE

v CCI_INV_STATEMENT

nodeObject

The message flow processing node that the SQL expression object is owned by

(input). This pointer is passed to the cniCreateNodeContext implementation

function.

dataSourceName

The ODBC data source name used if the statement references data in an

external database (input).

transaction

Specifies whether a database commit is performed after the statement is

executed (input). Valid values are:

CCI_SQL_TRANSACTION_AUTO

Specifies that a database commit is performed at the completion of the

message flow (that is, as a fully globally coordinated or partially

globally coordinated transaction). This is the default.

CCI_SQL_TRANSACTION_COMMIT

Specifies that a commit is performed after execution of the statement,

and within the cniSqlExecute or cniSqlSelect function (that is, the

message flow is partially broker coordinated).

statement

The SQL expression to be created, using the syntax as defined for the compute

message flow processing node (input).

Return values

If successful, the address of the SQL expression object is returned. If an error

occurs, zero (CCI_NULL_ADDR) is returned, and the returnCode parameter

indicates the reason for the error.

cniSqlDeleteStatement

Deletes an SQL statement previously created using the cniSqlCreateStatement

utility function, as defined by the sqlExpression parameter.

Syntax

void cniSqlDeleteStatement(

 int* returnCode,

 CciSqlExpression* sqlExpression);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

158 User-defined Extensions

v CC_INV_SQL_EXPR_OBJECT

sqlExpression

The SQL expression object to be deleted, as returned by the

cniSqlCreateStatement utility function (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

cniSqlExecute

Executes an SQL statement previously created using the cniSqlCreateStatement

utility function, as defined by the sqlExpression parameter. This function is used

when the statement does not return data, for example, when a PASSTHRU

function is used.

Syntax

void cniSqlExecute(

 int* returnCode,

 CciSqlExpression* sqlExpression,

 CciMessage* destinationList,

 CciMessage* exceptionList,

 CciMessage* message);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_INV_SQL_EXPR_OBJECT

v CCI_INV_MESSAGE_OBJECT

sqlExpression

The SQL expression object to be executed, as returned by the

cniSqlCreateStatement utility function (input).

destinationList

The message representing the input destination list (input).

exceptionList

The message representing the input exception list (input).

message

The message representing the input message (input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

cniSqlSelect

Executes an SQL statement previously created using the cniSqlCreateStatement

utility function, as defined by the sqlExpression parameter. If the statement returns

data, the data is written into the message specified by the outputMessage parameter.

User-defined extensions 159

Syntax

void cniSqlSelect(

 int* returnCode,

 CciSqlExpression* sqlExpression,

 CciMessage* destinationList,

 CciMessage* exceptionList,

 CciMessage* message,

 CciMessage* outputMessage);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_SQL_EXPR_OBJECT

v CCI_INV_MESSAGE_OBJECT

sqlExpression

The SQL expression object to be executed, as returned by the

cniSqlCreateStatement utility function (input).

destinationList

The message representing the input destination list (input).

exceptionList

The message representing the input exception list (input).

message

The message representing the input message (input).

outputMessage

The message into which any data returned by the statement is written

(output).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

cniSqlCreateReadOnlyPathExpression

Creates a non modifiable SqlPathExpression object that represents the path

specified by the path argument. Non modifiable means that the navigated path

will not create path elements if they do not already exist. This function returns a

pointer to the PathExpression object which is used as input to the functions that

navigate the path, namely the cniSqlNavigatePath family.

There is an overhead involved in creating the expression so if the same path

expression is to be used for every message then this function should be called once

and the CciSqlPathExpression* that is returned should used in a call to

niSqlNavigatec for each message. It is possible to use the CciSqlPathExpression* on

a different thread than it was created.

Syntax

CciSqlPathExpression* cniSqlCreateReadOnlyPathExpression(

 int* returnCode,

 CciNode* nodeObject,

 CciChar* dataSourceName,

 CciChar* path);

160 User-defined Extensions

Parameters

returnCode (output)

A NULL pointer input signifies that the plug-in node does not wish to deal

with errors. Any exceptions thrown during the execution of this call will be

re-thrown to the next upstream node in the flow. If input is not NULL, output

will signify the success status of the call. If an exception occurs during

execution, *returnCode will be set to CCI_EXCEPTION on output. A call to

cciGetLastExceptionData will provide details of the exception. If an invalid

nodeObject parameter was passed in, then returnCode will be set to

CCI_INV_NODE_OBJECT. If an invalid path parameter, such as a NULL or

empty string, was passed in then returnCode is set to

CCI_INV_ESQL_PATH_EXPR.

nodeObject (input)

Specifies the message flow processing node the ESQL Path Expression will be

owned by. This pointer is passed to the cniCreateNodeContext implementation

function. This parameter must not be NULL.

dataSourceName (input)

The ODBC data source name to be used if the statement references an external

database. NULL is allowed.

path (input)

Pointer to a NULL terminated string of CciChars. This specifies the ESQL path

expression to be created as defined by the ESQL field reference syntax

diagram, except that it cannot include local ESQL variables, ESQL Reference

variables, user defined functions, ESQL Namespace constants, because they

cannot be declared. However, if it can be done in a one line ESQL path in a

compute node, then it should be possible with this API. This parameter must

not be NULL.

Return values

If successful, the address of the SQLPathExpression object is returned. If an error

occurs, CCI_NULL_ADDR is returned and the return code parameter indicates the

reason for the error. Once the SQLPathExpression is no longer needed, (typically

when the node is deleted) it should be deleted by calling

cniSqlDeletePathExpression.

Example

The switch node sample shows how to navigate to a syntax element using

functions like cniFirstChild. The following code could be used to achieve the same

result.

In _Switch_createNodeContext function, we create the CciSqlPathExpression for

use later.

 {

 CciChar ucsPathExpressionString[32];

 char* mbPathExpressionString = "InputBody.Request.type";

 /* convert our path string to unicode*/

 cciMbsToUcs(

 NULL,

 mbPathExpressionString,

 ucsPathExpressionString,

 32,

 BIP_DEF_COMP_CCSID);

 p->pathExpression =

User-defined extensions 161

cniSqlCreateReadOnlyPathExpression(

 NULL,

 nodeObject,

 NULL, /*we do not reference Database*/

 ucsPathExpressionString);

}

Note: This assumes a change to the NODE_CONTEXT_ST struct where we add

the field CciSqlPathExpression* pathExpression;

We can then use that CciSqlPathExpression in the _Switch_evaluate function.

CciElement* targetElement = cniSqlNavigatePath(

 NULL,

 ((NODE_CONTEXT_ST *)context)->pathExpression,

 message,

 destinationList,

 exceptionList,

 NULL, /*we do not reference any output trees*/

 NULL,

 NULL);

Using this approach as opposed to using the cniFirstChild, cniNextSibling etc has

the following advantages:

v The path is more dynamic – the path string could be determined at deploy time

e.g. based on a node attribute (we could create the CciSqlPathExpression in our

cniSetAttribute implementation function).

v While navigating to the element, we make one function call instead of several.

This is more apparent when the target element is deep within the tree structure.

cniSqlCreateModifyablePathExpression

Creates a modifiable SqlPathExpression object that represents the path specified by

the path argument. Modifiable means that when navigated, path elements will be

created if they do not already exist. This function returns a pointer to the

PathExpression object which is used as input to the functions that navigate the

path, namely the cniSqlNavigatePath family. There is an overhead involved in

creating the expression so if the same path expression is to be used for every

message then this function should be called once and the CciSqlPathExpression*

that is returned should used in a call to cniSqlNavigate for each message. It is

possible to use the CciSqlPathExpression on a different thread than it was created.

Syntax

CciSqlPathExpression* cniSqlCreateModifiablePathExpression(

 int* returnCode,

 CciNode* nodeObject,

 CciChar* dataSourceName,

 CciChar* path);

Parameters

returnCode (output)

A NULL pointer input signifies that the plug-in node does not wish to deal

with errors. Any exceptions thrown during the execution of this call are

re-thrown to the next upstream node in the flow. If input is not NULL, output

will signify the success status of the call. If an exception occurs during

execution, *returnCode will be set to CCI_EXCEPTION on output. A call to

cciGetLastExceptionData will provide details of the exception. If an invalid

nodeObject parameter was passed in, then returnCode will be set to

162 User-defined Extensions

CCI_INV_NODE_OBJECT. If an invalid path parameter, such as NULL or an

empty string, was passed in then returnCode will be set to

CCI_INV_ESQL_PATH_EXPR.

nodeObject (input)

Specifies the message flow processing node the ESQL Path Expression will be

owned by. This pointer is passed to the cniCreateNodeContext implementation

function. This parameter must not be NULL.

dataSourceName (input)

The ODBC data source name to be used if the statement references an external

database. This parameter can be NULL.

path (input)

Pointer to a NULL terminated string of CciChars. This specifies the ESQL path

expression to be created as defined by the ESQL field reference syntax

diagram, except that it cannot include local ESQL variables, ESQL Reference

variables, user defined functions, ESQL Namespace constants, because they

cannot be declared. This parameter must not be NULL.

Return values

If successful, the address of the SQLPathExpression object is returned. If an error

occurs, CCI_NULL_ADDR is returned and the return code parameter indicates the

reason for the error. Once the SQLPathExpression is no longer needed, (typically

when the node is deleted) it should be deleted by calling

cniSqlDeletePathExpression.

Example

By adding the following code to the Transform node sample we could easily create

an element, and all necessary ancestor elements with one function call.

We create the CciSQLPathExpression in the _Transform_createNodeContext

function:

 {

 CciChar ucsPathExpressionString[32];

 char* mbPathExpressionString =

 "OutputRoot.XML.Request.A.B.C.D.E";

 /* convert our path string to unicode*/

 cciMbsToUcs(NULL,

 mbPathExpressionString,

 ucsPathExpressionString,

 32,

 BIP_DEF_COMP_CCSID);

 p->pathExpression =

 cniSqlCreateModifiablePathExpression(

 NULL,

 nodeObject,

 NULL,/*we do not reference Database*/

 ucsPathExpressionString);

 }

and we can then use this CciSqlPathExpression later in the _Transform_evaluate

function

{

 CciElement* newElement =

 cniSqlNavigatePath(

 NULL,

 ((NODE_CONTEXT_ST *)context)->pathExpression,

User-defined extensions 163

message,

 destinationList,

 exceptionList,

 outMsg,

 NULL,/*we do not reference OutputLocalEnvironment*/

 NULL/*we do not reference OutputLExceptionList*/);

}

So passing in the input message PluginSample.change.xml:

<Request

type="change">

 <CustomerAccount>01234567</CustomerAccount>

 <CustomerPhone>555-0000</CustomerPhone>

</Request>

we would see the following output message.

<Request

type="modify">

 <CustomerAccount>01234567</CustomerAccount>

 <CustomerPhone>555-0000</CustomerPhone>

 <A>

 <C>

 <D/>

 </C>

</Request>

Using this approach as opposed to using cniCreateElementAsLastChild etc has the

following advantages:

v The path is more dynamic – the path string could be determined at deploy time

e.g. based on a node attribute (we could create the CciSQLPathExpression in our

cniSetAttribute implementation function).

v While navigating to and creating the element, we make one function call instead

of several. This is more apparent when the target element is deep within the tree

structure.

cniSqlNavigatePath

Executes the SQLPathExpression previously created with the

cniSqlCreateReadOnlyPathExpression or the cniSqlCreateModifiablePathExpression

utility functions, as defined by the sqlPathExpression argument.

Syntax

CciElement* cniSqlNavigatePath(

 int* returnCode,

 CciSqlPathExpression* sqlPathExpression,

 CciMessage* inputMessageRoot,

 CciMessage* inputLocalEnvironment,

 CciMessage* inputExceptionList,

 CciMessage* outputMessageRoot

 CciMessage* outputLocalEnvironment,

 CciMessage* outputExceptionList);

Parameters

returnCode (output)

A NULL pointer input signifies that the plug-in node does not wish to deal

with errors. Any exceptions thrown during the execution of this call will be

re-thrown to the next upstream node in the flow. If input is not NULL, output

164 User-defined Extensions

will signify the success status of the call. If an exception occurs during

execution, *returnCode will be set to CCI_EXCEPTION on output. A call to

cciGetLastExceptionData will provide details of the exception. If an invalid

sqlPathExpression parameter was passed in, then returnCode will be set to

CCI_INV_SQL_EXPR_OBJECT. If an invalid CciMessage* value is passed in

then returnCode will be set to CCI_INV_MESSAGE_OBJECT. If the element

could not be navigated to or created, then returnCode is set to

CCI_PATH_NOT_NAVIGABLE.

sqlPathExpression (input)

Specifies the SQLPathExpression object to be executed as returned by either the

cniCreateReadOnlyPathExpression or the cniCreateModifyablePathExpression

function. This parameter can not be NULL.

inputMessageRoot (input)

The message representing the input message. This parameter can not be NULL.

inputLocalEnvironment (input)

The message representing the input local environment. This parameter can not

be NULL.

inputExceptionList (input)

The message representing the input exception list. This parameter can not be

NULL.

outputMessageRoot (input)

The message representing the output message. This parameter can be NULL.

outputLocalEnvironment (input)

The message representing the output local environment. This parameter can be

NULL.

outputExceptionList (input)

The message representing the output exception list. This parameter can be

NULL.

The following table shows the mapping between the correlation names accepted in

the ESQL path expression and the data accessed.

 Correlation name Data accessed

Environment The single Environment tree for the flow.

This is determined by the broker and it is

not necessary to specify it via this API.

InputLocalEnvironment inputLocalEnvironment parameter to

cniSqlNavigatePath

OutputLocalEnvironment outputLocalEnvironment parameter to

cniSqlNavigatePath

InputRoot inputMessageRoot parameter to

cniSqlNavigatePath

InputBody Last child of InputRoot

InputProperties InputRoot.Properties

Note: InputRoot.Properties is the first child

of InputRoot, named ″Properties″

OutputRoot outputMessageRoot parameter to

cniSqlNavigatePath

InputExceptionList inputExceptionList parameter to

cniSqlNavigatePath

User-defined extensions 165

Correlation name Data accessed

OutputExceptionList outputExceptionList parameter to

cniSqlNavigatePath

Database ODBC datasource identified by

dataSourceName parameter to

cniCreateReadOnlyPathExpression or

cniCreateModifyablePathExpression

InputDestinationList Synonym for InputLocalEnvironment

OutputDestinationList Synonym for OutputLocalEnvironment

All other rules regarding the actual navigability and validity of paths are as per the

ESQL Field Reference documentation.

Return values

If the path is successfully navigated the address of the syntax element is returned. .

However if the path is not navigable then a value of zero (CCI_NULL_ADDR) is

returned and the returnCode parameter indicates the reason for the error.

Example

Assuming we have previously created a SQLPathExpression (see the example for

cniSqlCreateReadOnlyPathExpression or cniSqlCreateModifiablePathExpression),

we could use the following code to navigate to the target element.

 CciElement* targetElement = cniSqlNavigatePath(

 NULL,

 ((NODE_CONTEXT_ST *)context)->pathExpression,

 message,

 destinationList,

 exceptionList,

 NULL, /*we do not reference any output trees*/

 NULL,

 NULL);

cniSqlDeletePathExpression

Deletes the SQLPathExpression previously created by the

cniSqlCreateReadOnlyPathExpression or the cniSqlCreateModifiablePathExpression

utility functions, as defined by the sqlPathExpression argument.

Syntax

void cniSqlDeletePathExpression(

 int* returnCode,

 CciSqlPathExpression* sqlPathExpression);

Parameters

returnCode (output)

A NULL pointer input signifies that the plug-in node does not wish to deal

with errors. Any exceptions thrown during the execution of this call will be

re-thrown to the next upstream node in the flow. If input is not NULL, output

will signify the success status of the call. If an exception occurs during

execution, *returnCode will be set to CCI_EXCEPTION on output. A call to

cciGetLastExceptionData will provide details of the exception. If an invalid

sqlPathExpression parameter was passed in, then returnCode will be set to

CCI_INV_SQL_EXPR_OBJECT.

166 User-defined Extensions

sqlPathExpression (output)

Specifies the SQLPathExpression object to be deleted as returned by one of the

cniCreate[ReadOnly|Modifiable]PathExpression functions. May not be NULL.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error..

Example

Expanding on the example for cniSqlCreateReadOnlyPathExpression, you should

place the following code in _deleteNodeContext

cniSqlDeletePathExpression(

 NULL,

 ((NODE_CONTEXT_ST *)context)->pathExpression);

cniWriteBuffer

Writes the syntax element tree associated with the specified message to the data

buffer owned by that message object. This function is typically used by output

nodes. This operation serializes the element tree into a bitstream, which can then

be processed as a sequence of contiguous bytes. This function should be used

when writing the bitstream to a target that is outside the broker.

You must call cniFinalize before this call, or it will not work.

Syntax

void cniWriteBuffer(

 int* returnCode,

 CciMessage* message);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_MESSAGE_OBJECT

message

The address of the message object for which the element tree is to be serialized

(input).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

cniCopyElementTree(&rc, inLastChild, outLastChild);

cniFinalize(&rc, outMessage);

cniWriteBuffer(&rc, outMessage);

C user-defined parser API

The plug-in interface for a message parser consists of:

User-defined extensions 167

1. A set of implementation functions that provide the functionality of the plug-in

parser. These functions are invoked by the message broker. Most

implementation functions are mandatory and, if not supplied by the developer,

cause an exception at runtime.

2. A set of utility functions, the purpose of which is to create resources in the

message broker or to request a service of the broker. These utility functions can

be invoked by a plug-in parser.

These functions are defined in the BipCpi.h header file.

This section covers the following topics:

v “C parser implementation functions.”

v “C parser utility functions” on page 169.

C parser implementation functions

A message parser plug-in implements its capability through a function interface

which is invoked by the message broker during runtime execution. This interface

includes functions to create and delete any local context storage associated with a

parser object and the parsing operations.

Some implementation functions are mandatory, and must be implemented by the

developer, as shown below.

This section covers the following topics:

Mandatory functions

v “cpiCreateContext” on page 178

v “cpiParseNextSibling” on page 203

v “cpiParsePreviousSibling” on page 204

v “cpiParseFirstChild” on page 201

v “cpiParseLastChild” on page 202

Optional and conditional functions

v “cpiDeleteContext” on page 183

v “cpiElementValue” on page 188

v “cpiNextParserClassName” on page 192

v “cpiNextParserCodedCharSetId” on page 193

v “cpiNextParserEncoding” on page 194

v “cpiParseBuffer” on page 197

v “cpiParseBufferEncoded” on page 198

v “cpiParseBufferFormatted” on page 199

v “cpiParserType” on page 205

v “cpiSetElementValue” on page 213

v “cpiSetNextParserClassName” on page 218

v “cpiWriteBuffer” on page 219

v “cpiWriteBufferEncoded” on page 220

v “cpiWriteBufferFormatted” on page 221

168 User-defined Extensions

C parser utility functions

The following system-provided functions allow the C user-defined parser to create

or define message broker objects, such as message parser factories.

This section covers the following topics:

Initialization and resource creation

v “cpiCreateParserFactory” on page 180

v “cpiDefineParserClass” on page 181

Message buffer access

v “cpiAppendToBuffer” on page 173

v “cpiBufferByte” on page 174

v “cpiBufferPointer” on page 175

v “cpiBufferSize” on page 176

Syntax element navigation

v “cpiRootElement” on page 206

v “cpiParent” on page 195

v “cpiNextSibling” on page 195

v “cpiFirstChild” on page 191

v “cpiLastChild” on page 191

v “cpiAddAfter” on page 170

Syntax element access

v “cpiAddBefore” on page 172

v “cpiAddAsFirstChild” on page 171

v “cpiAddAsLastChild” on page 172

v “cpiCreateAndInitializeElement” on page 177

v “cpiCreateElement” on page 179

v “cpiElementCompleteNext” on page 183

v “cpiElementCompletePrevious” on page 184

v “cpiElementName” on page 185

v “cpiElementNameSpace” on page 186

v “cpiElementType” on page 187

v “cpiElementValue group” on page 188

v “cpiElementValueValue” on page 190

v “cpiSetCharacterValueFromBuffer” on page 207

v “cpiSetElementCompleteNext” on page 208

v “cpiSetElementCompletePrevious” on page 209

v “cpiSetElementName” on page 210

v “cpiSetElementType” on page 212

v “cpiSetElementValue group” on page 214

v “cpiSetElementValueValue” on page 215

v “cpiSetNameFromBuffer” on page 217

User-defined extensions 169

cpiAddAfter

Purpose

Adds a new (and currently unattached) syntax element to the syntax element tree

after the specified target element. The newly added element becomes the next

sibling of the target element.

Syntax

void cpiAddAfter(

 int* returnCode,

 CciElement* targetElement,

 CciElement* newElement);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

Specifies the address of the target syntax element object (input).

newElement

Specifies the address of the new syntax element object that is to be added to

the tree structure (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

void cpiSetElementValue(

 CciParser* parser,

 CciElement* element,

 CciElementValue* value

){

 CciElement* newElement;

 int rc;

 if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_VALUE) ||

 (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME_VALUE)) {

 cpiSetElementValueValue(&rc, element, value);

 }

 else if (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME) {

 /* Create a new value element, add after the current value element,

 and set the value */

 newElement = cpiCreateElement(&rc, parser);

 cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_VALUE);

 cpiSetElementValueValue(&rc, newElement, value);

 cpiAddAfter(&rc, element, newElement);

 }

 else {

 }

 return;

}

170 User-defined Extensions

cpiAddAsFirstChild

Purpose

Adds a new (and currently unattached) syntax element to the syntax element tree

as the first child of the specified target element.

Syntax

void cpiAddAsFirstChild(

 int* returnCode,

 CciElement* targetElement,

 CciElement* newElement);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

Specifies the address of the target syntax element object (input).

newElement

Specifies the address of the new syntax element object that is to be added to

the tree structure (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

675 to 698):

void cpiSetElementValue(

 CciParser* parser,

 CciElement* element,

 CciElementValue* value

){

 CciElement* newElement;

 int rc;

 if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_VALUE) ||

 (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME_VALUE)) {

 cpiSetElementValueValue(&rc, element, value);

 }

 else if (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME) {

 /* Create a new value element, add as a first child, and set the value */

 newElement = cpiCreateElement(&rc, parser);

 cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_VALUE);

 cpiSetElementValueValue(&rc, newElement, value);

 cpiAddAsFirstChild(&rc, element, newElement);

 }

 else {

 }

 return;

}

User-defined extensions 171

cpiAddAsLastChild

Purpose

Adds a new (and currently unattached) syntax element to the syntax element tree

as the last child of the specified target element.

Syntax

void cpiAddAsLastChild(

 int* returnCode,

 CciElement* targetElement,

 CciElement* newElement);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

Specifies the address of the target syntax element object (input).

newElement

Specifies the address of the new syntax element object that is to be added to

the tree structure (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

209 to 228):

/* Convert the attribute value into broker form */

 data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */

 newElement = cpiCreateElement(&rc, parser);

 cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

 cpiSetElementName(&rc, newElement, data);

 /* Free the memory created in CciNString() */

 free((void *)data);

 /* Add the element */

 cpiAddAsLastChild(&rc, element, newElement);

cpiAddBefore

Purpose

Adds a new (and currently unattached) syntax element to the syntax element tree

before the specified target element. The newly added element becomes the

previous sibling of the target element.

172 User-defined Extensions

Syntax

void cpiAddBefore(

 int* returnCode,

 CciElement* targetElement,

 CciElement* newElement);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

Specifies the address of the target syntax element object (input).

newElement

Specifies the address of the new syntax element object that is to be added to

the tree structure (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

void cpiSetElementValue(

 CciParser* parser,

 CciElement* element,

 CciElementValue* value

){

 CciElement* newElement;

 int rc;

 if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_VALUE) ||

 (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME_VALUE)) {

 cpiSetElementValueValue(&rc, element, value);

 }

 else if (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME) {

 /* Create a new value element, add before the current value element,

 and set the value */

 newElement = cpiCreateElement(&rc, parser);

 cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_VALUE);

 cpiSetElementValueValue(&rc, newElement, value);

 cpiAddBefore(&rc, element, newElement);

 }

 else {

 }

 return;

}

cpiAppendToBuffer

Purpose

Appends data to the buffer containing the bit stream representation of a message,

for the specified parser object.

User-defined extensions 173

Syntax

void cpiAppendToBuffer(

 int* returnCode,

 CciParser* parser,

 CciByte* data,

 CciSize length);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_PARSER_OBJECT

v CCI_INV_DATA_POINTER

v CCI_INV_LENGTH

parser

Specifies the address of the parser object (input).

data

The address of the data to be appended to the buffer (input).

length

The size in bytes of the data to be appended to the buffer (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (line

634):

cpiAppendToBuffer(&rc, parser, (char *)"Some test data", 14);

cpiBufferByte

Purpose

Gets a single byte from the buffer containing the bit stream representation of the

input message, for the specified parser object. The value of the index argument

indicates which byte in the byte array is to be returned.

Syntax

CciByte cpiBufferByte(

 int* returnCode,

 CciParser* parser,

 CciSize index);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_PARSER_OBJECT

174 User-defined Extensions

v CCI_NO_BUFFER_EXISTS

parser

Specifies the address of the parser object (input).

index

Specifies the offset to use as an index into the buffer (input).

Return values

The requested byte is returned. If an error occurs, returnCode indicates the reason

for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines 61

to 75):

void advance(

 PARSER_CONTEXT_ST* context,

 CciParser* parser

){

 int rc = 0;

 /* Advance to the next character */

 context->iIndex++;

 /* Detect and handle the end condition */

 if (context->iIndex == context->iSize) return;

 /* Obtain the next character from the buffer */

 context->iCurrentCharacter = cpiBufferByte(&rc, parser, context->iIndex);

}

cpiBufferPointer

Purpose

Gets a pointer to the buffer containing the bit stream representation of the input

message, for the specified parser object.

Syntax

const CciByte* cpiBufferPointer(

 int* returnCode,

 CciParser* parser);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_PARSER_OBJECT

v CCI_NO_BUFFER_EXISTS

parser

Specifies the address of the parser object (input).

User-defined extensions 175

Return values

If successful, the address of the buffer is returned. Otherwise, a value of zero

(CCI_NULL_ADDR) is returned, and returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

428 to 445):

int cpiParseBufferEncoded(

 CciParser* parser,

 CciContext* context,

 int encoding,

 int ccsid

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int rc;

 /* Get a pointer to the message buffer and set the offset */

 pc->iBuffer = (void *)cpiBufferPointer(&rc;, parser);

 pc->iIndex = 0;

cpiBufferSize

Purpose

Gets the size of the buffer containing the bit stream representation of the input

message, for the specified parser object.

Syntax

CciSize cpiBufferSize(

 int* returnCode,

 CciParser* parser);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_PARSER_OBJECT

v CCI_NO_BUFFER_EXISTS

parser

Specifies the address of the parser object (input).

Return values

If successful, the size of the buffer, in bytes, is returned. If an error occurs, zero

(CCI_NULL_ADDR) is returned, and returnCode indicates the reason for the error.

Sample

This example is taken from the sample node file BipSampPluginParser.c (lines 428

to 452):

int cpiParseBufferEncoded(

 CciParser* parser,

176 User-defined Extensions

CciContext* context,

 int encoding,

 int ccsid

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int rc;

 /* Get a pointer to the message buffer and set the offset */

 pc->iBuffer = (void *)cpiBufferPointer(&rc, parser);

 pc->iIndex = 0;

 /* Save the format of the buffer */

 pc->iEncoding = encoding;

 pc->iCcsid = ccsid;

 /* Save size of the buffer */

 pc->iSize = cpiBufferSize(&rc, parser);

cpiCreateAndInitializeElement

Purpose

Creates a syntax element, owned by the specified parser, that is not attached to a

syntax tree. The element is partially initialized with the values of the type, name,

firstChildComplete, and lastChildComplete parameters.

Syntax

CciElement* cpiCreateAndInitializeElement(

 int* returnCode,

 CciParser* parser,

 CciElementType type,

 const CciChar* name,

 CciBool firstChildComplete,

 CciBool lastChildComplete);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_FAILURE

v CCI_INV_PARSER_OBJECT

parser

Specifies the address of the parser object (input). This address is passed to the

plug-in as a parameter of the cpiCreateContext implementation function.

type

Specifies the type of the element being created (input).

name

Specifies a descriptive name for the element (input).

firstChildComplete

Specifies a value for the firstChildComplete flag of the syntax element (input).

lastChildComplete

Specifies a value for the lastChildComplete flag of the syntax element (input).

User-defined extensions 177

Return values

If successful, the address of the new element object is returned. Otherwise, a value

of zero (CCI_NULL_ADDR) is returned, and returnCode indicates the reason for

the error.

Sample

/* Advance to the end of the value */

 while (pc->iCurrentCharacter != quoteChar) {

 advance((PARSER_CONTEXT_ST *)context, parser);

 }

 /* Get a pointer to the end of the tag */

 endMarker = (char*)pc->iBuffer+(int)pc->iIndex;

 /* Compute the size of the tag */

 markedSize = (size_t)endMarker-(int)startMarker;

 /* Convert the attribute value into broker form */

 data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

 /* Create a new name-value element for the attribute */

 newElement = cpiCreateAndInitializeElement(&rc, parser, type, name);

 cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

 cpiSetElementName(&rc, newElement, data);

 if (pc->trace) {

 const char * mbData = mbString(data, pc->iCcsid);

 fprintf(pc->tracefile, "PLUGIN: Created new NAMEVALUE element;

 object=0x%x type=0x%x name=",

 newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

 fprintf(pc->tracefile, "%s\n", mbData);

 fflush(pc->tracefile);

 free((void *)mbData);

 }

 /* Free the memory created in CciNString() */

 free((void *)data);

cpiCreateContext

Purpose

Creates a user-defined extension context associated with a parser object. It is

invoked by the message broker when an instance of a parser object is constructed

or allocated. This occurs when a message flow causes the message data to be

parsed; the broker constructs or allocates a parser object to acquire the appropriate

section of the message data. Before this function is called, the broker will have

created a name element as the effective root element for the parser. However, this

element is not named. The parser should name this element in the

cpiSetElementName function.

The responsibilities of the extension are to:

1. Allocate any parser instance specific data areas (such as context) that might be

required.

2. Perform any additional resource acquisition or initialization that might be

required.

3. Return the address of the context to the calling function. Whenever a plug-in

implementation function for this parser instance is invoked, the appropriate

context is passed as an argument to that function. This means that a plug-in

parser developed in C need not maintain its own static pointers to per-instance

data areas.

178 User-defined Extensions

Defined In Type Member

CPI_VFT Mandatory iFpCreateContext

Syntax

void cpiCreateContext(

 CciParser* parser);

Parameters

parser

The address of the parser object (input).

Return values

If successful, the address of the user-defined extension context is returned.

Otherwise, a value of zero is returned.

cpiCreateElement

Purpose

Creates a default syntax element that is not attached to a syntax tree. The element

is owned by the specified parser. The element is incomplete in that none of its

attributes (such as type or name) are set.

Syntax

CciElement* cpiCreateElement(

 int* returnCode,

 CciParser* parser);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_FAILURE

v CCI_INV_PARSER_OBJECT

parser

Specifies the address of the parser object (input).

Return values

If successful, the address of the new element object is returned. Otherwise, a value

of zero (CCI_NULL_ADDR) is returned, and returnCode indicates the reason for

the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

198 to 225):

/* Advance to the end of the value */

 while (pc->iCurrentCharacter != quoteChar) {

 advance((PARSER_CONTEXT_ST *)context, parser);

 }

User-defined extensions 179

/* Get a pointer to the end of the tag */

 endMarker = (char*)pc->iBuffer+(int)pc->iIndex;

 /* Compute the size of the tag */

 markedSize = (size_t)endMarker-(int)startMarker;

 /* Convert the attribute value into broker form */

 data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

 /* Create a new name-value element for the attribute */

 newElement = cpiCreateElement(&rc, parser);

 cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

 cpiSetElementName(&rc, newElement, data);

 if (pc->trace) {

 const char * mbData = mbString(data, pc->iCcsid);

 fprintf(pc->tracefile, "PLUGIN: Created new NAMEVALUE element;

 object=0x%x type=0x%x name=",

 newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

 fprintf(pc->tracefile, "%s\n", mbData);

 fflush(pc->tracefile);

 free((void *)mbData);

 }

 /* Free the memory created in CciNString() */

 free((void *)data);

cpiCreateParserFactory

Purpose

Creates a single instance of the named parser factory in the message broker. It

must be invoked only in the initialization function bipGetParserFactory which is

called when the ’lil’ is loaded by the message broker. If cpiCreateParserFactory is

invoked at any other time, the results are unpredictable.

Syntax

CciFactory* cpiCreateParserFactory(

 int* returnCode,

 CciChar* name);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_FAILURE

v CCI_INV_FACTORY_NAME

v CCI_INV_OBJECT_NAME

name

Specifies the name of the factory being created (input).

Return values

If successful, the address of the parser factory object is returned. Otherwise, a

value of zero (CCI_NULL_ADDR) is returned, and returnCode indicates the reason

for the error.

180 User-defined Extensions

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

862 to 901):

void LilFactoryExportPrefix * LilFactoryExportSuffix bipGetParserFactory()

{

 /* Declare variables */

 CciFactory* factoryObject;

 int rc;

 static CPI_VFT vftable = {CPI_VFT_DEFAULT};

 /* Before we proceed we need to initialise all the static constants */

 /* that may be used by the plug-in. */

 initParserConstants();

 /* Setup function table with pointers to parser implementation functions */

 vftable.iFpCreateContext = cpiCreateContext;

 vftable.iFpParseBufferEncoded = cpiParseBufferEncoded;

 vftable.iFpParseFirstChild = cpiParseFirstChild;

 vftable.iFpParseLastChild = cpiParseLastChild;

 vftable.iFpParsePreviousSibling = cpiParsePreviousSibling;

 vftable.iFpParseNextSibling = cpiParseNextSibling;

 vftable.iFpWriteBufferEncoded = cpiWriteBufferEncoded;

 vftable.iFpDeleteContext = cpiDeleteContext;

 vftable.iFpSetElementValue = cpiSetElementValue;

 vftable.iFpElementValue = cpiElementValue;

 vftable.iFpNextParserClassName = cpiNextParserClassName;

 vftable.iFpSetNextParserClassName = cpiSetNextParserClassName;

 vftable.iFpNextParserEncoding = cpiNextParserEncoding;

 vftable.iFpNextParserCodedCharSetId = cpiNextParserCodedCharSetId;

 /* Create the parser factory for this plugin */

 factoryObject = cpiCreateParserFactory(&rc, constParserFactory);

 if (factoryObject) {

 /* Define the classes of message supported by the factory */

 cpiDefineParserClass(&rc, factoryObject, constPXML, &vftable);

 }

 else {

 /* Error: Unable to create parser factory */

 }

 /* Return address of this factory object to the broker */

 return(factoryObject);

}

cpiDefineParserClass

Purpose

Defines the name of a parser class that is supported by a parser factory. functbl is

a pointer to a virtual function table containing pointers to the C plug-in

implementation functions, that is, those functions that provide the function of the

parser itself.

Syntax

void cpiDefineParserClass(

 int* returnCode,

 CciFactory* factoryObject,

 CciChar* name,

 CPI_VFT* functbl);

User-defined extensions 181

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_FACTORY_OBJECT

v CCI_INV_PARSER_NAME

v CCI_PARSER_NAME_TOO_LONG

v CCI_INV_OBJECT_NAME

v CCI_INV_VFTP

v CCI_MISSING_IMPL_FUNCTION

v CCI_INV_IMPL_FUNCTION

v CCI_NAME_EXISTS

factoryObject

Specifies the address of the factory object that supports the named parser

(input). The address is returned from cpiCreateParserFactory.

name

The name of the parser class to be defined (input). The maximum length of a

parser class name is 8 characters.

functbl

The address of the CPI_VFT structure that contains pointers to the plug-in

implementation functions (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

862 to 901):

void LilFactoryExportPrefix * LilFactoryExportSuffix bipGetParserFactory()

{

 /* Declare variables */

 CciFactory* factoryObject;

 int rc;

 static CPI_VFT vftable = {CPI_VFT_DEFAULT};

 /* Before we proceed we need to initialise all the static constants */

 /* that may be used by the plug-in. */

 initParserConstants();

 /* Setup function table with pointers to parser implementation functions */

 vftable.iFpCreateContext = cpiCreateContext;

 vftable.iFpParseBufferEncoded = cpiParseBufferEncoded;

 vftable.iFpParseFirstChild = cpiParseFirstChild;

 vftable.iFpParseLastChild = cpiParseLastChild;

 vftable.iFpParsePreviousSibling = cpiParsePreviousSibling;

 vftable.iFpParseNextSibling = cpiParseNextSibling;

 vftable.iFpWriteBufferEncoded = cpiWriteBufferEncoded;

 vftable.iFpDeleteContext = cpiDeleteContext;

 vftable.iFpSetElementValue = cpiSetElementValue;

 vftable.iFpElementValue = cpiElementValue;

 vftable.iFpNextParserClassName = cpiNextParserClassName;

 vftable.iFpSetNextParserClassName = cpiSetNextParserClassName;

182 User-defined Extensions

vftable.iFpNextParserEncoding = cpiNextParserEncoding;

 vftable.iFpNextParserCodedCharSetId = cpiNextParserCodedCharSetId;

 /* Create the parser factory for this plugin */

 factoryObject = cpiCreateParserFactory(&rc, constParserFactory);

 if (factoryObject) {

 /* Define the classes of message supported by the factory */

 cpiDefineParserClass(&rc, factoryObject, constPXML, &vftable);

 }

 else {

 /* Error: Unable to create parser factory */

 }

 /* Return address of this factory object to the broker */

 return(factoryObject);

}

cpiDeleteContext

Purpose

Deletes the plug-in context associated with a parser object. It is invoked by the

message broker when an instance of a parser object is destroyed.

The responsibilities of the plug-in are to:

1. Release any parser instance specific data areas (such as context) that were

acquired at construction or during parser processing.

2. Release any additional resources that might have been acquired for the

processing of the parser.

 Defined In Type Member

CPI_VFT Optional iFpDeleteContext

Syntax

void cpiDeleteContext(

 CciParser* parser,

 CciContext* context);

Parameters

parser

The address of the parser object (input).

context

The address of the plug-in context (input).

Return values

None.

cpiElementCompleteNext

Purpose

Gets the value of the ’next child complete’ flag from the target syntax element.

This attribute indicates whether the element tree is complete.

User-defined extensions 183

Syntax

CciBool cpiElementCompleteNext(

 int* returnCode,

 CciElement* targetElement);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

Specifies the address of the target syntax element object (input).

Return values

The value of the attribute is returned. If an error occurs, returnCode indicates the

reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

491 to 499):

if ((!cpiElementCompleteNext(&rc, element)) &&

 (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME)) {

 while ((!cpiElementCompleteNext(&rc, element)) &&

 (!cpiFirstChild(&rc, element)) &&

 (pc->iCurrentElement))

 {

 pc->iCurrentElement = parseNextItem(parser, context, pc->iCurrentElement);

 }

cpiElementCompletePrevious

Purpose

Gets the value of the ’previous child complete’ flag from the target syntax element.

This attribute indicates whether the element tree is complete.

Syntax

CciBool cpiElementCompletePrevious(

 int* returnCode,

 CciElement* targetElement);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

Specifies the address of the target syntax element object (input).

184 User-defined Extensions

Return values

The value of the attribute is returned. If an error occurs, returnCode indicates the

reason for the error.

Sample

This example is similar to code taken from the sample parser file

BipSampPluginParser.c (lines 491 to 499). In the sample file, the code given is for

cpiElementCompleteNext.

if ((!cpiElementCompletePrevious(&rc, element)) &&

 (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME)) {

 while ((!cpiElementCompletePrevious(&rc, element)) &&

 (!cpiFirstChild(&rc, element)) &&

 (pc->iCurrentElement))

 {

 pc->iCurrentElement = parsePreviousItem(parser, context, pc->iCurrentElement);

 }

cpiElementName

Purpose

Gets the name of the target syntax element. The syntax element name will have

been set previously using cniSetElementName or cpiSetElementName.

Syntax

Ccisize cpiElementName(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* value,

 CciSize length);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

v CCI_INV_DATA_BUFLEN

v CCI_INV_BUFFER_TOO_SMALL

targetElement

Specifies the address of the target syntax element object (input).

value

Specifies the address of a buffer into which the element name will be copied

(input).

length

The length, in characters, specified by the value parameter (input).

Return values

If successful, the element name is copied into the supplied buffer and the number

of CciChar characters copied is returned. If the buffer is not large enough to

User-defined extensions 185

contain the element name, returnCode is set to CCI_BUFFER_TOO_SMALL and

the number of characters required is returned. For any other failures,

CCI_FAILURE is returned and returnCode indicates the reason for the error.

Sample

cpiElementName(&rc;, element, (CciChar*)&elementName;, sizeof(elementName));

cpiElementNameSpace

Purpose

Gets the value of the ″namespace″ attribute for the specified syntax element

 Defined In Type Member

CPI_VFT Optional iFpElementValue

Syntax

CciSize cpiElementNamespace(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* value,

 CciSize length);

Parameters

returnCode

A NULL pointer input signifies that the plug-in node does not want to deal

with errors. Any exceptions thrown during the execution of this call will be

re-thrown to the next upstream node in the flow. If input is not NULL, output

will signify the success status of the call. If an exception occurs during

execution, *returnCode will be set to CCI_EXCEPTION on output. A call to

CciGetLastExceptionData will provide details of the exception. If the caller did

not allocate enough memory to hold the namespace value, *returncode is set to

CCI_BUFFER_TOO_SMALL. Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

v CCI_INV_DATA_BUFLEN

v CCI_INV_BUFFER_TOO_SMALL

targetElement

Specifies the address of the target syntax element object.

value

Specifies the address of a buffer into which the element namespace value will

be copied. A string of characters (including a NULL terminator) representing

the namespace value is copied into this buffer. The buffer should be a portion

of memory previously allocated by the caller

length

The length in CciChars of the buffer specified by the value parameter.

Return values

If successful, the number of CciChars copied into the buffer is returned.

186 User-defined Extensions

If the buffer is not large enough to contain the attribute value, returnCode is set to

CCI_BUFFER_TOO_SMALL, and the number of bytes CciChars required is

returned.

Sample

elementNamespace=(CciChar*)malloc(sizeof(CciChar) * elementNamespaceLength);

 elementNamespaceLength = cpiElementNamespace(&rc;,

 element,

 elementNamespace,

 elementNamespaceLength);

 if (rc==CCI_BUFFER_TOO_SMALL){

 free(elementNamespace);

 elementNamespace=(CciChar*)malloc(sizeof(CciChar) * elementNamespaceLength);

 elementNamespaceLength = cpiElementNamespace(&rc;,

 element,

 elementNamespace,

 elementNamespaceLength);

 }

 checkRC(rc);

cpiElementType

cpiElementType C API command

Purpose

Gets the type of the target syntax element. The syntax element type will have been

set previously using cniSetElementType or cpiSetElementType.

Syntax

CciElementType cpiElementType(

 int* returnCode,

 CciElement* targetElement);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

Specifies the address of the target syntax element object (input).

Return values

The value of the element type is returned. If an error occurs, returnCode indicates

the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

491 to 499):

if ((!cpiElementCompleteNext(&rc, element)) &&

 (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME)) {

 while ((!cpiElementCompleteNext(&rc, element)) &&

 (!cpiFirstChild(&rc, element)) &&

User-defined extensions 187

(pc->iCurrentElement))

 {

 pc->iCurrentElement = parseNextItem(parser, context, pc->iCurrentElement);

 }

cpiElementValue

Purpose

Optional function to get the value of a specified element. It is invoked by the

broker when the value of a syntax element is to be retrieved. It provides an

opportunity for a plug-in parser to override the behavior for retrieving element

values.

 Defined In Type Member

CPI_VFT Optional iFpElementValue

Syntax

const CciElementValue* cpiElementValue(

 CciParser* parser,

 CciElement* currentElement);

Parameters

parser

The address of the parser object (input).

currentElement

The address of the current syntax element (input).

Return values

The value of the target syntax element object is returned. This will have been

returned by the cpiElementValueValue function.

cpiElementValue group

Purpose

Functions to get the value of the specified syntax element.

Syntax

CciSize cpiElementBitArrayValue(

 int* returnCode,

 CciElement* targetElement,

 const struct CciBitArray* value);

CciBool cpiElementBooleanValue(

 int* returnCode,

 CciElement* targetElement);

CciSize cpiElementByteArrayValue(

 int* returnCode,

 CciElement* targetElement,

 const struct CciByteArray* value);

CciSize cpiElementCharacterValue(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* value,

 CciSize length);

188 User-defined Extensions

struct CciDate cpiElementDateValue(

 int* returnCode,

 CciElement* targetElement);

CciSize cpiElementDecimalValue(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* value,

 CciSize length);

struct CciTimestamp cpiElementGmtTimestampValue(

 int* returnCode,

 CciElement* targetElement);

struct CciTime cpiElementGmtTimeValue(

 int* returnCode,

 CciElement* targetElement);

CciInt cpiElementIntegerValue(

 int* returnCode,

 CciElement* targetElement);

CciReal cpiElementRealValue(

 int* returnCode,

 CciElement* targetElement);

struct CciTimestamp cpiElementTimestampValue(

 int* returnCode,

 CciElement* targetElement);

struct CciTime cpiElementTimeValue(

 int* returnCode,

 CciElement* targetElement);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

v CCI_INV_DATA_BUFLEN

v CCI_INV_BUFFER_TOO_SMALL

targetElement

Specifies the address of the target syntax element object (input).

value

The address of an output buffer into which the value of the syntax element is

stored (input). Used on relevant function calls only.

length

The length of the output buffer, in characters, specified by the value parameter

(input). Used on relevant function calls only.

Return values

The value of the element is returned.

In some cases, for example, cpiElementCharacterValue or

cpiElementDecimalValue, if the buffer is not large enough to receive the data the

data is not written into the buffer. The size of the required buffer is passed as the

return value, and returnCode is set to CCI_BUFFER_TOO_SMALL.

User-defined extensions 189

If an error occurs, returnCode indicates the reason for the error.

cpiElementValueValue

Purpose

Gets the value object from the specified syntax element. This value object is

opaque in that it cannot be interrogated. It can be used to set or derive the value of

one element from another, without knowing its type, by using the

cpiSetElementValueValue function. This can be used by parsers that override

behavior by invoking the implementation functions cpiElementValue and

cpiSetElementValue.

Syntax

const CciElementValue* cpiElementValueValue(

 int* returnCode,

 CciElement* targetElement);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

Specifies the address of the target syntax element object (input).

Return values

The address of the CciElementValue object stored in the specified target syntax

element is returned. If an error occurs, zero (CCI_NULL_ADDR) is returned and

returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

705 to 725):

const CciElementValue* cpiElementValue(

 CciParser* parser,

 CciElement* element

){

 CciElement* firstChild;

 const CciElementValue* value;

 int rc;

 if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_VALUE) ||

 (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME_VALUE)) {

 value = cpiElementValueValue(&rc, element);

 }

 else if (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME) {

 firstChild = cniFirstChild(&rc, element);

 value = cpiElementValueValue(&rc, firstChild);

 }

 else {

 }

 return(value);

}

190 User-defined Extensions

cpiFirstChild

Purpose

Returns the address of the syntax element object that is the first child of the

specified target element.

Syntax

CciElement* cpiFirstChild(

 int* returnCode,

 const CciElement* targetElement);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

Specifies the address of the target syntax element object (input).

Return values

The address of the requested syntax element object is returned, unless there is no

child in which case zero is returned. If an error occurs, zero (CCI_NULL_ADDR) is

returned and returnCode indicates the reason for the error.

Sample

This example is taken from the sample node file BipSampPluginParser.c (lines 494

to 496):

while ((!cpiElementCompleteNext(&rc, element)) &&

 (!cpiFirstChild(&rc, element)) &&

 (pc->iCurrentElement))

cpiLastChild

Purpose

Returns the address of the syntax element object that is the last child of the

specified target element.

Syntax

CciElement* cpiLastChild(

 int* returnCode,

 const CciElement* targetElement);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

User-defined extensions 191

targetElement

Specifies the address of the target syntax element object (input).

Return values

The address of the requested syntax element object is returned, unless there is no

child in which case zero is returned. If an error occurs, zero (CCI_NULL_ADDR) is

returned and returnCode indicates the reason for the error.

cpiNextParserClassName

Purpose

Optional function to return the name of the next parser class in the chain, if any. It

allows the parser to return to the broker the name of the parser class that handles

the next section, or remainder, of the message content. Normally, for messages

having a simple format type, there is only one message content parser; it is not

necessary to provide this function. For messages having a more complex format

type with multiple message parsers, each parser should identify the next one in the

chain by returning its name in the buffer parameter. The last parser in the chain

must return an empty string.

If you specify the name of a parser supplied with WebSphere Message Broker, you

must use the correct class name of the parser.

 Defined In Type Member

CPI_VFT Optional iFpNextParserClassName

Syntax

void cpiNextParserClassName(

 CciParser* parser,

 CciContext* context,

 CciChar* buffer,

 int size);

Parameters

parser

The address of the parser object (input).

context

The address of the plug-in context (input).

buffer

The address of a buffer into which the parser class name should be put (input).

size

The length, in bytes, of the buffer provided by the broker (input).

Return values

None.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines 732

to 756).

192 User-defined Extensions

void cpiNextParserClassName(

 CciParser* parser,

 CciContext* context,

 CciChar* buffer,

 int size

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int rc = 0;

 if (pc->trace) {

 fprintf(pc->tracefile, "PLUGIN: -> cpiNextParserClassName() parser=0x%x context=0x%x\n",

 parser, context);

 fflush(pc->tracefile);

 }

 /* Copy the name to the broker */

 CciCharNCpy(buffer, pc->iNextParserClassName, size);

 if (pc->trace) {

 fprintf(pc->tracefile, "PLUGIN: <- cpiNextParserClassName()\n");

 fflush(pc->tracefile);

 }

 return;

}

cpiNextParserCodedCharSetId

Purpose

Optional function to return the coded character set ID (CCSID) of the data owned

by the next parser class in the chain, if any.

 Defined In Type Member

CPI_VFT Optional iFpNextParserCodedCharSetId

Syntax

int cpiNextParserCodedCharSetId(

 CciParser* parser,

 CciContext* context);

Parameters

parser

The address of the parser object (input).

context

The address of the plug-in context (input).

Return values

The CCSID of the data is returned. If it is not known, zero might be returned and

a default CCSID will apply.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines 820

to 839).

int cpiNextParserCodedCharSetId(

 CciParser* parser,

 CciContext* context

User-defined extensions 193

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int ccsid = 0;

 if (pc->trace) {

 fprintf(pc->tracefile, "PLUGIN: -> cpiNextParserCodedCharSetId() parser=0x%x

 context=0x%x\n", parser, context);

 fflush(pc->tracefile);

 }

 if (pc->trace) {

 fprintf(pc->tracefile, "PLUGIN: <- cpiNextParserCodedCharSetId()\n");

 fflush(pc->tracefile);

 }

 return ccsid;

}

cpiNextParserEncoding

Purpose

Optional function to return the encoding of data owned by the next parser class in

the chain, if any.

 Defined In Type Member

CPI_VFT Optional iFpNextParserEncoding

Syntax

int cpiNextParserEncoding(

 CciParser* parser,

 CciContext* context);

Parameters

parser

The address of the parser object (input).

context

The address of the plug-in context (input).

Return values

The encoding of the data is returned. If it is not known, zero might be returned

and default encoding will apply.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines 794

to 813).

int cpiNextParserEncoding(

 CciParser* parser,

 CciContext* context

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int encoding = 0;

 if (pc->trace) {

 fprintf(pc->tracefile, "PLUGIN: -> cpiNextParserEncoding() parser=0x%x context=0x%x\n",

 parser, context);

 fflush(pc->tracefile);

194 User-defined Extensions

}

 if (pc->trace) {

 fprintf(pc->tracefile, "PLUGIN: <- cpiNextParserEncoding()\n");

 fflush(pc->tracefile);

 }

 return encoding;

}

cpiNextSibling

Purpose

Returns the address of the syntax element object that is the next (right) sibling of

the specified target element.

Syntax

CciElement* cpiNextSibling(

 int* returnCode,

 const CciElement* targetElement);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

Specifies the address of the target syntax element object (input).

Return values

The address of the requested syntax element object is returned, unless there is no

next sibling in which case zero is returned. If an error occurs, zero

(CCI_NULL_ADDR) is returned and returnCode indicates the reason for the error.

Sample

This example is taken from the sample node file BipSampPluginParser.c (lines 494

to 496):

while ((!cpiElementCompleteNext(&rc, cpiParent(&rc, element))) &&

 (!cpiNextSibling(&rc, element)) &&

 (pc->iCurrentElement))

cpiParent

Purpose

Returns the address of the syntax element object that is the parent of the specified

target element.

Syntax

CciElement* cpiParent(

 int* returnCode,

 const CciElement* targetElement);

User-defined extensions 195

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

Specifies the address of the target syntax element object (input).

Return values

If successful, the address of the requested syntax element is returned. If there is no

parent element, zero is returned. If an error occurs, zero (CCI_NULL_ADDR) is

returned and the returnCode parameter indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

116 to 173):

void* parseNextItem(

 CciParser* parser,

 CciContext* context,

 CciElement* element

){

 void* endMarker;

 void* startMarker;

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context;

 CciElement* returnElement = element;

 CciElement* newElement;

 size_t markedSize;

 const CciChar* data;

 int rc;

 if (pc->trace)

 /* Skip any white space */

 skipWhiteSpace((PARSER_CONTEXT_ST *)context);

 /* Are we at the end of the buffer? */

 if (pc->iIndex == pc->iSize)

 return(0);

 }

 /* Are we within a tag? */

 if (pc->iInTag) {

 if (pc->iCurrentCharacter == chCloseAngle) {

 /* We have reached the end of a tag */

 pc->iInTag = 0;

 advance((PARSER_CONTEXT_ST *)context, parser);

 }

 else if (pc->iCurrentCharacter == chForwardSlash) {

 /* We may have reached the end of an empty tag */

 advance((PARSER_CONTEXT_ST *)context, parser);

 if (pc->iCurrentCharacter == chCloseAngle) {

 pc->iInTag = 0;

 advance((PARSER_CONTEXT_ST *)context, parser);

196 User-defined Extensions

cpiSetElementCompleteNext(&rc, element, 1);

 returnElement = cpiParent(&rc, element);

 }

cpiParseBuffer

Purpose

Prepares a parser to parse a new message object. It is called the first time (for each

message) that the message flow causes the message content to be parsed. Each

plug-in parser that is used to parse a particular message format has this function

invoked to:

v Perform any initialization that is required

v Return the length of the message content that it takes ownership for

The offset parameter indicates the offset within the message buffer where parsing

is to commence. This is necessary because another parser might own a previous

portion of the message (for example, an MQMD header will have been parsed by

the message broker’s internal parser). The offset must be positive and be less than

the size of the buffer. It is recommended that the implementation function verifies

that the offset is valid, as this could improve problem determination if a previous

parser is in error.

The plug-in must return the size of the remaining buffer for which it takes

ownership. This must be less than or equal to the size of the buffer less the current

offset.

A parser must not attempt to cause parsing of other portions of the syntax element

tree, for example, by navigating to the root element and to another branch. This

can cause unpredictable results.

If this implementation function is provided in the CPI_VFT structure, neither

cpiParseBufferEncoded() nor cpiParseBufferFormatted() can be specified, because

the cpiDefineParserClass() function will fail with a return code of

CCI_INVALID_IMPL_FUNCTION.

 Defined In Type Member

CPI_VFT Conditional iFpParseBuffer

Syntax

int cpiParseBuffer(

 CciParser* parser,

 CciContext* context,

 int offset);

Parameters

parser

The address of the parser object (input).

context

The address of the plug-in context (input).

offset

The offset into the message buffer at which parsing is to commence (input).

User-defined extensions 197

Return values

The size (in bytes) of the remaining portion of the message buffer for which the

parser takes ownership.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

428 to 466):

int cpiParseBuffer(

 CciParser* parser,

 CciContext* context,

 int offset,

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int rc;

 /* Get a pointer to the message buffer and set the offset */

 pc->iBuffer = (void *)cpiBufferPointer(&rc, parser);

 pc->iIndex = 0;

 /* Save size of the buffer */

 pc->iSize = cpiBufferSize(&rc, parser);

 /* Prime the first byte in the stream */

 pc->iCurrentCharacter = cpiBufferByte(&rc, parser, pc->iIndex);

 /* Set the current element to the root element */

 pc->iCurrentElement = cpiRootElement(&rc, parser);

 /* Reset flag to ensure parsing is reset correctly */

 pc->iInTag = 0;

 if (pc->trace) {

 fprintf(pc->tracefile, "PLUGIN: <- cpiParseBuffer()

 retvalue=%d\n", pc->iSize);

 fflush(pc->tracefile);

 }

cpiParseBufferEncoded

Purpose

This function is an extension of the capability provided by the existing

cpiParseBuffer() implementation function that provides the encoding and coded

character set that the input message is represented in. If this implementation

function is provided in the CPI_VFT structure, neither cpiParseBuffer() nor

cpiParseBufferFormatted() can be specified, otherwise the cpiDefineParserClass()

function will fail with a return code of CCI_INVALID_IMPL_FUNCTION.

 Defined In Type Member

CPI_VFT Conditional iFpParseBufferEncoded

Syntax

int cpiParseBufferEncoded(

 CciParser* parser,

 CciContext* context,

 int encoding,

 int ccsid);

198 User-defined Extensions

Parameters

parser

The address of the parser object (input).

context

The address of the plug-in context (input).

encoding

The encoding of the message buffer (input).

ccsid

The ccsid of the message buffer (input).

Return values

The size (in bytes) of the remaining portion of the message buffer for which the

parser takes ownership.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

428 to 466):

int cpiParseBufferEncoded(

 CciParser* parser,

 CciContext* context,

 int encoding,

 int ccsid

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int rc;

 /* Get a pointer to the message buffer and set the offset */

 pc->iBuffer = (void *)cpiBufferPointer(&rc, parser);

 pc->iIndex = 0;

 /* Save the format of the buffer */

 pc->iEncoding = encoding;

 pc->iCcsid = ccsid;

 /* Save size of the buffer */

 pc->iSize = cpiBufferSize(&rc, parser);

 /* Prime the first byte in the stream */

 pc->iCurrentCharacter = cpiBufferByte(&rc, parser, pc->iIndex);

 /* Set the current element to the root element */

 pc->iCurrentElement = cpiRootElement(&rc, parser);

 /* Reset flag to ensure parsing is reset correctly */

 pc->iInTag = 0;

 if (pc->trace) {

 fprintf(pc->tracefile, "PLUGIN: <- cpiParseBufferEncoded()

 retvalue=%d\n", pc->iSize);

 fflush(pc->tracefile);

 }

cpiParseBufferFormatted

Purpose

This function is an extension of the capability provided by the existing

cpiParseBuffer() implementation function that provides:

User-defined extensions 199

1. The encoding and coded character set that the input message is represented in.

2. The message set, type and format for the message.

If this implementation function is provided in the CPI_VFT structure, neither

cpiParseBuffer() nor cpiParseBufferEncoded() can be specified, because the

cpiDefineParserClass() function will fail with a return code of

CCI_INVALID_IMPL_FUNCTION.

 Defined In Type Member

CPI_VFT Conditional iFpParseBufferFormatted

Syntax

int cpiParseBufferFormatted(

 CciParser* parser,

 CciContext* context,

 int encoding,

 int ccsid,

 CciChar* set,

 CciChar* type,

 CciChar* format);

Parameters

parser

The address of the parser object (input).

context

The address of the plug-in context (input).

encoding

The encoding of the message buffer (input).

ccsid

The ccsid of the message buffer (input).

set

The message set to which the message belongs (input).

type

The message type (input).

format

The message format (input).

Return values

The size (in bytes) of the remaining portion of the message buffer for which the

parser takes ownership.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

428 to 466):

int cpiParseBufferFormatted(

 CciParser* parser,

 CciContext* context,

 int encoding,

 int ccsid,

 CciChar* set,

 CciChar* type,

200 User-defined Extensions

CciChar* format

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int rc;

 /* Get a pointer to the message buffer and set the offset */

 pc->iBuffer = (void *)cpiBufferPointer(&rc, parser);

 pc->iIndex = 0;

 /* Save the format of the buffer */

 pc->iEncoding = encoding;

 pc->iCcsid = ccsid;

 /* Save size of the buffer */

 pc->iSize = cpiBufferSize(&rc, parser);

 /* Prime the first byte in the stream */

 pc->iCurrentCharacter = cpiBufferByte(&rc, parser, pc->iIndex);

 /* Set the current element to the root element */

 pc->iCurrentElement = cpiRootElement(&rc, parser);

 /* Reset flag to ensure parsing is reset correctly */

 pc->iInTag = 0;

 if (pc->trace) {

 fprintf(pc->tracefile, "PLUGIN: <- cpiParseBufferFormatted()

 retvalue=%d\n", pc->iSize);

 fflush(pc->tracefile);

 }

cpiParseFirstChild

Purpose

Parses the first child of a specified syntax element. It is invoked by the broker

when the first child element of the current syntax element is required.

 Defined In Type Member

CPI_VFT Mandatory iFpParseFirstChild

Syntax

void cpiParseFirstChild(

 CciParser* parser,

 CciContext* context,

 CciElement* currentElement);

Parameters

parser

The address of the parser object (input).

context

The address of the plug-in context (input).

currentElement

The address of the current syntax element (input).

Return values

None.

User-defined extensions 201

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

477 to 508):

void cpiParseFirstChild(

 CciParser* parser,

 CciContext* context,

 CciElement* element

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int rc;

 if ((!cpiElementCompleteNext(&rc, element)) &&

 (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME)) {

 while ((!cpiElementCompleteNext(&rc, element)) &&

 (!cpiFirstChild(&rc, element)) &&

 (pc->iCurrentElement))

 {

 pc->iCurrentElement = parseNextItem(parser, context, pc->iCurrentElement);

 }

 }

 if (pc->trace) {

 fprintf(pc->tracefile, "PLUGIN: <- cpiParseFirstChild()\n");

 fflush(pc->tracefile);

 }

 return;

}

cpiParseLastChild

Purpose

Parses the last child of a specified syntax element. It is invoked by the broker

when the last child element of the current syntax element is required.

 Defined In Type Member

CPI_VFT Mandatory iFpParseLastChild

Syntax

void cpiParseLastChild(

 CciParser* parser,

 CciContext* context,

 CciElement* currentElement);

Parameters

parser

The address of the parser object (input).

context

The address of the plug-in context (input).

currentElement

The address of the current syntax element (input).

Return values

None.

202 User-defined Extensions

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

515 to 544):

void cpiParseLastChild(

 CciParser* parser,

 CciContext* context,

 CciElement* element

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int rc;

 if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME)) {

 while ((!cpiElementCompleteNext(&rc, element)) &&

 (pc->iCurrentElement))

 {

 pc->iCurrentElement = parseNextItem(parser, context, pc->iCurrentElement);

 }

 }

 if (pc->trace) {

 fprintf(pc->tracefile, "PLUGIN: <- cpiParseLastChild()\n");

 fflush(pc->tracefile);

 }

 return;

}

The purpose of this code is to parse children of an element until the last child is

reached. You can use this kind of structure in a parser that does not already know

the exact offset in the bitstream of the last child of an element.

cpiParseNextSibling

Purpose

Parses the next (right) sibling of a specified syntax element. It is invoked by the

broker when the next (right) sibling element of the current syntax element is

required.

 Defined In Type Member

CPI_VFT Mandatory iFpParseNextSibling

Syntax

void cpiParseNextSibling(

 CciParser* parser,

 CciContext* context,

 CciElement* currentElement);

Parameters

parser

The address of the parser object (input).

context

The address of the plug-in context (input).

currentElement

The address of the current syntax element (input).

User-defined extensions 203

Return values

None.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

578 to 605):

void cpiParseNextSibling(

 CciParser* parser,

 CciContext* context,

 CciElement* element

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int rc;

 while ((!cpiElementCompleteNext(&rc, cpiParent(&rc, element))) &&

 (!cpiNextSibling(&rc, element)) &&

 (pc->iCurrentElement))

 {

 pc->iCurrentElement = parseNextItem(parser, context, pc->iCurrentElement);

 }

 if (pc->trace) {

 fprintf(pc->tracefile, "PLUGIN: <- cpiParseNextSibling()\n");

 fflush(pc->tracefile);

 }

 return;

}

cpiParsePreviousSibling

Purpose

Parse the previous (left) sibling of a specified syntax element. It is invoked by the

broker when the previous (left) sibling element of the current syntax element is

required.

 Defined In Type Member

CPI_VFT Mandatory iFpParsePreviousSibling

Syntax

void cpiParsePreviousSibling(

 CciParser* parser,

 CciContext* context,

 CciElement* currentElement);

Parameters

parser

The address of the parser object (input).

context

The address of the plug-in context (input).

currentElement

The address of the current syntax element (input).

204 User-defined Extensions

Return values

None.

Sample

void cpiParsePreviousSibling(

 CciParser* parser,

 CciContext* context,

 CciElement* element

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int rc;

 while ((!cpiElementCompletePrevious(&rc, cpiParent(&rc, element))) &&

 (!cpiPreviousSibling(&rc, element)) &&

 (pc->iCurrentElement))

 {

 pc->iCurrentElement = parsePreviousItem(parser, context, pc->iCurrentElement);

 }

 if (pc->trace) {

 fprintf(pc->tracefile, "PLUGIN: <- cpiParsePreviousSibling()\n");

 fflush(pc->tracefile);

 }

 return;

}

The code sample is similar to that used for cpiParseNextSibling. Use

cpiParsePreviousSibling in the context shown above when you are parsing the

bit-stream right to left.

cpiParserType

Purpose

Optional function to return whether the parser is an implementation of a standard

parser. Such a parser expects that the Format field of the preceding header will

contain the name of the parser class that follows. Non-standard parsers expect that

the Domain field will contain the parser class name. If the cpiParserType

implementation function is not provided, the message broker assumes that the

parser is of the standard type.

 Defined In Type Member

CPI_VFT Optional iFpParserType

Syntax

CciBool cpiParserType(

 CciParser* parser,

 CciContext* context);

Parameters

parser

The address of the parser object (input).

context

The address of the plug-in context (input).

User-defined extensions 205

Return values

If the implementation is of a standard parser, zero is returned. Otherwise, the

implementation is assumed to be that of a non-standard parser and a non-zero

value is returned.

cpiRootElement

Purpose

Gets the address of the root syntax element of the specified parser object.

Syntax

CciElement* cpiRootElement(

 int* returnCode,

 CciParser* parser);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_PARSER_OBJECT

parser

Specifies the address of the parser object (input).

Return values

The address of the root syntax element is returned. If an error occurs, zero

(CCI_NULL_ADDR) is returned, and returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

428 to 470):

int cpiParseBufferEncoded(

 CciParser* parser,

 CciContext* context,

 int encoding,

 int ccsid

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int rc;

 /* Get a pointer to the message buffer and set the offset */

 pc->iBuffer = (void *)cpiBufferPointer(&rc, parser);

 pc->iIndex = 0;

 /* Save the format of the buffer */

 pc->iEncoding = encoding;

 pc->iCcsid = ccsid;

 /* Save size of the buffer */

 pc->iSize = cpiBufferSize(&rc, parser);

 /* Prime the first byte in the stream */

 pc->iCurrentCharacter = cpiBufferByte(&rc, parser, pc->iIndex);

 /* Set the current element to the root element */

206 User-defined Extensions

pc->iCurrentElement = cpiRootElement(&rc, parser);

 /* Reset flag to ensure parsing is reset correctly */

 pc->iInTag = 0;

 /* We will assume ownership of the remainder of the buffer */

 return(pc->iSize);

}

cpiSetCharacterValueFromBuffer

Purpose

Sets the value of the specified syntax element.

Syntax

void cpiSetCharacterValueFromBuffer(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* value,

 CciSize length);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

v CCI_INV_DATA_BUFLEN

targetElement

Specifies the address of the target syntax element object (input).

value

The value to be set in the target element (input).

length

The length of the character string, expressed as the number of CciChar

characters, specified by the value parameter (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

/* Convert the attribute value into broker form */

 data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */

 newElement = cpiCreateElement(&rc, parser);

 cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

 cpiSetCharacterValueFromBuffer(&rc, newElement, data, length);

 if (pc->trace) {

 const char * mbData = mbString(data, pc->iCcsid);

 fprintf(pc->tracefile, "PLUGIN: Created new NAMEVALUE element;

 object=0x%x type=0x%x name=",

 newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

 fprintf(pc->tracefile, "%s\n", mbData);

 fflush(pc->tracefile);

User-defined extensions 207

free((void *)mbData);

 }

 /* Free the memory created in CciNString() */

 free((void *)data);

 /* Add the element */

 cpiAddAsLastChild(&rc, element, newElement);

cpiSetElementCompleteNext

Purpose

Sets the ’next child complete’ flag in the target syntax element to the specified

value.

Syntax

void cpiSetElementCompleteNext(

 int* returnCode,

 CciElement* targetElement,

 CciBool value);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

Specifies the address of the target syntax element object (input).

value

The value to be set in the flag (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

289 to 318):

/* Get a pointer to the start of the tag */

 startMarker = (char*)pc->iBuffer+(int)pc->iIndex;

 /* Skip over the tag */

 goToNameEnd((PARSER_CONTEXT_ST *)context, parser);

 /* Get a pointer to the end of the tag */

 endMarker = (char*)pc->iBuffer+(int)pc->iIndex;

 /* Compute the size of the tag */

 markedSize = (size_t)endMarker-(int)startMarker;

 /* Convert the tag into broker form */

 data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

 /* Create a new name element for the tag */

 newElement = cpiCreateElement(&rc, parser);

 cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME);

208 User-defined Extensions

cpiSetElementName(&rc, newElement, data);

 cpiSetElementCompletePrevious(&rc, newElement, 0);

 cpiSetElementCompleteNext(&rc, newElement, 0);

 if (pc->trace) {

 const char * mbData = mbString(data, pc->iCcsid);

 fprintf(pc->tracefile, "PLUGIN: New tag found\n");

 fprintf(pc->tracefile, "PLUGIN: Created new NAME element;

 object=0x%x type=0x%x name=",

 newElement, CCI_ELEMENT_TYPE_NAME);

 fprintf(pc->tracefile, "%s\n", mbData);

 fflush(pc->tracefile);

 free((void *)mbData);

 }

 /* Free the memory allocated in CciNString() */

 free((void *)data);

 /* Add the element */

 cpiAddAsLastChild(&rc, element, newElement);

 cpiSetElementCompletePrevious(&rc, element, 1);

cpiSetElementCompletePrevious

Purpose

Sets the ’previous child complete’ flag in the target syntax element to the specified

value.

Syntax

void cpiSetElementCompletePrevious(

 int* returnCode,

 CciElement* targetElement,

 CciBool value);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

Specifies the address of the target syntax element object (input).

value

The value to be set in the flag (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

289 to 318):

/* Get a pointer to the start of the tag */

 startMarker = (char*)pc->iBuffer+(int)pc->iIndex;

 /* Skip over the tag */

 goToNameEnd((PARSER_CONTEXT_ST *)context, parser);

User-defined extensions 209

/* Get a pointer to the end of the tag */

 endMarker = (char*)pc->iBuffer+(int)pc->iIndex;

 /* Compute the size of the tag */

 markedSize = (size_t)endMarker-(int)startMarker;

 /* Convert the tag into broker form */

 data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

 /* Create a new name element for the tag */

 newElement = cpiCreateElement(&rc, parser);

 cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME);

 cpiSetElementName(&rc, newElement, data);

 cpiSetElementCompletePrevious(&rc, newElement, 0);

 cpiSetElementCompleteNext(&rc, newElement, 0);

 if (pc->trace) {

 const char * mbData = mbString(data, pc->iCcsid);

 fprintf(pc->tracefile, "PLUGIN: New tag found\n");

 fprintf(pc->tracefile, "PLUGIN: Created new NAME element;

 object=0x%x type=0x%x name=",

 newElement, CCI_ELEMENT_TYPE_NAME);

 fprintf(pc->tracefile, "%s\n", mbData);

 fflush(pc->tracefile);

 free((void *)mbData);

 }

 /* Free the memory allocated in CciNString() */

 free((void *)data);

 /* Add the element */

 cpiAddAsLastChild(&rc, element, newElement);

 cpiSetElementCompletePrevious(&rc, element, 1);

cpiSetElementName

Purpose

Sets the name of the specified syntax element.

Syntax

void cpiSetElementName(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* name);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

targetElement

Specifies the address of the target syntax element object (input).

name

The name to be set in the target element (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

210 User-defined Extensions

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

209 to 228):

/* Convert the attribute value into broker form */

 data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */

 newElement = cpiCreateElement(&rc, parser);

 cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

 cpiSetElementName(&rc, newElement, data);

 if (pc->trace) {

 const char * mbData = mbString(data, pc->iCcsid);

 fprintf(pc->tracefile, "PLUGIN: Created new NAMEVALUE element;

 object=0x%x type=0x%x name=",

 newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

 fprintf(pc->tracefile, "%s\n", mbData);

 fflush(pc->tracefile);

 free((void *)mbData);

 }

 /* Free the memory created in CciNString() */

 free((void *)data);

 /* Add the element */

 cpiAddAsLastChild(&rc, element, newElement);

cpiSetElementNamespace

Purpose

Sets the ″namespace″ attribute for the specified syntax element.

 Defined In Type Member

CPI_VFT Optional iFpSetElementValue

Syntax

void cpiSetElementNamespace(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* nameSpace);

Parameters

returnCode

A NULL pointer input signifies that the plug-in node does not wish to deal

with errors. Any exceptions thrown during the execution of this call will be

re-thrown to the next upstream node in the flow. If input is not NULL, output

will signify the success status of the call. If an exception occurs during

execution, *returnCode will be set to CCI_EXCEPTION on output. A call to

CciGetLastExceptionData will provide details of the exception. (input). Possible

return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

currentElement

The address of the current syntax element (input).

User-defined extensions 211

targetElement

Specifies the address of the target syntax element object.

value

Specifies the address of a null terminated string of CciChars representing the

namespace value. An empty string is a valid value for namespace. In fact,

elements are created in the empty string namespace by default so specifying an

empty string as the namespace via this API will only have any effect if the

element was previously in another namespace and the desired effect is to

change the namespace value to empty string.

Return values

None.

Sample

/* Convert the attribute value into broker form */

 data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */

 newElement = cpiCreateElement(&rc, parser);

 cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

 cpiSetElementName(&rc, newElement, data);

 cpiSetElementNamespace(&rc, newElement, data);

 if (pc->trace) {

 const char * mbData = mbString(data, pc->iCcsid);

 fprintf(pc->tracefile, "PLUGIN: Created new NAMESPACEVALUE element;

 object=0x%x type=0x%x name=",

 newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

 fprintf(pc->tracefile, "%s\n", mbData);

 fflush(pc->tracefile);

 free((void *)mbData);

 }

 /* Free the memory created in CciNString() */

 free((void *)data);

 /* Add the element */

 cpiAddAsLastChild(&rc, element, newElement);

cpiSetElementType

Purpose

Sets the type of the specified syntax element.

Syntax

void cpiSetElementType(

 int* returnCode,

 CciElement* targetElement,

 CciElementType type);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

targetElement

Specifies the address of the target syntax element object (input).

212 User-defined Extensions

type

The type to be set in the target element (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

209 to 228):

/* Convert the attribute value into broker form */

 data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */

 newElement = cpiCreateElement(&rc, parser);

 cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

 cpiSetElementName(&rc, newElement, data);

 if (pc->trace) {

 const char * mbData = mbString(data, pc->iCcsid);

 fprintf(pc->tracefile, "PLUGIN: Created new NAMEVALUE element;

 object=0x%x type=0x%x name=",

 newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

 fprintf(pc->tracefile, "%s\n", mbData);

 fflush(pc->tracefile);

 free((void *)mbData);

 }

 /* Free the memory created in CciNString() */

 free((void *)data);

 /* Add the element */

 cpiAddAsLastChild(&rc, element, newElement);

cpiSetElementValue

Purpose

Optional function to set the value of a specified element. It is invoked by the

broker when the value of a syntax element is to be set. It provides an opportunity

for a plug-in parser to override the behavior for setting element values.

 Defined In Type Member

CPI_VFT Optional iFpSetElementValue

Syntax

void cpiSetElementValue(

 CciParser* parser,

 CciElement* currentElement,

 CciElementValue* value);

Parameters

parser

The address of the parser object (input).

currentElement

The address of the current syntax element (input).

value

The value (input).

User-defined extensions 213

Return values

None.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

675 to 698):

void cpiSetElementValue(

 CciParser* parser,

 CciElement* element,

 CciElementValue* value

){

 CciElement* newElement;

 int rc;

 if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_VALUE) ||

 (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME_VALUE)) {

 cpiSetElementValueValue(&rc, element, value);

 }

 else if (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME) {

 /* Create a new value element, add as a first child, and set the value */

 newElement = cpiCreateElement(&rc, parser);

 cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_VALUE);

 cpiSetElementValueValue(&rc, newElement, value);

 cpiAddAsFirstChild(&rc, element, newElement);

 }

 else {

 }

 return;

}

cpiSetElementValue group

Purpose

Functions to set a value in the specified syntax element.

Syntax

void cpiSetElementBitArrayValue(

 int* returnCode,

 CciElement* targetElement,

 const struct CciBitArray* value);

void cpiSetElementByteArrayValue(

 int* returnCode,

 CciElement* targetElement,

 const struct CciByteArray* value);

void cpiSetElementBooleanValue(

 int* returnCode,

 CciElement* targetElement,

 CciBool value);

void cpiSetElementCharacterValue(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* value,

 CciSize length);

void cpiSetElementDateValue(

 int* returnCode,

 CciElement* targetElement,

 const struct CciDate* value);

214 User-defined Extensions

void cpiSetElementDecimalValue(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* value);

void cpiSetElementGmtTimestampValue(

 int* returnCode,

 CciElement* targetElement, const struct CciTimestamp* value);

void cpiSetElementGmtTimeValue(

 int* returnCode,

 CciElement* targetElement,

 const struct CciTime* value);

void cpiSetElementIntegerValue(

 int* returnCode,

 CciElement* targetElement,

 CciInt value);

void cpiSetElementRealValue(

 int* returnCode,

 CciElement* targetElement,

 CciReal value);

void cpiSetElementTimestampValue(

 int* returnCode,

 CciElement* targetElement,

 const struct CciTimestamp* value);

void cpiSetElementTimeValue(

 int* returnCode,

 CciElement* targetElement,

 const struct CciTime* value);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

v CCI_INV_DATA_BUFLEN

targetElement

Specifies the address of the target syntax element object (input).

value

The value to be set in the target element (input).

length

The length of the data value, expressed as the number of CciChar characters.

Used on relevant function calls only.

Return values

None. If an error occurs, returnCode indicates the reason for the error.

cpiSetElementValueValue

Purpose

Sets the value of the specified syntax element.

User-defined extensions 215

Syntax

void cpiSetElementValueValue(

 int* returnCode,

 CciElement* targetElement,

 CciElementValue* value);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

targetElement

Specifies the address of the target syntax element object (input).

value

Specifies the address of the CciElementValue object that contains the value to

be stored in the specified target element (input).

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

675 to 698):

void cpiSetElementValue(

 CciParser* parser,

 CciElement* element,

 CciElementValue* value

){

 CciElement* newElement;

 int rc;

 if ((cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_VALUE) ||

 (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME_VALUE)) {

 cpiSetElementValueValue(&rc, element, value);

 }

 else if (cpiElementType(&rc, element) == CCI_ELEMENT_TYPE_NAME) {

 /* Create a new value element, add as a first child, and set the value */

 newElement = cpiCreateElement(&rc, parser);

 cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_VALUE);

 cpiSetElementValueValue(&rc, newElement, value);

 cpiAddAsFirstChild(&rc, element, newElement);

 }

 else {

 }

 return;

}

216 User-defined Extensions

cpiSetNameFromBuffer

Purpose

Sets the name attribute of the target syntax element using the data supplied in the

buffer pointed to by the name parameter. The size of the name is specified using

the length parameter.

Syntax

void cpiSetNameFromBuffer(

 int* returnCode,

 CciElement* targetElement,

 const CciChar* name,

 CciSize length);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_EXCEPTION

v CCI_INV_ELEMENT_OBJECT

v CCI_INV_DATA_POINTER

v CCI_INV_DATA_BUFLEN

targetElement

Specifies the address of the target syntax element object (input).

name

The address of a buffer containing the name (input).

length

The length of the character string, expressed as the number of CciChar

characters, specified by the name parameter.

Return values

None. If an error occurs, returnCode indicates the reason for the error.

Sample

/* Convert the attribute value into broker form */

 data = CciNString((char *)startMarker, markedSize, pc->iCcsid);

/* Create a new name-value element for the attribute */

 newElement = cpiCreateElement(&rc, parser);

 cpiSetElementType(&rc, newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

 cpiSetNameFromBuffer(&rc, newElement, data, length);

 if (pc->trace) {

 const char * mbData = mbString(data, pc->iCcsid);

 fprintf(pc->tracefile, "PLUGIN: Created new NAMEVALUE element;

 object=0x%x type=0x%x name=",

 newElement, CCI_ELEMENT_TYPE_NAME_VALUE);

 fprintf(pc->tracefile, "%s\n", mbData);

 fflush(pc->tracefile);

 free((void *)mbData);

 }

 /* Free the memory created in CciNString() */

 free((void *)data);

 /* Add the element */

 cpiAddAsLastChild(&rc, element, newElement);

User-defined extensions 217

cpiSetNextParserClassName

Purpose

Optional function to advise a parser of the next parser in the chain. It is called

during finalize processing, and returns to the plug-in parser a string containing the

name of the next parser class in the chain. It allows a parser to take action during

the finalize phase to modify the syntax element tree before the phase that causes

serialization of the bit stream.

If you specify the name of a parser supplied with WebSphere Message Broker, you

must use the correct class name of the parser.

 Defined In Type Member

CPI_VFT Optional iFpSetNextParserClassName

Syntax

void cpiSetNextParserClassName(

 CciParser* parser,

 CciContext* context,

 CciChar* name,

 CciBool parserType);

Parameters

parser

The address of the parser object (input).

context

The address of the plug-in context (input).

name

The name of the next parser as a string of CciChar characters.

parserType

Indicates whether the referenced parser is standard (parserType=0) or

non-standard (parserType=non-zero) (input). A standard parser expects that the

Format field of the preceding header in the chain will contain the name of the

parser class that follows. Non-standard parsers expect that the Domain field

will contain the parser class name.

Return values

None.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

763 to 787):

void cpiSetNextParserClassName(

 CciParser* parser,

 CciContext* context,

 CciChar* name,

 CciBool isHeaderParser

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int rc = 0;

218 User-defined Extensions

/* Save the name in my context */

 CciCharNCpy(pc->iNextParserClassName, name, CciCharLen(name));

 if (pc->trace) {

 fprintf(pc->tracefile, "PLUGIN: <- cpiSetNextParserClassName()\n");

 fflush(pc->tracefile);

 }

 return;

}

cpiWriteBuffer

Purpose

Writes a syntax element tree to the message buffer associated with a parser. It

appends data to the bitstream in the message buffer associated with the parser

object, using the current syntax element tree as a source. The element tree should

not be modified during the execution of this implementation function. The

cpiAppendToBuffer utility function can be used to append the message buffer

(bitstream) with data from the element tree.

If this implementation function is provided in the CPI_VFT structure, neither

cpiWriteBufferEncoded() nor cpiWriteBufferFormatted() can be specified, because

the cpiDefineParserClass() function will fail with a return code of

CCI_INVALID_IMPL_FUNCTION.

 Defined In Type Member

CPI_VFT Conditional iFpWriteBuffer

Syntax

int cpiWriteBuffer(

 CciParser* parser,

 CciContext* context);

Parameters

parser

The address of the parser object (input).

context

The address of the plug-in context (input).

Return values

The size in bytes of the data appended to the bitstream in the buffer.

Sample

int cpiWriteBuffer(

 CciParser* parser,

 CciContext* context

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int initialSize = 0;

 int rc = 0;

 const void* a;

 CciByte b;

 initialSize = cpiBufferSize(&rc, parser);

User-defined extensions 219

a = cpiBufferPointer(&rc, parser);

 b = cpiBufferByte(&rc, parser, 0);

 cpiAppendToBuffer(&rc, parser, (char *)"Some test data", 14);

 return cpiBufferSize(0, parser) - initialSize;

}

cpiWriteBufferEncoded

Purpose

This function is an extension of the capability provided by the existing

cpiWriteBuffer() implementation function that provides the encoding and coded

character set that the output message should be represented in when the parser

serialises its element tree to an output bitstream. If serialisation is not required, for

example when the output based is based on an input bitstream, and the tree has

not been modified, this implementation function will not be invoked by the broker.

If this implementation function is provided in the CPI_VFT structure, neither

cpiWriteBuffer() nor cpiWriteBufferFormatted() can be specified, because the

cpiDefineParserClass() function will fail with a return code of

CCI_INVALID_IMPL_FUNCTION.

 Defined In Type Member

CPI_VFT Conditional iFpWriteBufferEncoded

Syntax

int cpiWriteBufferEncoded(

 CciParser* parser,

 CciContext* context,

 int encoding,

 int ccsid);

Parameters

parser

The address of the parser object (input).

context

The address of the plug-in context (input).

encoding

The encoding of the message buffer (input).

ccsid

The ccsid of the message buffer (input).

Return values

The size in bytes of the data appended to the bitstream in the buffer.

Sample

This example is taken from the sample parser file BipSampPluginParser.c (lines

612 to 642):

int cpiWriteBufferEncoded(

 CciParser* parser,

 CciContext* context,

 int encoding,

 int ccsid

220 User-defined Extensions

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int initialSize = 0;

 int rc = 0;

 const void* a;

 CciByte b;

 initialSize = cpiBufferSize(&rc, parser);

 a = cpiBufferPointer(&rc, parser);

 b = cpiBufferByte(&rc, parser, 0);

 cpiAppendToBuffer(&rc, parser, (char *)"Some test data", 14);

 return cpiBufferSize(0, parser) - initialSize;

}

cpiWriteBufferFormatted

Purpose

This function is an extension of the capability provided by the existing

cpiWriteBuffer() implementation function that provides:

1. The encoding and coded character set that the output message should be

represented in when the parser serializes its element tree to an output bit

stream.

2. The message set, type and format for the output message for those parsers

which require such information to correctly serialize its element tree to an

output bit stream.

If serialization is not required, for example when the output is based on an input

bit stream, and the tree has not been modified, this implementation function will

not be invoked by the broker.

If this implementation function is provided in the CPI_VFT structure, neither

cpiWriteBuffer() nor cpiWriteBufferEncoded() can be specified, because the

cpiDefineParserClass() function will fail with a return code of

CCI_INVALID_IMPL_FUNCTION.

 Defined In Type Member

CPI_VFT Conditional iFpWriteBufferFormatted

Syntax

int cpiWriteBufferFormatted(

 CciParser* parser,

 CciContext* context,

 int encoding,

 int ccsid,

 CciChar* set,

 CciChar* type,

 CciChar* format);

Parameters

parser

The address of the parser object (input).

context

The address of the plug-in context (input).

User-defined extensions 221

encoding

The encoding of the message buffer (input).

ccsid

The ccsid of the message buffer (input).

set

The message set to which the message belongs (input).

type

The message type (input).

format

The message format (input).

Return values

The size in bytes of the data appended to the bit stream in the buffer.

Sample

int cpiWriteBufferFormatted(

 CciParser* parser,

 CciContext* context,

 int encoding,

 int ccsid

 CciChar* set,

 CciChar* type,

 CciChar* format

){

 PARSER_CONTEXT_ST* pc = (PARSER_CONTEXT_ST *)context ;

 int initialSize = 0;

 int rc = 0;

 const void* a;

 CciByte b;

 initialSize = cpiBufferSize(&rc, parser);

 a = cpiBufferPointer(&rc, parser);

 b = cpiBufferByte(&rc, parser, 0);

 cpiAppendToBuffer(&rc, parser, (char *)"Some test data", 14);

 return cpiBufferSize(0, parser) - initialSize;

}

C node and parser implementation functions

The following functions are implemented by user-defined nodes or user-defined

parsers. They will be called by the broker on occurrence of certain events.

These functions are defined in the BipCci.h header file.

Optional functions

v cciRegCallback

cciRegCallback

This is a function that can be registered as a callback and is invoked when the

registered event occurs. The function is registered by providing a function pointer

which matches the following typedef:

222 User-defined Extensions

Syntax

typedef int (*CciRegCallback)(CciDataContext *, cciCallbackType);

Parameters

type CciDataContext*

This is the pointer that is provided by the caller to the registration function.

type CciCallbackType

This indicates the reason for the callback. This is always one of the

CciCallbackType values that is specified on the registration call corresponding

to this callback.

Return values

type CciRegCallbackStatus (defined in BipCci.h)

v CCI_THREAD_STATE_REGISTRATION_RETAIN: This return code is used for a

callback that is to remain registered as a callback function on a particular thread.

v CCI_THREAD_STATE_REGISTRATION_REMOVE: This return code is used to

signify that the callback is to be de-registered, and that it should not be called

again on this thread unless it is re-registered. If any other value is returned, a

warning is written to a log and CCI_THREAD_STATE_REGISTRATION_RETAIN

is assumed.

During execution of this function, it is possible that the node or parser that has

registered the function has already been deleted. Therefore, you should not call

any node or parser utility function that depends on the existence of a node or

parser. The only utility functions that may be called from this callback are:

v cciLog

v cciUserTrace

v cciServiceTrace

v cciUserDebugTrace

v cciServiceDebugTrace

v cciIsTraceActive

For each of these five trace utility functions, the CciObject parameter must be

NULL.

Example

Declare the following struct and function:

typedef struct {

 int id;

}MyContext;

static int registered=0;

CciRegCallbackStatus switchThreadStateChange(CciDataContext *context, CciCallbackType type)

{

 char traceText[256];

 char* typeStr=0;

 MyContext* myContext = (MyContext*)context;

 if (type==CCI_THREAD_STATE_IDLE){

 typeStr = "idle";

 }else if(type==CCI_THREAD_STATE_INSTANCE_END){

 typeStr = "instance end";

 }else if (type==CCI_THREAD_STATE_TERMINATION){

User-defined extensions 223

typeStr = "termination";

 }else{

 typeStr = "unknown";

 }

 memset(traceText,0,256);

 sprintf(traceText,"switchThreadStateChange: context id = %d, thread state %s",myContext->id,typeStr);

 cciServiceTrace(NULL,

 NULL,

 traceText);

 return CCI_THREAD_STATE_REGISTRATION_RETAIN;

}

Place the following code into the _Switch_evaluate function in the samples to

enable you to read service trace and see when the message processing thread

changes state:

/*register for thread state change*/

 CciMessageContext* messageContext = cniGetMessageContext(NULL,message);

 CciThreadContext* threadContext = cniGetThreadContext(NULL,messageContext);

 static MyContext myContext={1};

 if(registered==0){

 cciRegisterForThreadStateChange(

 NULL,

 threadContext,

 & myContext,

 switchThreadStateChange,

 CCI_THREAD_STATE_IDLE |

 CCI_THREAD_STATE_INSTANCE_END |

 CCI_THREAD_STATE_TERMINATION);

 registered=1;

 }

This example registers only on the first thread that receives a message. If it is

necessary to register every thread that receives a message, the user-defined

extensions must remember on which threads they have registered.

By using the userContext parameter you can see how data is passed from the code

where the callback is registered to the actual callback function.

When registering the callback, a pointer to an instance of the MyContext struct is

passed in. This is the same pointer as is passed back to the callback. To ensure that

the pointer is still valid when it is passed back to the callback, an instance of the

struct is declared as static. Another technique to ensure that the pointer is valid is

to allocate storage on the heap.

In the callback function, the userContext parameter can be cast to a (MyContext*).

The original MyContext struct can be referenced through this address. This permits

the passing of data from the code where the callback is registered to the callback

function.

224 User-defined Extensions

C node and parser utility functions

WebSphere Message Broker provides some additional utilities that user-defined

nodes and parsers can use. These are:

v Exception handling and logging

v Character representation handling

These functions are defined in the BipCci.h header file.

The following exception handling and logging functions are provided for use by a

user-defined node or parser:

v “cciGetLastExceptionData”

v “cciGetLastExceptionDataW” on page 227

v “cciLog” on page 228

v “cciLogW” on page 229

v “cciRethrowLastException” on page 231

v “cciThrowException” on page 232

v “cciThrowExceptionW” on page 233

The following utilities help you convert between WebSphere Message Broker’s

internal processing code (in UCS-2) and file code (for example, ASCII).

v “cciMbsToUcs” on page 230

v “cciUcsToMbs” on page 237

The following utility functions enable you to determine whether trace is active,

and write entries that are appropriate for the trace settings.

v “ccilsTraceActive” on page 249

v “cciUserTrace” on page 238

v “cciUserTraceW” on page 240

v “cciUserDebugTrace” on page 241

v “cciUserDebugTraceW” on page 243

v “cciServiceTrace” on page 245

v “cciServiceTraceW” on page 246

v “cciServiceDebugTrace” on page 247

v “cciServiceDebugTraceW” on page 248

The following utility function is used to register a function that is to be called

when the current thread enters a particular state:

v “cciRegisterForThreadStateChange” on page 234

cciGetLastExceptionData

Gets diagnostic information about the last exception generated. Information about

the last exception generated on the current thread is returned in a

CCI_EXCEPTION_ST output structure. The user-defined extension can use this

function to determine whether any recovery is required when a utility function

returns an error code.

This function might be called when a utility function has indicated that an

exception occurred by setting returnCode to CCI_EXCEPTION.

User-defined extensions 225

The traceText that is associated with the exception will be converted to a char* if

the char* is US-ASCII. If the traceText is in another language, use

cciGetLastExceptionDataW and its associated CCI_EXCEPTION_WIDE_ST

structure which stores the traceText as UTF-16.

If the exception has been raised by the broker or by cciThrowExceptionW, the

traceText element of the CCI_EXCEPTION_ST structure will be an empty string.

Syntax

void* cciGetLastExceptionData(

 int* returnCode,

 CCI_EXCEPTION_ST* exception_st);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_FATAL_EXCEPTION

v CCI_RECOVERABLE_EXCEPTION

v CCI_CONFIGURATION_EXCEPTION

v CCI_PARSER_EXCEPTION

v CCI_CONVERSION_EXCEPTION

v CCI_DATABASE_EXCEPTION

v CCI_USER_EXCEPTION

v CCI_UNKNOWN_EXCEPTION

v CCI_NO_EXCEPTION_EXISTS

v CCI_INV_DATA_POINTER

exception_st

Specifies the address of a CCI_EXCEPTION_ST structure to receive data about

the last exception (output).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

typedef struct exception_st {

 int versionId; /* Structure version identification */

 int type; /* Type of exception */

 int messageNumber; /* Message number */

 int insertCount; /* Number of message inserts */

 CCI_STRING_ST inserts[CCI_MAX_EXCEPTION_INSERTS];

 /* Array of message insert areas */

 const char* fileName; /* Source: file name */

 int lineNumber; /* Source: line number in file */

 const char* functionName; /* Source: function name */

 const char* traceText; /* Trace text associated with exception */

 CCI_STRING_ST objectName; /* Object name */

 CCI_STRING_ST objectType; /* Object type */

} CCI_EXCEPTION_ST;

CCI_EXCEPTION_ST exception_st = malloc(sizeof(CCI_EXCEPTION_ST));

int rc = 0;

memset(&exception_st,0,sizeof(exception_st));

cciGetLastExceptionData(&rc, &exception_st);

226 User-defined Extensions

cciGetLastExceptionDataW

Gets diagnostic information about the last exception generated. Information about

the last exception generated on the current thread is returned in a

CCI_EXCEPTION_WIDE_ST output structure. The user-defined extension can use

this function to determine whether any recovery is required when a utility function

returns an error code.

This function might be called when a utility function has indicated that an

exception occurred by setting returnCode to CCI_EXCEPTION.

Syntax

void* cciGetLastExceptionDataW(

 int* returnCode,

 CCI_EXCEPTION_WIDE_ST* exception_st);

Parameters

returnCode

Receives the return code from the function (output). Possible return codes are:

v CCI_FATAL_EXCEPTION

v CCI_RECOVERABLE_EXCEPTION

v CCI_CONFIGURATION_EXCEPTION

v CCI_PARSER_EXCEPTION

v CCI_CONVERSION_EXCEPTION

v CCI_DATABASE_EXCEPTION

v CCI_USER_EXCEPTION

v CCI_UNKNOWN_EXCEPTION

v CCI_NO_EXCEPTION_EXISTS

v CCI_INV_DATA_POINTER

exception_st

Specifies the address of a CCI_EXCEPTION_WIDE_ST structure to receive data

about the last exception (output).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

typedef struct exception_wide_st {

 int versionId; /* Structure version identification */

 int type; /* Type of exception */

 int messageNumber; /* Message number */

 int insertCount; /* Number of message inserts */

 CCI_STRING_ST inserts[CCI_MAX_EXCEPTION_INSERTS];

 /* Array of message insert areas */

 const char* fileName; /* Source: file name */

 int lineNumber; /* Source: line number in file */

 const char* functionName; /* Source: function name */

 CCI_STRING_ST traceText; /* Trace text associated with exception */

 CCI_STRING_ST objectName; /* Object name */

 CCI_STRING_ST objectType; /* Object type */

} CCI_EXCEPTION_WIDE_ST;

CCI_EXCEPTION_WIDE_ST exception_st = malloc(sizeof(CCI_EXCEPTION_WIDE_ST));

User-defined extensions 227

int rc = 0;

memset(&exception_st,0,sizeof(exception_st));

cciGetLastExceptionDataW(&rc, &exception_st);

cciLog

Logs an error, warning or informational event. The event is logged by the message

broker interface using the specified arguments as log data.

Syntax

void cciLog(

 int* returnCode,

 CCI_LOG_TYPE type,

 char* file,

 int line,

 char* function,

 CciChar* messageSource,

 int messageNumber,

 char* traceText,

 ...);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_INV_DATA_POINTER

v CCI_INV_LOG_TYPE

type The type of event, as defined by CCI_LOG_TYPE (input). Valid values are:

v CCI_LOG_ERROR

v CCI_LOG_WARNING

v CCI_LOG_INFORMATION

file The source file name where the function was invoked (input). The value is

optional, but it is useful for debugging purposes.

line The line number in the source file where the function was invoked (input).

The value is optional, but it is useful for debugging purposes.

function

The function name that invoked the log function (input). The value is

optional, but it is useful for debugging purposes.

messageSource

A string that identifies the Windows message source or the Linux and

UNIX message catalog.

messageNumber

The message number identifying the event (input). If messageNumber is

specified as zero, it is assumed that a message is not available. If

messageNumber is non-zero, the specified message is written into the broker

event log with any inserts provided in the variable argument list (see

below).

traceText

Trace information that is written into the broker service trace log (input).

The information is optional, but it is useful for debugging purposes.

... A C variable argument list containing any message inserts that accompany

228 User-defined Extensions

the message (input). These inserts are treated as character strings, and the

variable arguments are assumed to be of type pointer to char.

Note: char* characters must be strings in either ASCII (Latin) or EBCDIC (1047).

Note: The last argument in this list must be (char*)0.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

cciLogW

Logs an error, warning or informational event. The event is logged by the message

broker interface using the specified arguments as log data.

Syntax

void cciLogW(

 int* returnCode,

 CCI_LOG_TYPE type,

 const char* file,

 int line,

 const char* function,

 const CciChar* messageSource,

 int messageNumber,

 const CciChar* traceText,

 ...

);

Parameters

returnCode

The return code from the function (output). If the messageSource parameter

is null, the returnCode is set to CCI_INV_DATA_POINTER.

type The type of event, as defined by CCI_LOG_TYPE (input). Valid values are:

v CCI_LOG_ERROR

v CCI_LOG_WARNING

v CCI_LOG_INFORMATION

file The source file name where the function was invoked (input). The value is

optional, but it is useful for debugging purposes.

line The line number in the source file where the function was invoked (input).

The value is optional, but it is useful for debugging purposes.

function

The function name that invoked the log function (input). The value is

optional, but it is useful for debugging purposes.

messageSource

A string that identifies the Windows message source or the Linux and

UNIX message catalog.

messageNumber

The message number identifying the event (input). If messageNumber is

specified as zero, it is assumed that a message is not available. If

messageNumber is non-zero, the specified message is written into the broker

event log with any inserts provided in the variable argument list (see

below).

User-defined extensions 229

traceText

Trace information that is written into the broker service trace log (input).

The information is optional, but it is useful for debugging purposes.

... A C variable argument list containing any message inserts that accompany

the message (input). These inserts are treated as character strings and the

variable arguments are assumed to be of type pointer to CciChar.

Note: The last argument in this list must be (CciChar*)0.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

void logSomethingWithBroker(CciChar* helpfulText,

 char* file,

 int line,

 char* func

){

 int rc = CCI_SUCCESS;

 /* set up the message catalog name */

 const CciChar* catalog = CciString("BIPv600", BIP_DEF_COMP_CCSID);

 cciLogW(&rc,

 CCI_LOG_INFORMATION

 file, line, func,

 catalog, BIP2111,

 helpfulText,

 helpfulText,

 (CciChar*)0

);

 if(CCI_SUCCESS != rc){

 const CciChar* message = CciString("Failed to log message",

 BIP_DEF_COMP_CCSID);

 raiseExceptionWithBroker(message,

 __FILE__,

 __LINE__,

 "logSomethingWithBroker");

 }

}

cciMbsToUcs

Converts multi-byte string data to Universal Character Set (UCS).

Syntax

int cciMbsToUcs(

 int* returnCode,

 const char* mbString,

 CciChar* ucsString,

 int ucsStringLength,

 int codePage);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_BUFFER_TOO_SMALL

230 User-defined Extensions

v CCI_INV_CHARACTER

v CCI_FAILURE

v CCI_INV_CODEPAGE

mbString

The string to be converted, expressed as ’file code’ (input).

ucsString

The location of the resulting UCS-2 Unicode string (input). This has a

trailing CciChar of 0, just as the mbString has a trailing byte of 0.

ucsStringLength

The length (in CciChars) of the buffer that you have provided (input). Each

byte in mbString expands to not more than one CciChar and this defines an

upper limit for the buffer size required.

codePage

The code page of the source string (input). The value of the code page

should be suitable for the compiler that is being used to compile the

user-defined node.

 For an ASCII system, a value of 1208 (meaning code page ibm-1208, which

is UTF-8 Unicode) is a good choice if you are using cciMbsToUcs to

convert string constants for processing by WebSphere Message Broker. 1208

is appropriate for Linux and UNIX, and for Windows platforms.

 On Linux and UNIX, nl_langinfo(CODEPAGE) gives you the code page that

has been selected by setlocale.

 For OS/390 and z/OS, the default code page for WebSphere MQ, which is

500, should not be used. Instead, you should use a code page value of

1047.

Return values

The converted length in half-words (UCS-2 characters).

cciRethrowLastException

Rethrows the last exception generated on the current thread. It is used to pass the

exception back to the message broker for further handling.

Syntax

void cciRethrowLastException(int* returnCode);

Parameters

returnCode

The return code from the function (output). The possible return code is

CCI_NO_EXCEPTION_EXISTS

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

 if (rc == CCI_EXCEPTION) {

 cciRethrowLastException(&rc);

 }

User-defined extensions 231

cciThrowException

Throws an exception. The exception is thrown by the message broker interface

using the specified arguments as exception data.

Syntax

void cciThrowException(

 int* returnCode,

 CCI_EXCEPTION_TYPE type,

 char* file,

 int line,

 char* function,

 CciChar* messageSource,

 int messageNumber,

 char* traceText,

 ...);

Parameters

returnCode

The return code from the function (output). The possible return code is

CCI_INV_DATA_POINTER.

type The type of exception (input). Valid values are:

v CCI_FATAL_EXCEPTION

v CCI_RECOVERABLE_EXCEPTION

v CCI_CONFIGURATION_EXCEPTION

v CCI_PARSER_EXCEPTION

v CCI_CONVERSION_EXCEPTION

v CCI_DATABASE_EXCEPTION

v CCI_USER_EXCEPTION

file The source file name where the exception was generated (input). The value

is optional, but it is useful for debugging purposes.

line The line number in the source file where the exception was generated

(input). The value is optional, but it is useful for debugging purposes.

function

The function name which generated the exception (input). The value is

optional, but it is useful for debugging purposes.

messageSource

A string that identifies the Windows message source or the Linux and

UNIX message catalog.

messageNumber

The message number identifying the exception (input). If messageNumber is

specified as zero, it is assumed that a message is not available. If

messageNumber is non-zero, the specified message is written into the broker

event log with any inserts provided in the variable argument list.

traceText

Trace information that is written into the broker service trace log (input).

The information is optional, but it is useful in debugging problems.

... A C variable argument list that contains any message inserts that

accompany the message (input). These inserts are treated as character

strings and the variable arguments are assumed to be of type pointer to

char.

232 User-defined Extensions

Note: char* characters must be strings in either ASCII (Latin) or EBCDIC (1047).

Note: The last argument in this list must be (char*)0.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

cciThrowExceptionW

Throws an exception. The exception is thrown by the message broker interface

using the specified arguments as exception data.

Syntax

void cciThrowExceptionW(

 int* returnCode,

 CCI_EXCEPTION_TYPE type,

 const char* file,

 int line,

 const char* function,

 const CciChar* messageSource,

 int messageNumber,

 const CciChar* traceText,

 ...

);

Parameters

returnCode

The return code from the function (output). If the messageSource parameter

is null, the returnCode is set to CCI_INV_DATA_POINTER.

type The type of exception (input). Valid values are:

v CCI_FATAL_EXCEPTION

v CCI_RECOVERABLE_EXCEPTION

v CCI_CONFIGURATION_EXCEPTION

v CCI_PARSER_EXCEPTION

v CCI_CONVERSION_EXCEPTION

v CCI_DATABASE_EXCEPTION

v CCI_USER_EXCEPTION

file The source file name where the exception was generated (input). The value

is optional, but it is useful for debugging purposes.

line The line number in the source file where the exception was generated

(input). The value is optional, but it is useful for debugging purposes.

function

The function name which generated the exception (input). The value is

optional, but it is useful for debugging purposes.

messageSource

A string that identifies the Windows message source or the Linux and

UNIX message catalog. To use the current WebSphere Message Broker

version message catalog use BIPV600 on all operating systems.

messageNumber

The message number identifying the exception (input). If messageNumber is

specified as zero, it is assumed that a message is not available. If

User-defined extensions 233

messageNumber is non-zero, the specified message is written into the broker

event log with any inserts provided in the variable argument list.

traceText

Trace information that is written into the broker service trace log (input).

The information is optional, but it is useful in debugging problems.

... A C variable argument list that contains any message inserts that

accompany the message (input). These inserts are treated as character

strings and the variable arguments are assumed to be of type pointer to

CciChar.

Note: The last argument in this list must be (Ccichar*)0.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

void raiseExceptionWithBroker(CciChar* helpfulText,

 char* file, /* which source file is broken */

 int line, /* line in above file */

 char* func /* function in above file */

){

 int rc = CCI_SUCCESS;

 /* Set up the message catalog name */

 const char* catalog = "BIPv600";

 /* Convert the catalog name to wide characters.

 * BIP_DEF_COMP_CCSID is UTF-8 on distributed and LATIN1 on z/OS

 */

 int maxChars = strlen(catalog)+1;

 CciChar* wCatalog =(CciChar*)malloc(maxChars*sizeof(CciChar));

 cciMbsToUcs(&rc, catalog, wCatalog, maxChars, BIP_DEF_COMP_CCSID);

 /* The above might have failed, but we are already throwing an exception,

 * so rc is now set to type success. */

 rc = CCI_SUCCESS;

 /* Throw the exception. The explanation will be added as the traceText and

 * as an insert to the message

 */

 cciThrowExceptionW(&rc,

 CCI_FATAL_EXCEPTION,

 file, line, func,

 wCatalog, BIP2111,

 helpfulText,

 helpfulText,

 (CciChar*)0

);

 /* The above might have failed, but we are already throwing an exception,

 * so the value of rc is not important. */

}

cciRegisterForThreadStateChange

This function registers a function to be called when the current thread enters a

particular state.

234 User-defined Extensions

Syntax

void cciRegisterForThreadStateChange(

 int *returnCode,

 CciThreadContext *threadContext,

 CciDataContext *userContext,

 CciRegCallback callback,

 CciCallbackType type);

Parameters

returnCode

The return code from the function (output). If the input is NULL, this signifies

that errors are silently handled or are ignored by the broker. If the input is not

NULL, the output signifys the success status of the call. If the threadContext

parameter is not valid, *returnCode is set to CCI_INV_THREAD_CONTEXT

and the callback is not registered.

threadContext

This provides the thread context in which to register the callback function and

associated data. It is assumed that this parameter is obtained by using the

cniGetThreadContext() API on the current thread. If NULL is supplied as

threadContext, then the thread context is determined by the framework. This is

less efficient than calling cniGetThreadContext.

userContext

This allows the caller to provide a context pointer that is passed to the callback

function when it is invoked. This parameter can be NULL.

callback

This is a pointer to the callback function that is to be invoked. This function

must be of the type CciRegCallback.

type

This specifies whether the callback is to be invoked at the time when the

thread is ending or when the thread is in one of the idle states. The idle states

can be one of the following values:

v CCI_THREAD_STATE_IDLE:

The input node for the current thread is actively polling for data from the

input source but no data is available. Messages are not propagated down the

message flow until data becomes available for the input node.

v CCI_THREAD_STATE_INSTANCE_END

The input node for the current thread has stopped polling for data and the

thread has been released. The thread is dispatched again either by the same

input node or by any other input node in the same message flow. This state

is entered when additional instances, which have been deployed for a

message flow, have been utilized to cope with an influx of input data that

has now ceased. The input node continues to poll for input data on a single

thread and the other threads are released.

v CCI_THREAD_STATE_TERMINATION

The current thread is ending. This can happen when the broker is shutdown,

the execution group process is ending in a controlled manner, or when the

message flow is being deleted. This can occur after all nodes and parsers in

the flow are deleted.

Alternatively, the type parameter can be the result of a bit wise OR operation

on two or more of these values. In this case, the specified function is called

when the thread enters the relevant state for each individual type value.

User-defined extensions 235

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

Declaring the struct and function:

typedef struct {

 int id;

}MyContext;

static int registered=0;

CciRegCallbackStatus switchThreadStateChange(

 CciDataContext *context, CciCallbackType type)

{

 char traceText[256];

 char* typeStr=0;

 MyContext* myContext = (MyContext*)context;

 if (type==CCI_THREAD_STATE_IDLE){

 typeStr = "idle";

 }else if(type==CCI_THREAD_STATE_INSTANCE_END){

 typeStr = "instance end";

 }else if (type==CCI_THREAD_STATE_TERMINATION){

 typeStr = "termination";

 }else{

 typeStr = "unknown";

 }

 memset(traceText,0,256);

 sprintf(traceText,"switchThreadStateChange: context id = %d, thread state %s",myContext->id,typeStr);

 cciServiceTrace(NULL,

 NULL,

 traceText);

 return CCI_THREAD_STATE_REGISTRATION_RETAIN;

}

Place the following code into the _Switch_evaluate function in the samples to

enable you to read service trace and to see when the message processing thread

changes state:

/*register for thread state change*/

 CciMessageContext* messageContext = cniGetMessageContext(NULL,message);

 CciThreadContext* threadContext = cniGetThreadContext(NULL,messageContext);

 static MyContext myContext={1};

 if(registered==0){

 cciRegisterForThreadStateChange(

 NULL,

 threadContext,

 & myContext,

 switchThreadStateChange,

 CCI_THREAD_STATE_IDLE |

 CCI_THREAD_STATE_INSTANCE_END |

 CCI_THREAD_STATE_TERMINATION);

 registered=1;

 }

236 User-defined Extensions

This example registers only on the first thread that receives a message. If it is

necessary to register every thread that receives a message, the user-defined

extensions must remember on which threads they have registered.

By using the userContext parameter you can see how data is passed from the code

where the callback is registered to the actual callback function.

When registering the callback, a pointer to an instance of the MyContext struct is

passed in. This is the same pointer as is passed back to the callback. To ensure that

the pointer is still valid when it is passed back to the callback, an instance of the

struct is declared as static. Another technique to ensure that the pointer is valid is

to allocate storage on the heap.

In the callback function, the userContext parameter can be cast to a (MyContext*).

The original MyContext struct can be referenced through this address. This permits

the passing of data from the code where the callback is registered to the callback

function.

cciUcsToMbs

Converts Universal Character Set (UCS) data to multi-byte string data. This

function is, typically, used only for formatting diagnostic messages. Normal

processing is best done in UCS-2, which can represent all characters from all

languages.

The sample code (BipSampPluginUtil.c) shows more utilities for processing UCS-2

characters in a portable way.

Syntax

int cciUcsToMbs(

 int* returnCode,

 const CciChar* ucsString,

 char* mbString,

 int mbStringLength,

 int codePage);

Parameters

returnCode

The return code from the function (output). Possible return codes are:

v CCI_SUCCESS

v CCI_BUFFER_TOO_SMALL

v CCI_INV_CHARACTER

v CCI_FAILURE

v CCI_INV_CODEPAGE

ucsString

The string to be converted, expressed as UCS-2 Unicode (input).

mbString

The location of the resulting string (input). The string has a trailing byte of

0, just as the Unicode has a trailing CciChar of 0.

mbStringLength

The length (in bytes) of the buffer that you have provided (input). Each

CciChar in the source string expands to one byte (for SBCS code pages), or

up to not more than the code page’s MB_CUR_MAX value (typically less

than five bytes), which defines an upper limit of the buffer size required.

User-defined extensions 237

codePage

The code page of the source string (input). The value of the code page

should be suitable for the compiler that is being used to compile the

user-defined node.

 For an ASCII system, a value of 1208 (meaning code page ibm-1208, which

is UTF-8 Unicode) is a good choice if you are using cciUcsToMbs to

convert string constants for processing by WebSphere Message Broker. 1208

is appropriate for Linux and UNIX, and for Windows platforms.

 On Linux and UNIX, nl_langinfo(CODEPAGE) gives you the code page that

has been selected by setlocale.

 For OS/390 and z/OS, the default code page for WebSphere MQ, which is

500, should not be used. Instead, you should use a code page value of

1047.

Return values

The converted length in bytes.

cciUserTrace

Writes a message from a message catalog (with inserts) to user trace. A message is

also written to service trace, if service trace is active.

The message written to user trace has the following format:

<date-time stamp> <threadNumber> UserTrace <Message text with inserts> <Message Explanation>

Syntax

void cciUserTrace(

 int* returnCode,

 CciObject* object,

 const CciChar* messageSource,

 int messageNumber,

 const char* traceText,

 ...

);

Parameters

returnCode

Receives the return code from the function (output). A NULL pointer input

signifies that the plug-in node does not wish to deal with errors. Any

exceptions thrown during the execution of this call will be re-thrown to the

next upstream node in the flow. If input is not NULL, output will signify the

success status of the call. If an exception occurs during execution, *returnCode

will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData

will provide details of the exception.

 object

The address of the object that is to be associated with the trace entry (input).

This object can be a CciNode* or a CciParser*. If it is a CciNode*, then the

name of that node is written to trace. If it is a CciParser*, then the name of the

node that created the parser is written to trace. This object is also used to

determine if the entry should be written to trace. The entry is only written if

trace is active for the node. Currently nodes inherit their trace setting from the

message flow.

 If this parameter is NULL, the trace level for the execution group is returned.

238 User-defined Extensions

messageSource

A string that identifies the Windows message source or the Linux and UNIX

message catalog (input). When trace is formatted, a message from the NLS

version of this catalog is written. The locale used is that of the environment

where the trace is formatted. It is possible to run the broker on one type of

platform, read the log on that platform, and then format the log on a different

platform. For example, if the broker is running on Linux or UNIX but there is

no .cat file available, the user could read the log, and then transfer it to

Windows where the log can be formatted by using the .properties file.

 If this parameter is NULL, the effect is the same as specifying an empty string.

That is, all other information will be written to the log, and the catalog field

will have an empty string value. Therefore, the log formatter will not be able

to find the message source. Consequently, the log formatter will fail to format

this entry.

messageNumber

The number that identifies the message within the specified messageSource

(input). If the messageSource does not contain a message that corresponds to

this messageNumber, then the log formatter will fail to format this entry.

traceText

A string of characters that ends with NULL (input). This string will be written

to service trace and provides an easy way to correlate trace entries with paths

through the source code. For example, there could be several paths through the

code that result in the same message (messageSource and messageNumber) being

written to trace. traceText can be used to distinguish between these different

paths. That is, the traceText string will be a static literal string in the source and

therefore the same string will be in both the source code file and the formatted

trace file.

... A C variable argument list that contains any message inserts that accompany

the message (input). These inserts are treated as character strings and the

variable arguments are assumed to be of type pointer to char.

 The last argument in this list must be (char*)0.
v For user-defined extensions that are running on distributed platforms, the char*

arguments must be in ISO-8859-1 (ibm-918) codepage.

v For user-defined extensions that are running on Z/OS platforms, the char*

arguments must be in EBCIDIC (1047).

This includes all char* arguments in traceText and the variable argument list of

inserts (...).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

const CciChar* myMessageSource=CciString("SwitchMSG",BIP_DEF_COMP_CCSID);

CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

cciUserTrace(&rc,

 (CciObject*)thisNode,

 myMessageSource,

 1,

User-defined extensions 239

"propagating to add terminal",

 "add",

 (char*)0);

 checkRC(rc);

cciUserTraceW

Writes a message from a message catalog (with inserts) to user trace. A message is

also written to service trace, if service trace is active.

The message written to user trace has the following format:

<date-time stamp> <threadNumber> UserTrace <Message text with inserts> <Message Explanation>

Syntax

void cciUserTraceW(

 int* returnCode,

 CciObject* object,

 const CciChar* messageSource,

 int messageNumber,

 const CciChar* traceText,

 ...

);

Parameters

returnCode

Receives the return code from the function (output). A NULL pointer input

signifies that the plug-in node does not wish to deal with errors. Any

exceptions thrown during the execution of this call will be re-thrown to the

next upstream node in the flow. If input is not NULL, output will signify the

success status of the call. If an exception occurs during execution, *returnCode

will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData

will provide details of the exception.

 object

The address of the object that is to be associated with the trace entry (input).

This object can be a CciNode* or a CciParser*. If it is a CciNode*, then the

name of that node is written to trace. If it is a CciParser*, then the name of the

node that created the parser is written to trace. This object is also used to

determine if the entry should be written to trace. The entry is only written if

trace is active for the node. Currently nodes inherit their trace setting from the

message flow.

 If this parameter is NULL, the trace level for the execution group is returned.

messageSource

A string that identifies the Windows message source or the Linux and UNIX

message catalog (input). When trace is formatted, a message from the NLS

version of this catalog is written. The locale used is that of the environment

where the trace is formatted. It is possible to run the broker on one type of

platform, read the log on that platform, and then format the log on a different

platform. For example, if the broker is running on Linux or UNIX but there is

no .cat file available, the user could read the log, and then transfer it to

Windows where the log can be formatted by using the .properties file.

 If this parameter is NULL, the effect is the same as specifying an empty string.

That is, all other information will be written to the log, and the catalog field

will have an empty string value. Therefore, the log formatter will not be able

to find the message source. Consequently, the log formatter will fail to format

this entry.

240 User-defined Extensions

messageNumber

The number that identifies the message within the specified messageSource

(input). If the messageSource does not contain a message that corresponds to

this messageNumber, then the log formatter will fail to format this entry.

traceText

A string of characters that ends with NULL (input). This string will be written

to service trace and provides an easy way to correlate trace entries with paths

through the source code. For example, there could be several paths through the

code that result in the same message (messageSource and messageNumber) being

written to trace. traceText can be used to distinguish between these different

paths. That is, the traceText string will be a static literal string in the source and

therefore the same string will be in both the source code file and the formatted

trace file.

... A C variable argument list that contains any message inserts that accompany

the message (input). These inserts are treated as character strings and the

variable arguments are assumed to be of type pointer to CciChar.

The last argument in this list must be (CciChar*)0.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

const CciChar* myMessageSource=CciString("SwitchMSG",BIP_DEF_COMP_CCSID);

const CciChar* text = CciString("propagating to add terminal",

 BIP_DEF_COMP_CCSID);

const CciChar* insert = CciString("add", BIP_DEF_COMP_CCSID);

CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

int rc = CCI_SUCCESS;

cciUserTrace(&rc,

 (CciObject*)thisNode,

 myMessageSource,

 1,

 text,

 insert,

 (CciChar*)0);

checkRC(rc);

cciUserDebugTrace

This function is very similar to cciUserTrace with the only difference being that the

entry is written to user trace only when user trace is active at debug level.

Note: An entry is also written to service trace, when service trace is active at any

level and when user trace is active at any level.

Syntax

void cciUserDebugTrace(

 int* returnCode,

 CciObject* object,

 const CciChar* messageSource,

 int messageNumber,

 const char* traceText,

 ...

);

User-defined extensions 241

Parameters

returnCode

Receives the return code from the function (output). A NULL pointer input

signifies that the plug-in node does not wish to deal with errors. Any

exceptions that are thrown during the execution of this call are re-thrown to

the next upstream node in the flow. If the input is not NULL, the output

signifies the success status of the call. If an exception occurs during execution,

*returnCode is set to CCI_EXCEPTION on output. Call

CciGetLastExceptionData for details of the exception.

 object

The address of the object that is to be associated with the trace entry (input).

This object can be a CciNode* or a CciParser*. If it is a CciNode*, then the

name of that node is written to trace. If it is a CciParser*, then the name of the

node that created the parser is written to trace. This object is also used to

determine if the entry should be written to trace. The entry is only written if

trace is active for the node. Currently nodes inherit their trace setting from the

message flow.

 If this parameter is NULL, the trace level for the execution group is returned.

messageSource

A string that identifies the Windows message source or the Linux and UNIX

message catalog (input). When trace is formatted, a message from the NLS

version of this catalog is written. The locale used is that of the environment

where the trace is formatted. It is possible to run the broker on one type of

platform, read the log on that platform, and then format the log on a different

platform. For example, if the broker is running on Linux or UNIX but there is

no .cat file available, the user could read the log, and then transfer it to

Windows where the log can be formatted by using the .properties file.

 If this parameter is NULL, the effect is the same as specifying an empty string.

That is, all other information is written to the log, and the catalog field has an

empty string value. If there is an empty string value, the log formatter can not

find the message source. Therefore, the log formatter fails to format this entry.

messageNumber

The number that identifies the message within the specified messageSource

(input). If the messageSource does not contain a message that corresponds to

this messageNumber, the log formatter fails to format this entry.

traceText

A string of characters that ends with NULL (input). This string is written to

service trace and provides an easy way to correlate trace entries with paths

through the source code. For example, there could be several paths through the

code that result in the same message (messageSource and messageNumber) being

written to trace. traceText can be used to distinguish between these different

paths. That is, the traceText string is a static literal string in the source and

therefore the same string is in both the source code file and the formatted trace

file.

... A C variable argument list that contains any message inserts that accompany

the message (input). These inserts are treated as character strings and the

variable arguments are assumed to be of type pointer to char. The last

argument in this list must be (char*)0.
v For user-defined extensions that are running on distributed platforms, the char*

arguments must be in ISO-8859-1 (ibm-918) codepage.

242 User-defined Extensions

v For user-defined extensions that are running on Z/OS platforms, the char*

arguments must be in EBCIDIC (1047).

This includes all char* arguments in traceText and the variable argument list of

inserts (...).

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

const CciChar* myMessageSource=CciString("SwitchMSG",BIP_DEF_COMP_CCSID);

CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

const char* mbElementName = mbString((CciChar*)&elementName,BIP_DEF_COMP_CCSID);

const char* mbElementValue = mbString((CciChar*)&elementValue,BIP_DEF_COMP_CCSID);

const char* traceTextFormat = "Switch Element: name=%s, value=%s";

char* traceText = (char*)malloc(strlen(traceTextFormat) +

 strlen(mbElementName) +

 strlen(mbElementValue));

sprintf(traceText,traceTextFormat,mbElementName,mbElementValue);

cciUserDebugTrace(&rc,

 (CciObject*)thisNode,

 myMessageSource,

 2,

 traceText,

 mbElementName,

 mbElementValue,

 (char*)0);

free((void*)mbElementName);

free((void*)mbElementValue);

free((void*)traceText);

cciUserDebugTraceW

This function is very similar to cciUserTraceW with the only difference being that

the entry is written to user trace only when user trace is active at debug level.

Note: If user trace is not active at debug level, an entry will be written to service

trace when service trace is active at any level.

Syntax

void cciUserDebugTraceW(

 int* returnCode,

 CciObject* object,

 const CciChar* messageSource,

 int messageNumber,

 const CciChar* traceText,

 ...

);

Parameters

returnCode

Receives the return code from the function (output). A NULL pointer input

signifies that the plug-in node does not wish to deal with errors. Any

exceptions thrown during the execution of this call will be re-thrown to the

next upstream node in the flow. If input is not NULL, output will signify the

User-defined extensions 243

success status of the call. If an exception occurs during execution, *returnCode

will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData

will provide details of the exception.

 object

The address of the object that is to be associated with the trace entry (input).

This object can be a CciNode* or a CciParser*. If it is a CciNode*, then the

name of that node is written to trace. If it is a CciParser*, then the name of the

node that created the parser is written to trace. This object is also used to

determine if the entry should be written to trace. The entry is only written if

trace is active for the node. Currently nodes inherit their trace setting from the

message flow.

 If this parameter is NULL, the trace level for the execution group is returned.

messageSource

A string that identifies the Windows message source or the Linux and UNIX

message catalog (input). When trace is formatted, a message from the NLS

version of this catalog is written. The locale used is that of the environment

where the trace is formatted. It is possible to run the broker on one type of

platform, read the log on that platform, and then format the log on a different

platform. For example, if the broker is running on Linux or UNIX but there is

no .cat file available, the user could read the log, and then transfer it to

Windows where the log can be formatted by using the .properties file.

 If this parameter is NULL, the effect is the same as specifying an empty string.

That is, all other information will be written to the log, and the catalog field

will have an empty string value. Therefore, the log formatter will not be able

to find the message source. Consequently, the log formatter will fail to format

this entry.

messageNumber

The number that identifies the message within the specified messageSource

(input). If the messageSource does not contain a message that corresponds to

this messageNumber, then the log formatter will fail to format this entry.

traceText

A string of characters that ends with NULL (input). This string will be written

to service trace and provides an easy way to correlate trace entries with paths

through the source code. For example, there could be several paths through the

code that result in the same message (messageSource and messageNumber) being

written to trace. traceText can be used to distinguish between these different

paths. That is, the traceText string will be a static literal string in the source and

therefore the same string will be in both the source code file and the formatted

trace file.

... A C variable argument list that contains any message inserts that accompany

the message (input). These inserts are treated as character strings and the

variable arguments are assumed to be of type pointer to CciChar.

The last argument in this list must be (CciChar*)0.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

244 User-defined Extensions

Example

const CciChar* myMessageSource=CciString("SwitchMSG",BIP_DEF_COMP_CCSID);

CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

const CciChar* traceText = CciString("Found an element name and value",

 BIP_DEF_COMP_CCSID);

cciUserDebugTraceW(&rc,

 (CciObject*)thisNode,

 myMessageSource,

 2,

 traceText,

 elementName,

 elementValue,

 (CciChar*)0);

cciServiceTrace

Writes a message to service trace, if service trace is active. The message that is

written to service trace has the following format:

<date-time stamp> <threadNumber> +cciServiceTrace <nodeName> <nodeType> <traceText>, <nodeLabel>

Syntax

void cciServiceTrace(

 int* returnCode,

 CciObject* object,

 const char* traceText

);

Parameters

returnCode

Receives the return code from the function (output). A NULL pointer input

signifies that the plug-in node does not wish to deal with errors. Any

exceptions thrown during the execution of this call will be re-thrown to the

next upstream node in the flow. If input is not NULL, output will signify the

success status of the call. If an exception occurs during execution, *returnCode

will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData

will provide details of the exception.

object (input)

The address of the object that is to be associated with the trace entry (input).

This object can be the address of a CciNode or a CciParser. If it is a CciNode,

then the name of that node is written to trace. If it is a CciParser, then the

name of the node that created the parser is written to trace. This object is also

used to determine if the entry should be written to trace. The entry is only

written if trace is active for the node. Currently nodes inherit their trace setting

from the message flow.

 If this parameter is NULL, the following occurs:

v <nodeName>, <nodeType>, <nodeLabel>, and <messageFlowLabel> are

omitted from the trace entry.

v The entry is written based on the trace setting of the execution group.

traceText (input)

A string of characters that ends with NULL (input). This string will be written

to service trace and provides an easy way to correlate trace entries with paths

through the source code. For example, there could be several paths through the

code that result in the same message (messageSource and messageNumber) being

written to trace. traceText can be used to distinguish between these different

User-defined extensions 245

paths. That is, the traceText string will be a static literal string in the source and

therefore the same string will be in both the source code file and the formatted

trace file.

 This string must be in ISO-8859-1 (ibm-819) codepage for plug-ins running on

distributed platforms and must be in EBCDIC (1047) for plug-ins running on

Z/OS See NLS section.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

 CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

 cciServiceTrace(&rc,(CciObject*)thisNode,">>_Switch_evaluate()");

 checkRC(rc);

cciServiceTraceW

Writes a message to service trace, if service trace is active. The message that is

written to service trace has the following format:

<date-time stamp> <threadNumber> +cciServiceTrace <nodeName> <nodeType> <traceText>, <nodeLabel>

Syntax

void cciServiceTraceW(

 int* returnCode,

 CciObject* object,

 const CciChar* traceText

);

Parameters

returnCode

Receives the return code from the function (output). A NULL pointer input

signifies that the plug-in node does not wish to deal with errors. Any

exceptions thrown during the execution of this call will be re-thrown to the

next upstream node in the flow. If input is not NULL, output will signify the

success status of the call. If an exception occurs during execution, *returnCode

will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData

will provide details of the exception.

object (input)

The address of the object that is to be associated with the trace entry (input).

This object can be a CciNode* or a CciParser*. If it is a CciNode*, then the

name of that node is written to trace. If it is a CciParser*, then the name of the

node that created the parser is written to trace. This object is also used to

determine if the entry should be written to trace. The entry is only written if

trace is active for the node. Currently nodes inherit their trace setting from the

message flow.

 If this parameter is NULL, the trace level for the execution group is returned.

traceText (input)

A string of characters that ends with NULL (input). This string will be written

to service trace and provides an easy way to correlate trace entries with paths

through the source code. For example, there could be several paths through the

code that result in the same message (messageSource and messageNumber) being

written to trace. traceText can be used to distinguish between these different

246 User-defined Extensions

paths. That is, the traceText string will be a static literal string in the source and

therefore the same string will be in both the source code file and the formatted

trace file.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

const CciChar* traceText = CciString(">>_Switch_evaluate()",

 BIP_DEF_COMP_CCSID);

cciServiceTraceW(&rc,(CciObject*)thisNode,traceText);

checkRC(rc);

cciServiceDebugTrace

This function is very similar to cciServiceTrace with the only difference being that

the entry is written to service trace only when service trace is active at debug level.

Syntax

void cciServiceDebugTrace(

 int* returnCode,

 CciObject* object,

 const char* traceText

);

Parameters

returnCode

Receives the return code from the function (output). A NULL pointer input

signifies that the plug-in node does not wish to deal with errors. Any

exceptions thrown during the execution of this call will be re-thrown to the

next upstream node in the flow. If input is not NULL, output will signify the

success status of the call. If an exception occurs during execution, *returnCode

will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData

will provide details of the exception.

object (input)

The address of the object that is to be associated with the trace entry (input).

This object can be a CciNode* or a CciParser*. If it is a CciNode*, then the

name of that node is written to trace. If it is a CciParser*, then the name of the

node that created the parser is written to trace. This object is also used to

determine if the entry should be written to trace. The entry is only written if

trace is active for the node. Currently nodes inherit their trace setting from the

message flow.

 If this parameter is NULL, the trace level for the execution group is returned.

traceText (input)

A string of characters that ends with NULL (input). This string will be written

to service trace and provides an easy way to correlate trace entries with paths

through the source code. For example, there could be several paths through the

code that result in the same message (messageSource and messageNumber) being

written to trace. traceText can be used to distinguish between these different

paths. That is, the traceText string will be a static literal string in the source and

therefore the same string will be in both the source code file and the formatted

trace file.

User-defined extensions 247

This string must be in ISO-8859-1 (ibm-819) codepage for plug-ins running on

distributed platforms and must be in EBCDIC (1047) for plug-ins running on

Z/OS See NLS section.

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

 CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

 cciServiceTrace(&rc,(CciObject*)thisNode,">>_Switch_evaluate()");

 checkRC(rc);

cciServiceDebugTraceW

This function is very similar to cciServiceTraceW with the only difference being

that the entry is written to service trace only when service trace is active at debug

level.

Syntax

void cciServiceDebugTraceW(

 int* returnCode,

 CciObject* object,

 const CciChar* traceText

);

Parameters

returnCode

Receives the return code from the function (output). A NULL pointer input

signifies that the plug-in node does not wish to deal with errors. Any

exceptions thrown during the execution of this call will be re-thrown to the

next upstream node in the flow. If input is not NULL, output will signify the

success status of the call. If an exception occurs during execution, *returnCode

will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData

will provide details of the exception.

object (input)

The address of the object that is to be associated with the trace entry (input).

This object can be a CciNode* or a CciParser*. If it is a CciNode*, then the

name of that node is written to trace. If it is a CciParser*, then the name of the

node that created the parser is written to trace. This object is also used to

determine if the entry should be written to trace. The entry is only written if

trace is active for the node. Currently nodes inherit their trace setting from the

message flow.

 If this parameter is NULL, the trace level for the execution group is returned.

traceText (input)

A string of characters that ends with NULL (input). This string will be written

to service trace and provides an easy way to correlate trace entries with paths

through the source code. For example, there could be several paths through the

code that result in the same message (messageSource and messageNumber) being

written to trace. traceText can be used to distinguish between these different

paths. That is, the traceText string will be a static literal string in the source and

therefore the same string will be in both the source code file and the formatted

trace file.

248 User-defined Extensions

Return values

None. If an error occurs, the returnCode parameter indicates the reason for the

error.

Example

CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

CciChar* traceText = CciString(">>_Switch_evaluate()",BIP_DEF_COMP_CCSID");

cciServiceTraceW(&rc,(CciObject*)thisNode,traceText);

checkRC(rc);

ccilsTraceActive

Reports whether trace is active and the level at which trace is active.

Syntax

CCI_TRACE_TYPE cciIsTraceActive(

 int* returnCode,

 CciObject* object);

Parameters

returnCode

Receives the return code from the function (output). A NULL pointer input

signifies that the plug-in node does not wish to deal with errors. Any

exceptions thrown during the execution of this call will be re-thrown to the

next upstream node in the flow. If input is not NULL, output will signify the

success status of the call. If an exception occurs during execution, *returnCode

will be set to CCI_EXCEPTION on output. A call to CciGetLastExceptionData

will provide details of the exception.

 object

The address of the object that is to be associated with the trace entry (input).

This object can be a CciNode* or a CciParser*. If it is a CciNode*, then the

name of that node is written to trace. If it is a CciParser*, then the name of the

node that created the parser is written to trace. This object is also used to

determine if the entry should be written to trace. The entry is only written if

trace is active for the node. Currently nodes inherit their trace setting from the

message flow.

 If this parameter is NULL, the trace level for the execution group is returned.

Return values

A CCI_TRACE_TYPE value indicating the level of trace that is currently active. The

CCI_TRACE_TYPE type has the following possible values:

v CCI_USER_NORMAL_TRACE

v CCI_USER_DEBUG_TRACE

v CCI_ SERVICE_NORMAL_TRACE

v CCI_SERVICE_DEBUG_TRACE

v CCI_TRACE_NONE

These return values are bitwise values. Combinations of these values are also

possible, for example:

v CCI_USER_NORMAL_TRACE + CCI_ SERVICE_NORMAL_TRACE

v CCI_USER_NORMAL_TRACE + CCI_SERVICE_DEBUG_TRACE

v CCI_USER_DEBUG_TRACE + CCI_ SERVICE_NORMAL_TRACE

User-defined extensions 249

v CCI_USER_DEBUG_TRACE + CCI_SERVICE_DEBUG_TRACE

CCI_TRACE_NONE is a zero value and all other values are non zero.

Two further values can be used as bitmasks when querying the active level of

trace. These are:

v CCI_USER_TRACE

v CCI_SERVICE_TRACE

For example, the expression (traceLevel & CCI_USER_TRACE) will evaluate to a non

zero value for traceLevel for the following return values:

v CCI_USER_NORMAL_TRACE + CCI_ SERVICE_NORMAL_TRACE

v CCI_USER_NORMAL_TRACE + CCI_SERVICE_DEBUG_TRACE

v CCI_USER_DEBUG_TRACE + CCI_ SERVICE_NORMAL_TRACE

v CCI_USER_DEBUG_TRACE + CCI_SERVICE_DEBUG_TRACE

v CCI_USER_NORMAL_TRACE

v CCI_USER_DEBUG_TRACE

The expression (traceLevel & CCI_USER_TRACE) will evaluate to zero for traceLevel

for the following return values:

v CCI_SERVICE_NORMAL_TRACE

v CCI_SERVICE_DEBUG_TRACE

v CCI_TRACE_NONE

Example

CciNode* thisNode = ((NODE_CONTEXT_ST*)context)->nodeObject;

const CCI_TRACE_TYPE traceActive = cciIsTraceActive(&rc, (CciObject*)thisNode);

checkRC(rc);

C skeleton code

The following is a skeleton code for a C user-defined node. It has the minimum

content required to compile a user-defined node successfully.

#ifdef __WIN32__

#include <windows.h>

#endif

#include <BipCos.h>

#include <BipCci.h>

#include <BipCni.h>

#include <cstring>

#include <malloc.h>

#include <stdlib.h>

#include <stdio.h>

#define BIP_DEF_COMP_CCSID 437

CciChar* constNodeFactory = 0;

CciChar* constNodeName = 0;

CciChar* constTerminalName = 0;

CciChar* constOutTerminalName = 0;

CciChar* CciString(

 const char* source,

 int codepage

){

 /* Maximum number of characters in Unicode representation */

 int maxChars = strlen(source) + 1 ;

250 User-defined Extensions

CciChar* buffer = (CciChar*)malloc(maxChars * sizeof(CciChar)) ;

 int rc ;

 cciMbsToUcs(&rc, source, buffer, maxChars, codepage) ;

 return buffer ;

}

void initNodeConstants(){

 constNodeFactory = CciString("myNodeFactory", BIP_DEF_COMP_CCSID);

 constNodeName = CciString("myNode",BIP_DEF_COMP_CCSID);

 constTerminalName = CciString("in",BIP_DEF_COMP_CCSID);

 constOutTerminalName = CciString("out",BIP_DEF_COMP_CCSID);

}

struct MyNodeContext {

 CciTerminal* iOutTerminal;

};

CciContext* createNodeContext(

 CciFactory* factoryObject,

 CciChar* nodeName,

 CciNode* nodeObject

){

 MyNodeContext * p = (MyNodeContext *)malloc(sizeof(MyNodeContext));

 /*here we would create an instance of some data structure

 where we could store context about this node instance.

 We would return a pointer to this struct and that pointer

 will be passed to our other implementation functions */

 /* now we create an input terminal for the node*/

 cniCreateInputTerminal(NULL, nodeObject, (CciChar*)constTerminalName);

 p->iOutTerminal = cniCreateOutputTerminal(NULL, nodeObject, (CciChar*)constOutTerminalName);

 return((CciContext*)p);

}

/**/

/* */

/* Plugin Node Implementation Function: cniEvaluate() */

/* */

/**/

void evaluate(

 CciContext* context,

 CciMessage* destinationList,

 CciMessage* exceptionList,

 CciMessage* message

){

 /* we would place our node’s processing logic in here*/

 return;

}

int run(

 CciContext* context,

 CciMessage* destinationList,

 CciMessage* exceptionList,

 CciMessage* message

)

{

 char* buffer="<doc><test>hello</test></doc>";

 CciChar* wBuffer=CciString(buffer,BIP_DEF_COMP_CCSID);

 //cniSetInputBuffer(NULL,message,(void*)wBuffer,strlen(buffer) * sizeof(CciChar));

 cniSetInputBuffer(NULL,message,(void*)buffer,strlen(buffer));

 cniFinalize(NULL,message,0);

 cniPropagate(NULL,((MyNodeContext*)context)->iOutTerminal,destinationList,exceptionList,message);

 return CCI_SUCCESS_CONTINUE;

}

User-defined extensions 251

#ifdef __cplusplus

extern "C"{

#endif

CciFactory LilFactoryExportPrefix * LilFactoryExportSuffix bipGetMessageflowNodeFactory()

{

 CciFactory* factoryObject;

 /* Before we proceed we need to initialize all the static constants */

 /* that may be used by the plug-in. */

 initNodeConstants();

 /* Create the Node Factory for this plug-in */

 /* If any errors/exceptions */

 /* occur during the execution of this utility function, then as we have not */

 /* supplied the returnCode argument, the exception will bypass the plugin */

 /* and be directly handled by the broker. */

 factoryObject = cniCreateNodeFactory(0, (unsigned short *)constNodeFactory);

 if (factoryObject == CCI_NULL_ADDR) {

 /* Any further local error handling can go here */

 }

 else {

 /* Define the node supported by this factory */

 static CNI_VFT vftable = {CNI_VFT_DEFAULT};

 /* Setup function table with pointers to node implementation functions */

 vftable.iFpCreateNodeContext = createNodeContext;

 vftable.iFpEvaluate = evaluate;

 vftable.iFpRun = run;

 /* Define a node type supported by our factory. If any errors/exceptions */

 /* occur during the execution of this utility function, then as we have not */

 /* supplied the returnCode argument, the exception will bypass the plugin */

 /* and be directly handled by the broker. */

 cniDefineNodeClass(NULL, factoryObject, (CciChar*)constNodeName, &vftable);

 }

 /* Return address of this factory object to the broker */

 return(factoryObject);

}

#ifdef __cplusplus

}

#endif

GNU makefile

The following is a makefile which lists the files, dependencies, and rules by which

the C user-defined node should be compiled.

.SUFFIXES : .so .a .o .c

R1INC = .

R1LIB = .

WMQI

MQSIDIR = /cmvc/back/inst.images/x86_linux_2/shipdata/opt/mqsi

MQSIINC = $(MQSIDIR)/include

MQSILIB = $(MQSIDIR)/lib

WMQ

MQIDIR = /usr/mqm

CC = /usr/bin/g++

LD = ${CC}

252 User-defined Extensions

OBJ = .o

LIL = .lil

THINGSTOCLEAN = *${OBJ}

CFLAGS = -fpic -c #-pedantic -x c -Wall

CFLAGSADD = -I${R1INC} -I${MQSIINC} -I${MQSIINC}/plugin ${DEFINES}

DEFINES = -DLINUX

LIBADD = -L${MQSILIB} -limbdfplg

LDFLAG = -shared ${LIBADD}

#CC = /usr/bin/gcc

#LD = ${CC}

OBJECTS = skeleton${OBJ}

.c.o : ; ${CC} ${CFLAGS} ${CFLAGSADD} $<

ALL : ${OBJECTS} Samples${LIL}

clean:

 rm *${OBJ} *${LIL}

skeleton${OBJ}: skeleton.c

Samples${LIL}: ${OBJECTS}

 ${LD} -o $@ ${OBJECTS} ${LDFLAG}

Utility function return codes and values

By convention, the return code output parameter of all utility functions is set to

indicate successful completion, or otherwise. The following table lists all return

codes with their meanings. These return codes are defined in the BipCci.h header

file.

 Table 1. Utility function return codes and values

Return code Explanation

CCI_BUFFER_TOO_SMALL The output buffer is not large enough to

store the requested data.

CCI_EXCEPTION An exception occurred.

CCI_EXCEPTION_CONFIGURATION A configuration exception was detected

when invoking the function.

1

CCI_EXCEPTION_CONVERSION A conversion exception was detected when

invoking the function.

1

CCI_EXCEPTION_DATABASE A database exception was detected when

invoking the function.

CCI_EXCEPTION_FATAL A fatal exception was detected when

invoking the function.

1

CCI_EXCEPTION_PARSER A parser exception was detected when

invoking the function.

1

CCI_EXCEPTION_RECOVERABLE A recoverable exception was detected when

invoking the function.

1

CCI_EXCEPTION_UNKNOWN An unknown exception was specified or

encountered.

CCI_EXCEPTION_USER A user exception was detected when

invoking the function.

1

User-defined extensions 253

Table 1. Utility function return codes and values (continued)

Return code Explanation

CCI_FAILURE A function was unsuccessful.

CCI_FAILURE_CONTINUE cniRun() return value: rollback message

processing and continue thread execution

CCI_FAILURE_RETURN cniRun() return value: rollback message

processing and return thread to pool

CCI_INV_CODEPAGE An invalid codepage number was specified.

CCI_INV_CHARACTER An invalid character was detected in the

buffer to be converted.

CCI_INV_DATA_BUFLEN A data buffer length of zero was specified.

CCI_INV_DATA_POINTER A null pointer was specified for the address

of an output data area.

CCI_INV_ELEMENT_OBJECT A null pointer was specified for the element

object.

CCI_INV_FACTORY_NAME A factory name that is not valid (blank) was

specified.

CCI_INV_FACTORY_OBJECT A null pointer was specified for the factory

object.

CCI_INV_IMPL_FUNCTION An invalid combination of conditional

implementation functions was specified

CCI_INV_LENGTH A length of zero was specified.

CCI_INV_LOG_TYPE The specified log type is not valid.

CCI_INV_MESSAGE_CONTEXT A null pointer was specified for the message

context.

CCI_INV_MESSAGE_OBJECT A null pointer was specified for the message

object.

CCI_INV_NODE_ENV Attempt to dispatch a thread from a

non-input node.

CCI_INV_NODE_NAME A node name that is not valid (blank) was

specified.

CCI_INV_NODE_OBJECT A null pointer was specified for the node

object.

CCI_INV_OBJECT_NAME Characters specified in the object name were

not valid.

CCI_INV_PARSER_NAME A parser class name that is not valid (blank)

was specified.

CCI_INV_PARSER_OBJECT A null pointer was specified for the parser

object.

CCI_INV_SQL_EXPR_OBJECT A null pointer was specified for an SQL

expression value.

CCI_INV_STATEMENT A statement was not specified.

CCI_INV_TERMINAL_NAME A terminal name that is not valid (blank)

was specified.

CCI_INV_TERMINAL_OBJECT A null pointer was specified for the terminal

object.

CCI_INV_TRANSACTION_TYPE An invalid value was specified for the

transaction type.

254 User-defined Extensions

Table 1. Utility function return codes and values (continued)

Return code Explanation

CCI_INV_VFTP A null pointer was specified for the address

of the plug-in virtual function pointer table.

CCI_MISSING_IMPL_FUNCTION A mandatory implementation function was

not defined in the function pointer table.

CCI_NAME_EXISTS A parser with the same class name already

exists.

CCI_NO_BUFFER_EXISTS No buffer exists for the specified parser

object.

CCI_NO_EXCEPTION_EXISTS No previous exception was found for this

thread.

CCI_NO_THREADS_AVAILABLE No threads were available to be dispatched.

CCI_NULL_ADDR A function that should return an address

was unsuccessful; zero is returned instead.

CCI_PARSER_NAME_TOO_LONG The name of the parser class is too long.

CCI_SUCCESS Successful completion.

CCI_SUCCESS_CONTINUE cniRun() return value: commit message

processing and continue thread execution

CCI_SUCCESS_RETURN cniRun() return value: commit message

processing and return thread to pool

CCI_TIMEOUT cniRun() return value: no message

processing but continue thread execution

Note:

1: This return code is returned only by cniGetLastExceptionData to indicate the type of the

last exception.

Available parsers

A parser is invoked by the broker only when that parser is required. The parser

that is invoked depends upon the parser that has been specified. In a message

processing node, the message identifies which destination to get the message from,

and which parser to use.

For certain implementation functions, it might be necessary to specify the name of

a parser supplied with WebSphere Message Broker. For example, functions include:

v cniCreateElementAfterUsingParser

v cniCreateElementAsFirsthChildUsingParser

v cniCreateElementAsLastChildUsingParser

v cniCreateElementAsLastChildFromBitstream

v cniCreateElementBeforeUsingParser

When using these functions, you must specify the correct class name of the parser.

The following table provides a summary of the parsers, root element names, and

class names for different headers.

 Parser Root element name Class name

BLOB BLOB NONE

User-defined extensions 255

Parser Root element name Class name

IDOC IDOC IDOC

JMSMap JMSMap JMS_MAP

JMSStream JMSStream JMS_STREAM

MIME MIME MIME

MQCFH MQPCF MQPCF

MQCIH MQCIH MQCICS

MQDLH MQDLH MQDEAD

MQIIH MQIIH MQIMS

MQMD MQMD MQHMD

MQMDE MQMDE MQHMDE

MQRFH MQRFH MQHRF

MQRFH2 MQRFH2 MQHRF2

MQRMH MQRMH MQHREF

MQSAPH MQSAPH MQHSAP

MQWIH MQWIH MQHWIH

MRM MRM MRM

Properties Properties PropertyParser

SMQ_BMH SMQ_BMH SMQBAD

XML XML xml

XMLNS XMLNS xmlns

XMLNSC XMLNSC xmlnsC

You can also create your own user-defined parsers, or make use of user-defined

parsers that have been supplied by third party vendors.

Overriding default message parser attributes

A user-defined input node can select an appropriate header or message parser, and

the mode in which the parsing is controlled, by using the following attributes that

are included as default, which you can override:

rootParserClassName

Defines the name of the root parser that parses message formats supported

by the user-defined input node. It defaults to GenericRoot, a supplied root

parser that causes the broker to allocate and chain parsers together. It is

unlikely that a node would need to modify this attribute value.

firstParserClassName

Defines the name of the first parser, in what might be a chain of parsers

that are responsible for parsing the bitstream. It defaults to XML.

messageDomainProperty

An optional attribute that defines the name of the message parser required

to parse the input message. The supported values are the same as those

supported by the MQInput node. (See MQInput node for more information

about the MQInput node.)

messageSetProperty

An optional attribute that defines the message set identifier, or the message

256 User-defined Extensions

set name, in the Message Set field, only if the MRM parser was specified

by the messageDomainProperty attribute.

messageTypeProperty

An optional attribute that defines the identifier of the message in the

MessageType field, only if the MRM parser was specified by the

messageDomainProperty attribute.

messageFormatProperty

An optional attribute that defines the format of the message in the Message

Format field, only if the MRM parser was specified by the

messageDomainProperty attribute.

XML and MRM parser constants

When you are writing plug-in nodes or parsers you might need to know the value

of various constants.

This topic lists the names of the XML and MRM parser constants and their

corresponding values.

XML parser constants

 Table 2. XML parser names and values

Name Value

Element 0x01000000

tag 0x01000000

ParserRoot 0x01000010

Content 0x02000000

pcdata 0x02000000

attr 0x03000000

Attribute 0x03000000

UnparsedEntityDecl 0x05000004

NotationDecl 0x05000008

EntityDecl 0x05000011

ParameterEntityDecl 0x05000012

ExternalEntityDecl 0x05000014

XmlDecl 0x05000018

DocTypeDecl 0x05000020

IntSubset 0x05000021

ExtSubset 0x05000022

AttributeList 0x05000024

AttributeDef 0x05000028

ExternalParameterEntityDecl 0x05000040

WhiteSpace 0x06000002

PublicId 0x06000004

SystemId 0x06000008

NotationReference 0x06000010

User-defined extensions 257

Table 2. XML parser names and values (continued)

Version 0x06000011

Encoding 0x06000012

Standalone 0x06000014

Comment 0x06000018

EntityReferenceStart 0x06000020

EntityReferenceEnd 0x06000021

DocTypeComment 0x06000022

AsisElementContent 0x06000028

CDataSection 0x06000040

EntityDeclValue 0x06000041

AttributeDefValue 0x06000042

AttributeDefDefaultType 0x06000044

DocTypeWhiteSpace 0x06000080

ProcessingInstruction 0x07000002

ElementDef 0x07000004

DocTypePI 0x07000008

AttributeDefType 0x07000010

RequestedDomain 0x07000011

MRM parser constants

 Table 3. MRM parser names and values

Name Value

PreDefStructureFav 0x01000000

PreDefStructure 0x01000001

SelfDefStructure 0x01000002

StructureInstance 0x01000004

MrmRoot 0x01000008

mtiSelfDefMessage 0x01000010

mtiPreDefMessage 0x01000012

mtiSelfDefIdentifier 0x02000001

mtiSdfFieldType 0x02000002

mtiSdfCharsCodepage 0x02000008

mtiSdfCharsEcho 0x02000010

mtiSdfCharsScale 0x02000011

mtiSdfCharsDateFmt 0x02000012

mtiSdfCharsTimeFmt 0x02000014

mtiSdfCharsTimeStampFmt 0x02000018

mtiSdfCharsBinaryFmt 0x02000020

mtiSdfCharsBinaryFmtContextLen 0x02000021

mtiSdfCharsBinaryFmtContext 0x02000022

258 User-defined Extensions

Table 3. MRM parser names and values (continued)

mtiMixedContent 0x02000024

PreDefFieldFav 0x03000000

PreDefField 0x03000001

mtiSelfDefField 0x03000002

PreDefFieldInstance 0x03000004

SelfDefFieldInstance 0x03000008

Namespace 0x03000010

mtiPreDefStructureV 0x03000012

mtiSelfDefStructureV 0x03000014

mtiStructureInstanceV 0x03000016

mtiSelfDefMessageV 0x03000018

mtiPreDefMessageV 0x03000020

mtiUnresolvedChoice 0x04000001

Trace logging from a user-defined C extension

Message processing nodes and parsers that are written to the C programming

language API can write entries to trace.

There are two types of trace:

v Service Trace: entries usually describe what is happening within the code and

are only useful to the owner of the code, such as the user-defined extension

developer.

v User Trace: entries usually describe what is happening at an external level and

are useful to the user of the code. Users of the code include message flow

designers, and broker domain administrators.

For each trace type, there are three levels:

v None

v Normal

v Debug

For C user-defined extensions, the following utility functions are available for each

trace type:

v cciServiceTrace and cciUserTrace: these functions write an entry to the

respective trace type only when trace has been activated, that is, trace is at

normal or debug level.

v cciServiceDebugTrace and cciUserDebugTrace: these functions write an entry to

the respective trace type only when trace is active at debug level.

To help avoid making function calls in the case where no trace is written, the

cciIsTraceActive utility function is provided. cciIsTraceActive reports whether

trace is active and the level at which trace is active.

The cci*Trace functions can be used by a user-defined extension regardless of the

trace settings. The functions determine if trace is active and only write entries

which are appropriate for the trace settings. When calling the cci*Trace functions,

User-defined extensions 259

some additional processing can be required. The cciIsTraceActive function is

provided to allow the user-defined extension to query the trace settings and avoid

this extra processing when trace is inactive.

In many cases, it is sufficient to treat the value returned from the cciIsTraceActive

function as a Boolean value. If the returned value is non zero, trace is active at

some level and it is appropriate to call any of the cci*Trace functions. The returned

value can also be inspected closely in the cases when details of the trace settings

are required.

Trace settings can be changed at any time so it is advisable to query them

regularly. For example, use cciIsTraceActive to query the trace settings when an

implementation function is entered.

Trace entries can be associated with certain objects, which allows for further

refinement of control for writing trace. A trace entry can be associated with a node

or parser and trace is written according to the trace setting for that object. The

object’s trace setting is inherited from the message flow to which the node or

parser belongs. If no object is specified, then the trace is associated with the

execution group.

National language support considerations for message catalogs

WebSphere Message Broker converts any message that is loaded from the

codepages listed below, into the running processes (brokers) local codepage before

output to the syslog.

You must provide symbolic links to your primary message catalogs for all locales

that you intend to support. WebSphere Message Broker uses the LC_MESSAGES

variable when opening message catalogs.

National language support considerations on Windows

When building a message file for Windows that contains multiple locales, you

should ensure that the machine’s locale is set to a western European locale (for

example, English (United Kingdom)) before building the message catalogues. Use

’chcp’ to ensure that the codepage is 850.

Obtain all your message files (file type .mc). These should be written or converted

to the following codepages. Each message file should be separately ’message

compiled’ with the additional flag specified in the following table. Please see the

previous mc command.

DBCS message files do not need to be in Unicode (no -U flag). Use the RC

command as described above to ’resource compile’ all the files and finally the

’link’ command to build a single message dll.

 Locale Codepage Additional Flags

English (United States) 437 -U

German (Standard) 850 -U

Spanish (Modern Sort) 850 -U

French (Standard) 850 -U

Italian (Standard) 850 -U

260 User-defined Extensions

Portuguese (Brazilian) 850 -U

Japan 932

Simplified Chinese (China) 1381

Traditional Chinese (Taiwan) 950

Korean 949

National language support considerations on Linux and UNIX

When building message catalogs for Linux and UNIX, you should ensure that the

catalogs are built in the following codepages:

 Locale Codepage

English 437

German 850

Spanish 850

French 850

Italian 850

Portuguese (Brazilian) 850

Japan 932

Simplified Chinese (China) 1381

Traditional Chinese (Taiwan) 950

Korean 949

National language support considerations on z/OS

When building message catalogs for z/OS, you should ensure that the catalogs are

built in the following codepages:

 Locale Codepage

English 1047

Japan 939

Simplified Chinese (China) 1388

User-defined extensions 261

262 User-defined Extensions

Part 3. Appendixes

© Copyright IBM Corp. 2000, 2005 263

264 User-defined Extensions

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this information

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this information. The furnishing of this information does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032,

Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2000, 2005 265

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

SO21 2JN

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Programming License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information includes examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

266 User-defined Extensions

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

 AIX CICS Cloudscape

DB2 DB2 Connect DB2 Universal Database

developerWorks Domino

Everyplace FFST First Failure Support

Technology

IBM IBMLink IMS

IMS/ESA iSeries Language Environment

Lotus MQSeries MVS

NetView OS/400 OS/390

pSeries RACF Rational

Redbooks RETAIN RS/6000

SupportPac Tivoli VisualAge

WebSphere xSeries z/OS

zSeries

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel and Pentium are trademarks or registered trademark of Intel Corporation or

its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix. Notices 267

268 User-defined Extensions

Index

A
application programming interfaces

C language user-defined node 97

C language user-defined parsers 167

C
classloading

user-defined Java node 77

compiling
user-defined C node or parser 54

user-defined Java node 75

I
installation

user-defined extension 79

M
message flows

user-defined extensions 4

user-defined parsers 29

P
packaging

user-defined Java node or parser 76

T
trademarks 267

U
user-defined extensions 4

creating in C 34

creating in Java 59

error handling 8

exception handling 8

node factory 15

ODBC restrictions 15

parser factory 15

planning 5

user-defined nodes
C implementation functions 98

C node and parser implementation

functions 222

C skeleton code 250

C utility functions 99

changing 80

classloading
Java nodes 77

compiling
C nodes 54

Java nodes 75

conversion
multi-byte strings to UCS 230

user-defined nodes (continued)
conversion (continued)

UCS to multi-byte strings 237

copying element tree
cniCopyElementTree 105

creating
plug-in 83

projects 82

user interface representation 81

creating in Java 59

data buffer
output nodes 167

retrieving bytes 103

retrieving pointer 104

retrieving size 104

debug
cciServiceDebugTrace 247

cciServiceDebugTraceW 248

cciUserDebugTrace 241

cciUserDebugTraceW 243

deleting 81

designing 8

error and exception handling 8

storage management 10

string handling 11

threading 11

developing 3

diagnostic information
cciGetLastExceptionData 225

cciGetLastExceptionDataW 227

distributing 88

error and exception handling 8

error logging
cciLog 228

cciLogW 229

event logging 89

event logs
cciLog 228

cciLogW 229

exceptions
cciRethrowLastException 231

cciThrowException 232

cciThrowExceptionW 233

execution model 7

input nodes 16

creating in C 34

creating in Java 59

extending capability in C 39

extending capability in Java 63

life cycle in C 16

life cycle in Java 18

planning 19

restrictions 59

installing on a broker domain 79

message processing nodes 20

creating in C 41

creating in Java 66

extending capability in C 45

extending capability in Java 70

life cycle in C 21

life cycle in Java 23

user-defined nodes (continued)
message processing nodes (continued)

planning 24

MRM parser constants 257

National Language Support 260

node and parser implementation

functions 222

cciRegCallback 222

node and parser utility functions 225

cciGetLastExceptionData 225

cciGetLastExceptionDataW 227

cciLog 228

cciLogW 229

ccilsTraceActive 249

cciMbsToUcs 230

cciRegisterForThreadStateChange 234

cciRethrowLastException 231

cciServiceDebugTrace 247

cciServiceDebugTraceW 248

cciServiceTrace 245

cciServiceTraceW 246

cciThrowException 232

cciThrowExceptionW 233

cciUcsToMbs 237

cciUserDebugTrace 241

cciUserDebugTraceW 243

cciUserTrace 238

cciUserTraceW 240

node implementation functions
cniCreateNodeContext 115

cniDeleteNodeContext 119

cniEvaluate 132

cniGetAttribute 134

cniGetAttribute2 135

cniGetAttributeName 136

cniGetAttributeName2 137

cniRun 146

cniSetAttribute 152

retrieve attribute 134

retrieve attribute name 136

retrieve attribute name2 137

retrieve attribute2 135

node implementation functions in

C 98

node utility functions 99

broker information, retrieving 138

cciMessage object, retrieving 138

cniAddAfter 101

cniAddasFirstChild 101

cniAddasLastChild 102

cniAddBefore 103

cniBufferByte 103

cniBufferPointer 104

cniBufferSize 104

cniCopyElementTree 105

cniCreateElementAfter 105

cniCreateElementAfterUsingParser 106

cniCreateElementAsFirstChild 107

cniCreateElementAsFirstChildUsingParser 107

cniCreateElementAsLastChild 108

© Copyright IBM Corp. 2000, 2005 269

user-defined nodes (continued)
node utility functions (continued)

cniCreateElementAsLastChildFromBitstream 109

cniCreateElementAsLastChildUsingParser 111

cniCreateElementBefore 112

cniCreateElementBeforeUsingParser 113

cniCreateInputTerminal 114

cniCreateMessage 114

cniCreateNodeFactory 116

cniCreateOutputTerminal 117

cniDefineNodeClass 118

cniDeleteMessage 119

cniDetach 120

cniDispatchThread 120

cniElementAsBitstream 121

cniElementName 126

cniElementNamespace 127

cniElementType 128

cniElementValue group 129

cniElementValueState 130

cniElementValueType 131

cniElementValueValue 131

cniFinalize 133

cniFirstChild 133

cniGetBrokerInfo 138

cniGetEnvironmentMessage 138

cniGetMessageContext 139

cniGetParserClassName 139, 140

cniGetThreadContext 141

cniIsTerminalAttached 142

cniLastChild 142

cniNextSibling 143

cniParent 143

cniPreviousSibling 144

cniPropagate 144

cniRootElement 145

cniSearchElement group 148

cniSearchElementInNamespace

group 149

cniSetElementName 152

cniSetElementNamespace 153

cniSetElementType 154

cniSetElementValue group 154

cniSetElementValueValue 156

cniSetInputBuffer 156

cniSqlCreateModifyablePathExpression 162

cniSqlCreateReadOnlyPathExpression 160

cniSqlCreateStatement 157

cniSqlDeletePathExpression 166

cniSqlDeleteStatement 158

cniSqlExecute 159

cniSqlNavigatePath 164

cniSqlSelect 159

cniWriteBuffer 167

creating SQL expressions 157

creating, input terminals 114

deleting SQL expressions 158

executing SQL expressions 159

input buffer 156

input terminals, creating 114

message context, retrieving

address 139

parser class name, retrieving 139,

140

retrieving address, message

context 139

retrieving cciMessage object 138

user-defined nodes (continued)
node utility functions (continued)

retrieving parser class name 139,

140

retrieving thread context 141

retrieving, broker information 138

selecting SQL expressions 159

SQL expressions, creating 157

SQL expressions, deleting 158

SQL expressions, executing 159

SQL expressions, selecting 159

terminals, checking if

attached 142

output nodes 28

creating in C 41

creating in Java 66

extending capability in C 45

extending capability in Java 70

life cycle 28

planning 28

packaging
Java nodes 76

parsers available 255

plug-in
creating 83

projects
creating 82

rethrow exception
cciRethrowLastException 231

return codes 253

runtime environment 6

sample node files 95

samples 33

service trace
cciServiceDebugTrace 247

cciServiceDebugTraceW 248

cciServiceTrace 245

cciServiceTraceW 246

setting and getting 86

specific types 86

syntax elements
adding after 101

adding as first child 101

adding as last child 102

adding before 103

address of first child 133

address of last child 142

address of next sibling 143

address of parent 143

address of previous sibling 144

address, value object 131

attributes, setting 152

bitstream, retrieving as 121

creating after 105

creating after, using parser 106

creating as first child 107

creating as first child, using

parser 107

creating as last child 108

creating as last child, from

bitstream 109

creating as last child, using

parser 111

creating before 112

creating before, using parser 113

creating context 115

creating message 114

user-defined nodes (continued)
syntax elements (continued)

creating, node factories 116

creating, output terminals 117

declaring, input nodes 146

defining, node classes 118

deleting context 119

deleting message 119

detaching 120

dispatching, message flow

threads 120

element names, retrieving 126

finalizing processing 133

from bitstream, creating as last

child 109

input nodes, declaring 146

message flow threads,

dispatching 120

messages, propagating 144

names, setting 152

namespaces, retrieving 127

namespaces, setting 153

node classes, defining 118

node factories, creating 116

node processing 132

output terminals, creating 117

previous siblings, searching 148

propagating messages 144

retrieving as bitstream 121

retrieving element names 126

retrieving types 128

retrieving values 129

retrieving, namespaces 127

retrieving, root element 145

retrieving, states of values 130

retrieving, types of values 131

root element, retrieving 145

searching elements in namespace

group 149

searching previous siblings 148

setting names 152

setting namespaces 153

setting types 154

setting value addresses 156

setting values 154

setting, attributes 152

states of values, retrieving 130

types of values, retrieving 131

types, retrieving 128

types, setting 154

using parser, creating after 106

using parser, creating as first

child 107

using parser, creating as last

child 111

using parser, creating before 113

value addresses, setting 156

value object address 131

values, retrieving 129

values, setting 154

testing 87

thread state change
cciRegisterForThreadStateChange 234

threading
cciRegisterForThreadStateChange 234

throw exception
cciThrowException 232

270 User-defined Extensions

user-defined nodes (continued)
throw exception (continued)

cciThrowExceptionW 233

trace active
ccilsTraceActive 249

trace logging 259

trace utility functions 259

user interface representation 81

user trace
cciUserDebugTrace 241

cciUserDebugTraceW 243

cciUserTrace 238

cciUserTraceW 240

XML parser constants 257

user-defined parsers 29

C language API 167

changing 80

compiling 54

creating in C 48

data buffer
appending data 173

byte, retrieving 174

data, appending 173

pointer, retrieving 175

retrieving bytes 174

retrieving pointer 175

retrieving size 176

size, retrieving 176

writing to 219

deleting 81

designing 8

error and exception handling 8

storage management 10

string handling 11

threading 11

developing 3

error and exception handling 8

event logging 89

execution model 7

extending capability 51

installing on a broker domain 79

life cycle 29

packaging 76

parser implementation functions 168

context, deleting 183

cpiCreateContext 178

cpiDeleteContext 183

cpiElementValue 188

cpiNextParserClassName 192

cpiNextParserCodedCharSetId 193

cpiNextParserEncoding 194

cpiParseBuffer 197

cpiParseBufferEncoded 198

cpiParseBufferFormatted 199

cpiParserType 205

cpiSetElementValue 213

cpiSetNextParserClassName 218

cpiWriteBuffer 219

cpiWriteBufferEncoded 220

cpiWriteBufferFormatted 221

creating context 178

deleting context 183

parsing preparation 197

retrieving values 188

values, retrieving 188

writing to data buffer 219

parser utility functions 169

user-defined parsers (continued)
adding after 170

adding as first child 171

adding as last child 172

adding before 172

addresses, retrieving first

child 191

addresses, retrieving last

child 191

addresses, retrieving next

sibling 195

addresses, retrieving parent 195

addresses, retrieving root

element 206

cpiAddAfter 170

cpiAddAsFirstChild 171

cpiAddAsLastChild 172

cpiAddBefore 172

cpiAppendToBuffer 173

cpiBufferByte 174

cpiBufferPointer 175

cpiBufferSize 176

cpiCreateAndInitializeElement 177

cpiCreateElement 179

cpiCreateParserFactory 180

cpiDefineParserClass 181

cpiElementCompleteNext 183

cpiElementCompletePrevious 184

cpiElementName 185

cpiElementNamespace 186

cpiElementType 187

cpiElementValue group 188

cpiElementValueValue 190

cpiFirstChild 191

cpiLastChild 191

cpiNextSibling 195

cpiParent 195

cpiParseFirstChild 201

cpiParseLastChild 202

cpiParseNextSibling 203

cpiParsePreviousSibling 204

cpiRootElement 206

cpiSetCharacterValueFromBuffer 207

cpiSetElementCompleteNext 208

cpiSetElementCompletePrevious 209

cpiSetElementName 210

cpiSetElementNamespace 211

cpiSetElementType 212

cpiSetElementValue group 214

cpiSetElementValueValue 215

cpiSetNameFromBuffer 217

creating default 179

creating parser factories 180

creating unattached 177

defining parser class names 181

first child parsing 201

last child parsing 202

names, retrieving 185

namespaces, retrieving 186

next child complete flag 183

next sibling parsing 203

parser classes, defining

names 181

parser factories, creating 180

parsing previous sibling 204

parsing, first child 201

parsing, last child 202

user-defined parsers (continued)
parser utility functions (continued)

parsing, next sibling 203

previous child complete flag 184

previous sibling parsing 204

retrieving first child address 191

retrieving last child address 191

retrieving names 185

retrieving namespaces 186

retrieving next sibling

address 195

retrieving parent address 195

retrieving root element

retrieving 206

retrieving types 187

set next child complete flag 208

set previous child complete

flag 209

types, retrieving 187

planning 31

return codes 253

runtime environment 6

sample parser files 97

samples 33

specific types 32

syntax elements
names, setting 210

namespaces, setting 211

setting names 210

setting namespaces 211

setting types 212

setting values 213

setting values from buffer 207

types, setting 212

values, setting 213

values, setting from buffer 207

Index 271

272 User-defined Extensions

����

Printed in USA

	Contents
	About this topic collection
	Part 1. Developing user-defined extensions
	Developing user-defined extensions
	User-defined extensions
	Planning user-defined extensions
	User-defined extensions in the runtime environment
	Designing user-defined extensions
	Node and parser factory behavior
	User-defined input nodes
	User-defined message processing nodes
	User-defined output nodes
	User-defined parsers

	Implementing the provided samples
	Creating a user-defined extension in C
	Creating an input node in C
	Creating a message processing or output node in C
	Creating a parser in C
	Compiling a C user-defined extension

	Creating a user-defined extension in Java
	Restrictions when creating Java nodes
	Creating an input node in Java
	Creating a message processing or output node in Java
	Compiling a Java user-defined node

	Installing a user-defined extension on a broker domain
	Changing a user-defined extension
	Deleting a user-defined extension
	Creating the user interface representation of a user-defined node in the workbench
	Creating a new user-defined node project
	Creating a new user-defined node plug-in

	The specific type of a syntax element
	Testing a user-defined node
	Distributing a user-defined node
	Using event logging from a user-defined extension
	Building and installing a Windows event source

	Part 2. Reference
	User-defined extensions
	Sample node files
	SupportPacs

	Sample parser files
	SupportPacs

	Header files
	C user-defined node API
	C node implementation functions
	C node utility functions
	cniAddAfter
	cniAddasFirstChild
	cniAddasLastChild
	cniAddBefore
	cniBufferByte
	cniBufferPointer
	cniBufferSize
	cniCopyElementTree
	cniCreateElementAfter
	cniCreateElementAfterUsingParser
	cniCreateElementAsFirstChild
	cniCreateElementAsFirstChildUsingParser
	cniCreateElementAsLastChild
	cniCreateElementAsLastChildFromBitstream
	cniCreateElementAsLastChildUsingParser
	cniCreateElementBefore
	cniCreateElementBeforeUsingParser
	cniCreateInputTerminal
	cniCreateMessage
	cniCreateNodeContext
	cniCreateNodeFactory
	cniCreateOutputTerminal
	cniDefineNodeClass
	cniDeleteMessage
	cniDeleteNodeContext
	cniDetach
	cniDispatchThread
	cniElementAsBitstream
	cniElementName
	cniElementNamespace
	cniElementType
	cniElementValue group
	cniElementValueState
	cniElementValueType
	cniElementValueValue
	cniEvaluate
	cniFinalize
	cniFirstChild
	cniGetAttribute
	cniGetAttribute2
	cniGetAttributeName
	cniGetAttributeName2
	cniGetBrokerInfo
	cniGetEnvironmentMessage
	cniGetMessageContext
	cniGetParserClassName
	cniGetParserClassName
	cniGetThreadContext
	cniIsTerminalAttached
	cniLastChild
	cniNextSibling
	cniParent
	cniPreviousSibling
	cniPropagate
	cniRootElement
	cniRun
	cniSearchElement group
	cniSearchElementInNamespace group
	cniSetAttribute
	cniSetElementName
	cniSetElementNamespace
	cniSetElementType
	cniSetElementValue group
	cniSetElementValueValue
	cniSetInputBuffer
	cniSqlCreateStatement
	cniSqlDeleteStatement
	cniSqlExecute
	cniSqlSelect
	cniSqlCreateReadOnlyPathExpression
	cniSqlCreateModifyablePathExpression
	cniSqlNavigatePath
	cniSqlDeletePathExpression
	cniWriteBuffer

	C user-defined parser API
	C parser implementation functions
	C parser utility functions
	cpiAddAfter
	cpiAddAsFirstChild
	cpiAddAsLastChild
	cpiAddBefore
	cpiAppendToBuffer
	cpiBufferByte
	cpiBufferPointer
	cpiBufferSize
	cpiCreateAndInitializeElement
	cpiCreateContext
	cpiCreateElement
	cpiCreateParserFactory
	cpiDefineParserClass
	cpiDeleteContext
	cpiElementCompleteNext
	cpiElementCompletePrevious
	cpiElementName
	cpiElementNameSpace
	cpiElementType
	cpiElementValue
	cpiElementValue group
	cpiElementValueValue
	cpiFirstChild
	cpiLastChild
	cpiNextParserClassName
	cpiNextParserCodedCharSetId
	cpiNextParserEncoding
	cpiNextSibling
	cpiParent
	cpiParseBuffer
	cpiParseBufferEncoded
	cpiParseBufferFormatted
	cpiParseFirstChild
	cpiParseLastChild
	cpiParseNextSibling
	cpiParsePreviousSibling
	cpiParserType
	cpiRootElement
	cpiSetCharacterValueFromBuffer
	cpiSetElementCompleteNext
	cpiSetElementCompletePrevious
	cpiSetElementName
	cpiSetElementNamespace
	cpiSetElementType
	cpiSetElementValue
	cpiSetElementValue group
	cpiSetElementValueValue
	cpiSetNameFromBuffer
	cpiSetNextParserClassName
	cpiWriteBuffer
	cpiWriteBufferEncoded
	cpiWriteBufferFormatted

	C node and parser implementation functions
	cciRegCallback

	C node and parser utility functions
	cciGetLastExceptionData
	cciGetLastExceptionDataW
	cciLog
	cciLogW
	cciMbsToUcs
	cciRethrowLastException
	cciThrowException
	cciThrowExceptionW
	cciRegisterForThreadStateChange
	cciUcsToMbs
	cciUserTrace
	cciUserTraceW
	cciUserDebugTrace
	cciUserDebugTraceW
	cciServiceTrace
	cciServiceTraceW
	cciServiceDebugTrace
	cciServiceDebugTraceW
	ccilsTraceActive

	C skeleton code
	Utility function return codes and values
	Available parsers
	XML and MRM parser constants
	XML parser constants
	MRM parser constants

	Trace logging from a user-defined C extension
	National language support considerations for message catalogs
	National language support considerations on Windows
	National language support considerations on Linux and UNIX
	National language support considerations on z/OS

	Part 3. Appendixes
	Appendix. Notices
	Trademarks

	Index

