
WebSphere Event Broker

Message Flows
Version 6 Release 0

���

WebSphere Event Broker

Message Flows
Version 6 Release 0

���

Note
Before you use this information and the product that it supports, read the information in the Notices appendix.

This edition applies to version 6, release 0, modification 0, fix pack 9 of IBM WebSphere Event Broker and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this topic collection. v

Part 1. Developing message flows . . 1

Developing message flows 3
Message flows overview 3
Designing a message flow 16
Managing message flows 42
Defining message flow content 54
Defining a promoted property 67
Collecting message flow accounting and statistics
data 75
Configuring flows to handle WebSphere MQ
message groups 80

Part 2. Deploying 85

Deploying 87
Deployment overview 88
Deploying a message flow application 98
Deploying a broker configuration. 107
Deploying a publish/subscribe topology 108
Deploying a publish/subscribe topics hierarchy 110
Checking the results of deployment 112
Canceling a deployment that is in progress . . . 114
Renaming objects that are deployed to execution
groups. 116
Removing a deployed object from an execution
group 116

Part 3. Exploiting user-defined
extensions 119

User-defined nodes. 121

Installing a user-defined node on a
broker domain 123

Deleting a user-defined node 125

Part 4. Reference 127

Message flows 129
Message flow preferences 129
Description properties for a message flow 129
Built-in nodes 132
User-defined nodes 188
Supported code pages 188
Data integrity within message flows. 216
Configurable message flow properties 216
Message flow porting considerations 217
Message flow accounting and statistics data . . . 218

Part 5. Appendixes 235

Appendix. Notices for WebSphere
Event Broker 237
Trademarks in the WebSphere Event Broker
information center 239

Index 241

© Copyright IBM Corp. 2000, 2009 iii

|
||

iv Message Flows

About this topic collection

This PDF file has been created from the WebSphere Event Broker Version 6.0
(March 2009) information center topics. Always refer to the WebSphere Event
Broker online information center to access the most current information. The
information center is periodically updated on the document update site and this
PDF and others that you can download from that Web site might not contain the
most current information.

The topic content included in the PDF does not include the ″Related Links″
sections provided in the online topics. Links within the topic content itself are
included, but are active only if they link to another topic in the same PDF
collection. Links to topics outside this topic collection are also shown, but result in
a "file not found "error message. Use the online information to navigate freely
between topics.

Feedback: do not provide feedback on this PDF. Refer to the online information to
ensure that you have access to the most current information, and use the Feedback
link that appears at the end of each topic to report any errors or suggestions for
improvement. Using the Feedback link provides precise information about the
location of your comment.

The content of these topics is created for viewing online; you might find that the
formatting and presentation of some figures, tables, examples, and so on are not
optimized for the printed page. Text highlighting might also have a different
appearance.

© Copyright IBM Corp. 2000, 2009 v

ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs

vi Message Flows

Part 1. Developing message flows

Developing message flows 3
Message flows overview 3

Message flow projects 4
Message flow nodes 4
Configurable services 7
Message flow version and keywords 7
Message flow connections 9
Properties 9
Broker schemas 10
Message flow accounting and statistics data . . 11
Converting data with message flows 15

Designing a message flow 16
Deciding which nodes to use 17
Using more than one input node 20
Using subflows 20
Optimizing message flow response times . . . 22
System considerations for message flow
development 23
Using WebSphere MQ cluster queues for input
and output 24
Using WebSphere MQ shared queues for input
and output (z/OS) 26
Configuring JMSInput and JMSOutput nodes to
support global transactions 26
Configuring message flows for data conversion 31
Ensuring that messages are not lost 33
Handling errors in message flows 35

Managing message flows 42
Creating a message flow project 42
Deleting a message flow project 43
Creating a broker schema. 44
Creating a message flow 45
Opening an existing message flow. 47
Copying a message flow using copy 47
Renaming a message flow 48
Moving a message flow 48
Deleting a message flow 49
Deleting a broker schema. 50
Version and keyword information for deployable
objects 51
Saving a message flow 52

Defining message flow content 54
Using the node palette. 54
Adding a message flow node 57
Adding a subflow 58
Renaming a message flow node 59
Configuring a message flow node 59
Removing a message flow node 61
Connecting message flow nodes 61
Removing a node connection 64
Adding a bend point 64
Removing a bend point 65
Aligning and arranging nodes 66

Defining a promoted property 67
Promoting a property 68
Renaming a promoted property 71

Removing a promoted property 71
Converging multiple properties. 73

Collecting message flow accounting and statistics
data 75

Starting to collect message flow accounting and
statistics data 75
Stopping message flow accounting and statistics
data collection 77
Viewing message flow accounting and statistics
data collection parameters 78
Modifying message flow accounting and statistics
data collection parameters 79
Resetting message flow accounting and statistics
archive data 79

Configuring flows to handle WebSphere MQ
message groups 80

Receiving messages in a WebSphere MQ message
group 80
Sending messages in a WebSphere MQ message
group 82
Sending message segments in a WebSphere MQ
message 83

© Copyright IBM Corp. 2000, 2009 1

||

|
||
|
||
|
||
|
||

2 Message Flows

Developing message flows

Design, create and maintain message flows using the workbench.

A message flow is a sequence of processing steps that run in the broker when an
input message is received. The topics in this section describe how to create and
maintain message flows.

Concept topics:

v “Message flows overview”
v “Message flow projects” on page 4
v “Message flow nodes” on page 4
v “Message flow version and keywords” on page 7
v “Message flow connections” on page 9
v “Properties” on page 9
v “Broker schemas” on page 10
v “Message flow accounting and statistics data” on page 11
v “Converting data with message flows” on page 15

Task topics:

v “Designing a message flow” on page 16
v “Managing message flows” on page 42
v “Defining message flow content” on page 54
v “Defining a promoted property” on page 67
v “Collecting message flow accounting and statistics data” on page 75
v “Configuring flows to handle WebSphere MQ message groups” on page 80

See also a section of topics that contain reference information about message flows.

The workbench provides a set of toolbar icons that invoke wizards that you can
use to create any of the resources associated with message flows, for example,
message flow projects. Hover your mouse pointer over each icon to see its
function.

The workbench lets you open resource files with other editors. Use only the
workbench message flow editor to work with message flow files, because this
editor correctly validates all changes that you make to these files when you save
the message flow.

When you have completed developing your message flow, deploy it to a broker to
start its execution.

For a basic introduction to developing message flows, see the IBM Redbooks
publication WebSphere Message Broker Basics.

Message flows overview
A message flow is a sequence of processing steps that run in the broker when an
input message is received.

© Copyright IBM Corp. 2000, 2009 3

|

http://www.redbooks.ibm.com/abstracts/sg247137.html

You define a message flow in the workbench by including a number of message
flow nodes, each of which represents a set of actions that define a processing step.
The connections in the flow determine which processing steps are carried out, in
which order, and under which conditions. A message flow must include an input
node that provides the source of the messages that are processed. You must then
deploy the message flow to a broker for execution.

You can create a message flow using the built-in nodes or other message flows
(known as subflows). When you want to invoke a message flow to process
messages, you deploy it to a broker, where it is executed within an execution
group.

The following topics describe the concepts that you need to understand to design,
create, and configure a message flow and its associated resources:
v Projects
v Nodes
v Version and keywords
v “Message flow connections” on page 9
v “Properties” on page 9
v Accounting and statistics data
v “Converting data with message flows” on page 15

For a basic introduction to developing message flows, see the IBM® Redbooks®

publication WebSphere Message Broker Basics.

Message flow projects
A message flow project is a specialized container in which you create and maintain
all the resources associated with one or more message flows.

You can create a message flow project to contain a single message flow and its
resources, or you can group together related message flows and resources in a
single message flow project to provide an organizational structure to your message
flow resources.

Message flow project resources are created as files, and are displayed within the
project in the Broker Development view. These resources define the content of the
message flow.

Import one of the following samples from the Samples Gallery (see related links) to
see how the sample’s message flow resources are stored in a Message Flow project.
If the sample has a message set, its message set resources are stored in a Message
Set project.
v Video Rental sample
v Comma Separated Value (CSV) sample

You can view samples only when you use the information center that is integrated
with the Message Brokers Toolkit.

Message flow nodes
A message flow node is a processing step in a message flow.

A message flow node receives a message, performs a set of actions against the
message, and optionally passes the message on to the next node in the message
flow. A message flow node can be a built-in node, a user-defined node, or a
subflow node.

4 Message Flows

http://www.redbooks.ibm.com/abstracts/sg247137.html
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.res
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.csv.res

A message flow node has a fixed number of input and output points known as
terminals. You can make connections between the terminals to define the routes
that a message can take through a message flow.

Built-in node
A built-in node is a message flow node that is supplied by WebSphere®

Event Broker. The built-in nodes provide input and output functions.

For information about all of the built-in nodes supplied by WebSphere
Event Broker, see “Built-in nodes” on page 132.

User-defined node
A user-defined node is an extension to the broker that provides a new
message flow node in addition to those supplied with the product. It must
be written to the user-defined node API provided by WebSphere Message
Broker for both C and Java™ languages.

Subflow
A subflow is a directed graph that is composed of message flow nodes and
connectors and is designed to be embedded in a message flow or in
another subflow. A subflow must include at least one Input node or one
Output node. A subflow can be executed by a broker only as part of the
message flow in which it is embedded, and therefore cannot be
independently deployed.

The subflow, when it is embedded in a main flow, is represented by a
subflow node, which has a unique icon. The icon is displayed with the
correct number of terminals to represent the Input and Output nodes that
you have included in the subflow definition.

The use of subflows is demonstrated in the following samples:
v Error Handler sample
v Coordinated Request Reply sample

The Error Handler sample uses a subflow to trap information about errors
and store the information in a database. The Coordinated Request Reply
sample uses a subflow to encapsulate the storage of the ReplyToQ and
ReplyToQMgr values in a WebSphere MQ message so that the processing
logic can be reused in other message flows and to allow alternative
implementations to be substituted. You can view samples only when you
use the information center that is integrated with the Message Brokers
Toolkit.

A node does not always produce an output message for every output terminal:
often it produces one output for a single terminal based on the message received
or the result of the operation of the node.

If more than one terminal is connected, the node sends the output message on
each terminal, but sends on the next terminal only when the processing has
completed for the current terminal. Updates to a message are never propagated to
nodes which have been previously executed, only to nodes following the node in
which the update has been made. The order in which the message is propagated to
the different output terminals is determined by the broker; you cannot change this
order.

The message flow can accept a new message for processing only when all paths
through the message flow (that is, all connected nodes from all output terminals)
have been completed.

Developing message flows 5

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.res
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.coordinated_request_reply.res

The following sample uses Environment variables in the XML_Reservation sample
to store information that has been taken from a database table and to pass that
information to a node downstream in the message flow.
v Airline Reservations sample

You can view samples only when you use the information center that is integrated
with the Message Brokers Toolkit.

Message flow node palette
The palette contains all of the built-in nodes, which are organized into categories,
or drawers. A drawer is a container for a list of icons, such as the Favorites
drawer. You can drag the nodes that you use most often into the Favorites drawer
for easy access. If you create your own nodes, you can also add them to the
palette. You can drag a node from the palette onto the canvas, and create a
connection between two nodes.

If you right-click the palette, you can add a selected node to the canvas, or
customize the appearance and behavior of the palette. The following example
shows the palette in List view, using small icons.

The Customize Palette dialog box allows you to reorder node categories, set the
drawer behavior for individual categories, and rename or hide nodes or categories.

6 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.res

You cannot move any category above the Favorites category. You can hide the
Favorites category, but you cannot delete or rename it.

The Palette Settings dialog box allows you to set the palette layout, determine the
behavior of palette drawers, and choose a particular font.

The following topics explain how to change the palette layout and settings:
v “Changing the palette layout” on page 55
v “Changing the palette settings” on page 55
v “Customizing the palette” on page 55

Configurable services
Configurable services are typically runtime properties. You can use them to define
properties that are related to external services on which the broker relies; for
example, an SMTP server or a JMS provider.

Instead of defining properties on the node or message flow, you can create
configurable services so that nodes and message flows can refer to them to find
properties at run time. If you use this method, you can change the values of
attributes for a configurable service on the broker, which then affects the behavior
of a node or message flow without the need for redeployment.

Unless it is explicitly stated by the function that is using the configurable service,
you need to stop and start the execution group for the change of property value to
take effect.

Use the following commands to work with configurable services:
v Use the mqsicreateconfigurableservice command to create configurable services.
v Use the mqsideleteconfigurableservice command to delete configurable services.
v Use the mqsichangeproperties command to set attributes after you have created

the configurable services.
v Use the mqsireportproperties command to report attributes.

Message flow version and keywords
When you are developing a message flow, you can define the version of the
message flow as well as other key information that you want to be associated with
it. After the message flow has been deployed, you can view the properties of the
message flow in the workbench. These properties include the deployment and

Developing message flows 7

|

|
|
|

|
|
|
|
|

|
|
|

|

|

|

|
|

|

modification dates and times (the default information that is displayed) as well as
any additional version or keyword information that you have set.

You can define information to give details of the message flow that has been
deployed; therefore, you can check that it is the message flow that you expect.

Version

You can set the version of the message flow in the Version property.

You can also define a default message flow version in the Default version tag of
the message flow preferences. All new message flows that are created after this
value has been set have this default applied to the Version property at the message
flow level.

Keywords

Keywords are extracted from the compiled message flow (the .cmf file) rather than
the message flow source (the .msgflow file). Not all of the source properties are
added to the compiled file. Therefore, add message flow keywords in only these
places:
v The label property of a Passthrough node
v ESQL comments or string literals
v The Long Description property of the message flow

Any keywords that you define must follow certain rules to ensure that the
information can be parsed. The following example shows some values that you
might want to define in the Long Description property:
$MQSI Author=John Smith MQSI$
$MQSI Subflow 1 Version=v1.3.2 MQSI$

The following table contains the information that the workbench shows.

Message flow name

Deployment Time 28-Aug-2004 15:04

Modification Time 28-Aug-2004 14:27

Version v1.0

Author John Smith

Subflow 1 Version v1.3.2

In this display, the version information has also been defined using the Version
property of the object. If the version information has not been defined using the
property, it is omitted from this display.

If message flows contain subflows, you can embed keywords in each subflow.

Restrictions within keywords

Do not use the following characters within keywords because they cause
unpredictable behavior:
^$.|\<>?+*=&[]

8 Message Flows

You can use these characters in the values that are associated with keywords; for
example:
v $MQSI RCSVER=$id$ MQSI$ is acceptable
v $MQSI $name=Fred MQSI$ is not acceptable

Message flow connections
A connection is an entity that connects an output terminal of one message flow
node to the input terminal of another. It represents the flow of control and data
between two message flow nodes.

The connections of the message flow, represented by black lines within the
message flow editor view, determine the path that a message takes through the
message flow. You can add bend points to the connection to alter the way in which
it is displayed.

See “Bend points” for a description of bend points. See “Message flow node
terminals” for a description of terminals.

Bend points
A bend point is a point that is introduced in a connection between two message
flow nodes at which the line that represents the connection changes direction.

Use bend points to change the visual path of a connection to display node
alignment and processing logic more clearly and effectively. Bend points have no
effect on the behavior of the message flow; they are visual modifications only.

A connection is initially made as a straight line between the two connected nodes
or brokers. Use bend points to move the representation of the connection, without
moving its start and end points.

Message flow node terminals
A terminal is the point at which one node in a message flow is connected to
another node.

Use terminals to control the route that a message takes, depending on whether the
operation that is performed by a node on that message is successful. Terminals are
wired to other node terminals by using message flow node connections to indicate
the flow of control.

Every built-in node has a number of terminals to which you can connect other
nodes. Input nodes (for example, MQInput) do not have input terminals; all other
nodes have at least one input terminal through which to receive messages to be
processed. Most built-in nodes have failure terminals that you can use to manage
the handling of errors in the message flow. Most nodes have output terminals
through which the message can flow to a subsequent node.

If you have any user-defined nodes, these might also have terminals that you can
connect to other built-in or user-defined node terminals.

Properties
This topic discusses the following types of broker properties:
v Promoted properties: see “Promoted properties” on page 10.

Developing message flows 9

Promoted properties
A promoted property is a message flow node property that has been promoted to
the level of the message flow in which it is included.

A message flow contains one or more message flow nodes, each of which is an
instance of a message flow type (a built-in node). You can promote the properties
of a message flow node to apply to the message flow to which it belongs. If you
do this, any user of the message flow can set values for the properties of the nodes
in this higher message flow by setting them at the message flow level, without
being aware of the message flow’s internal structure.

You can promote compatible properties (that is, properties that represent
comparable values) from more than one node to the same promoted property; you
can then set a single property that affects multiple nodes.

A subset of message flow node properties is also configurable (that is, the
properties can be updated at deploy time). You can promote configurable
properties: if you do so, the promoted property (which can have a different name
from the property or properties that it represents) is the one that is available to
update at deploy time. Configurable properties are those associated with system
resources; for example, queues. An administrator can set these properties at deploy
time, without the need for a message flow developer.

Broker schemas
A broker schema is a symbol space that defines the scope of uniqueness of the
names of resources (message flows) defined within it.

The broker schema is defined as the relative path from the project source directory
to the flow name. When you first create a message flow project, a default broker
schema named (default) is created within the project.

You can create new broker schemas to provide separate symbol spaces within the
same message flow project. A broker schema is implemented as a folder, or
subdirectory, within the project, and provides organization within that project. You
can also use project references to spread the scope of a single broker schema across
multiple projects to create an application symbol space that provides a scope for all
resources associated with an application suite.

A broker schema name must be a character string that starts with a Unicode
character followed by zero or more Unicode characters or digits, and the
underscore. You can use the period to provide a structure to the name, for example
Stock.Common. A directory is created in the project directory to represent the
schema, and if the schema is structured using periods, further subdirectories are
defined. For example, the broker schema Stock.Common results in a directory
Common within a directory Stock within the message flow project directory.

If you create a message flow resource in the default broker schema within a
project, the file or files associated with that resource are created in the directory
that represents the project. If you create a resource in another broker schema, the
files are created within the schema directory.

For example, if you create a message flow Update in the default schema in the
message flow project Project1, its associated files are stored in the Project1

10 Message Flows

directory. If you create another message flow in the Stock.Common broker schema
within the project Project1, its associated files are created in the directory
Project1\Stock\Common.

Because each broker schema represents a unique name scope, you can create two
message flows that share the same name within two broker schemas. The broker
schemas ensure that these two message flows are recognized as separate resources.
The two message flows, despite having the same name, are considered unique.

If you move a message flow from one project to another, you can continue to use
the message flow within the original project if you preserve the broker schema. If
you do this, you must update the list of dependent projects for the original project
by adding the target project. If, however, you do not preserve the broker schema,
the flow becomes a different flow because the schema name is part of the fully
qualified message flow name, and it is no longer recognized by other projects. This
action results in broken links that you must manually correct. For further
information about correcting errors after moving a message flow, see “Moving a
message flow” on page 48.

Do not move resources by moving their associated files in the file system; you
must use the workbench to move resources to ensure that all references are
corrected to reflect the new organization.

Message flow accounting and statistics data
Message flow accounting and statistics data is the information that can be collected
by a broker to record performance and operating details of message flow
execution.

These reports are not the same as the publish/subscribe statistics reports that you
can generate. The publish/subscribe statistics provide information about the
performance of brokers and the throughput between the broker and clients that are
connected to the broker. Message flow accounting and statistics reports provide
information about the performance and operating details of a message flow
execution.

Message flow accounting and statistics data records dynamic information about the
runtime behavior of a message flow. For example, it indicates how many messages
are processed and how large those messages are, as well as processor usage and
elapsed processing times. The broker collects the data and records it in a specified
location when one of a number of events occurs (for example, when a snapshot
interval expires or when the execution group you are recording information about
stops).

The broker takes information about statistics and accounting from the operating
system. On some operating systems, such as Windows®, UNIX®, and Linux®,
rounding can occur because the system calls that are used to determine the
processor times are not sufficiently granular. This rounding might affect the
accuracy of the data.

Accounting and statistics data is collected only for message flows that start with an
MQInput, HTTPInput, or user-defined input node. If you start data collection for a
message flow that starts with one of these nodes, the data is collected for all
built-in and user-defined nodes, including those in subflows. If the message flow
starts with another input node (for example, a Real-timeInput node), no data is
collected (and no error is reported).

Developing message flows 11

Collecting message flow accounting and statistics data is optional; by default it is
switched off. To use this facility, request it on a message flow or execution group
basis. The settings for accounting and statistics data collection are reset to the
defaults when an execution group is redeployed. Previous settings for message
flows in an execution group are not passed on to the new message flows deployed
to that execution group. Data collection is started and stopped dynamically when
you issue the mqsichangeflowstats command; you do not need to make any
change to the broker or to the message flow, or redeploy the message flow, to
request statistics collection.

You can activate data collection on both your production and test systems. If you
collect the default level of statistics (message flow), the impact on broker
performance is minimal. However, collecting more data than the default message
flow statistics can generate high volumes of report data that might cause a small
but noticeable performance overhead.

When you plan data collection, consider the following points:
v Collection options
v Accounting origin
v Output formats

You can find more information on how to use accounting and statistics data to
improve the performance of a message flow in this developerWorks® article on
message flow performance.

The following SupportPac™ provides additional information about using
accounting and statistics:
v Using statistics and accounting SupportPac (IS11)

Message flow accounting and statistics collection options
The options that you specify for message flow accounting and statistics collection
determine what information is collected. You can request the following types of
data collection:
v Snapshot data is collected for an interval of approximately 20 seconds. The exact

length of the interval depends on system loading and the level of current broker
activity. You cannot modify the length of time for which snapshot data is
collected. At the end of this interval, the recorded statistics are written to the
output destination and the interval is restarted.

v Archive data is collected for an interval that you have set for the broker on the
mqsicreatebroker or mqsichangebroker command. You can specify an interval of
between 10 and 14400 minutes, the default value is 60 minutes. At the end of
this interval, the recorded statistics are written to the output destination and the
interval is restarted.
An interval is prematurely expired and restarted when any of the following
events occur:
– The message flow is redeployed.
– The set of statistics data to be collected is modified.
– The broker is shut down.
This preserves the integrity of the data already collected when that event occurs.

z/OS On z/OS, you can set the command parameter to 0, which means that
the interval is controlled by an external timer mechanism. This support is
provided by the Event Notification Facility (ENF), which you can use instead of
the broker command parameter if you want to coordinate the expiration of this
timer with other system events.

12 Message Flows

http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html
http://www.ibm.com/support/docview.wss?uid=swg24007228

You can request snapshot data collection, archive data collection, or both. You can
activate snapshot data collection while archive data collection is active. The data
recorded in both reports is the same, but is collected for different intervals. If you
activate both snapshot and archive data collection, be careful not to combine
information from the two different reports, because you might count information
twice.

You can use the statistics generated for the following purposes:
v You can record the load that applications, trading partners, or other users put on

the broker. This allows you to record the relative use that different users make of
the broker, and perhaps to charge them accordingly. For example, you could
levy a nominal charge on every message that is processed by a broker, or by a
specific message flow.
Archive data provides the information that you need for a use assessment of this
kind.

v You can assess the execution of a message flow to determine why it, or a node
within it, is not performing as you expect.
Snapshot data is appropriate for performance assessment.

v You can determine the route that messages are taking through a message flow.
For example, you might find that an error path is taken more frequently than
you expect and you can use the statistics to understand when the messages are
routed to this error path.
Check the information provided by snapshot data for routing information; if this
is insufficient for your needs, use archive data.

Message flow accounting and statistics accounting origin
Accounting and statistics data can be identified by the account identifier of the
originator. The accounting origin for all accounting and statistics data for all
message flows is set to Anonymous. You cannot change this value.

Output formats for message flow accounting and statistics data
When you collect message flow statistics, you can choose the output destination
for the data.

Select one of the following destinations:
v User trace
v XML publication
v SMF

Statistics data is written to the specified output location in the following
circumstances:
v When the archive data interval expires.
v When the snapshot interval expires.
v When the broker shuts down. Any data that has been collected by the broker,

but has not yet been written to the specified output destination, is written
during shutdown. It might therefore represent data for an incomplete interval.

v When any part of the broker configuration is redeployed. Redeployed
configuration data might contain an updated configuration that is not consistent
with the existing record structure (for example, a message flow might include an
additional node, or an execution group might include a new message flow).
Therefore the current data, which might represent an incomplete interval, is
written to the output destination. Data collection continues for the redeployed
configuration until you change data collection parameters or stop data collection.

Developing message flows 13

v When data collection parameters are modified. If you update the parameters that
you have set for data collection, all data that is collected for the message flow
(or message flows) is written to the output destination to retain data integrity.
Statistics collection is restarted according to the new parameters.

v When an error occurs that terminates data collection. You must restart data
collection yourself in this case.

User trace

You can specify that the data that is collected is written to the user trace log. The
data is written even when trace is switched off. The default output destination for
accounting and statistics data is the user trace log. The data is written to one of the
following locations:

Windows Windows
If you set the workpath using the -w parameter of the mqsicreatebroker
command, the location is workpath\log.

If you have not specified the broker workpath, the location is
C:\Documents and Settings\All Users\Application Data\IBM\MQSI\
common\log.

Linux UNIX Linux and UNIX
/var/mqsi/common/log

z/OS z/OS®

/component_filesystem/log

XML publication

You can specify that the data that is collected is published. The publication
message is created in XML format and is available to subscribers registered in the
broker network that subscribe to the correct topic.

The topic on which the data is published has the following structure:
$SYS/Broker/brokerName/StatisticsAccounting/recordType/executionGroupLabel/messageFlowLabel

The variables correspond to the following values:

brokerName
The name of the broker for which statistics are collected.

recordType
Set to Snapshot or Archive, depending on the type of data to which you
are subscribing. Alternatively, use # to register for both snapshot and
archive data if it is being produced.

executionGroupLabel
The name of the execution group for which statistics are collected.

messageFlowLabel
The label on the message flow for which statistics are collected.

Subscribers can include filter expressions to limit the publications that they receive.
For example, they can choose to see only snapshot data, or to see data that is
collected for a single broker. Subscribers can specify wild cards (+ and #) to receive
publications that refer to multiple resources.

14 Message Flows

The following examples show the topic with which a subscriber should register to
receive different sorts of data:
v Register the following topic for the subscriber to receive data for all message

flows running on BrokerA:
$SYS/Broker/BrokerA/StatisticsAccounting/#

v Register the following topic for the subscriber to receive only archive statistics
relating to a message flow Flow1 running on execution group Execution on
broker BrokerA:
$SYS/Broker/BrokerA/StatisticsAccounting/Archive/Execution/Flow1

v Register the following topic for the subscriber to receive both snapshot and
archive data for message flow Flow1 running on execution group Execution on
broker BrokerA

$SYS/Broker/BrokerA/StatisticsAccouting/#/Execution/Flow1

Message display, test and performance utilities SupportPac (IH03) can help you
with registering your subscriber.

SMF

On z/OS, you can specify that the data collected is written to SMF. Accounting
and statistics data uses SMF type 117 records. SMF supports the collection of data
from multiple subsystems, and you might therefore be able to synchronize the
information that is recorded from different sources.

When you want to interpret the information recorded, you can use any utility
program that processes SMF records.

Converting data with message flows
Convert data that you are transferring between different environments by using
WebSphere MQ or WebSphere Event Broker facilities.

Data conversion is the process by which data is transformed from the format
recognized by one operating system into that recognized by a second operating
system with different characteristics such as numeric order.

If you are using a network of systems that use different methods for storing
numeric values, or you need to communicate between users who view data in
different code pages, you must consider how to implement data conversion.

Numeric order
For numeric and encoding aspects, consider:
v Big Endian versus Little Endian
v Encoding values in WebSphere MQ (the Encoding field in the MQMD)

Encoding values are system specific. For example, Windows typically
has an encoding of 546, hexadecimal value X’00000222’. The three final
hexadecimal digits identify:
1. The float number format

This value can be 1 (IEEE format byte order normal), 2 (IEEE format
byte order reversed), or 3 (zSeries® format byte order normal).
Operations on floating point numbers, whether IEEE or z/Series
(S/390®) format, are subject to rounding error.

2. The packed decimal number format
This value can be 1 (byte order normal) or 2 (byte order reversed).

Developing message flows 15

http://www.ibm.com/support/docview.wss?uid=swg24000637

3. The hexadecimal number format
This value can be 1 (byte order normal) or 2 (byte order reversed).

The bit order within a byte is never reversed. Byte order normal means
that the least significant digit occupies the highest address.
Systems that process numbers in normal byte order are Big Endian
(zSeries, iSeries®, Linux, and UNIX). Systems that process numbers in
reversed byte order are Little Endian (mainly PCs).
For further details about numeric order, see ″Appendix D Machine
encodings″ of the Application Programming Reference section of the
WebSphere MQ Version 6 information center online or (for
WebSphere MQ Version 5.3) the WebSphere MQ Application Programming
Reference manual from the WebSphere MQ library Web page.

Code page conversions
Code page conversion might be required for any of the following reasons:
v ASCII versus EBCDIC
v National languages
v Operating system specific code pages

For more information about code page support in WebSphere MQ, see the
Application Programming Reference section of the WebSphere MQ Version 6
information center online or (for WebSphere MQ Version 5.3) the
WebSphere MQ Application Programming Reference manual from the
WebSphere MQ library Web page.

When you use WebSphere Event Broker, you can use the data conversion facilities
of WebSphere MQ.

WebSphere MQ facilities

Headers and message body are converted according to the MQMD values,
and other header format names. You might have to set up data conversion
exits to convert the body of your messages.

When you use WebSphere MQ facilities, the whole message is converted to
the specified encoding and CCSID, according to the setting of the format in
the WebSphere MQ header.

For more detail about data conversion using WebSphere MQ facilities, see
″Appendix F Data conversion″ in the Application Programming Reference
section of the WebSphere MQ Version 6 information center online or (for
WebSphere MQ Version 5.3) the WebSphere MQ Application Programming
Reference manual from the WebSphere MQ library Web page.

Designing a message flow
A message flow can perform a wide range of operations, depending on your
business and operational requirements. For best performance and capability, you
must design it to include the most appropriate nodes.

Before you start:

Read the following concept topic: “Message flow nodes” on page 4.

When you design a message flow, consider the following questions and options:
v Which nodes provide the function that you require. In many cases, you can

choose between several nodes that provide a suitable function. You might have
to consider other factors listed here to determine which node is best for your

16 Message Flows

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/

overall needs. You can include built-in nodes, user-defined nodes, and subflow
nodes. For more information, see “Deciding which nodes to use.”

v Whether it is appropriate to include more than one input node. For more
information, see “Using more than one input node” on page 20.

v Whether you can use subflows; for example, to define a specific output node
with common properties. For more information, see “Using subflows” on page
20.

v What response times your applications expect from the message flow. This factor
is influenced by several aspects of how you configure your nodes and the
message flow. For more information, see “Optimizing message flow response
times” on page 22.

v Whether your message flow processing makes demands on system resources
such as stack size. For more information, see “System considerations for message
flow development” on page 23.

v Whether to use WebSphere MQ cluster queues. For more information, see
“Using WebSphere MQ cluster queues for input and output” on page 24.

v Whether to use WebSphere MQ shared queues on z/OS . For more information,
see “Using WebSphere MQ shared queues for input and output (z/OS)” on
page 26.

v Whether you want your messages to go through data conversion. For
information about the available options, see “Configuring message flows for
data conversion” on page 31.

v What steps to take to ensure that messages are not lost. For more information,
see “Ensuring that messages are not lost” on page 33.

v How errors are handled within the message flow. You can use the facilities
provided by the broker to handle any errors that arise during message flow
execution (for example, if the input node fails to retrieve an input message, or if
writing to a database results in an error). However, you might prefer to design
your message flow to handle errors in a specific way. For more information, see
“Handling errors in message flows” on page 35.

For a basic introduction to developing message flows, see the IBM Redbooks
publication WebSphere Message Broker Basics. (This link works only if you are
connected to the Internet.)

Deciding which nodes to use
WebSphere Event Broker includes a large number of message processing nodes
that you can use within your message flows.

Before you start:

Read the concept topic about message flow nodes.

You can also select from user-defined nodes that have been created and supplied
by users, or other vendors and companies.

Your decision about which nodes to use depends on the processing that you want
to perform on your messages.

Input and output nodes
Input and output nodes define points in the message flow to which client
applications send messages (input nodes, such as MQInput), and from
which client applications receive messages (output nodes, such as
MQOutput). Client applications interact with these nodes by putting

Developing message flows 17

http://www.redbooks.ibm.com/abstracts/sg247137.html

messages to, or getting messages from, the I/O resource that is specified
by the node as the source or target of the messages. Although a message
flow must include at least one input node, it does not need to include an
output node.
v If you are creating a message flow for deployment to a broker, you must

include at least one input node to receive messages. The input node that
you select depends on the source of the input messages, and where in
the flow you want to receive the messages:

MQInput
Use an MQInput node if the messages arrive at the broker on a
WebSphere MQ queue, and the node is to be at the start of a
message flow.

The use of message flows that contain MQeInput nodes in
WebSphere Event Broker Version 6.0 is deprecated. Redesign
your message flows to remove the MQe nodes and replace them
with MQ nodes that are configured to your own specifications
and coordinated with your MQe Gateway configuration. For
more details, see Migrating a message flow that contains
WebSphere MQ Everyplace® nodes.

MQGet
Use an MQGet node if the messages arrive at the broker on a
WebSphere MQ queue and the node is not to be at the start of a
message flow.

SCADAInput
Use a SCADAInput node if the messages are sent by a telemetry
device.

Real-timeInput or Real-timeOptimizedFlow
Use one of these nodes if the messages are sent by a JMS or
multicast application.

The Real-timeInput node is an input node and the
Real-timeOptimizedFlow node is a complete message flow that
provides a high performance publish/subscribe message flow.

JMSInput
Use a JMSInput node if the messages are sent by a JMS
application.

Input node
If you are creating a message flow that you want to embed in
another message flow (a subflow) that you will not deploy as a
stand-alone message flow, you must include at least one Input
node to receive messages into the subflow.

An instance of the Input node represents an In terminal. For
example, if you have included one instance of the Input node,
the subflow icon shows one In terminal, which you can connect
to other nodes in the main flow in the same way that you
connect any other node.

To deploy a message flow, it must have at least one input node.
If your message flow does not contain an input node, you are
prevented from adding it to the broker archive file. The input
node can be in the main flow, or in a message flow that is
embedded in the main flow.

18 Message Flows

You can use more than one input node in a message flow. For
more information, see “Using more than one input node” on
page 20.

v If you want to send the messages that are produced by the message flow
to a target application, you can include one or more output nodes. The
output node that you select depends on the transport across which the
target application expects to receive those messages:

Publication
Use a Publication node to distribute the messages using the
publish/subscribe network for applications that subscribe to the
broker across all supported protocols. A Publication node is an
output node that uses output destinations that are identified by
subscribers whose subscriptions match the characteristics of the
current message.

MQOutput
Use an MQOutput node if the target application expects to
receive messages on a WebSphere MQ queue, or on the
WebSphere MQ reply-to queue that is specified in the input
message MQMD.

The use of message flows that contain MQeOutput nodes in
WebSphere Event Broker Version 6.0 is deprecated. Redesign
your message flows to remove the MQe nodes and replace them
with MQ nodes that are configured to your own specifications
and coordinated with your MQe Gateway configuration. For
more details, see Migrating a message flow that contains
WebSphere MQ Everyplace nodes.

MQReply
Use an MQReply node if the target application expects to receive
messages on the WebSphere MQ reply-to queue that is specified
in the input message MQMD.

SCADAOutput
Use a SCADAOutput node if a telemetry device is the target of
the output messages, and the Publication node is not suitable.

Real-timeOptimizedFlow
Use a Real-timeOptimizedFlow node if the target application is a
JMS or multicast application.

JMSOutput
Use a JMSOutput node if the messages are for a JMS destination.

Output node
If you are creating a message flow that you want to embed in
another message flow (a subflow) that you will not deploy as a
stand-alone message flow, you must include at least one Output
node to propagate messages to subsequent nodes that you
connect to the subflow.

An instance of the Output node represents an Out terminal. For
example, if you have included two instances of the Output node,
the subflow icon shows two Out terminals, which you can
connect to other nodes in the main flow in the same way that
you connect any other node.

Developing message flows 19

Using more than one input node
You can include more than one input node in a single message flow.

Before you start:

Read the following concept topic:
v “Message flow nodes” on page 4

You might find this useful in the following situations:
v The message flow provides common processing for messages that are received

from multiple transports. For example, a single message flow might handle:
– Data in messages received from WebSphere MQ, and therefore through a

WebSphere MQ queue and an MQInput node
– Messages that are received from native IP connections (a Real-timeInput

node)
v You need to set standard properties on the MQInput node if input messages:

– are all received from WebSphere MQ, and
– do not include an MQRFH2 header.

If the required standard properties are not always the same for every message,
you can include more than one input node and configure each to handle a
particular set of properties.

v Each input node in a message flow causes the broker to start a separate thread
of execution. Including more than one input node might improve the message
flow performance. However, if you include multiple input nodes that access the
same input source (for example, a WebSphere MQ queue), the order in which
the messages are processed cannot be guaranteed. If you want the message flow
to process messages in the order in which they are received, this option is not
appropriate.
If you are not concerned about message order, consider using additional
instances of the same message flow rather than multiple input nodes. If you set
the Additional Instances property of the message flow when you deploy it to the
broker, multiple copies of the message flow are started in the execution group.
This is the most efficient way of handling multiple instances.

Look at the following sample :
v Scribble sample

This sample uses two input nodes: an MQInput node and a Real-timeInput node.
You can use these two input nodes to enable the sample’s message flow to accept
input from both WebSphere MQ transport and native IP connections. You can view
samples only when you use the information center that is integrated with the
Message Brokers Toolkit.

Using subflows
Subflows can be included in your message flows in exactly the same way as you
include built-in or user-defined nodes.

You can also connect subflows to other nodes in the same way. You can define a
subflow once, and use it in more than one message flow (and even in more than
one message flow project), so a subflow can provide the following benefits:
v Reusability and reduced development time.

20 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.scribble.res

v Consistency and increased maintainability of your message flows (consider a
subflow as analogous to a programming macro, or to inline code that is written
once but used in many places).

v Flexibility to tailor a subflow to a specific context (for example, by updating the
output queue information).

However, remember that a subflow is not a single node, and its inclusion increases
the number of nodes in the message flow, which might affect its performance.

Consider these examples of subflow use:
v You can define a subflow that provides a common destination for messages that

result in an error within the message flow.

Use the Passthrough node to enable version control of a subflow at run time. The
Passthrough node allows you to add a label to your message flow or subflow. By
combining this label with keyword replacement from your version control system,
you can identify which version of a subflow is included in a deployed message
flow. You can use this label for your own purposes. If you have included the
correct version keywords in the label, you can see the value of the label:
v Stored in the broker archive (BAR) file, using the mqsireadbar command
v As last deployed to a particular broker, on the properties of a deployed message

flow in the Message Brokers Toolkit
v In the run time, if you enable user trace for that message flow

The message that it propagates on its Out terminal is the same message that it
received on its In terminal; for example, if you develop an error processing
subflow to include in several message flows, you might want to modify that
subflow. However, you might want to introduce the modified version initially to
just a subset of the message flows in which it is included. Set a value for the
instance of the Passthrough node that identifies which version of the subflow you
have included.

The use of subflows is demonstrated in the following samples:
v Error Handler sample
v Coordinated Request Reply sample

The Error Handler sample uses a subflow to trap information about errors and
store the information in a database. The Coordinated Request Reply sample uses a
subflow to encapsulate the storage of the ReplyToQ and ReplyToQMgr values in a
WebSphere MQ message so that the processing logic can be easily reused in other
message flows and to allow alternative implementations to be substituted.

You can view samples only when you use the information center that is integrated
with the Message Brokers Toolkit.

Adding keywords to subflows
You can embed keywords in each subflow that you use in a message flow. A
different keyword must be used in each instance of a subflow. This is because only
the first recorded instance of each keyword within the message flow .cmf file is
available to Configuration Manager Proxy applications and to the toolkit. The
order that subflows appear in the .cmf file is not guaranteed.

Developing message flows 21

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.res
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.coordinated_request_reply.res

Optimizing message flow response times
Using different solutions to improve message flow response times.

Before you start:

Read the following concept topic:
v “Message flow nodes” on page 4

When you design a message flow, the flexibility and functional capabilities of the
built-in nodes often mean that there are several ways to achieve the processing and
results that you require. You might find that different solutions deliver different
levels of performance and, if this is an important consideration for you, then you
must take this into account when designing your message flow

Your applications can perceive performance in either of these ways:
1. The response time indicates how quickly each message is processed by the

message flow. The response time is particularly influenced by how you design
your message flows. Response time is discussed in this topic.

2. The throughput indicates how many messages of particular sizes can be
processed by a message flow in a given time. The throughput is mainly
affected by configuration and system resource factors, and is discussed in the
topic on optimizing message flow throughput along with other domain
configuration information. See Optimizing message flow throughput.

Several aspects influence message flow response times. However, as you create and
modify your message flow design to arrive at the best results that meet your
specific business requirements, you must also consider the eventual complexity of
the message flow. The most efficient message flows are not necessarily the easiest
to understand and maintain; experiment with the solutions available to arrive at
the best balance for your needs.

Several factors influence message flow response times:

The number of nodes that you include in the message flow
Every node increases the amount of processing required in the broker,
therefore, consider the content of the message flow carefully, including the
use of subflows.

Use as few nodes as possible in a message flow; every node that you
include in the message flow increases the amount of processing required in
the broker. The number of nodes within a single flow has an upper limit.
This limit is governed by system resources, particularly the stack size.

For more information about stack sizes, see “System considerations for
message flow development” on page 23.

The use of persistent and transactional messages
Persistent messages are saved to disk during message flow processing. You
can avoid this situation by specifying that messages either on input,
output, or both, are non-persistent. If your message flow is handling only
non-persistent messages, check the configuration of the nodes and the
message flow itself; if your messages are non-persistent, transactional
support might be unnecessary. The default configuration of some nodes
enforces transactionality; if you update these properties and redeploy the
message flow, response times might improve.

22 Message Flows

Message size
A larger message takes longer to process. If you can split large messages
into smaller units of information, you might be able to improve the speed
at which they are handled by the message flow. The following sample
demonstrates how to minimize the virtual storage requirements for the
message flow to improve a message flow’s performance when processing
potentially large messages.
v Large Messaging sample

You can view samples only when you use the information center that is
integrated with the Message Brokers Toolkit.

You can find more information about improving the performance of a message
flow in this developerWorks article on message flow performance.

System considerations for message flow development
Configure your message flows to make the best use of computer resources,
especially if you will process large messages.

As well as designing your message flow to optimize throughput, you need to
ensure that particular areas of storage are efficiently used so that your system does
not suffer from capacity issues, and that processes do not end due to lack of
resources.

Consider the following storage issues when developing your message flows:
v “Stack storage”
v “JVM heap sizing” on page 24

Stack storage

Depending on the design of your message flow, you might need to increase the
stack size.

When a message flow thread starts, it requires storage to perform the instructions
that are defined by the message flow nodes. This storage comes from the execution
group’s heap and stack size. The default stack size that is allocated to a message
flow thread depends on the operating system that is used:

Windows On Windows, each message flow thread is allocated 1 MB of stack space.

Linux On Linux, each message flow thread is allocated 8 MB of stack space.

UNIX On UNIX, each message flow thread is allocated 1 MB of stack space.

z/OS On z/OS, each message flow thread is allocated 512 KB of downward
stack space and 50 KB of upward stack space.

In a message flow, a node typically uses 2 KB of the stack space. A typical message
flow can therefore include 250 nodes on z/OS, 500 nodes on UNIX systems and
500 nodes on Windows. This amount can be higher or lower depending on the
type of nodes used and the processing that they perform.

Developing message flows 23

|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.largemessaging.res
http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html

In WebSphere Event Broker, any processing that involves nested or recursive
processing can cause extensive usage of the stack. For example, in the following
situations you might need to increase the stack size:
v When a message flow is processing a message that contains a large number of

repetitions or complex nesting.
v When a message flow is executing ESQL that calls the same procedure or

function recursively, or when an operator (for example, the concatenation
operator) is used repeatedly in an ESQL statement.

You can increase the stack size to improve performance. For details, see:
v Increasing the stack size on Windows, Linux, and UNIX systems
v Increasing the stack size on z/OS

JVM heap sizing
The Java virtual machine (JVM) heap is an independent memory allocation that
can reduce the capacity of the main memory heap.

Every execution group creates its own JVM. The execution group uses the JVM to
execute the internal administration threads that require Java. This usage is typically
minimal. The primary use of the JVM is for IBM primitive nodes that make use of
Java functionality. These primitives include:
v Java user-defined plug-in nodes
v Publish/subscribe nodes and some publish/subscribe functionality
v XMLTransformation nodes
v HTTPRequest nodes
v Real-time nodes
v SCADA nodes

From WebSphere Business Integration Event Broker Version 5.0 onwards, the JVM
is created with a minimum of 128 MB of space allocated and reserved for its use.
As with any JVM, you can pass parameters in to set the minimum and maximum
heap sizes.

To give more capacity to a message flow that is going to process large messages,
reduce the minimum JVM heap size to allow the main memory heap to occupy
more address space. For details of how to reduce the minimum JVM heap size, see
Setting the JVM heap size.

Using WebSphere MQ cluster queues for input and output
Design your broker domain to use WebSphere MQ queues, if appropriate for your
business needs.

The use of queue manager clusters has the following significant benefits:
1. Reduced system administration

Clusters need fewer definitions to establish a network; you can set up and
change your network more quickly and easily.

2. Increased availability and workload balancing
You can benefit by defining instances of the same queue to more than one
queue manager, therefore distributing the workload through the cluster.

If you use clusters with WebSphere Event Broker, consider the following queues:

24 Message Flows

|

For SYSTEM.BROKER queues:
The SYSTEM.BROKER queues are defined for you when you create
WebSphere Event Broker components, and are not defined as cluster
queues. Do not change this attribute.

For broker, Configuration Manager, and User Name Server connectivity:
If you define the queue managers that support your brokers, the
Configuration Manager, and the User Name Server to a cluster, you can
benefit from the simplified administration provided by WebSphere MQ
clusters. You might find this particularly relevant for the brokers in a
collective, which must all have WebSphere MQ interconnections.

For message flow input queues:
If you define an input queue as a cluster queue, consider the implications
for the order of messages or the segments of a segmented message. The
implications are the same as for any WebSphere MQ cluster queue. In
particular, the application must ensure that, if it is sending segmented
messages, all segments are processed by the same target queue, and
therefore by the same instance of the message flow at the same broker.

For message flow output queues:

v WebSphere Event Broker always specifies MQOO_BIND_AS_Q_DEF
when it opens a queue for output. If you expect segmented messages to
be put to an output queue, or want a series of messages to be handled
by the same process, you must specify DEFBIND(OPEN) when you
define that queue. This option ensures that all segments of a single
message, or all messages within a sequence, are put to the same target
queue and are processed by the same instance of the receiving
application.

v If you create your own output nodes, specify MQOO_BIND_AS_Q_DEF
when you open the output queue, and DEFBIND(OPEN) when you
define the queue, if you need to ensure message order, or to ensure a
single target for segmented messages.

For publish/subscribe applications:

v If the target queue for a publication is a cluster queue, you must deploy
the publish/subscribe message flow to all the brokers on queue
managers in the cluster. However, the cluster does not provide any of
the failover function to the broker domain topology and function. If a
broker to which a message is published, or a subscriber registers, is
unavailable, the distribution of the publication or registration is not
taken over by another broker.

v When a client registers a subscription with a broker that is running on a
queue manager that is a member of a cluster, the broker forwards a
proxy registration to its neighbors within the broker domain; the
registration details are not advertised to other members of the cluster.

v A client might choose to become a clustered subscriber, so that its
subscriber queue is one of a set of clustered queues that receive any
given publication. In this case, when registering a subscription, use the
name of an ″imaginary″ queue manager that is associated with the
cluster; this is not the queue manager to which the publication will be
sent, but an alias for the broker to use. As an administrative activity, a
blank queue manager alias definition is made for this queue manager on
the broker that satisfies this subscription for all clustered subscribers.
When the broker publishes to a subscriber queue that names this queue
manager, resolution of the queue manager name results in the

Developing message flows 25

publication being sent to any queue manager that hosts the subscriber
cluster queue, and only one clustered subscriber receives the publication.
For example, if the clustered subscriber queue was SUBS_QUEUE and
the ″imaginary″ subscriber queue manager was CLUSTER_QM, the
broker definition would be:
DEFINE QREMOTE(CLUSTER_QM) RQMNAME(' ') RNAME(' ')

This sends broker publications for SUBS_QUEUE on CLUSTER_QM to
one instance of the cluster queue named SUBS_QUEUE anywhere in the
cluster.

To understand more about clusters, and the implications of using cluster queues,
see the Queue Manager Clusters section of the WebSphere MQ Version 6 information
center online, or the Version 5.3 book on the WebSphere MQ library Web page.

Using WebSphere MQ shared queues for input and output
(z/OS)

On z/OS systems, you can define WebSphere MQ shared queues as input and
output queues for message flows.

Use the WebSphere MQ for z/OS product facilities to define these queues and
specify that they are shared.

For more information about configuring on z/OS, refer to the z/OS Concepts and
Planning section of the WebSphere MQ Version 6 information center online, or the
Version 5.3 book on the WebSphere MQ library Web page.

If you use shared queues, you can provide failover support between different
images running WebSphere Event Broker on a sysplex.

You cannot use shared queues for broker or User Name Server component queues
such as SYSTEM.BROKER.CONTROL.QUEUE.

Shared queues are available only on z/OS.

Configuring JMSInput and JMSOutput nodes to support global
transactions

If you want to include JMSInput and JMSOutput nodes in globally-coordinated
transactions, additional configuration is required.

If you require transaction coordination, choose a JMS provider that conforms to the
Java Message Service Specification, version 1.1 and that supports the JMS
XAResource API through the JMS session.

If the message designer has specified a non XA-compliant provider, the
non-transactional mode only is supported. In this case, you must set the
Transaction mode property to None for all JMSInput and JMSOutput nodes.

To configure JMSInput and JMSOutput nodes:
1. Switch to the Broker Application Development perspective.
2. Set the message flow property Coordinated Transaction to yes in the BAR file

properties.
3. For each JMSInput or JMSOutput node required in the global transaction, set

the Advanced property Transaction mode to Global in the message flow editor.

26 Message Flows

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://java.sun.com/products/jms/docs.html

4. Create a Queue Connection Factory and either use the default name,
recoverXAQCF , or supply your own name. See the JMSInput or JMSOutput
node for further details about creating JNDI administered objects.

5. On distributed systems, you must set up a stanza for each JMSProvider that
you want to use, prior to deployment.
The following table shows the JMSProvider switch files that are provided on
each platform.

Platform 32-bit file 64-bit file

AIX® libJMSSwitch.so libJMSSwitch64.so

HP-UX on Itanium libJMSSwitch.so

HP-UX on PA-RISC libJMSSwitch.sl libJMSSwitch64.sl

Linux on POWER™ libJMSSwitch.so

Linux on System z® libJMSSwitch.so

Linux on x86 libJMSSwitch.so

Linux on
x86-64

libJMSSwitch.so

Solaris on SPARC libJMSSwitch.so libJMSSwitch64.so

Solaris
on x86-64

libJMSSwitch.so

Windows JMSSwitch.dll

Select the appropriate link for details of this task on the platform, or platforms,
that your enterprise uses:

v Linux UNIX Linux and UNIX systems

v Windows Windows systems
On Windows only, you must also modify the queue manager authorization.

For further information, see:
v “Configuring for coordinated transactions” on page 136 within the JMSInput

node topic
v “Configuring for coordinated transactions” on page 144 within the

JMSOutput node topic

z/OS On z/OS, the only JMSProvider supported is the IBM
WebSphere MQ Java Client, and the only transport mode supported for that
client is BIND mode; no further configuration steps are required.

The JMS provider might supply additional JAR files that are required for
transactional support; see the documentation supplied with the JMS provider for
more information. For example, on distributed systems, the WebSphere MQ JMS
provider supplies an extra JAR file com.ibm.mqetclient.jar.

You must add any additional JAR files to the broker shared_classes directory:

v Linux UNIX On Linux and UNIX: var/mqsi/shared-classes.

v Windows On Windows: C:\Documents and Settings\All Users\Application
Data\IBM\MQSI\shared-classes.

For more information, see the section on making the JMS provider client available
to the JMS nodes in “JMSInput node” on page 134.

Developing message flows 27

||||

|||

|||

|||

|||

|||

|||

|
|
||

|||

|
|
||

|||
|

|

Linux and UNIX systems: configuring the queue manager to
coordinate JMS resources
Define a stanza in the broker’s queue manager qm.ini file for each new JMS
provider, where the JMS provider can be specified by an JMSInput or JMSOutput
node included in a message flow that is running on the broker.

The parameters that are defined in XAOpenString are comma delimited and
positional. Represent missing optional parameters by a comma if you include other
parameters later in the string.

The following stanza entry is an example that you can add when using WebSphere
MQ Java as the JMS provider:
XAResourceManager:

Name=WBIWMQJMS
SwitchFile=/install_dir/lib/JMSSwitch.so
XAOpenString=<Initial Context Factory>,

<location of JNDI bindings>'
<LDAP Principal>,
<LDAP Credentials>,
<Recovery Connection Factory Name>,
<JMS Principal>,
<JMS Credentials>
ThreadOfControl=THREAD

where:

install_dir
Is the location of the WebSphere Event Broker installation. This value is
mandatory where the LDAP parameters are omitted, but a user-defined
Queue Connection Factory is specified for recovery.

<Initial Context Factory>
Is the Initial Context Factory identifier for the JMS provider; this value is
required.

<Location of JNDI bindings>
Is either the file path to the bindings file, or the LDAP directory location of
the JNDI administered objects that can be used to create an initial context
factory for the JMS connection. When supplying the file path to the
bindings file, do not include the file name. See the JMSInput or JMSOutput
node for further details on creating the JNDI administered objects; this
value is required.

<LDAP Principal>
Is an optional parameter used to specify the principal (user ID) that might
be required when an LDAP database is used to hold the JNDI
administered objects.

<LDAP Credentials>
Is an optional parameter used to specify the Credentials (password) that
might be required if a password protected LDAP database is used to hold
the JNDI administered objects.

<Recovery Connection Factory Name>
Is an optional parameter used to specify the name of a Queue Connection
Factory object in the JNDI administered objects for recovery purposes,
when the non default name is required.

<JMS Principal>
Is an optional parameter for the user ID required to connect to a JMS
provider, using a secure JMS Connection Factory.

28 Message Flows

<JMS Credentials>
Is an optional parameter for the password required to connect to the same
JMS provider in conjunction with the JMS principal.

The values for the Initial Context factory and Location of JNDI bindings in the
stanza must match the values that you specified in the JMSInput or JMSOutput
nodes in the message flows.

All LDAP parameters must match the values that you specified on the
mqsicreatebroker or mqsichangebroker command.

The Recovery Factory Name must match a Queue Connection Factory name that is
created in the JNDI administered objects. If you do not specify a name, a default
factory called recoverXAQCF is used. In either case, this value must refer to a JNDI
administered object that has already been created.

The JMS Principal and JMS Credentials must be configured together.

The following example shows the format of a stanza in the qm.ini file that
describes a JMS provider for global transactions:
XAResourceManager:

Name=XAJMS_PROVIDER1
SwitchFile=/opt/var/mqsi/lib/JMSSwitch.so
XAOpenString= com.sun.jndi.fscontext.RefFSContextFactory,

/Bindings/JMSProvider1_Bindings_Directory,
,
,
,
myJMSuser1,
passwd
ThreadOfControl=THREAD

where:

XAJMS_PROVIDER1
Is the user-defined name for the resource manager

/opt/var/mqsi
Is the <Installation Path>

com.sun.jndi.fscontext.RefFSContextFactory
Is the <Initial Context Factory>

/Bindings/JMSProvider1_Bindings_Directory
Is the location of the bindings

myJMSuser1
Is the <JMS Principal>

passwd
Is the password used in <JMS Credentials>

In this example, the optional fields <LDAP Principal>, <LDAP Credentials>, and
<Recovery Connection Factory Name> are not required, therefore the positional
comma delimiters only are configured in the XAOpenString stanza.

Windows systems: configuring the queue manager to coordinate
JMS resources
Use WebSphere MQ Explorer (if you have WebSphere MQ Version 6.0) or
WebSphere MQ Services (if you have WebSphere MQ Version 5.3) to configure the
XA resource managers for the queue manager.

Developing message flows 29

Complete the following steps:
1. Open WebSphere MQ Explorer or WebSphere MQ Services.
2. Select the queue manager for your broker and click Properties.
3. Select XA resource managers in the left pane and click Add.
4. Complete the fields to define a new resource manager:
v Name: Enter the name of the resource manager; for example, WBIWMQJMS.
v SwitchFile: Enter the full path of the switch file; for example,

install_dir\bin\JMSSwitch.dll.
v XAOpenString: Enter the following values, which are comma delimited and

positional. Represent missing optional parameters by a comma if you include
other parameters later in the string.

Initial Context Factory
The Initial Context Factory identifier for the JMS provider; this value
is required.

Location of JNDI bindings
Either the file path to the bindings file, or the LDAP directory
location of the JNDI administered objects that can be used to create
an initial context factory for the JMS connection. If you supply the
file path to the bindings file, do not include the file name. See the
JMSInput or JMSOutput node for further details about creating the
JNDI administered objects; this value is required.

LDAP Principal
Optional: The principal (user ID) that might be required when an
LDAP database is used to hold the JNDI administered objects.

LDAP Credentials
Optional: The credentials (password) that might be required if a
password protected LDAP database is used to hold the JNDI
administered objects.

Recovery Connection Factory Name
Optional: The name of a Queue Connection Factory object in the
JNDI administered objects for recovery purposes, when the non
default name is required.

JMS Principal
The user ID that is required to connect to a JMS provider, using a
secure JMS Connection Factory.

JMS Credentials
The password that is required to connect to the same JMS provider
in conjunction with the JMS principal.

The values for the Initial Context factory and Location of JNDI bindings in
the stanza must match the values that you specified in the JMSInput or
JMSOutput nodes in the message flows.
All LDAP parameters must match the values that you specified on the
mqsicreatebroker or mqsichangebroker command.
The Recovery Factory Name must match a Queue Connection Factory name
that is created in the JNDI administered objects. If you do not specify a
name, a default factory called recoverXAQCF is used. In either case, this value
must refer to a JNDI administered object that has already been created.
The JMS Principal and JMS Credentials must be configured together.

v XACloseString: Leave this field blank.

30 Message Flows

v ThreadOfControl: Set the value Thread.
5. Click OK to complete the XA resource manager definition.
6. Click OK to close the queue manager properties dialog.
7. Click File → Exit to close WebSphere MQ Explorer or WebSphere MQ Services.
8. Copy the switch file (for example, JMSSwitch.dll) to the \exits subdirectory in

the WebSphere MQ installation directory.

Next: modify the queue manager authorization.

Windows systems: modifying the queue manager authorization
Authorize the broker and queue manager to access shared resources that are
associated with the JMSProvider.

Before you start, set up your JMSProvider configurable service; see “Making the
JMS provider client available to the JMS nodes” on page 135 (within the JMSInput
node topic) or “Making the JMS provider client available to the JMS nodes” on
page 142 (within the JMSOutput node topic).

Complete the following steps on the Windows system on which the broker is
running:
1. If you defined the broker queue manager when you created the broker by

running the mqsicreatebroker command, the two components share the same
administrative ID, defined as the broker service ID, and you do not have to
take any further action.

2. If you specified an existing queue manager when you created the broker, check
that its administrative ID is the same ID as that used for the service ID of the
broker. If the ID is not the same, change the queue manager ID to be the same
as the broker service ID:
a. Click Start → Run and enter dcomcnfg. The Component Services window

opens.
b. In the left pane, expand Component Services → Computers → My Computer

and click DCOM Config.
c. In the right pane, right-click the WebSphere MQ service labelled IBM

MQSeries Services, and click Properties.
d. Click the Identity tab.
e. Select This user and enter the user ID and password for the broker service

ID to associate that ID with the queue manager.
f. Click OK to confirm the change.

Configuring message flows for data conversion
If you exchange messages between applications that run on systems that are
incompatible in some way, you can configure your system to provide data
conversion as the message passes through the broker.

Data conversion might be necessary if either of the following two values are
different on the sending and receiving systems:
1. CCSID. The Coded Character Set Identifier refers to a set of coded characters

and their code point assignments. WebSphere Event Broker can process and
construct application messages in any code page for which WebSphere MQ
provides conversion to and from Unicode, on all operating systems. For more
information about code page support, see the Application Programming Reference

Developing message flows 31

|

|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|

|

|
|

|

section of the WebSphere MQ Version 6 information center online or the
WebSphere MQ Version 5.3 book on the WebSphere MQ library Web page.
This behavior might be affected by the use of other products in conjunction
with WebSphere Event Broker. Check the documentation for other products,
including any databases that you use, for further code page support
information.

2. Encoding. This setting defines the way in which a machine encodes numbers;
that is, binary integers, packed-decimal integers, and floating point numbers.
Numbers that are represented as characters are handled in the same way as all
other string data.

If the native CCSID and encoding on the sending and receiving systems are the
same, you do not need to call data conversion processes.

WebSphere Event Broker and WebSphere MQ provide data conversion facilities to
support message exchange between unlike systems. Your choice of which facilities
to use depends on the characteristics of the messages that are processed by your
message flows:
v Messages that contain text only
v Message that include numerics

Messages that contain text only

Read this section if your messages are WebSphere MQ messages that
contain all text (character data or string).

If WebSphere MQ supports the systems on which both sending and
receiving applications are running for data conversion, use WebSphere MQ
facilities which provide the most efficient data conversion option.

The default behavior of WebSphere MQ is to put messages to queues
specifying the local system CCSID and encoding. Applications issuing
MQGET can request that the queue manager provides conversion to their
local CCSID and encoding as part of get processing.

To use this option:
1. Design messages to be text-only. If you are using COBOL, move

numeric fields to USAGE DISPLAY to put them into string form.
2. Set the Format field in the MQMD to MQFMT_STRING (value

MQSTR).
3. Call MQGET with MQGMO_CONVERT in the receiving application. If

you prefer, you can convert when the message is received by the
broker, by setting the Convert property of the MQInput node to yes (by
selecting the check box).

If you require more sophisticated data conversion than WebSphere MQ
provides in this way (for example, to an unsupported code page), use
WebSphere MQ data conversion exits. For more information about these,
see the Application Programming Reference section of the WebSphere MQ
Version 6 information center online or the WebSphere MQ Version 5.3
book on the WebSphere MQ library Web page.

Messages that include numerics

Read this section if your messages include numeric data, or are text only
but are not WebSphere MQ messages.

If your messages are WebSphere MQ messages that include numeric data,
you can use WebSphere MQ data conversion exits. If the messages are not

32 Message Flows

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/

WebSphere MQ messages and are text only, or text and numeric, you must
use procedures called by your own sending or receiving applications.

Ensuring that messages are not lost
Messages that flow through your broker domain represent business data that you
want to safeguard. Configure the messages, your environment, or both, to ensure
that you do not lose messages.

Messages that are generated both by your applications and by runtime components
for inter-component communication are important to the operation of your brokers.
Messages used internally between components always use the WebSphere MQ
protocol. Application messages can use all supported transport protocols.

For application and internal messages traveling across WebSphere MQ, two
techniques protect against message loss:
v Message persistence

If a message is persistent, WebSphere MQ ensures that it is not lost when a
failure occurs, by copying it to disk.

v Syncpoint control
An application can request that a message is processed in a synchronized
unit-of-work (UOW)

For more information about how to use these options, refer to the System
Administration Guide section of the WebSphere MQ Version 6 information center
online, or the Version 5.3 book on the WebSphere MQ library Web page.

Internal messages

WebSphere Event Broker components use WebSphere MQ messages to
communicate events and data between broker processes and subsystems, and the
Configuration Manager and User Name Server. The components ensure that the
WebSphere MQ features are exploited to protect against message loss. You do not
need to take any additional steps to configure WebSphere MQ or WebSphere Event
Broker to protect against loss of internal messages.

Application messages

If delivery of application messages is critical, you must design application
programs and the message flows that they use to ensure that messages are not lost.
The techniques used depend on the protocol used by the applications.

WebSphere MQ Enterprise Transport and WebSphere MQ Mobile Transport
If you are using the built-in input nodes that accept messages across the
WebSphere MQ or WebSphere MQ Everyplace protocols, you can use the
following guidelines and recommendations:
v Using persistent messages

WebSphere MQ messaging products provide message persistence, which
defines the longevity of the message in the system and guarantees
message integrity. Nonpersistent messages are lost in the event of system
or queue manager failure. Persistent messages are always recovered if a
failure occurs.
You can control message persistence in the following ways:
– Program your applications that put messages to a queue using the

MQI or AMI to indicate that the messages are persistent.

Developing message flows 33

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/

– Define the input queue with message persistence as the default
setting.

– Configure the output node to handle persistent messages.
– Program your subscriber applications to request message persistence.
When an input node reads a message is read from an input queue, the
default action is to use the persistence defined in the WebSphere MQ
message header (MQMD), that has been set either by the application
creating the message, or by the default persistence of the input queue.
The message retains this persistence throughout the message flow, unless
it is changed in a subsequent message processing node.
You can override the persistence value of each message when the
message flow terminates at an output node. This node has a property
that allows you to specify the message persistence of each message
when it is put to the output queue, either as the required value, or as a
default value. If you specify the default, the message takes the
persistence value defined for the queues to which the messages are
written.
If a message passes through a Publication node, the persistence of
messages sent to subscribers is determined by the subscribers’
registration options. If a subscriber has requested persistent message
delivery, and is authorized to do so by explicit or implicit (inherited)
ACL, the message is delivered persistently regardless of its existing
persistence property. Also, if the user has requested nonpersistent
message delivery, the message is delivered nonpersistent regardless of its
existing persistence property.

v Processing messages under syncpoint control
The default action of a message flow is to process incoming messages
under syncpoint in a broker-controlled transaction. This means that a
message that fails to be processed for any reason is backed out by the
broker. Because it was received under syncpoint, the failing message is
reinstated on the input queue and can be processed again. If the
processing fails, the error handling procedures that are in place for this
message flow (defined either by how you have configured the message
flow, or by the broker) are executed.
For full details of input node processing, see “Managing errors in the
input node” on page 37.

WebSphere MQ Telemetry Transport
If you are using the SCADAInput node that accepts messages from
telemetry devices across the MQIsdp protocol, this protocol does not have
a concept of queues. Clients connect to a SCADAInput node by specifying
the port number on which the node is listening. Messages are sent to
clients using a clientId. However, you can specify a maximum QoS
(Quality of Service) within a SCADA subscription message, which is
similar to persistence:
v QoS0 Nonpersistent.
v QoS1 Persistent, but might be delivered more than once
v QoS2 Once and once only delivery

If a persistent SCADA message is published, it might be downgraded to
the highest level that the client can accept. In some circumstances, the
message might become nonpersistent.

WebSphere MQ Real-time Transport and WebSphere MQ Multicast Transport
If you are using the Real-timeInput and Real-timeOptimizedFlow nodes

34 Message Flows

that accept messages from JMS and multicast applications, no facilities are
available to protect against message loss. You can, however, provide
recovery procedures by configuring the message flow to handle its own
errors.

Other transports and protocols
For user-defined input nodes that receive messages from another transport
protocol, you must rely on the support provided by that transport protocol,
or use the recovery procedures provided by the supplier of the
user-defined nodes.

Handling errors in message flows
The broker provides basic error handling for all your message flows. If basic
processing is not sufficient, and you want to take specific action in response to
certain error conditions and situations, you can enhance your message flows to
provide your own error handling.

The options that you can use to do this are quite complex in some cases. The
options that are provided for MQInput nodes are extensive because these nodes
deal with persistent messages and transactions. The MQInput node is also affected
by configuration options for WebSphere MQ.

Because you can decide to handle different errors in different ways, there are no
fixed procedures to describe. This section provides information about the principles
of error handling, and the options that are available, and you must decide what
combination of choices that you need in each situation based on the details that are
provided in this section.

You can choose one or more of these options in your message flows:
v Connect the Failure terminal of any node to a sequence of nodes that processes

the node’s internal exception (the fail flow).
v Connect the Catch terminal of the input node to a sequence of nodes that

processes exceptions that are generated beyond it (the catch flow).
v Ensure that all of the messages received by an MQInput node are processed

within a transaction, or are not processed within a transaction.
v Ensure that all of the messages received by an MQInput node are persistent, or

are not persistent.

If you include user-defined nodes in your message flow, you must see the
information provided with the node to understand how you might handle errors
with these nodes. The descriptions in this section cover only the built-in nodes.

When you design your error handling approach, consider the following factors:
v Most of the built-in nodes have Failure terminals. The exceptions are the Input,

Output, Passthrough, Publication, Real-timeInput, and Real-timeOptimizedFlow
nodes.
When an exception is detected within a node, the message and the exception
information are propagated to the node’s Failure terminal. If the node does not
have a Failure terminal, or it is not connected, the broker throws an exception
and returns control to the input node.
If an MQInput node detects an internal error, its behavior is slightly different; if
the Failure terminal is not connected, it attempts to put the message to the input
queue’s backout requeue queue, or (if that is not defined) to the dead letter
queue of the broker’s queue manager.

Developing message flows 35

For more information, see “Handling MQInput errors” on page 38.
v The MQInput, and SCADAInput nodes have Catch terminals.

A message is propagated to a Catch terminal only if it has first been propagated
beyond the node (for example, to the nodes connected to the Out terminal).

v When a message is propagated to the Failure or Catch terminal, the node creates
and populates a new ExceptionList with an exception that represents the error
that has occurred. The ExceptionList is propagated as part of the message tree.

v The MQInput node has additional processing for transactional messages (other
input nodes do not handle transactional messages).

v If you include a Trace node that specifies $Root or $Body, the complete message
is parsed. This might generate parser errors that are not otherwise detected.

The general principles of error handling are:
v If you connect the Catch terminal of the input node, you are indicating that the

flow handles all of the exceptions that are generated anywhere in the out flow.
The broker performs no rollback and takes no action unless there is an exception
on the catch flow. If you want any rollback action after an exception has been
raised and caught, you must provide this in the catch flow.

v If you do not connect the Catch terminal of the MQInput node, you can connect
the Failure terminal and provide a fail flow to handle exceptions generated by
the node. The fail flow is started immediately when an exception occurs in the
node.
The fail flow is also started if an exception is generated beyond the MQInput
node (in either out or catch flows), the message is transactional, and the
reinstatement of the message on the input queue causes the backout count to
reach the backout threshold.
The SCADAInput node does not propagate the message to the Failure terminal
if an exception is generated beyond the node and you have not connected its
Catch terminal.

v If a node propagates a message to a catch flow, and another exception occurs
that returns control to the same node again, the node handles the message as
though the Catch terminal is not connected.

v If you do not connect either the Failure or Catch terminals of the input node, the
broker provides default processing (which varies with the type of input node).

v If you have a common procedure for handling particular errors, you might find
it appropriate to create a subflow that includes the sequence of nodes required.
Include this subflow wherever you need that action to be taken.

The following sample demonstrates how to use an error handling routine to trap
information about errors and to store that information in a database. The error
handling routine is a subflow that you can add, unchanged, to any message flow.
The sample also demonstrates how to configure message flows to control
transactionality; in particular, the use of globally coordinated transactions to ensure
overall data integrity.
v Error Handler sample

You can view samples only when you use the information center that is integrated
with the Message Brokers Toolkit.

Connecting failure terminals
When a node that has a failure terminal detects an internal error, it propagates the
message to that terminal. If it does not have a failure terminal, or if you have not
connected the failure terminal, the broker generates an exception.

36 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.res

The nodes sometimes generate errors that you can predict, and it is in these cases
that you might want to consider connecting the failure terminal to a sequence of
nodes that can take sensible actions in response to the expected errors.

Examples of expected errors are:
v Temporary errors when the input node retrieves the message.
v Messages with an internal or format error that cannot be recognized or

processed by the input node.

You can also connect the failure terminal if you do not want WebSphere MQ to
retry a message or put it to a backout or dead letter queue.

Managing errors in the input node
When you design your message flow, consider which terminals on the input node
to connect.
v If the node detects an error, it always propagates the message to the Failure

terminal if the node has one and if you have connected a fail flow.
v If you connect the Catch terminal (if the node has one), this action indicates that

you want to handle all exceptions that are generated in the out flow. This
method handles errors that can be expected in the out flow. The broker does not
take any action unless there is an exception on the catch flow and the message is
transactional. Connect the Failure terminal to handle this case if you choose.

v If you do not connect the Catch terminal, or the node does not have a Catch
terminal, the broker provides default processing, which depends on the node
and whether the message is transactional. Processing for non-transactional
messages is described in this topic. Refer to “Handling MQInput errors” on page
38 for details of how these nodes handle transactional messages (other input
nodes do not support transactional messages).

All input nodes process non-transactional, non-persistent messages. The built-in
input nodes handle failures and exceptions associated with these messages in this
way:
v If the node detects an internal error:

– If you have not connected the Failure terminal, the node logs the error in the
local error log and discards the message.
The Real-timeInput and Real-timeOptimizedFlow nodes retry once before
they discard the message; that is, they retrieve the message again and attempt
to process it.

– If you have connected the Failure terminal, you are responsible for handling
the error in the fail flow. The broker creates a new ExceptionList to represent
the error and this is propagated to the Failure terminal as part of the message
tree, but neither the node nor the broker provide any further failure
processing.

v If the node has successfully propagated the message to the Out terminal and a
later exception results in the message being returned to the input node:
– If you have not connected the Catch terminal or the node does not have a

Catch terminal, the node logs the error in the local error log and discards the
message.

– If you have connected the Catch terminal, you are responsible for handling
the error in the catch flow. The broker creates a new ExceptionList to
represent the error and this is propagated to the Catch terminal as part of the
message tree, but neither the node nor the broker provide any further
exception processing.

Developing message flows 37

v If the node has already propagated the message to the Catch terminal and an
exception is thrown in the catch flow:
– If you have not connected the Failure terminal, or the input node does not

have a Failure terminal, the node logs the error in the local error log and
discards the message.

– If you have connected the Failure terminal, you are responsible for handling
the error in the fail flow. The broker creates a new ExceptionList to represent
the error and this is propagated to the Failure terminal as part of the message
tree, but neither the node nor the broker provide any further failure
processing.
The SCADAInput node does not propagate the message to the Failure
terminal if an exception is generated in the catch flow. The node logs the
error in the local error log and discards the message.

v If the node has propagated the message to the Failure terminal and an exception
is thrown in the fail flow, the node logs the error in the local error log and
discards the message.

This action is summarized in the table below:

Error event Failure terminal
connected

Failure terminal
not connected

Catch terminal
connected

Catch terminal
not connected

Node detects
internal error

Fail flow
handles the error

Node logs the
error and
discards the
message

Not applicable Not applicable

Node propagates
message to Out
terminal,
exception occurs
in out flow

Not applicable Not applicable Catch flow
handles the error

Node logs the
error and
discards the
message

Node propagates
message to
Catch terminal,
exception occurs
in catch flow

Fail flow
handles the error
(not
SCADAInput)

Node logs the
error and
discards the
message

Not applicable Not applicable

Node propagates
message to
Failure terminal,
exception occurs
in fail flow

Not applicable Not applicable Node logs the
error and
discards the
message

Node logs the
error and
discards the
message

Handling MQInput errors:

The MQInput node takes the following actions when it handles errors with
persistent and transactional messages. Errors encountered with non-transactional
messages are handled as described in “Managing errors in the input node” on
page 37.
v The MQInput node detects an internal error in the following situations:

– A message validation error occurs when the associated message parser is
initialized.

– A warning is received on an MQGET.
– The backout threshold is reached when the message is rolled back to the

input queue.

38 Message Flows

v If the MQInput node detects an internal error, one of the following actions occur:
– If you have not connected the Failure terminal, the MQInput node attempts to

put the message to the input queue’s backout requeue queue, or (if that is not
defined) to the dead letter queue of the broker’s queue manager. If the put
attempt fails, the message is rolled back to the input queue. The MQInput
node writes the original error and the MQPUT error to the local error log.
The MQInput node now invokes the retry logic, described in “Retry
processing” on page 40.

– If you have connected the Failure terminal, you are responsible for handling
the error in the flow connected to the Failure terminal. The broker creates a
new ExceptionList to represent the error and this is propagated to the Failure
terminal as part of the message tree, but neither the MQInput node nor the
broker provide any further failure processing.

v If the MQInput node has successfully propagated the message to the out
terminal and an exception is thrown in the out flow, the message is returned to
the MQInput node:
– If you have not connected the Catch terminal, the message is rolled back to

the input queue. The MQInput node writes the error to the local error log and
invokes the retry logic, described in “Retry processing” on page 40.

– If you have connected the Catch terminal, you are responsible for handling
the error in the flow connected to the Catch terminal. The broker creates a
new ExceptionList to represent the error and this is propagated to the Catch
terminal as part of the message tree, but neither the MQInput node nor the
broker provide any further failure processing.

v If the MQInput node has already propagated the message to the Catch terminal
and an exception is thrown in the flow connected to the Catch terminal, the
message is returned to the MQInput node:
– The MQInput node writes the error to the local error log.
– The message is rolled back to the input queue.

v If the MQInput node has already propagated the message to the Failure terminal
and an exception is thrown in the flow connected to the Failure terminal, the
message is returned to the MQInput node and rolled back to the input queue.
The MQInput node writes the error to the local error log and invokes the retry
logic, described in “Retry processing” on page 40. The message is not
propagated to the Catch terminal, even if that is connected.

This action is summarized in the table below:

Error event Failure terminal
connected

Failure terminal
not connected

Catch terminal
connected

Catch terminal
not connected

Node detects
internal error

Flow connected
to the Failure
terminal handles
the error

Message put to
alternative
queue; node
retries if the put
fails

Not applicable Not applicable

Node propagates
message to out
terminal,
exception occurs
in out flow

Not applicable Not applicable Flow connected
to the Catch
terminal handles
the error

Node retries

Developing message flows 39

Error event Failure terminal
connected

Failure terminal
not connected

Catch terminal
connected

Catch terminal
not connected

Node propagates
message to
Catch terminal,
exception occurs
in flow
connected to the
Catch terminal

Error logged,
message rolled
back

Error logged,
message rolled
back

Not applicable Not applicable

Node propagates
message to
Failure terminal,
exception occurs
in flow
connected to the
Failure terminal

Not applicable Not applicable Node retries Node retries

Retry processing:

The node attempts retry processing when a message is rolled back to the input
queue. It checks whether the message has been backed out before, and if it has,
whether the backout count has reached (equalled) the backout threshold. The
backout count for each message is maintained by WebSphere MQ in the MQMD.

You specify (or allow to default to 0) the backout threshold attribute BOTHRESH
when you create the queue. If you accept the default value of 0, the node increases
this to 1. The node also sets the value to 1 if it cannot detect the current value.
This means that if a message has not been backed out before, it is backed out and
retried at least once.
1. If the node has propagated a message to the out terminal many times following

repeated failed attempts in the out flow, and the number of retries has reached
the backout threshold limit, it attempts to propagate the message through the
Failure terminal if that is connected. If you have not connected the Failure
terminal, the node attempts to put the message to another queue.
If a failure occurs beyond the Failure terminal, further retries are made until
the backout count field in the MQMD reaches twice the backout threshold set
for the input queue. When this limit is reached, the node attempts to put the
message to another queue.

2. If the backout threshold has not been reached, the node gets the message from
the queue again. If this fails, this is handled as an internal error (described
above). If it succeeds, the node propagates the message to the out flow.

3. If the backout threshold has been reached:
v If you have connected the Failure terminal, node propagates the message to

that terminal. You must handle the error on the flow connected to the Failure
terminal.

v If you have not connected the Failure terminal, the node attempts to put the
message on an available queue, in order of preference:
a. The message is put on the input queue’s backout requeue name (queue

attribute BOQNAME), if one is defined.
b. If the backout queue is not defined, or it cannot be identified by the

node, the message is put on the dead letter queue (DLQ), if one is
defined. (If the broker’s queue manager has been defined by the

40 Message Flows

mqsicreatebroker command, a DLQ with a default name of
SYSTEM.DEAD.LETTER.QUEUE has been defined and is enabled for this
queue manager.)

c. If the message cannot be put on either of these queues because there is an
MQPUT error (including queue does not exist), or because they cannot be
identified by the node, it cannot be handled safely without risk of loss.
The message cannot be discarded, therefore the message flow continues
to attempt to backout the message. It records the error situation by
writing errors to the local error log. A second indication of this error is
the continual incrementing of the BackoutCount of the message in the
input queue.
If this situation has occurred because neither queue exists, you can define
one of the backout queues mentioned above. If the condition preventing
the message from being processed has cleared, you can temporarily
increase the value of the BOTHRESH attribute. This forces the message
through normal processing.

4. If twice the backout threshold has been reached or exceeded, the node attempts
to put the message on an available queue, in order of preference, as defined in
the previous step.

Handling message group errors:

WebSphere MQ supports message groups. You can specify that a message belongs
to a group and its processing is then completed with reference to the other
messages in the group (that is, either all messages are committed or all messages
are rolled back). When you send grouped messages to a broker, this condition is
upheld if you have configured the message flow correctly, and errors do not occur
during group message processing.

To configure the message flow to handle grouped messages correctly, follow the
actions described in the “MQInput node” on page 159. However, correct processing
of the message group cannot be guaranteed if an error occurs while one of the
messages is being processed.

If you have configured the MQInput node as described, under normal
circumstances all messages in the group are processed in a single unit of work
which is committed when the last message in the group has been successfully
processed. However, if an error occurs before the last message in the group is
processed, the unit of work that includes the messages up to and including the
message that generates the error is subject to the error handling defined by the
rules documented here, which might result in the unit of work being backed out.

However, any of the remaining messages within the group might be successfully
read and processed by the message flow, and therefore are handled and committed
in a new unit of work. A commit is issued when the last message is encountered
and processed. Therefore if an error occurs within a group, but not on the first or
last message, it is possible that part of the group is backed out and another part
committed.

If your message processing requirements demand that this situation is handled in a
particular way, you must provide additional error handling to handle errors within
message groups.

Developing message flows 41

Managing message flows
Common tasks and reference information to help you to manage message flows
v “Creating a message flow project”
v “Deleting a message flow project” on page 43
v “Creating a broker schema” on page 44
v “Creating a message flow” on page 45
v “Opening an existing message flow” on page 47
v “Copying a message flow using copy” on page 47
v “Renaming a message flow” on page 48
v “Moving a message flow” on page 48
v “Deleting a message flow” on page 49
v “Saving a message flow” on page 52
v “Version and keyword information for deployable objects” on page 51

To learn more about message flows look at the following sample:
v Airline Reservations sample

In the previous sample you can explore message flow resources, and learn how to
create, delete, or rename the resources. You can view samples only when you use
the information center that is integrated with the Message Brokers Toolkit.

For a basic introduction to developing message flows, see the IBM Redbooks
publication WebSphere Message Broker Basics.

Creating a message flow project

Before you start:

Read the concept topic about message flow projects.

A message flow project is a container for message flows; you must create a project
before you can create a message flow.

The project and its resources are stored in a file system or in a shared repository. If
you are using a file system, this can be the local file system or a shared drive. If
you store files in a repository, you can use any of the available repositories that are
supported by Eclipse, for example CVS.

To create a message flow project, perform the following actions:
1. Switch to the Broker Application Development perspective.
2. Click File → New → Message Flow Project or right-click any resource in the

Broker Development view and click New → Message Flow Project.
You can also press Ctrl+N. This displays a dialog that allows you to select the
wizard to create a new object. Click Message Brokers in the left view; the right
view displays a list of objects that you can create for WebSphere Event Broker.
Click Message Flow Project in the right view, then click Next. The New
Message Flow Project wizard displays.

3. Enter a name for the project. Choose a project name that reflects the message
flows that it contains. For example, if you want to use this project for financial
processing message flows, you might give it the name Finance_Flows.

42 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.res
http://www.redbooks.ibm.com/abstracts/sg247137.html

4. Leave the Use default check box checked (it is checked when the dialog opens)
This applies if you want to use the default location for the new message project
directory, that is, in the \workspace subdirectory of your current installation.
You cannot edit the Directory entry field.
a. Alternatively, clear the Use default check box and specify a location for the

new message flow project files in the Directory entry field. This applies if
you do not want to use the default location.

b. Use the Browse button to find the desired location or type the location in.
5. Click Next if you want to specify that this message flow project depends on

other message flow projects, or on message set projects,
You are presented with a list of current projects. Select one or more message
flow projects, from the list to indicate this new message flow project’s
dependencies. Message flow projects and message set projects are filtered to
only show artifacts in the active working set.
This message flow project has a dependency on another message flow project if
you intend to use subflows within it that are defined in another project.
You can add dependencies after you have created the message flow project by
right-clicking the project in the Broker Development view and clicking
Properties. Click References and select the dependent message flow or
message set project from the list of projects displayed.

6. Click Finish to complete the task.

The project file is created within a directory that has the same name as your
message flow project in the specified location. All other files that you create (or
cause to be created) related to this message flow project are created in this same
directory.

A default broker schema (default) is also created within the project. You can
create and use different schemas within a single project to organize message flow
resources, and to provide the scope of resource names to ensure uniqueness.

Next: create a message flow

Deleting a message flow project

A message flow project is the container in which you create and maintain all the
resources associated with one or more message flows. These resources are created
as files, and are displayed within the project in the Broker Development view. If
you do not want to retain a message flow project, you can delete it.

Before you start:

v Create a message flow project
v Read the concept topic about message flow projects

Deleting a message flow project in the workbench deletes the project and its
resources; the Configuration Manager does not hold a copy. If you are using a
shared repository, the repository might retain a copy of a deleted resource.

In previous releases you could remove resources from the Control Center, which
removed the reference in your workspace, but retained the resource in the
Configuration Manager repository.

To delete a message flow project:

Developing message flows 43

|
|
|
|

1. Switch to the Broker Application Development perspective.
2. Highlight the message flow project that you want to delete and click Edit →

Delete You can also press Del, or right-click the project in the Broker
Development view and click Delete

3. You must choose if you want the contents of the message flow project folder
deleted with this action on the displayed confirmation dialog. The dialog
contains two buttons:
a. The first confirms that all contents are to be deleted.
b. The second requests that the directory contents are not deleted. The default

action is not to delete the contents, and the second button is selected by
default when the dialog is initially displayed.

a. Select the appropriate button. If you choose not to delete the contents of the
message flow project directory, all the files and the directory itself are
retained.
If you later create another project with the same name, and specify the same
location for the project (or accept this as the default value), you can access
the files previously created.
If you choose to delete all the contents, all files and the directory itself are
deleted.

4. Click Yes to complete the delete request, or No to terminate the delete request.

When you click Yes, the requested objects are deleted.

If you maintain resources in a shared repository, a copy is retained in that
repository. You can follow the instructions provided by the repository supplier to
retrieve the resource if required.

If you are using the local drive or a shared drive to store your resources, no copy
of the resource is retained. Be very careful to select the correct resource when you
complete this task.

Creating a broker schema

If you want to organize your message flow project resources, and to define the
scope of resource names to ensure uniqueness, you can create broker schemas. A
default schema is created when you create the message flow project, but you can
create additional schemas if you choose.

Before you start:

v Create a message flow project
v Read the concept topic about broker schemas

To create a broker schema:
1. Switch to the Broker Application Development perspective.
2. Click File → New → BrokerSchema or right-click any resource in the Broker

Development view and click New → BrokerSchema.
You can also press Ctrl+N. This displays a dialog that allows you to select the
wizard to create a new object. Click Message Brokers in the left view. The right
view displays a list of objects that you can create for WebSphere Event Broker.
Click Broker Schema in the right view, then click Next. The New Broker
Schema wizard displays.

44 Message Flows

3. Enter the message flow project in which you want the new schema to be
created. If you have a message flow project or one of its resources highlighted
when you invoke the wizard, that project name appears in the dialog. If a name
does not appear in this field, or if you want to create the schema in another
project, click Browse and select the correct project from the displayed list. The
message flow project list is filtered to only show projects in the active working
set.
You can type the project name in, but you must enter a valid name. The dialog
displays a red cross and the error message The specified project does not
exist if your entry is not a valid project.

4. Enter a name for the schema. Choose a name that reflects the resources that it
contains. For example, if you want to use this schema for message flows for
retail applications, you might give it the name Retail.
A broker schema name must be a character string that starts with a Unicode
character followed by zero or more Unicode characters or digits, and the
underscore. You can use the period to provide a structure to the name, for
example Stock.Common.

5. Click Finish to complete the task.

The schema directory is created in the project directory. If the schema is structured
using periods, further subdirectories are defined. For example, the broker schema
Stock.Common results in a directory Common within a directory Stock within the
message flow project directory.

Creating a message flow
Create a message flow to specify how to process messages in the broker. You can
create any number of message flows and deploy them to one or more brokers.

Before you start:
v Complete the following task: “Creating a message flow project” on page 42.
v Read the concept topic about “Broker schemas” on page 10.

The message flow and its resources are stored in a file system or in a shared
repository. If you are using a file system, this can be the local drive or a shared
drive. If you store files in a repository, you can use any of the available repositories
that are supported by Eclipse, for example CVS.

Use this process to create a complete message flow that you can deploy, or a
subflow that provides a subset of function (for example, a reusable error
processing routine) that you cannot deploy on its own.

To create a message flow, perform the following actions:
1. Switch to the Broker Application Development perspective.
2. If you have not already created the message flow project in which you want to

create the message flow, then you can either create it now, see “Creating a
message flow project” on page 42, or you can create the message flow project
as an optional step in creating the message flow (see step 4). The project can be
empty, or can have message flows defined in it.

3. Perform one of the following actions to open a new message flow:
v Click File → New → Message Flow.
v Right-click any resource in the Broker Development view and click New →

Message Flow.

Developing message flows 45

|
|
|
|
|
|
|

|
|
|

v Press Ctrl+N. This action displays a dialog box in which you can select the
wizard to create a new object:
a. Click Message Brokers in the left view. The right view displays a list of

objects that you can create for WebSphere Event Broker.
b. Click Message Flow in the right view, then click Next. The New Message

Flow wizard displays.
4. Identify the project in which you want to define the message flow. This field is

filtered to only show resources in the active working set.
v If you have a resource selected in the Broker Development view, the name of

the corresponding project is displayed in the Message Flow Project field.
v If you do not have a resource selected, the first field is blank.

– If you have already created the message flow project for this message
flow, you can perform either of the following actions:
- Type the name of the project into the field.
- Click the down-arrow and select the appropriate project from the list

displayed.
– If you have not already created the message flow project, select New. The

New Message Flow Project wizard starts, and you can use it to create the
message flow project for your new message flow, see “Creating a message
flow project” on page 42. When you have finished creating the new
message flow project, the New Message Flow Project wizard closes, and
the name of your new message flow project is displayed in the Message
Flow Project field of the New Message Flow window.

If your entry is not a valid project name, the window displays a red cross and
the error message The specified project does not exist .

5. In the Message flow Name field, enter the name of the new message flow. You
can use any valid character for the name, but it is helpful to choose a name
that reflects its function, for example, OrderProcessing.

6. Decide whether you want to use the default broker schema. When you create a
message flow project, a default schema is created within it, and this default
value is assumed unless you deselect it. You can create and use different
schemas within a single project to organize message flow resources, and to
provide the scope of resource names to ensure uniqueness.
v If you want the message flow to be created in the default broker schema,

ensure that you select Use default in the Flow organization section.
v If you want to use a different broker schema, deselect Use default. You can

now perform either of the following actions:
– Enter the name of the broker schema into the Schema field.
– Click Browse to select from any of the broker schemas in the message

flow project.
7. Click Finish.

The new message flow (<message_flow_name>.msgflow) is displayed within its
project in the Broker Development view. The Editor view is empty and ready to
receive your input.

Next, you can do either of the following tasks:
v “Saving a message flow” on page 52
v “Defining message flow content” on page 54

46 Message Flows

|
|

Opening an existing message flow
Open an existing message flow to change or update its contents, or to add or
remove nodes.

Before you start

You must have completed the following task:
v “Creating a message flow” on page 45

To open an existing message flow:
1. Switch to the Broker Application Development perspective. The Broker

Development view is populated with all the message flow and message set
projects that you have access to. A message flow is contained in a file called
<message_flow_name>.msgflow.

2. Right-click the message flow that you want to work with, and click Open.
Alternatively you can double-click the message flow in the Broker
Development view.
The graphical view of the message flow is displayed in the editor view. You
can now work with this message flow; for example, you can add or remove
nodes, change connections between nodes, or modify node properties.

Copying a message flow using copy

You might find it useful to copy a message flow as a starting point for a new
message flow that has similar function. For example, you might want to replace or
remove one or two nodes to process messages in a different way.

Before you start

To complete this task, you must have completed the following task:
v “Creating a message flow” on page 45

To copy a message flow:
1. Switch to the Broker Application Development perspective.
2. Select the message flow (<message_flow_name>.msgflow) that you want to

copy in the Broker Development view.
a. Right-click the file and click Copy from the menu.

3. Right-click the broker schema within the message flow project to which you
want to copy the message flow and click Paste. You can copy the message flow
within the same broker schema within the same message flow, or to a different
broker schema within the same message flow project, or to a broker schema in
a different message flow project.

The message flow is copied with all property settings intact. If you intend to use
this copy of the message flow for another purpose, for example to retrieve
messages from a different input queue, you might have to modify its properties.

You can also use File → Save As to copy a message flow. This is described in
“Saving a message flow” on page 52.

Developing message flows 47

Renaming a message flow

You can rename a message flow. You might want to do this if you have modified
the message flow to provide a different function and you want the name of the
message flow to reflect this new function.

Before you start

To complete this task, you must have completed the following task:
v “Creating a message flow” on page 45

To rename a message flow:
1. Switch to the Broker Application Development perspective.
2. Right-click the message flow that you want to rename

(<message_flow_name>.msgflow) in the Broker Development view, and click
Rename, or click File → Rename. If you have the message flow selected, you
can also press F2. The Rename Resource dialog is displayed.

3. Type in the new name for the message flow.
4. Click OK to complete this action, or Cancel to cancel the request. If you click

OK, the message flow is renamed.
After you have renamed the message flow, any references that you have to this
message flow (for example, if it is embedded in another message flow) are no
longer valid.

5. You must open the affected message flows and correct the references if you are
not sure where you have embedded this message flow.
a. Click File → Save All The save action saves and validates all resources.

Unresolved references are displayed in the Tasks view, and you can click
each error listed.
This opens the message flow that makes a non-valid reference in the editor
view

b. Right click the subflow icon and click Locate Subflow. The Locate Subflow
dialog is displayed, listing the available message flow projects.

c. Expand the list and explore the resources available to locate the required
subflow.

d. Select the correct subflow and click OK. All references in the current
message flow are updated for you and the errors removed from the Tasks
view.

Moving a message flow
You can move a message flow from one broker schema to another within the same
project or to a broker schema in another project. You might want to do this, for
example, if you are reorganizing the resources in your projects.

Before you start:

Complete the following task:
v “Creating a message flow” on page 45

To move a message flow:
1. Switch to the Broker Application Development perspective.

48 Message Flows

2. Drag the message flow that you want to move from its current location to a
broker schema in the same or another message flow project. If the target
location that you have chosen is not valid, a black no-entry icon appears over
the target, an error dialog box is displayed, and the message flow is not moved.
You can move a message flow to another schema in the same project or to a
schema in another message flow project.
Alternatively, you can use the following method:
a. Right-click the message flow that you want to move

(message_flow_name.msgflow) in the Broker Development view and click
Move, or File → Move. The Move dialog box is displayed. This contains a
list of all valid projects to which you can move this message flow.

b. Select the project and the broker schema in the project to which you want to
move the message flow. You can move a message flow to another schema in
the same project or to a schema in another message flow project.

c. Click OK to complete the move, or Cancel to cancel the move. If you click
OK, the message flow is moved to its new location.

3. Check the Tasks view for any errors (indicated by the error icon) or

warnings (indicated by the warning icon) that are generated by the move.
The errors in the Tasks view include those that are caused by broker references.
When the move is complete, all references to this message flow (for example, if
this is a reusable error message flow that you have embedded in another
message flow) are checked.
If you have moved the message flow within the same broker schema (in the
same or another project), all references are still valid. However, if you move the
message flow from one broker schema to another (in the same or a different
project), the references are broken because the resources are linked by a
fully-qualified name of which the broker schema is a part. Information about
any broken references is written to the Tasks view; for example, Linked or
nested flow mflow1 cannot be located.

4. Double-click each error or warning to correct it. The message flow that contains
the error is opened in the editor view and the node in error is highlighted.

Deleting a message flow

You can delete a message flow that you have created in a message flow project if
you no longer need it.

Deleting a message flow in the workbench deletes the project and its resources,
and the Configuration Manager does not hold a copy. If you are using a shared
repository, the repository might retain a copy of a deleted resource.

In previous releases you could remove resources from the Control Center, which
removed the reference in your workspace, but retained the resource in the
Configuration Manager repository.

Before you start

To complete this task, you must have completed the following task:
v “Creating a message flow” on page 45

To delete a message flow:
1. Switch to the Broker Application Development perspective.

Developing message flows 49

2. Select the message flow in the Broker Development view
(<message_flow_name>.msgflow) and press the Delete key. A confirmation
dialog is displayed.
You can also right-click the message flow in the Broker Development view and
click Delete, or click Edit → Delete. The same dialog is displayed.

3. Click Yes to delete the message flow definition file or No to cancel the delete
request. When you click Yes, the requested objects are deleted.
If you maintain resources in a shared repository, a copy is retained in that
repository. You can follow the instructions provided by the repository supplier
to retrieve the resource if required.
If you are using the local file system or a shared file system to store your
resources, no copy of the resource is retained. Be very careful to select the
correct resource when you complete this task.

4. Check the Tasks view for any errors that are caused by the deletion. Errors are
generated if you delete a message flow that is embedded within another flow
because the reference is no longer valid.
a. Click the error in the Tasks view This opens the message flow that now has

a non-valid reference.
b. Either remove the node that represents the deleted message flow from the

parent message flow, or create a new message flow with the same name to
provide whatever processing is required.

Deleting a broker schema
You can delete a broker schema that you have created in a message flow project if
you no longer need it.

Before you start:

v Create a broker schema
v Read the concept topic about broker schemas

To delete a broker schema:
1. Switch to the Broker Application Development perspective.
2. Select the broker schema in the Broker Development view and press the Delete

key. A confirmation dialog box is displayed.
You can also right-click the broker schema in the Broker Development view and
click Delete, or click Edit → Delete. The same dialog box is displayed.
If the broker schema contains resources, the Delete menu option is disabled,
and the Delete key has no effect. You must delete all resources within the
schema before you can delete the schema.

3. Click Yes to delete the broker schema directory or No to cancel the delete
request. When you click Yes, the requested objects are deleted.
If you maintain resources in a shared repository, a copy is retained in that
repository. You can follow the instructions provided by the repository supplier
to retrieve the resource, if required.
If you are using the local file system or a shared file system to store your
resources, no copy of the resource is retained. Be very careful to select the
correct resource when you complete this task.

50 Message Flows

Version and keyword information for deployable objects

Use the Broker Archive file editor to view the version and keyword information of
deployable objects.
v “Displaying object version in the Broker Archive editor”
v “Displaying version, deploy time, and keywords of deployed objects”

This topic also contains information on populating the Comment and Path
columns; see “Populating the Comment and Path columns.”

Displaying object version in the Broker Archive editor

A column in the Broker Archive editor called Version displays the version tag for
all objects that have a defined version. These are:
v .cmf files

You cannot edit the Version column.

You can use the mqsireadbar command to list the keywords that are defined for
each deployable file within a deployable archive file.

Displaying version, deploy time, and keywords of deployed
objects

The Properties View displays, for any deployed object:
v Version
v Deploy Time
v All defined keywords

For example, if you deploy a message flow with these literal strings:
v $MQSI_VERSION=v1.0 MQSI$

v $MQSI Author=fred MQSI$

v $MQSI Subflow 1 Version=v1.3.2 MQSI$

the Properties View displays:

Deployment Time Date and time of deployment

Modification Time Date and time of modification

Version v1.0

Author fred

Subflow 1 Version v1.3.2

You are given a reason if the keyword information is not available. For example, if
keyword resolution has not been enabled at deploy time, the Properties View
displays the message Deployed with keyword search disabled. Also, if you deploy
to a Configuration Manager that is an earlier version than Version 6.0, the
properties view displays Keywords not available on this Configuration Manager.

Populating the Comment and Path columns

If you add source files, the Path column is populated automatically.

Developing message flows 51

To add a comment, double click on the Comment column and type the text that
you require.

Saving a message flow

You might want to save your message flow when you want to:
v Close the workbench.
v Work with another resource.
v Validate the contents of the message flow.

Before you start:

To complete this task, you must have completed the following task:
v “Creating a message flow” on page 45

To save a message flow:
1. Switch to the Broker Application Development perspective.
2. Select the editor view that contains the open message flow that you want to

save.
3. If you want to save the message flow without closing it in the editor view,

press Ctrl+S or click File → Save name on the taskbar menu (where name is the
name of this message flow). You can also choose to save everything by clicking
File → Save All.
The message flow is saved and the message flow validator is invoked to
validate its contents. The validator provides a report of any errors that it finds
in the Tasks view. The message flow remains open in the editor view.
For example, if you save a message flow and have not set a mandatory
property, an error message appears in the Tasks view and the editor marks the

node with the error icon . The message flow in the Broker Development
view is also marked with the error icon. This can occur if you have not edited
the properties of an MQInput node to define the queue from which the input
node retrieves its input messages.
(If you edit the properties of a node, you cannot click OK unless you have set
all mandatory properties. Therefore this situation can arise only if you have
never set any properties.)
You might also get warnings when you save a message flow. These are

indicated by the warning icon . This informs you that, although there is not
an explicit error in the configuration of the message flow, there is a situation
that might result in unexpected results when the message flow completes. For
example, if you have included an input node in your message flow that you
have not connected to any other node, you get a warning. In this situation, the
editor marks the node with the warning icon. The message flow in the Broker
Development view is also marked with a warning icon.

4. If you save a message flow that includes a subflow, and the subflow is no
longer available, three error messages are added to the Tasks view that indicate
that the input and output terminals and the subflow itself cannot be located.
This can occur if the subflow has been moved or renamed.
To resolve this situation, right-click the subflow node in error and click Locate
Subflow. The Locate Subflow dialog is displayed, listing the available message
flow projects. Expand the list and explore the resources available to locate the

52 Message Flows

required subflow. Select the correct subflow and click OK. All references in the
current message flow are updated for you and the errors removed from the
Tasks view.

5. If you want to save the message flow when you close it, click the close view

icon on the editor view tab for this message flow or click File → Close on
the taskbar menu. The editor view is closed and the file saved. The same
validation occurs and any errors and warnings are written to the Tasks view.

For information about using the File → Save As option to take a copy of the
current message flow, see “Copying a message flow using save.”

See “Correcting errors from saving a message flow” for information about
handling errors from the save action.

Copying a message flow using save

You can copy a message flow by using the File → Save As option.
1. Click File → Save name As.
2. Specify the message flow project in which you want to save a copy of the

message flow. The project name defaults to the current project. You can accept
this name, or choose another name from the valid options that are displayed in
the File Save dialog.

3. Specify the name for the new copy of the message flow. If you want to save
this message flow in the same project, you must either give it another name, or
confirm that you want to overwrite the current copy (that is, copy the flow to
itself).
If you want to save this message flow in another project, the project must
already exist (you can only select from the list of existing projects). You can
save the flow with the same or another name in another project.

4. Click OK. The message flow is saved and the message flow editor validates its
contents. The editor provides a report of any errors that it finds in the Tasks
view. See “Correcting errors from saving a message flow” for information about
handling errors from the save action.

Correcting errors from saving a message flow

Correct the errors that are reported when you save a message flow.

To correct errors from the save or save as action:
1. Examine the list of errors and warnings that the validator has generated in the

Tasks view.
2. Double-click each entry in turn. The message flow is displayed in the editor

view (if it is not already there), and the editor selects the node in which the
error was detected. If the error has been generated because you have not set a
mandatory property, the editor also opens the Properties view or dialog box for
that node.
If you have included a user-defined node in your message flow, and have one
or more of its properties have been defined as configurable, you might get a
warning about a custom property editor. If a property has been defined as
configurable, and you have specified that it uses a custom property editor, the
Broker Archive editor cannot handle the custom property editor; the Broker
Archive editor handles the property as if it is type String, which restricts your
ability to make changes to this property at deploy time.

Developing message flows 53

3. Correct the error that is indicated by the message. For example, provide a value
for the mandatory property.

4. When you have corrected all the errors, you can save again. The editor
validates all the resources that you have changed, removes any corrected errors
from the Tasks view, and removes the corresponding graphical indication from
the nodes that you have modified successfully.

You do not have to correct every error to save your work. The editor saves your
resources even if it detects errors or warnings, so that you can continue to work
with them at a later date. However, you cannot deploy any resource that has a
validation error. You must correct every error before you deploy a resource.
Warnings do not prevent successful deployment.

Defining message flow content
This topic describes how to create the contents of the message flow.

When you create a new message flow, the editor view is initially empty. You must
create the contents of the message flow by:
v “Adding a message flow node” on page 57
v “Adding a subflow” on page 58
v “Renaming a message flow node” on page 59
v “Configuring a message flow node” on page 59
v “Connecting message flow nodes” on page 61
v “Adding a bend point” on page 64
v “Aligning and arranging nodes” on page 66

When you finalize the content of the message flow, you might also need to
perform the following tasks:
v “Removing a message flow node” on page 61
v “Removing a node connection” on page 64
v “Removing a bend point” on page 65

To learn more about message flow content, you can import either of the following
samples:
v Airline Reservations sample
v Error Handler sample

Follow the supplied instructions to build the sample yourself. You can also try
adding and deleting nodes, adding subflows, and connecting nodes together. You
can view samples only when you use the information center that is integrated with
the Message Brokers Toolkit.

For a basic introduction to developing message flows, see the IBM Redbooks
publication WebSphere Message Broker Basics.

Using the node palette

Before you start:

Read the concept topic about the node palette.

54 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.res
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.errorhandler.res
http://www.redbooks.ibm.com/abstracts/sg247137.html

The node palette contains all of the built-in nodes, which are organized into
categories. You can add the nodes that you use most often to the Favorites
category by following the instructions in “Adding nodes to the Favorites category
on the palette” on page 56.

You can change the palette preferences in the Message Brokers Toolkit. The
changes that you can make are described in the following topics.
v “Changing the palette layout”
v “Changing the palette settings”
v “Customizing the palette”

Changing the palette layout

You can change the layout of the palette in the Message Flow editor and the
Broker Topology editor.
1. Switch to the Broker Application Development perspective
2. Right-click the palette to display the pop-up menu.
3. Click Layout.
4. Click one of the available views:

Columns
Displays named icons in one or more columns. Change the number of
columns by clicking on the right edge of the palette and dragging.

List Displays named icons in a single-column list. The list view is the
default layout.

Icons Only
Displays a list of icons only.

Details
Displays descriptions of the icons.

Changing the palette settings

Change the palette settings in the Message Flow editor and the Broker Topology
editor using the Palette Settings dialog box.
1. Switch to the Broker Application Development perspective.
2. Right-click the palette to display the pop-up menu.
3. Click Settings. The Palette Settings dialog box opens.
4. Use the dialog to change the appropriate setting:
v Click Change to change the font on the palette.
v Click Restore Default to restore the default palette settings.
v In the Layout list, click the appropriate radio button to change the palette

layout. (See “Changing the palette layout” for more information.)
v Select User large icons to toggle between large and small icons in the palette.
v In the Drawer options list, click the appropriate radio button to change the

way that drawers are handled in the palette. A drawer is a container for a
list of icons, such as the Favorites drawer on the Message Flow editor’s
palette, or the Entity drawer on the Broker Topology editor’s palette.

Customizing the palette

If you customize the message flow node palette, you can make it easier to find the
nodes that you use most often, saving time and on-screen space. For example:

Developing message flows 55

v Change the order of the drawers in the palette so that the ones that you use
most often are at the top.

v Hide any drawers that you do not use, to save on-screen space.
v Pin open the drawers that contain the nodes that you use most often.
v Create your own drawers to hold user-defined nodes that you create.

Customize the palette for the Message Flow editor using the Customize Palette
dialog box:
1. Switch to the Broker Application Development perspective.
2. Right-click the palette, then click Customize. The Customize Palette dialog box

opens.
v To change the order of entries and drawers in the palette, click the

appropriate item in the list to highlight it, then click Move Down or Move
Up. You cannot move any category above the Favorites category.

v To hide an entry or drawer, click the appropriate item in the list to highlight
it, then select the Hide check box.

v To create a new separator, click New → Separator.
v To create a new drawer:

a. Click New → Drawer.
b. Type a name and description for the drawer.
c. If required, select the Open drawer at start-up check box.
d. If required, select the Pin drawer open at start-up check box.

3. Click OK or Apply to save your changes.

You have customized the message flow node palette.

Adding nodes to the Favorites category on the palette

Before you start:

Read the concept topic about the message flow node palette.

The nodes on the palette are organized in categories. The first category is
Favorites, which is usually empty. You can drag the nodes that you use most often
to the Favorites category.
1. Switch to the Broker Application Development perspective.
2. On the palette, open the Favorites category.
3. On the palette, open the category that contains the node that you want to add

to the Favorites category.
4. Use the mouse to drag the node into the Favorites category, as shown in the

following example:

56 Message Flows

Alternatively, right-click the palette and choose the appropriate option to add or
remove nodes from the Favorites category.

Adding a message flow node
When you have created a new message flow, add nodes to define its function.

Before you start:
v Create a message flow or open an existing message flow
v Read the concept topic about message flow nodes

To add a node to a message flow:
1. Switch to the Broker Application Development perspective.
2. Open the message flow with which you want to work.
3. Open the Palette.
v Hover the mouse over the palette bar while it is in collapsed mode. The

palette bar expands. When you move the mouse away from the palette bar, it
collapses again.

v Click the Show Palette icon at the top of the palette bar. The palette bar
expands and it remains expanded when the mouse is moved away from the
palette bar. To collapse the palette bar again, click the Hide Palette icon at
the top of the palette bar while it is in expanded mode.

4. Click Selection above the palette of nodes.
5. Decide which node you want to add: a built-in node or a user-defined node.

You can select any of the nodes that appear in the node palette, but you can
add only one node at a time.
Nodes are grouped in categories according to the function that they provide. To
see descriptions of the nodes in the palette, either hover the mouse over a node
in the palette, or switch to the Details view by following the instructions in
“Changing the palette layout” on page 55.

6. Drag the node from the node palette onto the canvas.
When you add a node to the canvas, the editor automatically assigns a name to
the node, but the name is highlighted and you can change it by entering a
name of your choice. If you do not change the default name at this time, you
can change it later. The default name is set to the type of node for the first
instance. For example, if you add an MQInput node to the canvas, it is given
the name MQInput; if you add a second MQInput node, the default name is
MQInput1; the third is MQInput2, and so on.

7. Repeat steps 5 and 6 to add further nodes.
8. You can also add nodes from other flows into this flow:

a. Open the other message flow.
b. Select the node or nodes that you want to copy from the editor or outline

views, and press Ctrl+C or click Edit → Copy.
c. Return to the flow with which you are currently working.
d. Press Ctrl+V or click Edit → Paste. This action copies the node or nodes into

your current flow. The node names and properties are preserved in the new
copy.

When you have added the nodes that you want in this message flow, you can
connect them to specify the flow of control through the message flow, and you can
configure their properties.

Developing message flows 57

Next: configure the nodes.

Adding a node using the keyboard

Before you start:
v Create a message flow or open an existing message flow
v Read the concept topic about message flow nodes

You can use the keyboard to perform tasks in the Message Flow editor, such as
adding a node to the canvas.
1. Switch to the Broker Application Development perspective.
2. Open the message flow to which you want to add a node.
3. Open the Palette view or the Palette bar.
4. Select a node in the Palette view or Palette bar using the up and down arrows

to highlight the node that you want to add to the canvas.
5. Add the Node to the canvas using one of the following methods:
v Press Alt + L, then press N.
v Press Shift + F10 to open the context-sensitive menu for the Palette, and

press N.

The node that you selected in the Palette bar or Palette view is placed on the
canvas in the Editor view.
When you add a node to the canvas, the editor automatically assigns a name to
the node, but the name is highlighted and you can change it by entering a
name of your choice. If you do not change the default name at this time, you
can change it later. The default name is set to the type of node for the first
instance. For example, if you add an MQInput node to the canvas, it is given
the name MQInput; if you add a second MQInput node, the default name is
MQInput1; the third is MQInput2, and so on.

You can move the node that you have placed on the canvas using the keyboard
controls described in Message Brokers Toolkit keyboard shortcuts.

Adding a subflow

Within a message flow, you might want to include an embedded message flow,
also known as a subflow.

Before you start

To complete this task, you must have completed one of the following tasks:
v “Creating a message flow” on page 45
v “Opening an existing message flow” on page 47

When you add a subflow, it appears in the editor view as a single node.

You can embed subflows into your message flow if either of the following
statements is true:
v The flow that you want to embed is defined in the same message flow project.
v The flow is defined in a different message flow project, and you have specified

the dependency of the current message flow project on that other project.

To add a subflow to a message flow:
1. Switch to the Broker Application Development perspective.

58 Message Flows

2. Open the message flow that you want to work with.
3. Drag and drop the message flow from the Navigator view into the editor view.

Alternatively, highlight the embedding message flow and click Edit → Add
subflow, which displays a list of valid flows that you can add to the current
flow.

4. Select the flow that you want to add from the list. The subflow icon is
displayed with the terminals that represent the Input and Output nodes that
you have included in the subflow.

5. Click OK.
6. Repeat steps 3, 4, and 5 to add further subflow nodes.
7. Select and open (double-click) the flow by name in the Navigator view, or

right-click the embedded flow icon and select Open Subflow to work with the
contents of the embedded flow

When you have added the nodes that you want in this message flow, you can
connect them to specify the flow of control through the message flow, and you can
modify their properties.

Renaming a message flow node

Before you start:

v Create a message flow
v Read the concept topic about message flow nodes

You can change the name of any type of node (a built-in node, user-defined node,
or subflow node) to reflect its purpose. When you first add a node to the canvas,
the editor automatically assigns a name to the node, but the name is highlighted
and you can change it by entering a name of your choice. If you do not change the
default name at this time, you can change it later, as described in this topic.

When you rename a node, use only the supported characters for this entity. The
editor prevents you from entering unsupported characters.

To rename a node:
1. Switch to the Broker Application Development perspective.
2. Open the message flow with which you want to work.
3. You can rename a node in three ways:
v Right-click the node and click Rename. The name is highlighted; enter a

name of your choice and press Enter.
v Click the node to select it, then click the node’s name so that it is

highlighted; enter a name of your choice and press Enter.
v Click the node to select it, then on the Description tab of the Properties view,

enter a name of your choice in the Node name field.

The name that you enter must be unique within the message flow.

Configuring a message flow node
When you have included an instance of a node in your message flow, you can
configure its properties to customize how it works.

Before you start:
v Read the concept topic about message flow nodes

Developing message flows 59

v Add a node

You can configure all kinds of node: built-in nodes, user-defined nodes, and
subflow nodes. You can choose whether the properties appear in the Properties
view below the Message Flow editor, or in the Properties dialog box. By default,
properties are shown in the Properties view. To switch to the Properties dialog box,
take the following steps:
1. Click Window → Preferences to open the Preferences dialog box.
2. Expand Broker Development and click Message Flow Editor.
3. Select Show node properties in a Properties Dialog.

Node properties are displayed in the Properties dialog box when you select a node
in the Message Flow editor.

Viewing a node’s properties

To view a node’s properties:
1. Switch to the Broker Application Development perspective.
2. Open the message flow with which you want to work.
3. Open the palette.
4. Click Selection above the node palette.
5. Right-click a node and click Properties to open the Properties view or

Properties dialog box. Alternatively, you can double-click the node to display
its properties.

The selected node’s properties are displayed in the format of your choice.

Editing a node’s properties

Properties are organized into related groups and displayed on tabs. Each tab is
listed on the left of the Properties view or Properties dialog box. Click each tab to
view the properties that you can edit.
v Every node has at least one tab, Description, where you can change the name of

the node and enter short and long descriptions. The description fields are
optional because they are used only for documentation purposes.

v If a property is mandatory, that is, one for which you must enter a value, the
property name is marked with an asterisk, as shown in the following example:
Queue Name* ________________________________

For details of how to configure each individual built-in node, see the node
description. You can find a list of the nodes, with links to the individual topics, in
“Built-in nodes” on page 132.

Promoting properties

You can promote node properties to their containing message flow; for more
information, see “Promoting a property” on page 68. Use this technique to set
some values at the message flow level, without having to change individual nodes.
This can be useful, for example, when you embed a message flow in another flow,
and want to override some property such as output queue with a value that is
correct in this context.

60 Message Flows

Overriding properties at deployment time

You can override a small number of node property values when you deploy a
message flow. These property values are known as configurable properties, and
you can use them to modify some characteristics of a deployed message flow
without changing the message flow definitions. For example, you can update
queue manager information.

Even though you can set values for configurable properties at deployment time,
you must set values for these properties within the message flow if they are
mandatory. Each built-in node reference topic contains a table of properties, which
identifies the configurable and mandatory properties.

Next: connect the nodes.

Removing a message flow node

When you have created and populated a message flow, you might need to remove
a node to change the function of the flow, or to replace it with another more
appropriate node. The node can be a built-in node, a user-defined node, or a
subflow node.

Before you start:

v Add a node
v Add a subflow
v Read the concept topic about message flow nodes

To remove a node:
1. Switch to the Broker Application Development perspective.
2. Open the message flow that you want to work with.
3. Select the node in the editor view and press the Delete key.
4. Highlight the node and click Edit → Delete

You can also right-click the node in the editor view and click Delete, or
right-click the node in the Outline view and click Delete. The editor removes
the node. If you have created any connections between that node and any other
node, those connections are also deleted when you delete the node.

5. If you delete a node in error, you can restore it by right-clicking in the editor
view and clicking Undo Delete. The node and its connections, if any, are
restored.

6.

You can also click Edit → Undo Delete or press Ctrl+Z.
7. If you undo the delete, but decide it is the correct delete action, you can

right-click in the editor view and click Redo Delete.
You can also click Edit → Redo Delete.

Connecting message flow nodes
When you include more than one node in your message flow, you must connect
the nodes to indicate how the flow of control passes from input to output. The
nodes can be built-in nodes, user-defined nodes, or subflow nodes.

Before you start:
v Add a node

Developing message flows 61

v Add a subflow
v Read the concept topic about connections

Your message flow might contain just one MQInput node, and one MQOutput
node. Or it might involve a large number of nodes, and perhaps embedded
message flows, that provide a number of paths through which a message can
travel depending on its content.

When you have completed a connection, it is displayed as a black line, and is
drawn as close as possible to a straight line between the connected terminals. This
might result in the connection passing across other nodes. To avoid this, you can
add bend points to the connection.

In the Message Flow editor, you can display node and connection metadata by
hovering the mouse over a node or subflow in a message flow. To view metadata
information for a node, subflow, or connection:
1. Switch to the Broker Application Development perspective.
2. Open a message flow.
3. In the Message Flow editor, hover the mouse over a node, a subflow, or a node

connection in the open message flow by placing the mouse over the element.

A custom tooltip is displayed below the element.
v To turn the pop-up window into a scrollable window, press F2.
v To hide the pop-up window, either press Esc or move the mouse away from the

node.

If you define a complex message flow, you might have to create a large number of
connections. The principle is the same for every connection. You create connections
either by using the mouse, or by using the Terminal Selection dialog. See “Creating
node connections with the mouse” and “Creating node connections with the
Terminal Selection dialog box” on page 63 for more information.

Creating node connections with the mouse
Use the mouse to connect one node to another.

Before you start:

Read the concept topic about connections.
1. Switch to the Broker Application Development perspective.
2. Open the message flow with which you want to work.
3. Click the terminal from which the connection is to be made; that is, the

terminal from which the message is propagated from the current node.
For example, you can click the Failure, Out, or Catch terminal of the MQInput
node. Hover the mouse over each terminal to see the name of the terminal. You
do not need to keep the mouse button pressed.
Alternatively, click Connection on the palette, then click the node from which
the connection is to be made. The Terminal Selection dialog box opens for you
to choose the terminal from which to make a connection. Click OK.

4. Click the input terminal of the next node in the message flow (to which the
message passes for further processing). The connection is made when you click
a valid input terminal. The connection appears as a black line between the two
terminals.

62 Message Flows

In the Message Flow editor, you can display node and connection metadata by
hovering the mouse over a node or subflow in a message flow. To view metadata
information for a node, subflow, or connection:
1. Switch to the Broker Application Development perspective.
2. Open a message flow.
3. In the Message Flow editor, hover the mouse over a node, a subflow, or a node

connection in the open message flow by placing the mouse over the element.

A custom tooltip is displayed below the element.
v To turn the pop-up window into a scrollable window, press F2.
v To hide the pop-up window, either press Esc or move the mouse away from the

node.

Next: add a bend point, as described in “Adding a bend point” on page 64.

Creating node connections with the Terminal Selection dialog
box
Use the Terminal Selection dialog box to connect one node to another.

Before you start:

Read the concept topic about connections.
1. Switch to the Broker Application Development perspective.
2. Open the message flow with which you want to work.
3. Click Connection above the node palette.
4. Click the node from which you want the connection to be made. The Terminal

Selection dialog box is displayed.
5. Select the terminal from the list of valid terminals on this node. Click OK. The

dialog box closes.
6. Click the node to which to make the connection. If this node has only one

input terminal, the connection is made immediately. If this node has more than
one input terminal, the Terminal Selection dialog box is displayed again, listing
the input terminals of the selected node. Click the correct terminal and click
OK.

Alternatively, you can make a connection in the following way:
1. Click Selection above the node palette.
2. Right-click the node from which you want to make the connection and click

Create Connection. The Terminal Selection dialog box is displayed.
3. Select the terminal from the list of valid terminals on this node. Click OK. The

dialog box closes.
4. Click the node to which to make the connection. If this node has only one

input terminal, the connection is made immediately. If this node has more than
one input terminal, the Terminal Selection dialog box is displayed again, listing
the input terminals of the selected node. Click the correct terminal and click
OK.

In the Message Flow editor, you can display node and connection metadata by
hovering the mouse over a node or subflow in a message flow. To view metadata
information for a node, subflow, or connection:
1. Switch to the Broker Application Development perspective.
2. Open a message flow.

Developing message flows 63

3. In the Message Flow editor, hover the mouse over a node, a subflow, or a node
connection in the open message flow by placing the mouse over the element.

A custom tooltip is displayed below the element.
v To turn the pop-up window into a scrollable window, press F2.
v To hide the pop-up window, either press Esc or move the mouse away from the

node.

Next: add a bend point, as described in “Adding a bend point.”

Removing a node connection

The message flow editor displays the nodes and connections in the editor view.
You can remove connections to change the way in which the message flow
processes messages.

Before you start:
v Connect the nodes
v Read the concept topic about connections

If you want to remove a connection that you have created between two nodes:
1. Switch to the Broker Application Development perspective.
2. Open the message flow that you want to work with.
3. Click Selection above the node palette.
4. Select the connection that you want to delete. When you hover your mouse

pointer over the connection, the editor highlights the connection that you have
selected by thickening its line, adding an arrowhead at the target terminal end,
and annotating the connection with the name of the two terminals connected,
for example Out->In.
When you select the connection, the editor appends a small black square at
each end and at every bend point of the connection, and a small arrowhead at
the target terminal end. The annotation disappears when you select the
connection.

5. Check that the selected connection is the one that you want to delete.
6. Right-click the connection and click Delete, press the Delete key, or click Edit →

Delete. If you want to delete further connections, repeat these actions from step
4.

7. If you delete a connection in error, you can restore it by right-clicking in the
editor view and clicking Undo Delete. The connection is restored.

8. If you undo the delete, but decide that it is the correct delete action, you can
right-click in the editor view and click Redo Delete. You can also delete a
connection by selecting it in the Outline view and pressing the Delete key.

If you delete a node, its connections are automatically removed; you do not have
to do this as a separate task.

Adding a bend point

When you are working with a message flow, and connecting your chosen nodes
together to determine the flow of control, you might find that a connection that
you have made crosses over an intervening node and makes the flow of control
difficult to follow.

64 Message Flows

To help you to display the message flow nodes and their connections in a clear
way, you can add bend points to the connections that you have made to improve
the organization of the display. The addition of bend points has no effect on the
execution of the nodes or the operation of the message flow.

Before you start:
v Connect the nodes
v Read the concept topic about bend points

To add a bend point:
1. Switch to the Broker Application Development perspective.
2. Open the message flow that you want to work with.
3. Click Selection above the node palette.
4. Select the connection to which you want to add a bend point. The editor

appends a small black square to each end of the connection to highlight it.
a. Check that this is the correct connection. The editor also adds a small point

(a handle) in the connection halfway between the in and out terminals that
are joined by this connection.

5. Hover your mouse pointer over this point until the editor displays a black
cross to indicate that you now have control of this bend point.
a. Hold down the left mouse button and move your mouse to move the black

cross and bend point across the editor view.
6. As you drag your mouse, the connection is updated, retaining its start and end

points with a bend point at the drag point. You can move this anywhere within
the editor view to improve the layout of your message flow.

7. Release the mouse button when the connection is in the correct place. The
editor now displays the bend point that you have created with a small square
(like those at the ends of the connection), and displays another two small
points within the connection, one between your newly-created bend point and
the out terminal, the other between the new bend point and the in terminal.

If you want to add more than one bend point to the same connection, repeat these
actions from step 4 using the additional small points inserted into the connection.

Next: align and arrange the nodes.

Removing a bend point

When you are working with a message flow in the editor view, you might want to
simplify the display of the message flow by removing a bend point that you
previously added to a connection between two nodes.

Before you start:
v Add a bend point
v Read the concept topic about bend points

To remove a bend point:
1. Switch to the Broker Application Development perspective.
2. Open the message flow that you want to work with.
3. Click Selection above the node palette.
4. Select the connection from which you want to remove the bend point. The

editor highlights the connection and its current bend points by thickening its

Developing message flows 65

line and appending a small black square to each end of the connection, and by
indicating each bend point with a small black square. Check that this is the
correct connection.

5. Right-click over the selected connection, if you added this bend point in the
current edit session.
a. Click Undo Create Bend Point.

The editor removes the selected bend point.
If you right-click in the editor view without a connection being selected, you
can also click Undo Create Bend Point from the menu. However, this removes
the last bend point that you created in any connection, which might not be the
one that you want to remove.

6. Move the bend point to straighten the line if you added this bend point in a
previous edit session, because you cannot use the undo action. When the line is
straight, the bend point is removed automatically.
When the bend point has been removed, the connection remains highlighted.
Both ends of the connection, and any remaining bend points, remain displayed
as small black squares. The editor also inserts small points (handles) into the
connection between each bend point and between each terminal and its
adjacent bend point, which you can use to add more bend points if you choose.

7. If you want to remove another bend point from the same connection, repeat
these actions from step 4 on page 65.

Aligning and arranging nodes

When you are working in the Message Flow editor, you can decide how your
nodes are aligned within the editor view.

This option is closely linked to the way in which your nodes are arranged. Again,
the default for this is left to right, which means that the in terminal of a node
appears on its left edge, and its out terminals appear on its right edge. You can
also change this characteristic of a node by rotating the icon display to right to left,
top to bottom, and bottom to top.

Before you start

To complete this task, you must have completed the following task:
v “Adding a message flow node” on page 57

To modify the way in which nodes and connections are displayed in the editor:
1. Switch to the Broker Application Development perspective.
2. Open the message flow that you want to work with.
3. Click Selection above the node palette.
4. Right-click in the editor window and select Manhattan Layout if you want the

connections between the nodes to be displayed in Manhattan style; that is with
horizontal and vertical lines joined at right angles.

5. If you want to change the layout of the complete message flow:
a. Right-click in the editor view and click Layout. The default for the

alignment is left to right, such that your message flow starts (with an input
node) on the left and control passes to the right.

b. From the four further options displayed, Left to Right, Right to Left, Top
to Bottom, and Bottom to Top, click the option that you want for this

66 Message Flows

message flow. The message flow display is updated to reflect your choice.
As a result of the change in alignment, all the nodes within the message
flow are also realigned.
For example, if you have changed from a left to right display (the default)
to a right to left display, each node in the flow has now also changed to
right to left (that is, the in terminal now appears on the right edge, the out
terminals appear on the left edge).

6. You might want to arrange an individual node in a different direction from that
in which the remaining nodes are arranged within the message flow, To do this:
a. Right-click the node that you want to change and click Rotate. This gives

you four further options: Left to Right, Right to Left, Top to Bottom, and
Bottom to Top.

b. Click the option that you want for this node. The option that represents the
current arrangement of the node is not available for selection.

If you change the alignment of the message flow, or the arrangement of an
individual node, or both, these settings are saved when you save the message flow.
They are applied when another user accesses this same message flow, either
through a shared repository or through shared files or import and export. When
you reopen the message flow, you see these changed characteristics. The alignment
and arrangement that you have selected for this message flow have no impact on
the alignment and arrangement of any other message flow.

In the Message Brokers Toolkit Version 5.1 you can adjust the zoom by
right-clicking in the editor view and clicking Zoom in or Zoom out. Alternatively,
you can use the drop-down list on the editor toolbar to specify a zoom percentage.

You can also access the editor toolbar to select other options related to the display
and arrangement of nodes, for example, snap to grid. These are defined in
Message Flow editor.

Defining a promoted property

Before you start:

Read the concept topic about promoted properties.

When you create a message flow, you can promote properties from individual
nodes within that message flow to the message flow level. Properties promoted in
this way override the property values that you have set for the individual nodes.
You can perform the following tasks related to promoting properties:
v “Promoting a property” on page 68
v “Renaming a promoted property” on page 71
v “Removing a promoted property” on page 71
v “Converging multiple properties” on page 73

Some of the properties that you can promote to the message flow are also
configurable; you can modify them when you deploy the broker archive file in
which you have stored the message flow to each broker. If you set values for
configurable properties when you deploy a broker archive file, the values that you
set override values set in the individual nodes, and those that you have promoted.

Developing message flows 67

Promoting a property
You can promote a node property to the message flow level to simplify the
maintenance of the message flow and its nodes, and to provide common values for
multiple nodes within the flow by converging promoted properties.

Before you start:
v Create a message flow
v Read the concept topic about promoted properties

The majority of message flow node properties are available for promotion, but you
cannot promote the following properties:
v A property group (but you can promote an individual property)
v A property that you cannot edit (for example, the Fix property of the MQInput

node)
v The description properties (Short Description and Long Description)

To promote message flow node properties to the message flow level, perform these
steps.
1. Switch to the Broker Application Development perspective.
2. Open the message flow for which you want to promote properties.
3. Right-click the node whose properties you want to promote and click Promote

Property.
The Promote Property dialog box is displayed.

The left side of the dialog box lists all available properties for all the nodes
within the message flow. The properties for the node that you clicked are
expanded. You can expand the properties for all the nodes in the open message
flow, regardless of the node that you clicked initially.
The right side of the dialog box displays the name of the open message flow
and all the properties that are currently promoted to the message flow. If you
have not yet promoted any properties, only the message flow name is
displayed as the root of the promoted property tree, as shown in the example
above. If you have already promoted properties from this node, the properties
appear on the right, but not on the left.

4. Select the property or properties that you want to promote to the message flow.
You can select multiple properties by holding down Ctrl and selecting the
properties.

68 Message Flows

5. Click Promote. The Target Selection dialog box opens and displays valid targets
for the promotion.

6. Select the destination group or property for the properties that you want to
promote. You can group together related properties from the same or different
nodes in the message flow by dropping the selected properties onto a group or
property that already exists, or you can create a new target for the promotion
by clicking New Group or New Property. You can rename groups and
properties by selecting them and clicking Rename.

7. Click OK to confirm your selections and close the Target Selection dialog box.
If you create a new group or property using the Target Selection dialog box, the
changes persist even if you select Cancel in the dialog box. When the dialog
box closes, groups or properties that you have created using the Target
Selection dialog box appear in the Promote Property dialog box. You can
remove any of these properties from the Promote Property dialog box by
selecting them and clicking Remove.

8. Click OK to commit your changes and close the Promoted Property dialog box.
If you click Apply, the changes are committed but the dialog box remains
open.

The message flow node properties are promoted to the message flow. When you
have promoted a property, you can no longer make any changes to that property
at the node level; you can update its value only at the message flow level. To view
the message flow’s properties, right-click the message flow (not the individual
nodes) in the Message Flow editor and click Properties to display the Properties
view or Properties dialog box. The properties that you have promoted are
organized in the groups that you created. If you now set a value for one of these
properties, that value appears as the default value for the property whenever the
message flow is included in other message flows.

When you select an embedded message flow within another message flow (a
subflow) and view its properties, you see the promoted property values. If you
look inside the embedded flow (by selecting Open Subflow), you see the original
values for the properties. The value of a promoted property does not replace the
original property, but it takes precedence when you deploy the message flow.

Promoting properties by dragging

You can also promote properties from the Promote Property dialog box by
dragging the selected property or properties from the left pane of the Promote
Property dialog box to the right pane, as described in the following steps.

Developing message flows 69

1. Select the property that you want to promote. You can select multiple
properties by holding down Ctrl, and selecting the properties.

2. You can promote the selected properties using the following methods:
v Drop the selected property or properties in an empty space.

A new group is created automatically for the message flow, and the property
is placed in it, with the original name of the property and the name of the
message flow node from which it came displayed beneath the property entry.
The name of the first group that is created is Group1 by default. If a group
called Group1 already exists, the group is given the name Group2, and so on.
You can rename the group by double-clicking it and entering new text, or by
selecting the group in the Promoted properties pane and clicking Rename.
When you create a new promoted property, the name that you enter is the
name by which the property is known within the system, and must meet
certain Java and XML naming restrictions. These restrictions are enforced by
the dialog box, and a message is displayed if you enter a name that includes
a non-valid character. For example, you cannot include a space or quotation
marks (″).

v Drop the selected property or properties onto a group that already exists, to
group together related properties from the same or different nodes in the
message flow.
For example, you might want to group all promoted properties that relate to
database interactions. You can change the groups to which promoted
properties belong at any time by selecting a property in the Promoted
properties pane and dragging it onto a different group.

v Drop the selected property or properties onto a property that already exists,
to converge related properties from the same or different nodes in the
message flow.
For example, you might want to create a single promoted property that
overrides the property on each node that defines a data source.
For more information on converging properties, see “Converging multiple
properties” on page 73.

Promoting mandatory properties

If you promote a property that is mandatory (that is, an asterisk appears beside the
name in the Properties view), the mandatory characteristic of the property is
preserved. When a mandatory property is promoted, its value does not need to be
set at the node level. If the flow that contains the mandatory promoted property is
included as a subflow within another flow, the property must be populated for the
subflow node.

Promoting properties through a hierarchy of message flows

You can repeat the process of promoting message flow node properties through
several levels of message flow. You can promote properties from any level in the
hierarchy to the next level above, and so on through the hierarchy to the top level.
The value of a property is propagated from the highest point in the hierarchy at
which it is set down to the original message flow node when the message flow is
deployed to a broker. The value of that property on the original message flow
node is overridden.

70 Message Flows

Renaming a promoted property

If you have promoted a property from the node to the message flow level, it is
initially assigned the same name that it has at the node level. You can rename the
property to have a more meaningful name in the context of the message flow.

Before you start:
v Promote a property
v Read the concept topic about promoted properties

To rename a promoted property :
1. Switch to the Broker Application Development perspective.
2. Open the message flow for which you want to promote properties by

double-clicking the message flow in the Broker Development view. You can also
open the message flow by right-clicking it in the Broker Development view and
clicking Open The message flow contents are displayed in the editor view.
If this is the first message flow that you have opened, the message flow control
window and the list of available built-in message flow nodes are also
displayed, to the left of the editor view.

3. In the editor view, right-click the symbol of the message flow node whose
properties you want to promote.

4. Select Promote Property.
The Promote Property dialog is displayed.

5. Promoted properties are shown in the Promoted properties pane on the right of
the Promote property dialog. Double-click the promoted property in the list of
properties that are currently promoted to the message flow level, or select the
property you want to rename and click Rename. The name is highlighted, and
you can edit it. Modify the existing text or enter new text to give the property a
new name, and press Enter.

6. Click Apply to commit this change without closing the Property Promotion
dialog. Click OK to complete your updates and close the dialog.

Removing a promoted property

If you have promoted a property from the node to the message flow level, you can
remove (delete) it if you no longer want to specify its value at the message flow

Developing message flows 71

level. The property reverts to the value that you specified at the node level. If you
remove a promoted property that is a mandatory property, ensure that you have
set a value at the node level. If you have not, you cannot successfully deploy a
broker archive file that includes this message flow.

Before you start:
v Promote a property
v Read the concept topic about promoted properties

If you have promoted one or more message flow node properties, and want to
delete them:
1. Switch to the Broker Application Development perspective.
2. Open the message flow for which you want to promote properties by

double-clicking the message flow in the Broker Development view. You can also
open the message flow by right-clicking it in the Broker Development view and
clicking Open The message flow contents are displayed in the editor view.
If this is the first message flow that you have opened, the message flow control
window and the list of available built-in message flow nodes are also
displayed, to the left of the editor view.

3. In the Editor view, right-click the symbol of the message flow node whose
properties you want to promote.

4. Select Promote Property.
The Promote Property dialog is displayed.

5. Select the promoted property that you want to remove in the list of properties
on the right of the dialog, and click Remove. The property is removed from the
list on the right. It is restored to the list on the left, in its appropriate place in
the tree of properties for the node from which you promoted it. You can
promote this property again if you choose.

6. If you want to delete all the promoted properties within a single group, select
the group in the list on the right and click Remove. The group and all the
properties it contains are deleted from this list: the individual properties that
you promoted are restored to the nodes from which you promoted them.

7. Click Apply to commit this change without closing the Property Promotion
dialog. Click OK to complete your updates and close the dialog.

72 Message Flows

If you have included this message flow in a higher-level message flow, and have
set a value for a promoted property that you have now deleted, the embedding
flow is not automatically updated to reflect the deletion. However, when you
deploy that embedding message flow in the broker domain, the deleted property is
ignored.

Converging multiple properties
You can promote properties from several nodes in a message flow to define a
single promoted property, which applies to all those nodes.

Before you start:

v Create a message flow
v Read the concept topic about promoted properties

To converge multiple node properties to a single promoted property:
1. Switch to the Broker Application Development perspective.
2. Open the message flow in the Message Flow editor.
3. Right-click the node whose properties you want to promote, then click

Promote Property.
The Promote Property dialog box is displayed.

4. Select the property that you want to converge. The list on the left initially
shows the expanded list of all available properties for the selected node. If
you have already promoted properties from this node, they do not appear on
the left, but on the right.
The list on the left also includes the other nodes in the open message flow.
You can expand the properties listed under each node and work with all these
properties at the same time. You do not have to close the dialog box and
select another node from the Message Flow editor to continue promoting
properties.
You can select multiple properties to promote by selecting a property, holding
down Ctrl, and selecting one or more other properties.
If you have you selected multiple properties to converge, all the properties
that you have selected must be available for promotion. If one or more of the
selected properties is not available for promotion, the entire selection becomes
unavailable for promotion, and the Promote button in the right pane is
disabled.

Developing message flows 73

5. Click the Promote button to promote the property or properties

The Target Selection dialog box opens:
The Target Selection dialog box displays only the valid targets for the
promotion of the previously selected property or properties and allows you to
create a new target for the promotion, such as to a new group or to a new
property.

6. To converge properties from the same or different nodes in the message flow,
expand the tree and click on a property that already exists. You can rename
the properties by selecting them and clicking Rename, or by double-clicking
the group or property.

7. Click OK to confirm your selections.

Note: If you create a new group or property using the Target Selection dialog
box, the changes persist even if you select Cancel in the dialog box.
When the dialog box closes, groups or properties that you have created
using the Target Selection dialog box appear in the Promote properties
dialog box.

8. Expand the property trees for all the nodes for which you want to promote
properties.

9. Drag the first instance of the property that you want to converge from the list
on the left, and drop it onto the appropriate group in the list on the right.
v If the group already contains one or more promoted properties, the new

property is added at the end of the group. You can rename the new
property by double-clicking the property, or by selecting the property and
clicking Rename.

v If you want the promoted property to appear in a new group, drag the
property into an empty space below the existing groups to create a new
group. Alternatively:
a. Select the property that you want to promote, and click Promote. The

Target Selection dialog box opens.
b. Click New Group, and enter the name of the new group.
c. Click OK to confirm your changes.

v If you drag the property onto an existing promoted property of a different
type, a no-entry icon is displayed and you cannot drop the property. You
must create this as a new promoted property, or drop it onto a compatible
existing promoted property. Properties must be associated with the same
property editor to be compatible. For example, if you are using built-in
nodes, you can converge only like properties (string with string, Boolean
with Boolean).

74 Message Flows

10. Drag all remaining instances of the property from each of the nodes in the list
on the left onto the existing promoted property. The new property is added
under the existing promoted property, and is not created as a new promoted
property.

11. Click Apply to commit this change without closing the Property Promotion
dialog box. Click OK to complete your updates and close the dialog box.
You can also converge properties from the Promote property dialog box by
dragging the selected property or properties from the left pane of the Promote
Property dialog box to the right pane:
a. Select the property that you want to promote. You can select multiple

properties to promote by selecting a property, holding down Ctrl, and
selecting one or more other properties.

b. Drop the selected property or properties onto a property in the right pane
to converge related properties from the same or different nodes in the
message flow.
For example, you might want to create a single promoted property that
overrides the property on each node that defines a data source.

You have promoted properties from several nodes to define a single promoted
property, which is used for all those nodes.

Collecting message flow accounting and statistics data

Before you start:

Read the concept topic about message flow accounting and statistics data.

You can collect statistics on message flow behavior.

The following topics describe the tasks that you can complete to control collection
of message flow accounting and statistics data:
v “Starting to collect message flow accounting and statistics data”
v “Stopping message flow accounting and statistics data collection” on page 77
v “Viewing message flow accounting and statistics data collection parameters” on

page 78
v “Modifying message flow accounting and statistics data collection parameters”

on page 79
v “Resetting message flow accounting and statistics archive data” on page 79

The topics listed here show examples of how to issue the accounting and statistics
commands. The examples for z/OS are shown for SDSF; if you are using another
interface, you must modify the example shown according to the requirements of
that interface. For details of other z/OS options, see Issuing commands to the
z/OS console.

Starting to collect message flow accounting and statistics
data

Before you start:
v Create a message flow
v Deploy a broker archive file

Developing message flows 75

v Read the concept topic about message flow accounting and statistics collection
options

You can start collecting message flow accounting and statistics data for an active
broker at any time.

Select the granularity of the data that you want to be collected by specifying the
appropriate parameters on the mqsichangeflowstats command. You must request
statistics collection on a broker basis. If you want to collect information for more
than one broker, you must issue the corresponding number of commands.

To start collecting message flow accounting and statistics data:
1. Identify the broker for which you want to collect statistics .
2. Decide the resource for which you want to collect statistics. You can collect

statistics for a specific execution group, or for all execution groups for the
specified broker.
v If you indicate a specific execution group, you can request that data is

recorded for a specific message flow or all message flows in that group.
v If you specify all execution groups, you must specify all message flows.

3. Decide if you want to collect thread related statistics.
4. Decide if you want to collect node related statistics. If you do, you can also

collect information about terminals for the nodes.
5. Decide if you want to associate data collection with a particular accounting

origin. This option is valid for snapshot and archive data, and for message
flows and execution groups. However, when active, you must set its origin
value in each message flow to which it refers. If you do not configure the
participating message flows to set the appropriate origin identifier, the data
collected for that message flow is collected with the origin set to Anonymous.
See “Setting message flow accounting and statistics accounting origin” on page
77 for further details.

6. Decide the target destination:
v User trace log. This is the default setting. The output data can be processed

using mqsireadlog and mqsiformatlog.
v XML format publication message. If you chose this as your target destination,

register the following topic for the subscriber:
$SYS/Broker/brokerName/StatisticsAccounting/recordType/executionGroupLabel/messageFlowLabel

Where, brokerName, executionGroupLabel, and messageFlowLabel are the broker,
execution group and message flow on which you want to receive data.
recordType is the type of data collection on which you want to receive
publications (snapshot, archive, or # to receive both snapshot and archive).

v z/OS SMF (on z/OS only)
7. Decide the type of data collection that you want:
v Snapshot
v Archive
You can collect snapshot and archive data at the same time, but you have to
configure them separately.

8. Issue the mqsichangeflowstats command with the appropriate parameters to
reflect the decisions that you have made.
For example, to turn on snapshot data for all message flows in the default
execution group for BrokerA, and include node data with the basic message
flow statistics, enter:
mqsichangeflowstats BrokerA -s -e default -j -c active -n basic

76 Message Flows

z/OS Using SDSF on z/OS, enter:
/F BrokerA,cs s=yes,e=default,j=yes,c=active,n=basic

Refer to the mqsichangeflowstats command for further examples.

When the command completes successfully, data collection for the specified
resources is started:
v If you have requested snapshot data, information is collected for approximately

20 seconds, and the results are written to the specified output.
v If you have requested archive data, information is collected for the interval

defined for the broker (on the mqsicreatebroker or mqsichangebroker command,
or by the external timer facility ENF). The results are written to the specified
output, the interval is reset, and data collection starts again.

Next:

You can now perform the following tasks:
v “Setting message flow accounting and statistics accounting origin”
v “Stopping message flow accounting and statistics data collection”
v “Viewing message flow accounting and statistics data collection parameters” on

page 78
v “Modifying message flow accounting and statistics data collection parameters”

on page 79
v “Resetting message flow accounting and statistics archive data” on page 79

Setting message flow accounting and statistics accounting
origin

Accounting and statistics data is associated with an accounting origin.

All message flow accounting and statistics data is collected with an accounting
origin set to Anonymous. You cannot change this value.

Stopping message flow accounting and statistics data
collection

You can stop collecting data for message flow accounting and statistics at any time.
You do not have to stop the message flow, execution group, or broker to make this
change, nor do you have to redeploy the message flow.

Before you start:
v Start to collect message flow accounting and statistics data
v Read the concept topic about message flow accounting and statistics data

You can stop collecting data for message flow accounting and statistics at any time.
You do not have to stop the message flow, execution group, or broker to make this
change, nor do you have to redeploy the message flow.

You can modify the parameters that are currently in force for collecting message
flow accounting and statistics data without stopping data collection. See
“Modifying message flow accounting and statistics data collection parameters” on
page 79 for further details.

To stop collecting data:

Developing message flows 77

1. Check the resources for which you want to stop collecting data.
You do not have to stop all active data collection. If you choose, you can stop a
subset of data collection. For example, if you started collecting statistics for all
message flows in a particular execution group, you can stop doing so for a
specific message flow in that execution group. Data collection for all other
message flows in that execution group continues.

2. Issue the mqsichangeflowstats command with the appropriate parameters to
stop collecting data for some or all resources.
For example, to switch off snapshot data for all message flows in all execution
groups for BrokerA, enter:
mqsichangeflowstats BrokerA -s -g -j -c inactive

z/OS Using SDSF on z/OS, enter:
/F BrokerA,cs s=yes g=yes j=yes c=inactive

Refer to the mqsichangeflowstats command for further examples.

When the command completes successfully, data collection for the specified
resources is stopped. Any outstanding data that has been collected is written to the
output destination when you issue this command, to ensure the integrity of data
collection.

Viewing message flow accounting and statistics data
collection parameters

You can review and check the parameters that are currently in effect for message
flow accounting and statistics data collection.

Before you start:
v Start to collect message flow accounting and statistics data
v Read the concept topic about message flow accounting and statistics data

To view message flow accounting and statistics data collection parameters:

Issue the mqsireportflowstats command with the appropriate parameters to view
the parameters that are currently being used by the broker to control archive data
collection or snapshot data collection.
You can view the parameters in force for a broker, an execution group, or an
individual message flow.
For example, to view parameters for snapshot data for all message flows in all
execution groups for BrokerA, enter:
mqsireportflowstats BrokerA -s -g -j

z/OS Using SDSF on z/OS, enter:
/F BrokerA,rs s=yes,g=yes,j=yes

Refer to the mqsireportflowstats command for further examples.

The command displays the current status, for example:
BIP8187I: Statistics Snapshot settings for flow MyFlow1 in execution
group default - On?: inactive,
ThreadDataLevel: basic, NodeDataLevel: basic,
OutputFormat: usertrace, AccountingOrigin: basic

Next:

78 Message Flows

You can now modify the data collection parameters.

Modifying message flow accounting and statistics data
collection parameters

You can modify the parameters that you have set for message flow accounting and
statistics data collection. For example, you can start collecting data for a new
message flow that you have deployed to an execution group for which you are
already collecting data.

You can modify parameters while data collection is active; you do not have to stop
data collection and restart it.

Before you start:
v Start to collect message flow accounting and statistics data
v Read the concept topic about message flow accounting and statistics data

To modify message flow accounting and statistics parameters:
1. Decide which data collection parameters you want to change. You can modify

the parameters that are in force for a broker, an execution group, or an
individual message flow.

2. Issue the mqsichangeflowstats command with the appropriate parameters to
modify the parameters that are currently being used by the broker to control
archive data collection or snapshot data collection.
For example, to modify parameters to extend snapshot data collection to a new
message flow MFlow2 in execution group EG2 for BrokerA, enter:
mqsichangeflowstats BrokerA -s -e EG2 -f MFlow2 -c active

z/OS Using SDSF on z/OS, enter:
/F BrokerA,cs s=yes,e=EG2,f=MFlow2,c=active

If you want to specify an accounting origin for archive data for a particular
message flow in an execution group, enter:
mqsichangeflowstats BrokerA -a -e EG4 -f MFlowX -b basic

z/OS Using SDSF on z/OS, enter:
/F BrokerA,cs a=yes,e=EG4,f=MFlowX,b=basic

Refer to the mqsichangeflowstats command for further examples.

When the command completes successfully, the new parameters that you have
specified for data collection are in force. These parameters remain in force until
you stop data collection or make further modifications.

Resetting message flow accounting and statistics archive data

You can reset message flow accounting and statistics archive data to purge any
accounting and statistics data not yet reported for that collecting interval. This
removes unwanted data. You can request this at any time; you do not have to stop
data collection and restart it to perform reset. You cannot reset snapshot data.

Before you start:
v Start to collect message flow accounting and statistics data
v Read the concept topic about message flow accounting and statistics data

To reset message flow accounting and statistics archive data:

Developing message flows 79

1. Identify the broker, and optionally the execution group, for which you want to
reset archive data. You cannot reset archive data on a message flow basis.

2. Issue the mqsichangeflowstats command with the appropriate parameters to
reset archive data.
For example, to reset archive data for BrokerA, enter:
mqsichangeflowstats BrokerA -a -g -j -r

z/OS Using SDSF on z/OS, enter:
/F BrokerA,cs a=yes,g=yes,j=yes,r=yes

When this command completes, all accounting and statistics data accumulated so
far for this interval are purged and will not be included in the reports. Data
collection is restarted from this point. All archive data for all flows (indicated by -j
or j=yes) in all execution groups (indicated by -g or g=yes) is reset.

This command has a minimal effect on snapshot data because the accumulation
interval is much shorter than for archive data. It does not effect the settings for
archive or snapshot data collection that are currently in force. When the command
has completed, data collection resumes according to the current settings.

You can change any other options that are currently in effect when you reset
archive data, for example accounting origin settings or output type.

Configuring flows to handle WebSphere MQ message groups
WebSphere MQ allows multiple messages to be treated as a group, or as segments
of one larger message. WebSphere Event Broker provides support for WebSphere
MQ message grouping and partial support for message segmenting.

You can use the MQInput and MQOutput nodes to receive and send messages that
are part of a WebSphere MQ message group. You can use the MQOutput node to
send messages that are segments of a larger message.

For guidance about configuring the MQInput and MQOutput nodes to receive and
send messages that are part of a WebSphere MQ message group, see:
v “Receiving messages in a WebSphere MQ message group”
v “Sending messages in a WebSphere MQ message group” on page 82
v “Sending message segments in a WebSphere MQ message” on page 83

For more information about WebSphere MQ message groups, see the Application
Programming Guide section of the WebSphere MQ Version 6 information center
online, or the Version 5.3 information center on the WebSphere MQ library Web
page.

Receiving messages in a WebSphere MQ message group
You can configure the MQInput node to receive messages that are in a WebSphere
MQ message group.

The following properties on the MQInput node control the processing of messages
in a WebSphere MQ message group:
v Logical order
v Order mode
v All messages available
v Commit by message group

80 Message Flows

|

|
|
|

|
|
|

|
|

|

|

|

|
|
|
|

|

|
|

|
|

|

|

|

|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/

To ensure that your message flow receives group messages in the order that has
been assigned by the sending application, select Logical order. If you do not select
this option, messages that are sent as part of a group are not received in a
predetermined order. This property maps to the MQGMO_LOGICAL_ORDER
option of the MQGMO of the MQI. More information about the options to which
this property maps is available in the Application Programming Reference section of
the WebSphere MQ Version 6 information center online, or the Version 5.3 book on
the WebSphere MQ library Web page.

If you specify a value of By Queue Order on the Order mode property, the
message flow processes the messages in the group in the order that is defined by
the queue attributes; this order is guaranteed to be preserved when the messages
are processed. This behavior is identical to the behavior that is exhibited if the
Additional instances property is set to zero. The message flow processes the
messages on a single thread of execution, and a message is processed to
completion before the next message is retrieved from the queue. If you do not
specify this value, it is possible that multiple threads within a single message flow
are processing multiple messages, and the final message in a group, which
prompts the commit or roll back action, is not guaranteed to be processed to
completion after all other messages in the group.

To ensure that only a single instance of the message flow processes the group
messages in the order that has been assigned by the sending application, select
Logical order and specify a value of By Queue Order on the Order mode property.

If you select All messages available, message retrieval and processing is performed
only when all messages in a single group are available. This means that messages
in a group are not received until all the messages in the group are present on the
input queue. It is good practice to select this check box when your message flow
needs to process group messages. If you do not select this check box, the message
flow receives the messages as they arrive on the input queue; if a message in the
group fails to arrive on the input queue, the message flow waits for it and cannot
process any further messages until this message arrives. This property maps to the
MQGMO_ALL_MESSAGES_AVAILABLE option of the MQGMO of the MQI. More
information about the options to which this property maps is available in the
Application Programming Reference section of the WebSphere MQ Version 6
information center online, or the Version 5.3 book on the WebSphere MQ library
Web page.

If you select Commit by message group, message processing is committed only
after the final message of a group has been received and processed. If you leave
this check box cleared, a commit is performed after each message has been
propagated completely through the message flow. This property is relevant only if
you have selected Logical order. It is good practice to select this check box together
with the All messages available check box because this ensures that the complete
message group is retrieved and processed in the same unit of work without risk of
the message flow waiting indefinitely for messages in the group to arrive on the
input queue.

To ensure that the message flow that processes group messages does not wait for
unavailable messages:
v Avoid having multiple message flows reading from the same input queue when

group messages are being retrieved.
v Avoid deploying additional instances of a flow that retrieves group messages.
v Avoid using expired messages in message groups.

Developing message flows 81

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|

|

|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/

v When expired messages are to be used, ensure either that all messages have the
same expiry time or that the first message in the group is set to expire before the
rest of the group. If the first message in a group cannot be retrieved, the group
can never be started in logical order.

If a message flow waits for a group message that does not arrive within the wait
interval, a BIP2675 warning message is issued. From that point on, the message
flow always attempts to retrieve the next group message and does not process any
other input messages until the next group message is received.

Therefore, if the expected group message does not arrive, or has expired, the
message flow must be stopped manually, and any incomplete message group
cleared from the input queue.

A message flow cannot receive all the messages in a group in one operation.

If you specify a value of Yes or No on the Transaction mode property, all the
segments in a message are received in the message flow as a single message. As a
result, the message flow might receive very large messages which might lead to
storage problems in the broker. If you specify a value of Automatic on the
Transaction mode property, message segments are received as individual messages.

Sending messages in a WebSphere MQ message group
The MQOutput node can send multiple messages that form a WebSphere MQ
message group. Configure a Compute node to set the MQMD fields to specify
message group options.

The message flow must set the following MQMD fields:
v GroupId
v MsgSeqNumber
v MsgFlags

You can use the following example ESQL in a Compute node. It shows how to set
these fields:
DECLARE MSGNUM INT 0;

DECLARE MSGTOTAL INT 5;
WHILE MSGNUM < MSGTOTAL DO

SET MSGNUM = MSGNUM + 1;
CALL CopyMessageHeaders();
-- Manually set the groupId since we cant ask the queue manager to generate one.
-- the UUIDASBLOB function could be used here to generate one, but this must be done
-- outside the loop to keep the same groupId throughout!
SET OutputRoot.MQMD.GroupId = X'0001';
SET OutputRoot.MQMD.MsgSeqNumber = MSGNUM;
SET OutputRoot.MQMD.MsgFlags = MQMF_MSG_IN_GROUP;
IF (MSGNUM = MSGTOTAL) THEN

SET OutputRoot.MQMD.MsgFlags = MQMF_LAST_MSG_IN_GROUP;
END IF;
SET OutputRoot.XML.TestCase = MSGNUM;
PROPAGATE;

END WHILE;
RETURN FALSE;

If the message flow is sending multiple messages from one input message, it can
create a GroupId value, increment the MsgSeqNumber value, and set the MsgFlags
field. The example ESQL shows how you can do this. However, if the message

82 Message Flows

|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|
|

|

|
|
|

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

flow is sending multiple messages from more than one input message, it needs to
store the GroupId and MsgSeqNumber values between flow instances; this can be
achieved by using shared variables.

For more information about message grouping, see the Application Programming
Guide section of the WebSphere MQ Version 6 information center online, or the
Version 5.3 book on the WebSphere MQ library Web page. For more information
about the WebSphere MQ fields that are significant in message grouping, see the
Application Programming Reference section of the WebSphere MQ Version 6
information center online, or the Version 5.3 book on the WebSphere MQ library
Web page.

Sending message segments in a WebSphere MQ message
The MQOutput node can send multiple message segments that form a WebSphere
MQ message. Configure a Compute node to set the MQMD fields to specify
message segment options.

You can either select Segmentation allowed on the node, or set the required fields
in the MQMD in the message flow:
v GroupId
v MsgFlags
v Offset

Use the example ESQL code in “Sending messages in a WebSphere MQ message
group” on page 82 and change the code to set these fields.

For more information about message grouping and segmentation, see the
Application Programming Guide section of the WebSphere MQ Version 6 information
center online, or the Version 5.3 book on the WebSphere MQ library Web page. For
more information about the WebSphere MQ fields that are significant in message
grouping and segmentation, see the Application Programming Reference section of the
WebSphere MQ Version 6 information center online, or the Version 5.3 book on the
WebSphere MQ library Web page.

Developing message flows 83

|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|

|

|

|

|
|

|
|
|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/

84 Message Flows

Part 2. Deploying

Deploying 87
Deployment overview 88

Deployment methods 88
Types of deployment 90
Message flow application deployment 91
Broker configuration deployment 94
Publish/subscribe topology deployment 95
Publish/subscribe topics hierarchy deployment 96
Cancel deployment 97

Deploying a message flow application 98
Creating a server project 98
Creating a broker archive 99
Adding files to a broker archive 100
Refreshing the contents of a broker archive . . 103
Deploying a broker archive file 104

Deploying a broker configuration. 107
Using the Message Brokers Toolkit 107
Using the mqsideploy command 107
Using the Configuration Manager Proxy . . . 108

Deploying a publish/subscribe topology 108
Using the Message Brokers Toolkit 109
Using the mqsideploy command 109
Using the Configuration Manager Proxy . . . 110

Deploying a publish/subscribe topics hierarchy 110
Using the Message Brokers Toolkit 111
Using the mqsideploy command 111
Using the Configuration Manager Proxy . . . 111

Checking the results of deployment 112
Using the Message Brokers Toolkit 112
Using the mqsideploy command 112
Using the Configuration Manager Proxy API 113

Canceling a deployment that is in progress . . . 114
Using the Message Brokers Toolkit 115
Using the mqsideploy command 115
Using the Configuration Manager Proxy . . . 115

Renaming objects that are deployed to execution
groups. 116
Removing a deployed object from an execution
group 116

Using the Message Brokers Toolkit 117
Using the mqsideploy command 117
Using the Configuration Manager Proxy API 118

© Copyright IBM Corp. 2000, 2009 85

86 Message Flows

Deploying

Deploy resources that you create in the workbench, such as message flows, to
execution groups on brokers in your broker domain.

The overview section provides information about the different ways in which you
can deploy resources, and about the different types of deployment:
v “Deployment overview” on page 88

– “Deployment methods” on page 88
– “Types of deployment” on page 90
– “Message flow application deployment” on page 91

- “Broker archive” on page 93
- “Configurable properties of a broker archive” on page 93
- “Version and keyword information for deployable objects” on page 93

– “Broker configuration deployment” on page 94
– “Publish/subscribe topology deployment” on page 95
– “Publish/subscribe topics hierarchy deployment” on page 96
– “Cancel deployment” on page 97

The following topics describe the tasks necessary to deploy a message flow
application:
v “Deploying a message flow application” on page 98

– “Creating a server project” on page 98
– “Creating a broker archive” on page 99
– “Adding files to a broker archive” on page 100

- “Editing a broker archive file manually” on page 101
- “Editing configurable properties” on page 102
- “Adding multiple instances of a message flow to a broker archive” on page

102
– “Refreshing the contents of a broker archive” on page 103
– “Deploying a broker archive file” on page 104

Learn how to perform other types of deployment:
v “Deploying a broker configuration” on page 107
v “Deploying a publish/subscribe topology” on page 108
v “Deploying a publish/subscribe topics hierarchy” on page 110

Further topics describe other deployment tasks:
v “Checking the results of deployment” on page 112
v “Canceling a deployment that is in progress” on page 114
v “Renaming objects that are deployed to execution groups” on page 116
v “Removing a deployed object from an execution group” on page 116

© Copyright IBM Corp. 2000, 2009 87

Deployment overview
Deployment is the process of transferring data to an execution group on a broker
so that it can take effect in the broker domain. Message flows and associated
resources are packaged in broker archive (BAR) files for deployment.

When you create application resources such as message flows in the workbench,
you must distribute them to the brokers on which you want them to run.
Associated with the resources that you create is the configuration associated with
those brokers in your broker domain. Data for message flows and associated
resources is packaged in a broker archive (BAR) file before being sent to the
Configuration Manager, from where it is unpackaged and distributed
appropriately.

You can initiate a deployment in one of three ways:
v From the workbench
v Using the mqsideploy command
v Using functions described by the Configuration Manager Proxy

Depending on your work patterns, you might make use of all three methods at
different times. These three options are described in “Deployment methods.”

You can also perform different types of deployment, depending on whether you
are working with new resources, or updating existing ones. Most types of
deployment can typically be configured in one of two ways:
v Complete deployment; in which all resources are deployed (or redeployed) to

the whole domain
v Delta or incremental deployment; made either only to update information or to

deploy to selected brokers within the domain, depending on the type of
deployment

See “Types of deployment” on page 90 for further information about full and delta
deployment.

When you have read these overview topics, find detailed instructions for the tasks
that you want to complete in the subsequent topics.

Read the IBM Redbooks publication WebSphere Message Broker Basics for further
information about deployment.

Deployment methods
Choose the appropriate method of deployment according to the way in which you
are working. You can use the workbench, the mqsideploy command, or functions
described by the Configuration Manager Proxy (CMP) API.

Using the Message Brokers Toolkit
In the Broker Administration perspective of the workbench, the Domain
view displays all the objects associated with a specific domain. For
example, if you expand a topology, all the brokers in the domain are
displayed; if you expand a broker, all the execution groups within that
broker are displayed. From the Domain view you can deploy a topology to
all the brokers in the domain, or you can deploy all the execution groups
to a particular broker. You can also drag a broker archive (BAR) file from
the Broker Development view onto an execution group within the Domain
Navigator view to deploy the contents of the broker archive.

88 Message Flows

http://www.redbooks.ibm.com/abstracts/sg247137.html

You might typically use the workbench if you are working in a
development environment or if you are new to WebSphere Event Broker.

Using the mqsideploy command
You can deploy from the command line using the mqsideploy command.
On the command line, you typically specify the connection details as well
as parameters specific to the type of deployment. See “Types of
deployment” on page 90 for more about what you can deploy.

You might typically use the mqsideploy command in a script when you are
more familiar with WebSphere Event Broker.

WebSphere Event Broker provides two files to help you when writing your
own scripts that invoke the mqsideploy command:
v Initialization file mqsicfgutil.ini. This file is a plain text file in the

mqsideploy command’s working directory that contains configurable
variables that are required to connect to the Configuration Manager. For
example:
hostname = localhost
queueManager = QMNAME
port = 1414
securityExit = test.myExit

Information that you do not explicitly specify as parameters on the
mqsideploy command (as shown in the examples in subsequent topics),
is taken from the mqsicfgutil.ini file.
Alternatively, use the -n parameter on the command to specify an
XML-format .configmgr file that describes the connection parameters to
the Configuration Manager.

v Windows Batch file mqsideploy.bat. On Windows platforms, you can use
mqsideploy.bat.

Note: You must modify the parameters provided in this file if you are
using Version 6.0 or later.

Using the Configuration Manager Proxy API
You can control deployment from anyJava program by using functions
described by the Configuration Manager Proxy (CMP) (CMP) API. You can
also interrogate the responses from the broker and take appropriate action.

Java applications can also use the CMP to control other objects in the
domain, such as brokers, execution groups, publish/subscribe topologies,
topics, subscriptions, and the Configuration Manager and its event log.
This means that you can use the CMP to create and manipulate an entire
domain programmatically.

Synchronous and asynchronous operations
The goals of a deployment are the same, regardless of how you initiate it.
But the method that you choose might have an effect on how the operation
is performed:
v If you use the workbench or the Configuration Manager Proxy (CMP),

the request is asynchronous. Control returns immediately either to the
workbench or to your Java program. You must request the result of the
operation at a later time:
– If you are using the workbench, switch to the Broker Administration

perspective and check the Event Log.
A deployment request always completes, either because the broker
has sent a response or the timeout has expired. If you have reason to

Deploying 89

believe that the deployment might not be successful, for example if
you become aware that a problem with the network or the broker
might prevent its completion, you can cancel the deployment request.
Use this only in exceptional circumstances; cancelation might cause
the state of the execution groups to become unpredictable.

– If you are using the Configuration Manager Proxy (CMP), you can
request responses to the deployment later in your program.
When the request is received by the broker, it communicates with the
execution groups that are affected by the contents of the deployment
request. The broker waits for a certain amount of time, during which
it expects the execution groups to complete the work. If the execution
groups do not indicate that they have finished before the time has
expired, the broker sends back a negative response with message
BIP2066.

v If you use the mqsideploy command, the deployment is synchronous
and the command waits for a response. Control is returned to you (or to
the script that issued the command) when a response is received by the
broker, or when the wait time defined by the -w parameter has expired,
whichever occurs first. If the time expires before a response is received,
the command completes with a warning message that informs you what
has happened. The warning does not mean that the command has failed,
only that a response was not received during the time for which it
waited.

Types of deployment
There are different types of deployment. Find out what they are and when you
should use them.

Follow the links to later topics in this section that describe each type of
deployment and the situation in which each type should, and should not, be used.
v To deploy message flows and other deployable objects to an execution group,

see “Message flow application deployment” on page 91.
This type deployment uses a broker archive (BAR) file.

v To deploy configuration details, see “Broker configuration deployment” on page
94.

v In publish/subscribe scenarios, you can deploy topics and topologies:
– “Publish/subscribe topics hierarchy deployment” on page 96
– “Publish/subscribe topology deployment” on page 95

v To stop a deployment, see “Cancel deployment” on page 97.

This table lists examples of appropriate ways of deploying in a number of common
scenarios:

Scenario Suggested deployment

Adding a broker to the domain (when not
using publish/subscribe)

None required.

Modifying the publish/subscribe topic
hierarchy

Delta deployment of the topics hierarchy.
(The changed elements only in the topic
hierarchy are deployed to all brokers in the
domain.)

Connecting publish/subscribe brokers using
connections or a collective

Delta topology deployment.

90 Message Flows

Scenario Suggested deployment

Modifying the publish/subscribe topic
hierarchy, after adding a new broker to the
domain

Complete topics deployment. (The entire
topic hierarchy is deployed to all brokers in
the domain. The new broker also receives
the complete topic hierarchy.)

Tidying up a broker’s resources after
removing it from the topology

If the broker is part of a publish/subscribe
network, or if you are using the workbench,
initiate a delta publish/subscribe topology
deployment. Otherwise, no deployment is
required.

Creating an execution group Message flow application deployment using
an incremental BAR file deployment.

Deleting an execution group None required.

If a broker is not responding to a deploy
request

Ensure that the broker is running. If the
broker is not running, cancel the broker
deployment. You should cancel a broker
deployment only if you are sure that the
broker will never respond to the deploy
request.

Message flow application deployment
Package all of the resources in your message flow into a broker archive (BAR) file,
for deployment.

You cannot deploy a message flow application directly to an execution group.
Instead, you package all of the relevant resources into a BAR file, which you then
deploy. When you add files to the broker archive, they are automatically compiled
as part of the process.

The broker archive file is a compressed file, which is sent to the Configuration
Manager, where its contents are extracted and distributed to execution groups. If
an execution group has not been initialized on the broker (that is, if the broker has
only just been created), the execution group is created as part of the deployment.

This diagram shows the flow of events when you deploy a message flow
application:

Deploying 91

You can deploy a BAR file in two ways:
v “Incremental BAR file deployment.” Deployed files are added to the execution

group. Files which already exist in the execution group are replaced with the
new version.

v “Complete BAR file deployment” on page 93. Files that are already deployed to
the execution group are removed before the entire contents of the BAR file are
deployed. Therefore, nothing is left in the execution group from any previous
deployment.

Incremental BAR file deployment
Incrementally deploying a BAR file tells the Configuration Manager to extract the
contents of the BAR file and to send those contents to an execution group. The
following conditions are applied when a file is deployed to the BAR file:
v If a file in the BAR file has the same name as an object that is already deployed

to the execution group, the version that is already deployed is replaced with the
version in the BAR file.

v If a file in the BAR file is of zero length, and a file of that name has already been
deployed to the execution group, the deployed file is removed from the
execution group.

When to use

v To incrementally deploy message flows or other deployable objects to an
execution group.

When not to use

v To completely clear the contents of the execution group before the BAR
file is deployed. Instead use a complete BAR file deployment.

execution
group

broker

message flow
project

message
flows

compiled
message flows

(.cmf)

broker archive
file (.bar)

configuration
manager

deploy

compile

package

92 Message Flows

Complete BAR file deployment
Completely deploying a BAR file tells the Configuration Manager to extract the
deployable content of the BAR file and to send the contents to an execution group,
first removing any existing deployed contents of the execution group.

When to use

v To deploy message flows or other deployable objects to an execution
group.

When not to use

v To merge the existing contents of the execution group with the contents
of the BAR file. Instead use an incremental BAR file deployment.

Broker archive
The unit of deployment to the broker is the broker archive or BAR file.

The BAR file is a compressed file that can contain a number of different files:
v A .cmf file for each message flow. This file is a compiled version of the message

flow. You can have any number of these files within your BAR file.
v A broker.xml file. This file is called the broker deployment descriptor. You can have

only one of these files within your BAR file. This file, in XML format, resides in
the META-INF folder of the compressed file and can be modified using a text
editor or shell script.

v Other files that you need. (As a compressed file archive, the BAR file can contain
any file type.)

Configurable properties of a broker archive
System objects that are defined in message flows can have properties that you can
update within the broker archive (BAR) file before deployment.

Configurable properties allow an administrator to update target-dependent
properties, such as queue names, queue manager names, and database connections.

By changing configurable properties, you can customize a BAR file for a new
domain, for example a test system, without needing to edit and rebuild the
message flows. Properties that you define are contained within the deployment
descriptor, META-INF/broker.xml. The deployment descriptor is parsed when the
BAR file is deployed.

Edit the configurable properties using either the Broker Archive editor or the
mqsiapplybaroverride command from a command prompt.

Although the two methods indicated above are preferable, you can also edit the
XML-format deployment descriptor manually using an external text editor or shell
script.

Version and keyword information for deployable objects

Use the Broker Archive file editor to view the version and keyword information of
deployable objects.
v “Displaying object version in the Broker Archive editor” on page 94
v “Displaying version, deploy time, and keywords of deployed objects” on page

94

Deploying 93

This topic also contains information on populating the Comment and Path
columns; see “Populating the Comment and Path columns.”

Displaying object version in the Broker Archive editor

A column in the Broker Archive editor called Version displays the version tag for
all objects that have a defined version. These are:
v .cmf files

You cannot edit the Version column.

You can use the mqsireadbar command to list the keywords that are defined for
each deployable file within a deployable archive file.

Displaying version, deploy time, and keywords of deployed objects

The Properties View displays, for any deployed object:
v Version
v Deploy Time
v All defined keywords

For example, if you deploy a message flow with these literal strings:
v $MQSI_VERSION=v1.0 MQSI$

v $MQSI Author=fred MQSI$

v $MQSI Subflow 1 Version=v1.3.2 MQSI$

the Properties View displays:

Deployment Time Date and time of deployment

Modification Time Date and time of modification

Version v1.0

Author fred

Subflow 1 Version v1.3.2

You are given a reason if the keyword information is not available. For example, if
keyword resolution has not been enabled at deploy time, the Properties View
displays the message Deployed with keyword search disabled. Also, if you deploy
to a Configuration Manager that is an earlier version than Version 6.0, the
properties view displays Keywords not available on this Configuration Manager.

Populating the Comment and Path columns

If you add source files, the Path column is populated automatically.

To add a comment, double click on the Comment column and type the text that
you require.

Broker configuration deployment
A broker configuration deployment informs a broker of various configuration
settings, including a list of execution groups, and multicast and inter-broker
settings.

When to use

94 Message Flows

v Deploy a broker configuration if you have modified multicast or
inter-broker settings in the workbench or in a Configuration Manager
Proxy (CMP) application.

When not to use

v If you are adding execution groups. In this case, the first time that you
deploy a broker archive (BAR) file, the execution group is automatically
initialized.

Publish/subscribe topology deployment
Deploying a topology informs each broker in the domain of the brokers with
which it can share publications and subscriptions. Topology deployment is
required only when using publish/subscribe.

You can deploy a topology configuration in two ways:
v Complete topology deployment, in which all brokers are told of their

neighboring publish/subscribe brokers.
v Delta topology deployment, in which only changes to the publish/subscribe

topology are deployed. Such changes are deployed only to those brokers whose
neighbor lists have changed since the last successful topology deployment.

Whichever of these types of deployment you perform, the Configuration Manager
attempts to subscribe to the broker’s status messages if it is the first deployment to
the broker. However, only a complete topology deployment initiates a further
subscription.

Complete topology deployment
Deploying a complete topology has the following effects:
v Each broker in the domain is informed of the set of brokers with which it can

share publish/subscribe information.
v The Configuration Manager is forced to subscribe again to the broker’s status

topics, such as start and stop messages.

When to use

v If the Configuration Manager is not correctly reporting whether it is in a
stopped or started state.

v If you have moved a Configuration Manager from one queue manager
to another.

v If a broker’s publish/subscribe function has become inconsistent. An
example of inconsistency would be if one broker is able to share
publications with a second broker, but not the other way round.

When not to use

v If you are adding brokers to the domain and you are not using
publish/subscribe. That is, if you are not connecting brokers together so
that they can share publications and subscriptions.

v If you are adding execution groups to a broker.
v If you have changed the publish/subscribe network. In this case, deploy

a delta topology, if possible, so that you deploy only to those brokers
affected by the changes you have made.

v If you have removed a broker from the domain.

Deploying 95

Delta topology deployment
Deploying a delta topology sends updated publish/subscribe network information
to any broker with a publish/subscribe configuration that the Configuration
Manager determines not to be current.

When to use

v If you have modified a publish/subscribe network.
v If you are using the workbench to remove a broker from the domain. In

this case, the Configuration Manager automatically requests the broker
component to stop message flows that are running and to tidy up any
resources in use. If this operation fails, you can again request the broker
to tidy up. Deploying a delta topology is the most convenient way to
deploy only to those brokers affected by the topology changes.

When not to use

v If you are adding brokers to the domain and you are not using
publish/subscribe. That is, if you are not connecting brokers together so
that they can share publications and subscriptions.

v If you are adding or removing execution groups.

Publish/subscribe topics hierarchy deployment

If you are using publish/subscribe, deploy the topics hierarchy in these situations:
v If you have modified the hierarchy of topics. The deployment communicates the

new hierarchy to each broker.
v If you have added a broker to the domain and you want it to use the existing

topics hierarchy. The deployment communicates the hierarchy to the new broker.

You can deploy a publish/subscribe topics hierarchy in two ways:
v Complete deployment, in which the complete topics hierarchy is sent to all the

brokers in a domain.
v Delta deployment, in which changes to the topics hierarchy (made since the last

topics deployment) are sent to all the brokers in a domain.

Complete topics deployment
A complete topics deployment sends the entire publish/subscribe topics hierarchy
to all the brokers in a domain.

When to use

v If you have made changes to the topics hierarchy and one of the brokers
has an inconsistent view of the expected topics hierarchy.

v If you have added a new broker to the domain that uses the topics
hierarchy.

When not to use

v If you have changed the topics hierarchy. In this case, a delta topics
deployment is typically sufficient.

Delta topics deployment
A delta topics deployment sends only the changes made to the publish/subscribe
topics hierarchy to all the brokers in a domain.

When to use

v If you have made changes to the topics hierarchy.

When not to use

96 Message Flows

v If the topics hierarchy has not changed.

Cancel deployment
Canceling a deployment tells the Configuration Manager to assume that a broker
will never respond to an outstanding deployment.

You might need to cancel a deployment because the Configuration Manager allows
only one deployment to be in progress to each broker at any one time. If for some
reason a broker does not respond to a deployment request, subsequent requests
cannot reach the broker, because, to the Configuration Manager, a deployment is
still in progress.

If a broker subsequently does provide a response to an outstanding deployment
that has been canceled, the response is ignored by the Configuration Manager, and
an inconsistency subsequently exists between what is running on the broker and
the information that is provided by the Configuration Manager.

Because of this risk of inconsistency, cancel a deployment only as a last resort, and
only if you are sure that a broker will never be able to process a previous
deployment request. However, before canceling a deployment, you can manually
remove outstanding deployment messages to ensure that they are not processed.

You can cancel a deployment in two ways:
v Cancel deployment to a domain
v Cancel deployment to a broker

Cancel deployment to a domain
Canceling a deployment to a domain has the following effects:
v The Configuration Manager assumes that all brokers in the domain that have

outstanding deployments will not respond.
v The locks for all outstanding deployments in the domain are removed.
v Deployment messages that have not yet been processed are not removed from

any of the brokers in the domain by the Configuration Manager. For brokers that
have successfully deployed a configuration, the deployed information remains
on the broker.

When to use
Cancel a domain deployment only if both of these conditions are met:
v You receive error message BIP1510 when you attempt a deployment.
v None of the brokers that have outstanding deployments are responding.

When not to use

v If a broker is merely taking a long time to respond to a deployment
request. The broker might have been temporarily stopped, for example.

v If other users might be deploying to the domain at the same time.
v If only one broker is not responding, or a small number of brokers are

not responding. In this case, cancel the deployment to individual brokers
instead.

Cancel deployment to a broker
Canceling a deployment to an individual broker has the following effects:
v The Configuration Manager assumes that the specific broker will not respond to

outstanding deployments.
v The locks for outstanding deployments to that broker only are removed.

Deploying 97

v The Configuration Manager attempts to remove from the broker, deployment
messages that have not yet been processed. This succeeds only if the broker and
the Configuration Manager share the same queue manager, and if the message
has not already been processed by the broker.

When to use
Cancel a domain deployment only if both of these conditions met:
v You receive error message BIP1510 when you attempt a deployment.
v The broker is not responding.

When not to use

v If the broker is simply taking a long time to respond to a deployment
request. The broker might have been temporarily stopped, for example.

v The connected Configuration Manager is at Version 6.0 or later. If the
version is earlier, canceling deployment to a specific broker has no effect;
you must cancel the entire domain deployment instead.

Deploying a message flow application
Deploy message flow applications to execution groups by adding required
resources, optionally with their source files, to a broker archive (BAR) file. Send the
BAR file to a Configuration Manager, where it is unpacked and the individual files
distributed to execution groups on individual brokers.

Before you start:

Before you can deploy a message flow application, you must have created and
started a Configuration Manager. You must also start a WebSphere MQ listener for
the associated queue manager.

Within the workbench, you must create a domain, add a broker to that domain,
and create an execution group within the broker. The broker that you add to the
domain is a reference, therefore you must also create and start the physical broker
on the target system, and start a WebSphere MQ listener on its queue manager. See
the links to related tasks at the end of this topic for help with these actions.

The tasks in this section describe the process:
1. “Creating a server project”
2. “Creating a broker archive” on page 99
3. “Adding files to a broker archive” on page 100
4. “Refreshing the contents of a broker archive” on page 103
5. “Deploying a broker archive file” on page 104
6. “Checking the results of deployment” on page 112

Creating a server project
Before you can deploy a message flow application, you must create a server project
for it.

Before you start:

Save your message flow projects.

Follow these steps to create a server project using the Message Brokers Toolkit.
1. Switch to the Broker Administration perspective.

98 Message Flows

2. Click File → New → Other.
3. Select Show all wizards. In the list of wizards, expand Server and click Server

Project.
4. Click Next.
5. If you are prompted, click OK to enable ″Base J2EE Support″.
6. Enter the name of your new server project.
7. Click Finish.

The folder that is created appears twice in the Navigator view (if Show empty
projects in Navigators has been selected in the Broker Administration Preferences
page):
v In the Domain Connections folder
v In the Broker Archives folder

Next:

1. “Creating a broker archive”
2. “Adding files to a broker archive” on page 100

Creating a broker archive
Create a separate broker archive (BAR) file for each configuration that you want to
deploy to execution groups on brokers in your broker domain.

You can create a BAR file in two ways:
v Using the Message Brokers Toolkit
v Using the mqsicreatebar command

Using the Message Brokers Toolkit

Before you start:

Either create a server project, or ensure that one already exixts.

Follow these steps to create a BAR file using the workbench:
1. Switch to the Broker Administration perspective.
2. Click File → New → Message Broker Archive.
3. Enter the name of your server project or select one from the displayed list. The

list is filtered to only show projects in the active working set.
4. Enter a name for the BAR file that you are creating.
5. Click Finish.

A file with a .bar extension is created and is displayed in the Broker
Administration Navigator view, under the Broker Archives folder. The Content
editor for the BAR file opens.

Next:

1. “Creating a broker archive”
2. “Deploying a broker archive file” on page 104

Deploying 99

|
|

Using the mqsicreatebar command

Follow these steps to create a BAR file using the mqsicreatebar command:
1. Open a command window that is configured for your environment.
2. Enter the command, typed on a single line. For example:

mqsicreatebar -b barName -o filePath -p projectNames -cleanBuild

You must specify the -b (BAR file name) and -o (path for included files)
parameters. The -p (project names) parameter is optional. The mqsicreatebar
topic gives more details.
If external tools have been used to make changes to resources in the broker
archive, add the -cleanBuild parameter to refresh all the projects and invoke a
clean build. A file with a .bar extension is created.

Next:

1. “Creating a broker archive” on page 99
2. “Deploying a broker archive file” on page 104

Adding files to a broker archive
To deploy files to an execution group, you must first include them in a broker
archive.

Before you start:

Create a broker archive (BAR) file for each configuration that you want to deploy.

You can add message flows to a BAR file only at the project level. However, after
you have added the project to the BAR file, you can click Remove to remove
individual message flows. Likewise, if you select Include source files, the source
files for all message flows in the project are included; you can manually remove
the resources that you do not want.

For further information about the files that you can include in a broker archive, see
“Broker archive” on page 93.

If a parent flow and subflow are displayed in the Add dialog, subflows are added
automatically, and so you have to add only the parent flow.

You cannot read deployed files back from broker execution groups. Therefore, keep
a copy of the deployed BAR file, or of the individual files within it.

Follow these steps to add files to a broker archive using the workbench:
1. Switch to the Broker Administration perspective.
2. Double-click your BAR file in the Broker Administration Navigator view to

open it. The contents of the BAR file are shown in the Content editor. (If the
BAR file is new, this view is empty.)

3. Click Add.
4. Select the message flows and other files that you want to include. (Duplicates

within a BAR file are automatically removed.)
5. Optional: If you want to include your source files, select Include source files.
6. Click OK.

100 Message Flows

A list of the files that are now in your BAR file is displayed in the Content editor.
You can choose not to display your message flow source files by clearing the Show
source files box at the bottom of the Content editor pane.

Next:

If you use configurable properties, see “Editing configurable properties” on page
102.

If you want to have multiple instances of a flow with different values for the
configurable properties, see “Adding multiple instances of a message flow to a
broker archive” on page 102.

To make further changes to your BAR file, see “Editing a broker archive file
manually.”

When your BAR file is complete, the next task is: “Deploying a broker archive file”
on page 104.

Editing a broker archive file manually
How to edit resources that you want to change, in an editor of your choice, by
exporting a broker archive (BAR) file from the workbench.

Before you start:

If you have not already created a BAR file, create it now. See “Creating a broker
archive” on page 99.

Follow these steps to edit a BAR file manually using the workbench:
1. Export the BAR file.

a. From the workbench, click File → Export. The Export window appears.
b. Select the export destination, such as a compressed file with .zip extension,

and click Next.
c. Select the resources that you want to export and click Next.
d. Complete the destination information and click Finish. The file appears at

the destination you specified as a compressed file.
2. Extract files from the BAR file.
3. Edit the properties that you want to change in an editor of your choice.
4. Save the file.
5. Import the BAR file back into the workbench for deployment.

a. From the workbench, click File → Import. The Import window appears.
b. Select Zip file from the list.
c. Click Next.
d. Specify the name and location of your BAR file.
e. Select the server project that you want to contain the BAR file.
f. Click Finish.

Next:

“Deploying a broker archive file” on page 104.

Deploying 101

Editing configurable properties
You can edit configurable properties in the deployment descriptor file (typically
broker.xml) of your broker archive.

Before you start:

If you have not already created a BAR file, create it now. See “Creating a broker
archive” on page 99.

You can edit configurable properties in two ways:
v Using the Message Brokers Toolkit
v Using the mqsiapplybaroverride command

Using the Message Brokers Toolkit:

Follow these steps to edit properties using the workbench:
1. Switch to the Broker Administration perspective.
2. Select the Configure tab at the bottom of the Content editor pane. The

properties that you can configure are listed.
3. Click the property for which you want to edit the value. The values that can be

edited are displayed.
4. Replace the current value with the new value.
5. Save your BAR file.

Next:

“Deploying a broker archive file” on page 104.

Using the mqsiapplybaroverride command:

Follow these steps to edit properties using the mqsiapplybaroverride command:
1. Open a command window that is configured for your environment.
2. Create a text file (with a .properties file extension).
3. Enter the command, typed on a single line, specifying the location of your

broker archive deployment descriptor (typically broker.xml) and the file that
contains the properties to be changed. See mqsiapplybaroverride for examples
on how to use the command. A file with a .bar extension is created.

Next:

“Deploying a broker archive file” on page 104.

Adding multiple instances of a message flow to a broker archive
Edit the name of your files in the broker archive (BAR) file so that you can deploy
multiple instances of a message flow with different values for the configurable
properties.

Before you start:

Add the file to the broker archive. See “Adding files to a broker archive” on page
100.

To deploy multiple instances of the flow with different values for the configurable
properties:

102 Message Flows

|

|

|
|
|
|

1. Rename the message flow file (.cmf) in the broker archive editor. Ensure you
keep the .cmf file extension when you change the file name. You are unable to
configure the file if you change the extension.

2. Add the message flow to the BAR file again. It is added to the BAR file with
the original name.

3. Click the Configure tab. You can now edit the configurable properties for both
message flows.

Tip: The names assigned in the BAR file are also used on the command line; for
example, if you run mqsilist on your execution group or if you run
mqsichangetrace for a message flow.

Next:

Deploy the BAR file. Both message flows are deployed to the execution group and
use the values for the configurable properties that you set in the BAR file.

Refreshing the contents of a broker archive
Refresh the contents of a broker archive by using the Refresh option of the Broker
Archive editor in the workbench. Alternatively, remove resources from your broker
archive and, having made the required changes, add them back again.

Before you start:

See “Creating a broker archive” on page 99 and “Adding files to a broker archive”
on page 100.

You are likely at some time to make changes to resources that you have already
added to your broker archive (BAR) file. Follow these steps to refresh the contents
of a broker archive so that they are reflected in the archive before you deploy it.
1. Switch to the Broker Administration perspective.

BAR files that need to be refreshed are shown with an ’out-of-sync’ icon in
the Navigator view. (When any changes are made to deployable files in the
workspace, that have previously been built in the broker archive, the BAR file
is considered to be inconsistent. The BAR file is also inconsistent if any changes
are made to the project that the files belong to.)

2. Double-click your BAR file in the Navigator view to open it.
The contents of the BAR file are shown in the Content editor. Icons indicate
resources that are consistent , and those that need to be refreshed .

3. To refresh all the resources in the broker archive, click Refresh .
A dialog box opens, showing progress. When the operation is complete, click
Details to see information about what was refreshed, what was not, and why.
If the refresh process was successful, you see the same information that is
placed in the user log by each of the resource compilers.
Alternatively, you can refresh the archive contents by right-clicking a BAR file
in the Navigator view and selecting Refresh Archive Contents. The broker
archive is rebuilt in the background.

You can view, and clear , the user and service logs by clicking the
appropriate tabs in the Broker Archive editor.

4. (Optional) To view the properties of an individual resource in the Content
editor, right-click the resource and click Show in Properties.

Deploying 103

The Deployable properties view opens (if it is not already in the perspective)
and shows details of the resource that you have selected. The view has two
fields:
v Workspace Resource, with references to the linked workspace resources

(.msgflow files, for example).
v Last Compile Status, which shows the user log entry for the last compilation.

You can copy text, but you cannot modify it.

Next:

“Deploying a broker archive file”

Deploying a broker archive file
After you have created and populated a broker archive (BAR) file, deployment of
the file is required to an execution group on a broker, so that the file can take effect
in the broker domain.

Before you start:

You must have created a BAR file. See “Creating a broker archive” on page 99.

The sections in this topic show you how to deploy a broker archive in three
different ways:
v Using the Message Brokers Toolkit
v Using the mqsideploy command
v Using the Configuration Manager Proxy API

If you make changes to a BAR file, and want to propagate those changes to one or
more brokers, you can redeploy the updated BAR file using any of the three ways
described above:
v “Redeploying a broker archive file” on page 106

If the execution group to which you want to deploy is restricted by an ACL, you
must have appropriate access rights to complete this task.

Using the Message Brokers Toolkit

Follow these steps for deployment of a BAR file using the workbench:
1. Switch to the Broker Administration perspective.
2. Optional. Typically, an incremental BAR file deployment is performed. To

perform a complete BAR file deployment, right-click the target execution group
in the Domains view and select Remove Deployed Children. Wait for the
operation to complete before continuing.
Do not Remove Deployed Children if you want only to refresh one or more of
the child processes with the contents of the BAR file. For an explanation of the
difference between a complete and an incremental BAR file deployment, see
“Message flow application deployment” on page 91.

3. Click the BAR file, shown in the Navigator view, to highlight it.
4. Deploy the BAR file to an execution group.
v Either drag the file onto your target execution group, shown in the Domains

view.
v Alternatively, right-click the BAR file and click Deploy file. A window shows

all of the domains, and execution groups in those domains to which the

104 Message Flows

workbench is connected. A window shows the execution groups (within their
domains) to which you can deploy the BAR file.
Select an execution group and click OK to deploy the BAR file. (If you select
a broker topology that is not connected to a domain, an attempt is made to
connect the broker topology. If you click Cancel, the broker topology remains
unconnected to a domain.)

Whichever method you use, you can select (and deploy to) only one execution
group at a time.

5. If the BAR file has not been saved since it was last edited, you are asked
whether you want to save the file before deploying. If you click Cancel, the
BAR file is not saved and deployment does not take place.

The BAR file is transferred to the Configuration Manager, which deploys the file
contents (message flows, for example) to the execution group. In the Domains
view, the assigned message flows are added to the appropriate execution group.

Next:

Continue by checking the results of the deployment; see “Checking the results of
deployment” on page 112.

Using the mqsideploy command

Follow these steps for deployment of a BAR file using the mqsideploy command.
1. Open a command window that is configured for your environment.
2. Using the following examples, enter the appropriate command:

On distributed platforms:
mqsideploy -i ipAddress -p port -q qmgr -b broker -e exngp -a barfile

The command performs an incremental deployment. Add the –m
parameter to perform a complete BAR file deployment.

The -i (IP address), -p (port), and -q (queue manager) parameters
represent the connection details of the queue manager computer.

You must also specify the -b (broker name), -e (execution group name),
and -a (BAR file name) parameters.

On z/OS:
/f MQ01CMGR,dp b=broker e=exngp a=barfile

The command performs an incremental deployment. Add the m=yes
parameter to perform a complete BAR file deployment.

In the example, MQ01CMGR is the name of the Configuration Manager
component. You must also specify the names of the broker, execution
group, and BAR file (the b=, e=, and a= parameters).

Next:

Continue by checking the results of the deployment; see “Checking the results of
deployment” on page 112.

Using the Configuration Manager Proxy

Use the deploy method of the ExecutionGroupProxy class. By default, the deploy
method performs an incremental (delta) deployment. To deploy the complete

Deploying 105

hierarchy, use a variant of the method that includes the Boolean isIncremental
parameter set to false. Setting this parameter to true indicates an incremental
deployment.

To perform an incremental deployment, for example:
import com.ibm.broker.config.proxy.*;
import java.io.IOException;

public class DeployBar {
public static void main(String[] args) {

ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters("localhost", 1414, "QM1");

try {
ConfigManagerProxy cmp = ConfigManagerProxy.getInstance(cmcp);
TopologyProxy t = cmp.getTopology();
BrokerProxy b = t.getBrokerByName("BROKER1");
ExecutionGroupProxy e = b.getExecutionGroupByName("default");
e.deploy("deploy.bar");

}
catch (ConfigManagerProxyException cmpe) {

cmpe.printStackTrace();
}
catch (IOException ioe) {

ioe.printStackTrace();
}

}
}

By default, the deploy method performs an incremental deployment. To perform a
complete deployment, use a variant of the method that includes a false value for
the Boolean isIncremental parameter. For example, e.deploy(″deploy.bar″,false,0).
Setting this parameter to true indicates an incremental deployment.

Next:

Continue by checking the results of the deployment; see “Checking the results of
deployment” on page 112.

Redeploying a broker archive file

If you make changes to a BAR file, and want to propagate those changes to one or
more brokers, you can redeploy the updated BAR file to one or more execution
groups, using any of the deploy methods described previously. You need not stop
the message flows that you deployed previously; all resources in the execution
group or groups that are in the redeployed BAR file are replaced and new
resources are applied.

If your updates to the BAR file include the deletion of resources, a redeployment
does not result in their deletion from the broker. For example, assume your BAR
file contains message flows F1, F2, and F3. You update the file by removing F2 and
adding message flow F4. If you redeploy the BAR file, all four flows are available
in the execution group when the redeployment has completed. F1 and F3 are
replaced by the contents of the redeployed BAR file.

If you want to clear previously-deployed resources from the execution group
before you redeploy, perhaps because you are deleting resources, use one of the
methods described above:
v Using the workbench, follow the instructions for a complete deployment,

making sure that you select Remove Deployed Children before deploying.

106 Message Flows

v Using the mqsideploy command, follow the instructions, making sure that you
add the –m parameter to perform a complete BAR file deployment.

v Using the Configuration Manager Proxy, follow the instructions for a complete
deployment.

If your message flows are not transactional, stop the message flows before you
redeploy to be sure that all the applications complete cleanly and are in a known
and consistent state. You can stop individual message flows, execution groups, or
brokers.

If your message flows are transactional, the processing logic that handles
commitment or rollback ensures that resource integrity and consistency are
maintained.

Next:

Continue by checking the results of the redeployment. See “Checking the results of
deployment” on page 112.

Deploying a broker configuration
If you have modified runtime properties, including details of execution groups,
and multicast and inter-broker settings, use a broker configuration deployment to
inform the broker of your changes.

You can deploy a broker configuration in three ways:
v Using the Message Brokers Toolkit
v Using the mqsideploy command
v Using the Configuration Manager Proxy API

Using the Message Brokers Toolkit

You do not need to deploy a broker configuration manually from the workbench. If
you modify multicast or interbroker settings in the Broker Administration
perspective, a broker configuration deployment starts automatically when you
apply the changes. This process runs in the background.

Using the mqsideploy command

Follow these steps to deploy a broker configuration using the mqsideploy
command:
1. Open a command window that is configured for your environment.
2. Using the examples below, enter the appropriate command, specifying the

broker to which you want to deploy:

On distributed platforms:
mqsideploy -i ipAddress -p port -q qmgr -b broker

where -i (IP address), -p (port), and -q (queue manager) represent the
connection details of the queue manager workstation.

On z/OS:
/f MQ01CMGR,dp b=broker

Deploying 107

where MQ01CMGR is the name of the Configuration Manager
component.

If you specify the broker to which you want to deploy (-b or b=), without
indicating a BAR file (-a), the broker configuration is deployed, rather than a
message flow application.

Next:

Continue by checking the results of the deployment.

Using the Configuration Manager Proxy

Use the deploy method of the BrokerProxy class. By default, the deploy method
performs an incremental (delta) deployment. To deploy the complete hierarchy, use
a variant of the method that includes the Boolean isDelta parameter set to false.
Setting this parameter to true indicates an incremental deployment.

To perform an incremental deployment, for example:
import com.ibm.broker.config.proxy.*;

public class DeployBrokerConfig {
public static void main(String[] args) {

ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters

("localhost", 1414, "QM1");
try {

ConfigManagerProxy cmp = ConfigManagerProxy.getInstance(cmcp);
TopologyProxy t = cmp.getTopology();
BrokerProxy b = t.getBrokerByName("BROKER1");
if (b != null) {

b.deploy();
}

}
catch (ConfigManagerProxyException e) {

e.printStackTrace();
}

}
}

Next:

Continue by checking the results of the deployment.

Deploying a publish/subscribe topology
When you make a change to your publish/subscribe topology these changes must
be deployed to your broker domain.

Before you start:

Make sure that you have configured your broker domain.

The publish/subscribe topology deployment overview explains when you might
want to deploy a topology and the difference between a complete and delta
deployment.

You can deploy topology information in three ways:
v Using the Message Brokers Toolkit

108 Message Flows

v Using the mqsideploy command
v Using the Configuration Manager Proxy API

After you have deployed a publish/subscribe topology, you might see an extra
execution group process called $SYS_mqsi in a process listing or in the output
from the mqsilist command. When you deploy a publish/subscribe topology for
the first time, a new execution group process is started on your broker to handle
the publish/subscribe messages. This execution group is used only internally: it
does not appear in the workbench and you cannot deploy message flows to it.
After you have deployed one or more of your own flows to another execution
group, $SYS_mqsi is removed when the broker is subsequently restarted.

Using the Message Brokers Toolkit

You can configure the workbench so that topology information is automatically
deployed after a change. See Changing Broker Administration preferences

Follow these steps to manually deploy a topology configuration using the
workbench:
1. Switch to the Broker Administration perspective.
2. In the Domains view, expand the Domains from where you want to perform

the deploy.
3. Right-click Broker Topology hierarchy.
4. Click Deploy Topology Configuration.
5. Click Delta to deploy only the changed items or click Complete to deploy the

entire configuration.
Alternatively, you can make a change to the Topology document in the Broker
Administration perspective, save the changes, and then select Delta. This
behavior can be modified in the workbench preferences dialog.

The topology is deployed and the Configuration Manager distributes it to the
brokers in the domain.

Next:

“Checking the results of deployment” on page 112

Using the mqsideploy command

Follow these steps to deploy a topology configuration using the mqsideploy
command:
1. Open a command window that is configured for your environment.
2. Using the example below, enter the appropriate command, typed on a single

line:

z/OS On z/OS:
/f MQ01CMGR,dp l=yes

This command performs a delta deployment. Add the m=yes parameter to
deploy the entire configuration. MQ01CMGR is the name of the Configuration
Manager component.
On other platforms:
mqsideploy –i ipAddress –p port –q qmgr –l

Deploying 109

This command performs a delta deployment. Add the –m parameter to deploy
the entire configuration. The -i (IP address), -p (port), and -q (queue manager)
parameters represent the connection details of the queue manager workstation.

Next:

“Checking the results of deployment” on page 112

Using the Configuration Manager Proxy

Use the deploy method of the TopologyProxy class. By default, the deploy method
performs an incremental (delta) deployment. To deploy the complete hierarchy, use
a variant of the method that includes the Boolean isDelta parameter set to false.
Setting this parameter to true indicates an incremental deployment.

To perform a complete deployment, for example:
import com.ibm.broker.config.proxy.*;

public class DeployTopology {
public static void main(String[] args) {

ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters

("localhost", 1414, "QM1");
try {

ConfigManagerProxy cmp =
ConfigManagerProxy.getInstance(cmcp);

TopologyProxy t = cmp.getTopology();
t.deploy(false);

}
catch (ConfigManagerProxyException e) {

e.printStackTrace();
}

}
}

Next:

“Checking the results of deployment” on page 112

Deploying a publish/subscribe topics hierarchy
Deploy your topics hierarchy using the workbench, the mqsideploy command, or
the Configuration Manager Proxy.

Before you start:

Make sure that you have configured your broker domain.

The topic deployment overview explains when you might want to deploy a topic
hierarchy and the difference between a complete and a delta deployment.

You can deploy a topics hierarchy in three ways:
v Using the Message Brokers Toolkit
v Using the mqsideploy command
v Using the Configuration Manager Proxy API

110 Message Flows

You can configure the workbench preferences so that a topics hierarchy is
automatically deployed after you have made a change.

Using the Message Brokers Toolkit

Follow these steps to deploy a topics hierarchy using the workbench:
1. Switch to the Broker Administration perspective.
2. In the Domains view, expand the Domains from where you want to perform

the deploy.
3. Right-click Topics hierarchy.
4. Click Deploy Topics Configuration.
5. Click Delta to deploy only the changed items, or click Complete to deploy the

entire configuration.

The topics hierarchy is deployed, and the Configuration Manager distributes the
topics to brokers in the domain.

Next:

“Checking the results of deployment” on page 112

Using the mqsideploy command

Follow these steps to deploy a topics hierarchy using the mqsideploy command:
1. Open a command window that is configured for your environment.
2. Using the examples below, enter the appropriate command, typed on a single

line:

z/OS On z/OS:
/f MQ01CMGR,dp t=yes

This command performs a delta deployment. Add the m=yes parameter to
deploy the entire configuration.
On other platforms:
mqsideploy -i ipAddress -p port -q qmgr -t

This command performs a delta deployment. Add the –m parameter to deploy
the entire configuration. The -i (IP address), -p (port), and -q (queue manager)
parameters represent the connection details of the queue manager workstation.

Next:

“Checking the results of deployment” on page 112

Using the Configuration Manager Proxy

Use the deploy method of the TopicRootProxy class. By default, the deploy method
performs an incremental (delta) deployment. To deploy the complete hierarchy, use
a variant of the method that includes the Boolean isDelta parameter set to false.
Setting this parameter to true indicates an incremental deployment.

To perform a complete deployment, for example:
import com.ibm.broker.config.proxy.*;

public class DeployTopics {

Deploying 111

public static void main(String[] args) {
ConfigManagerConnectionParameters cmcp =

new MQConfigManagerConnectionParameters
("localhost", 1414, "QM1");

try {
ConfigManagerProxy cmp =

ConfigManagerProxy.getInstance(cmcp);
TopicRootProxy t = cmp.getTopicRoot();
t.deploy(false);

}
catch (ConfigManagerProxyException e) {

e.printStackTrace();
}

}
}

Next:

“Checking the results of deployment”

Checking the results of deployment
After you have made a deployment, check that the operation has completed
successfully.

You can check the results of a deployment in three ways:
v Using the Message Brokers Toolkit
v Using the mqsideploy command
v Using the Configuration Manager Proxy API

Also, check the system log on the target system where the broker was deployed to
make sure that the broker has not reported any errors.

Using the Message Brokers Toolkit

Follow these steps to check a deployment using the workbench:
1. Switch to the Broker Administration perspective.
2. Expand the Domains view.
3. Double-click Event Log.

When the deployment is initiated, an information message is displayed, confirming
that the request was received by the Configuration Manager:
v BIP0892I

If the deployment completes successfully, you might also see one or more of these
additional messages:
v BIP4040I
v BIP4045I
v BIP2056I

Using the mqsideploy command

If you use the mqsideploy command to deploy, it returns numerical values from
the Configuration Manager and all brokers affected by the deployment, to indicate
the outcome. If the deployment completes successfully, the command returns 0. For
details of other values that you might see returned, see mqsideploy command.

112 Message Flows

Using the Configuration Manager Proxy API

If you are using a Configuration Manager Proxy application, you can find out the
result of a publish/subscribe topology deployment operation, for example, by
using code similar to this:
TopologyProxy t = cmp.getTopology();

boolean isDelta = true;
long timeToWaitMs = 10000;
DeployResult dr = topology.deploy(isDelta, timeToWaitMs);

System.out.println("Overall result = "+dr.getCompletionCode());

// Display overall log messages
Enumeration logEntries = dr.getLogEntries();
while (logEntries.hasMoreElements()) {

LogEntry le = (LogEntry)logEntries.nextElement();
System.out.println("General message: " + le.getDetail());

}

// Display broker specific information
Enumeration e = dr.getDeployedBrokers();
while (e.hasMoreElements()) {

// Discover the broker
BrokerProxy b = (BrokerProxy)e.nextElement();

// Completion code for broker
System.out.println("Result for broker "+b+" = " +

dr.getCompletionCodeForBroker(b));

// Log entries for broker
Enumeration e2 = dr.getLotEntriesForBroker(b);
while (e2.hasMoreElements()) {

LogEntry le = (LogEntry)e2.nextElement();
System.out.println("Log message for broker " + b +

le.getDetail()));
}

}

The deploy method blocks other processes until all affected brokers have
responded to the deployment request.

When the method returns, the DeployResult object represents the outcome of the
deployment at the time when the method returned; the object is not updated by
the Configuration Manager Proxy.

If the deployment message could not be sent to the Configuration Manager, a
ConfigManagerProxyLoggedException exception is thrown at the time of
deployment. If the Configuration Manager receives the deployment message, log
messages for the overall deployment are displayed, followed by completion codes
specific to each broker affected by the deployment. The completion code is one of
the following static instances from the CompletionCodeType class:

Completion
code

Description

pending The deployment is held in a batch and will not be sent until you issue
ConfigManagerProxy.sendUpdates().

submitted The deploy message was sent to the Configuration Manager but no
response was received before the timeout period expired.

Deploying 113

Completion
code

Description

initiated The Configuration Manager indicated that deployment has started, but
no broker responses were received before the timeout period expired.

successSoFar The Configuration Manager indicated that deployment has started and
some, but not all, brokers responded successfully before the timeout
period expired. No brokers responded negatively.

success The Configuration Manager indicated that deployment has started and
all relevant brokers responded successfully before the timeout period
expired.

failure The Configuration Manager indicated that deployment has started and
at least one broker responded negatively. You can use
getLogEntriesForBroker method of the DeployResult class to get more
information about the deployment failure. This method returns an
enumeration of available LogEntry objects.

notRequired The deployment request submitted to the Configuration Manager was
not sent to the broker because the broker’s configuration is already up to
date.

Canceling a deployment that is in progress
You can cancel all outstanding deployments in the domain, or just those sent to a
particular broker. But cancel a deployment only as a last resort and be sure that the
brokers affected, will never be able to process a previous deployment request.

Before you start:

Make sure that you understand the implications of this action. See “Cancel
deployment” on page 97.

Make sure that you have the necessary access authority:
v When canceling deployment across the domain, you must have full access

authority on the Configuration Manager.
v When canceling deployment to a specific broker, you must have full access

authority on that broker.

To ensure that previous deployment messages are not processed when an affected
broker is restarted, first remove all existing deployment messages:
1. Stop the broker.
2. Check the two queues used by the broker: SYSTEM.BROKER.ADMIN.QUEUE

and SYSTEM.BROKER.EXECUTIONGROUP.QUEUE. Manually remove all
deployment messages.

3. Proceed to cancel the deployment.

You can cancel a deployment in three ways:
v Using the Message Brokers Toolkit
v Using the mqsideploy command
v Using the Configuration Manager Proxy API

114 Message Flows

Using the Message Brokers Toolkit

Check the details at the start of this topic, and then follow these steps to cancel the
deployment to a particular broker or all outstanding deployments in a domain,
using the workbench:
1. Switch to the Broker Administration perspective.
2. In the Domains view, right-click either a particular broker or a connected

domain.
3. Click Cancel Deployment.

Deployments to the broker or domain are canceled.

Next:

“Checking the results of deployment” on page 112. A BIP0892I information
message is displayed to show that the request was received by the Configuration
Manager.

Using the mqsideploy command

Check the details at the start of this topic, and then follow these steps to cancel a
deployment using the mqsideploy command:
1. Open a command window that is configured for your environment.
2. Using the examples below, enter the appropriate command, typed on a single

line:

z/OS On z/OS:
/f MQ01CMGR,dp t=yes b=B1

This command cancels deployment to the broker called B1. Omit the b
argument to cancel all outstanding deployments in the domain. MQ01CMGR is
the name of the Configuration Manager component.
On other platforms:
mqsideploy -i ipAddress -p port -q qmgr –c –b B1

This command cancels deployment to the broker called B1. Omit the -b
parameter to cancel all outstanding deployments in the domain. The -i (IP
address), -p (port), and -q (queue manager) parameters represent the
connection details of the queue manager workstation.

Next:

“Checking the results of deployment” on page 112. A BIP0892I information
message is displayed to show that the request was received by the Configuration
Manager.

Using the Configuration Manager Proxy

First, check the details at the start of this topic

To cancel all outstanding deployments in a domain
Use the cancelDeployment method of the ConfigManagerProxy class. For
example:
public class CancelAllDeploys {

public static void main(String[] args) {
ConfigManagerConnectionParameters cmcp =

Deploying 115

new MQConfigManagerConnectionParameters
("localhost", 1414, "QM1");

try {
ConfigManagerProxy cmp =

ConfigManagerProxy.getInstance(cmcp);
cmp.cancelDeployment();

}
catch (ConfigManagerProxyException e) {

e.printStackTrace();
}

}
}

To cancel deployment to a specific broker in a domain
Use the cancelDeployment method of the BrokerProxy class. For example,
to cancel deployment to a broker called B1:
import com.ibm.broker.config.proxy.*;

public class CancelDeploy {
public static void main(String[] args) {

ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters

("localhost", 1414, "QM1");
try {

ConfigManagerProxy cmp =
ConfigManagerProxy.getInstance(cmcp);

TopologyProxy t = cmp.getTopology();
BrokerProxy b = t.getBrokerByName("B1");
b.cancelDeployment();

}
catch (ConfigManagerProxyException e) {

e.printStackTrace();
}

}
}

Next:

“Checking the results of deployment” on page 112. A BIP0892I information
message is displayed to show that the request was received by the Configuration
Manager.

Renaming objects that are deployed to execution groups
You cannot rename an object while it is still deployed to an execution group. You
must change it in the broker archive, and then redeploy the broker archive (BAR)
file.

Follow the steps in the following topics:
1. “Removing a deployed object from an execution group”
2. Rename the object
3. “Refreshing the contents of a broker archive” on page 103
4. “Deploying a broker archive file” on page 104

Removing a deployed object from an execution group
You can remove deployed objects from an execution group, for example, to rename
them..

Before you start:

116 Message Flows

Stop all message flows in the execution group. See Starting and stopping message
flows.

You can remove deployed objects from an execution group in three ways:
v “Using the Message Brokers Toolkit”
v “Using the mqsideploy command”
v “Using the Configuration Manager Proxy API” on page 118

Using the Message Brokers Toolkit

Follow these steps to remove an object from an execution group using the
workbench.
1. Switch to the Broker Administration perspective.
2. From the Domains view, right-click the object that you want to remove.
3. Click Remove from the pop-up menu, and OK to confirm.

An automatic deployment is performed for the updated broker and a BIP08921
information message is produced, which confirms that the request was received by
the Configuration Manager.

Using the mqsideploy command

Follow these steps to remove an object from an execution group using the
mqsideploy command:
1. Open a command window that is configured for your environment.
2. Using the examples below, enter the appropriate command, typed on a single

line:

On z/OS:
/f MQ01CMGR,dp t=yes b=broker e=execgroup

d=file1.cmf:file2.cmf

where MQ01CMGR is the name of the Configuration Manager
component.

On distributed platforms:
mqsideploy -i ipAddress -p port -q qmgr –b broker –e execgp

–d file1.cmf:file2.cmf

where -i IP address, -p port, and -q qmgr specify the connection details
of the Configuration Manager workstation.

The -d parameter (d= on z/OS) is a colon-separated list of files that are to be
removed from the named execution group. When you invoke the command, the
deployed objects (file1.cmf, file2.cmf) are removed from the specified execution
group and broker.
Optionally, specify the m= (z/OS) or -m (distributed) option to clear the
contents of the execution group. This option tells the execution group to
completely clear any existing data before the new BAR file is deployed.

The command reports when responses are received from the Configuration
Manager and any brokers that are affected by the deployment. If the command
completes successfully, it returns 0.

Deploying 117

Using the Configuration Manager Proxy API

To remove deployed objects from an execution group, get a handle to the relevant
ExecutionGroupProxy object, and then invoke the deleteDeployedObjectsByName
method. For example:
import com.ibm.broker.config.proxy.*;

public class DeleteDeployedObjects {
public static void main(String[] args) {

ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters

("localhost", 1414, "QM1");
try {

ConfigManagerProxy cmp =
ConfigManagerProxy.getInstance(cmcp);

TopologyProxy t = cmp.getTopology();
BrokerProxy b = t.getBrokerByName("broker1");
ExecutionGroupProxy e =

b.getExecutionGroupByName("default");
e.deleteDeployedObjectsByName(

new String[] { "file1.cmf",
"file2.cmf" }, 0);

}
catch (ConfigManagerProxyException e) {

e.printStackTrace();
}

}
}

118 Message Flows

Part 3. Exploiting user-defined extensions

User-defined nodes 121

Installing a user-defined node on a broker
domain 123

Deleting a user-defined node 125

© Copyright IBM Corp. 2000, 2009 119

120 Message Flows

User-defined nodes

A user-defined node is a component that has been designed and implemented by
WebSphere Message Broker users or by third-party vendors to add to the function
of your implementation of WebSphere Event Broker.

With WebSphere Event Broker, you can deploy the following types of user-defined
extensions:
v User-defined input nodes
v User-defined message processing nodes
v User-defined output nodes

User-defined nodes can be used in conjunction with the nodes that are supplied
with the product, and with third-party supplied nodes. They can interact with the
other nodes in the message flow, and can have characteristics such as rollback,
commit, accessing external databases, and accessing WebSphere MQ queues.

You can configure the terminals and properties on your user-defined nodes,
according to your system setup. However, you cannot change any of the internals
of a user-defined node.

User-defined nodes can be written in the C or Java programming language.
User-defined nodes written in C are compiled into a loadable implementation
library, that is, a shared library on Linux and UNIX, or a Windows DLL.
User-defined nodes written in Java are packaged as a jar file.

For information on deploying or deleting user-defined nodes, see the relevant
topics in this section of the help.

© Copyright IBM Corp. 2000, 2009 121

122 Message Flows

Installing a user-defined node on a broker domain

Before you start

You must have a compiled user-defined extension, which has been supplied either
by a third party vendor, or by a WebSphere Message Broker Version 6.0 user.
1. Put a copy of your compiled or packaged user-defined extension file on every

broker system from which you intend to use it.
Specify the directory in which to put the file, by using either the
mqsichangebroker command or the mqsicreatebroker command.

Note: Do not save the .lil or .jar file in the WebSphere Event Broker install
directory.

For C user-defined extensions, it is recommended that the .pdb file, which
corresponds to the .lil file, is also stored in the chosen directory. The .pdb file
provides symbolic information that is used by WebSphere Event Broker when
displaying stack diagnostic information in the event of access violations or
other software malfunctions.

2. Stop and start each broker. This is to ensure that the existence of a new file is
detected.
There are two situations where a broker restart is not necessary:
v If you have created an execution group in the Toolkit, and there is nothing

yet deployed to it, you can add the .lil, .pdb, and .jar file to your chosen
directory.

v If something has already been deployed to the execution group you that
want to use, add the .lil, .pdb, and .jar file to your chosen directory and then
use the mqsireload command to restart the group. It is not possible to
overwrite an existing file on the Windows platform when the broker is
running because of the file lock that is put in place by the operating system.

These two situations should be used with caution because any execution group
that is connected to the same broker will also detect the new .lil, .pdb, and .jar
files when that execution group is restarted, or when something is first
deployed to that execution group. By using the more conventional way of
restarting the broker, you ensure that anyone with an interest in a particular
execution group is made aware that recent changes have been made to the
broker.
These two situations assume that you have already completed the previous
step, and have therefore used either the mqsichangebroker command or the
mqsicreatebroker command to notify the broker of the directory in which the
user-defined extension files have been placed.
When you have installed a user-defined node, it is referred to by its schema
and name, just like a message flow.

© Copyright IBM Corp. 2000, 2009 123

124 Message Flows

Deleting a user-defined node

Before you start

You must have at least one user-defined extension installed on your broker system.

On all types of system, you can remove a user-defined node file from the broker
by completing the following steps:
1. Stop the broker, using the mqsistop command.
2. Delete the .lil or .jar file from the appropriate directory.
3. Restart the broker using the mqsistart command.

© Copyright IBM Corp. 2000, 2009 125

126 Message Flows

Part 4. Reference

Message flows 129
Message flow preferences 129
Description properties for a message flow 129

Guidance for defining keywords 130
Built-in nodes 132

Input node 132
JMSInput node 134
JMSMQTransform node 140
JMSOutput node 141
MQeInput node 149
MQeOutput node 156
MQInput node 159
MQJMSTransform node 166
MQOptimizedFlow node 168
MQOutput node 169
Output node 175
Publication node 177
Real-timeInput node 179
Real-timeOptimizedFlow node 181
SCADAInput node 182
SCADAOutput node 186

User-defined nodes 188
Supported code pages 188

Chinese code page GB18030 215
Data integrity within message flows. 216
Configurable message flow properties 216
Message flow porting considerations 217
Message flow accounting and statistics data . . . 218

Message flow accounting and statistics details 218
Message flow accounting and statistics output
formats 219
Example message flow accounting and statistics
data 230

© Copyright IBM Corp. 2000, 2009 127

128 Message Flows

Message flows

Reference information provided in this section can help you develop your message
flows and related resources.

Message flow reference information is available for:
v “Message flow preferences”
v “Description properties for a message flow”
v “Built-in nodes” on page 132
v “User-defined nodes” on page 188
v “Supported code pages” on page 188
v “Data integrity within message flows” on page 216
v “Configurable message flow properties” on page 216
v “Message flow porting considerations” on page 217
v “Message flow accounting and statistics data” on page 218

Message flow preferences

You can set Message flow preferences from Window → Preferences then click
Message Flow in the left pane.

Property Type Meaning

Default version
tag

String Provide the default version information you would like to be set in the message
flow Version property when you create a new message flow.

Description properties for a message flow

Property Type Meaning

Version String You can enter a version for the message flow in this field. This allows the
version of the message flow to be displayed using the Eclipse properties view.

A default for this field can be set in the messages flow preferences.

Short
Description

String You can enter a short description of the message flow in this field.

Long
Description

String You can add information to enhance the understanding of the message flow’s
function in this field.

It is a string field and any standard alphanumeric characters can be used.

You can also use this field to define a keyword and its value that will display for
the deployed message flow in the properties view of Eclipse. An example is:

$MQSI Author=Fred MQSI$

When the properties of the deployed message flow are displayed, this will add a
row to the display showing “Author” as the property name and “Fred” as its
value.

For information on keywords see “Guidance for defining keywords” on page
130.

To view and edit the properties of a message flow click Flow → Properties.

© Copyright IBM Corp. 2000, 2009 129

Guidance for defining keywords

This topic contains the rules to follow when defining keywords. Keywords and
their values are displayed in the properties view of a deployed object.

A number of objects in WebSphere Event Broker can have additional information
added to the object. This information can display information about an object after
the object has been deployed. The default information that is displayed is the time
the object was deployed and the last time the object was modified.

You can define custom keywords, and their values that the Configuration Manager
will interpret as additional information to be displayed, in the properties view. For
example, you can define keywords for “Author” and “Subflow 1 Version”:
$MQSI Author=John Smith MQSI$
$MQSI Subflow 1 Version=v1.3.2 MQSI$

The information the Configuration Manager shows is:

Object name

Deployment Time 28-Aug-2004 15:04

Modification Time 28-Aug-2004 14:27

Version v1.0

Author John Smith

Subflow 1 Version v1.3.2

In this display the version information has also been defined using the Version
property of the object. If the version information had not been defined using the
property, it would be omitted from this display.

The syntax for defining a keyword and its associated value is:
$MQSI KeywordName = KeywordValue MQSI$

Where:

$MQSI
$MQSI opens the definition. It can be followed by an optional underscore
or white space character that is ignored.

KeywordName
The name of the keyword for which you are setting the value. It can be
made up of any sequence of alphanumeric characters apart from the equals
(=) sign. It can contain white space characters, but any leading or trailing
white space characters are omitted.

= The equals (=) sign is the delimiter between the keyword and the value
that you are setting it to.

KeywordValue
The value to which the keyword is set. It can be made up of any sequence
of alphanumeric characters. It can contain white space characters, but any
leading or trailing white space characters are omitted.

MQSI$
MQSI$ closes the keyword definition.

130 Message Flows

Examples

Example definitions Interpreted keyword and value Comments

$MQSIAuthor=JohnMQSI$ or
$MQSI Author=John MQSI$ or
$MQSI Author = John MQSI$

Keyword = ″Author″
Value = ″John″

Each of these is a basic example of
what can be set and shows that the
leading and trailing white space
characters for the name and value
parameters are ignored.

$MQSI_Author = John MQSI$ Keyword = ″Author″
Value = ″John″

The first character after $MQSI can
be an underscore character. The
underscore character is omitted in the
interpreted keyword. If a second
underscore character appears, this
forms part of the keyword name.

$MQSI Flow designer = John Smith
MQSI$

Keyword = ″Flow designer″
Value = ″John Smith″

White space characters are accepted
for each parameter value.

$MQSI bar = MQSI$ Keyword = ″bar″
Value = ″″

The keyword value can be set to an
empty (″″) string.

$MQSI_mqsitag=$MQSI$MQSI$ Keyword = ″mqsitag″
Value = ″$″

This is a poorly formatted definition.
After defining the keyword name, the
parser is looking to find the
delimiters that form the boundary of
the value to be set. In this case, the
only character prior to the MQSI$
that closes the definition is a ’$’, and
that is set as the keyword value.

$MQSI=barMQSI$ This pattern is ignored because the
keyword name cannot be an empty
string.

$MQSItagbarMQSI$ This pattern is ignored because there
is not a separator (=) between the
keyword name and the keyword
value.

Do not use the following keywords as described below:

VERSION
When you use the Message Brokers Toolkit to edit message flows and
dictionaries, it is possible to set the Version property in the Properties
pane, which you can then view in the Broker Archive file editor. If you set
this property, a keyword called VERSION is added to the resulting cmf or
dictionary file. For this reason, do not add $MQSI_VERSION=...MQSI$ to
these files.

BAR The BAR keyword is associated with each object automatically when it is
deployed and it contains the full path name of the broker archive file that
deployed the object.

The values of both keywords are defined programmatically in the class
com.ibm.broker.config.proxy.DeployedObject.

Restrictions within keywords

Do not use the following characters within keywords because they cause
unpredictable behavior:
^$.|\<>?+*=&[]

Message flows 131

You can use these characters in the values that are associated with keywords; for
example:
v $MQSI RCSVER=$id$ MQSI$ is acceptable
v $MQSI $name=Fred MQSI$ is not acceptable

Built-in nodes
WebSphere Event Broker supplies built-in nodes that you can use to define your
message flows.

For information about each of these built-in nodes, use the following links. The
nodes are listed in the categories under which they are grouped in the node
palette, see “Message flow node palette” on page 6.

WebSphere MQ
v “MQInput node” on page 159
v “MQOutput node” on page 169
v “MQOptimizedFlow node” on page 168
v “MQeInput node” on page 149
v “MQeOutput node” on page 156

JMS
v “JMSInput node” on page 134
v “JMSOutput node” on page 141
v “JMSMQTransform node” on page 140
v “MQJMSTransform node” on page 166

Routing
v “Publication node” on page 177

Construction
v “Input node”
v “Output node” on page 175

Additional protocols
v “SCADAInput node” on page 182
v “SCADAOutput node” on page 186
v “Real-timeInput node” on page 179
v “Real-timeOptimizedFlow node” on page 181

Input node
Use the Input node as an In terminal for an embedded message flow (a subflow).

This topic contains the following sections:
v “Purpose”
v “Terminals and properties” on page 133

Purpose

You can use a subflow for a common task that can be represented by a sequence of
message flow nodes. For example, you can create a subflow to increment or
decrement a loop counter, or to provide error processing that is common to a
number of message flows.

132 Message Flows

You must use an Input node to provide the In terminal to a subflow; you cannot
use a standard input node (a built-in input node such as MQInput, or a
user-defined input node).

When you have started your subflow with an Input node, you can connect it to
any In terminal on any message flow node, including an Output node.

You can include one or more Input nodes in a subflow. Each Input node that you
include provides a terminal through which to introduce messages to the subflow. If
you include more than one Input node, you cannot predict the order in which the
messages are processed through the subflow.

The Input node is contained in the Construction drawer of the palette, and is
represented in the workbench by the following icon:

When you select and include a subflow in a message flow, it is represented by the
following icon:

When you include the subflow in a message flow, this icon shows a terminal for
each Input node that you include in the subflow, and the name of the terminal
(which you can see when you hover over it) matches the name of that instance of
the Input node. Give your Input nodes meaningful names that you can recognize
easily when you use their corresponding terminal on the subflow node in your
message flow.

Terminals and properties

When you have put an instance of the Input node into a message flow, you can
configure it; see “Configuring a message flow node” on page 59. The properties of
the node are displayed in the Properties view. To display the properties of the
node in the Properties dialog, either double-click the node, or right-click the node
and click Properties.

The Input node terminals are described in the following table.

Terminal Description

Out The input terminal that delivers a message to the subflow.

The following table describes the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Input node Description properties are described in the following table.

Message flows 133

Property M C Default Description

Node name No No The node
type,
Input.

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message flow.

JMSInput node
Use the JMSInput node to receive messages from JMS destinations. JMS
destinations are accessed through a connection to a JMS provider.

This topic contains the following sections:
v “Purpose”
v “Using the JMSInput node in a message flow”
v “Making the JMS provider client available to the JMS nodes” on page 135
v “Connecting the terminals” on page 135
v “Configuring for coordinated transactions” on page 136
v “Terminals and properties” on page 138

Purpose

The JMSInput node acts as a JMS message consumer and can receive all six
message types that are defined in the Java Message Service Specification, version
1.1. Messages are received by using method calls, which are described in the JMS
specification.

The JMSInput node is contained in the JMS drawer of the palette, and is
represented in the workbench by the following icon:

Using the JMSInput node in a message flow

The following sample contains a message flow in which the JMSInput node is
used. This sample is an example of how to use the JMSInput node.
v JMS Nodes sample

You can view samples only when you use the information center that is integrated
with the Message Brokers Toolkit.

Message flows that handle messages that are received from connections to JMS
providers must always start with a JMSInput node. If you include an output node
in a message flow that starts with a JMSInput node, it can be any of the supported
output nodes (including user-defined output nodes); you do not need to include a
JMSOutput node. However, if you do not include a JMSOutput node, you must
include the JMSMQTransform node to transform the message to the format that is
expected by the output node.

134 Message Flows

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.jmsnode.res

If you are propagating JMS messages and creating a message flow to use as a
subflow, you cannot use a standard input node; you must use an instance of the
JMSInput node as the first node in order to create an In terminal for the subflow.

When you use 32-bit execution groups in a default 64-bit host environment, you
must set the WebSphere MQ JMS Java library paths on the MQSI_LIBPATH32. For
example:
export MQSI_LIBPATH32=$MQSI_LIBPATH32:/usr/mqm/lib:/usr/mqm/java/lib

Restriction: When the JMSInput node receives publication topics, it internally
restricts the message flow property Additional Instances to zero to
prevent the receipt of duplicate publications.

Making the JMS provider client available to the JMS nodes

Configurable services are defined for a number of JMS providers. You can choose
one of the predefined services, or you can create a new service for a new provider,
or for one of the existing providers.

To display one or more of the defined configurable services, use the
mqsireportproperties command. The following example displays all configurable
services that are available for a single broker:
mqsireportproperties brokerName -c AllTypes -o AllReportableEntityNames -r

v If you want to use the WebSphere MQ JMS provider, and you have installed
WebSphere MQ in the default location on the broker system, the properties are
already set and you do not have to make any changes.

v If you want to use the WebSphere MQ JMS provider, and you have installed
WebSphere MQ in a different (non default) location, or if you want to use one of
the other defined services, you must set the jarsURL property to identify the
location of the service JAR files on the broker system.
Use the mqsireportproperties command to view the provider properties, and the
mqsichangeproperties command to set or modify the properties.

v If no service is defined for your JMS provider, or if you want to create another
service for an existing JMS provider, use the mqsicreateconfigurableservice
command to identify the new service and to set its properties.

v When you configure the node, select the appropriate service from the list of
predefined services shown for the JMS provider name property, or type in the
name of your required service.

Connecting the terminals

For each message that is received successfully, the JMSInput node routes the
message to the Out terminal. If this action fails, the message is retried. If the retry
threshold is reached, where the threshold is defined by the Backout threshold
property of the node, the message is routed to the Failure terminal. You can
connect nodes to the Failure terminal to handle this condition.

If an exception occurs in the failure path, the path is retried until the number of
attempts is twice the Backout threshold. If that limit is exceeded, the message is
put to the Backout destination.

If you have not connected nodes to the Failure terminal, the message is written to
the Backout destination. If you have not specified a Backout destination, the node
issues a BIP4669 error message and stops processing further input.

Message flows 135

|
|
|

|

|

If the message is caught by the JMSInput node after an exception has been
generated elsewhere in the message flow, the message is routed to the Catch
terminal. If you have not connected nodes to the Catch terminal, the node backs
out messages for redelivery until the problem is resolved, or the Backout threshold
is reached. If you do not define a Backout destination, the node issues a BIP4669
error message and stops processing further input.

Configuring for coordinated transactions

When you include a JMSInput node in a message flow, the value that you set for
Transaction mode defines whether messages are received under sync point.
v If you set this property to Global, the message is received under external sync

point coordination; that is, within a WebSphere MQ unit of work. Any messages
that are sent subsequently by an output node in the same instance of the
message flow are put under sync point, unless the output node overrides this
setting explicitly.

v If you set this property to Local, the message is received under the local sync
point control of the JMSInput node. Any messages that are sent subsequently by
an output node in the flow are not put under local sync point, unless an
individual output node specifies that the message must be put under local sync
point.

v If you set this property to None, the message is not received under sync point.
Any messages that are sent subsequently by an output node in the flow are not
put under sync point, unless an individual output node specifies that the
message must be put under sync point.

To receive messages under external sync point, you must take additional
configuration steps, which need be applied only the first time that a JMSOutput or
JMSInput node is deployed to the broker for a particular JMS provider.
v On distributed systems, the external sync point coordinator for the broker is

WebSphere MQ. Before you deploy a message flow in which the Transaction
mode property is set to Global, modify the queue manager .ini file to include
extra definitions for each JMS provider resource manager that participates in
globally-coordinated transactions.

– Windows On Windows systems, if you have WebSphere MQ Version 5
installed:
1. Start WebSphere MQ Services.
2. Right-click the queue manager name and click Properties.
3. Click the Resource properties tab.
4. Set the SwitchFile property to the following value:

install_dir/bin/ JMSSwitch.dll
XAOpenString=Initial Context,location JNDI,Optional_parms
ThreadOfControl=THREAD

– Windows On Windows systems, if you have WebSphere MQ Version 6.0
installed:
1. Start WebSphere MQ Explorer.
2. Right-click the queue manager name in the left pane and click Properties.
3. Click XA resource managers in the left pane.
4. Set the SwitchFile property to the following value:

install_dir/bin/ JMSSwitch.dll
XAOpenString=Initial Context,location JNDI,Optional_parms
ThreadOfControl=THREAD

136 Message Flows

For more information, see the System Administration Guide section of the
WebSphere MQ Version 6 information center online, or the Version 5.3 book
on the WebSphere MQ library Web page.

– Linux UNIX On Linux and UNIX systems, add a stanza to the queue
manager .ini file for each JMS provider.
For example:
XAResourceManager:
Name=Jms_Provider_Name
SwitchFile=/install_dir/bin/ JMSSwitch.so
XAOpenString=Initial Context,location JNDI,Optional_parms
ThreadOfControl=THREAD

Where:

Name is an installation defined name that identifies a JMS provider resource
manager.

SwitchFile
is the file system path to the JMSSwitch library that is supplied in the
bin directory of the broker.

XAOpenString can have the following values:
- Initial Context is the value that is set in the JMSInput node property Initial

context factory.
- location JNDI is the value that is set in the JMSInput node property

Location JNDI bindings. This value must include the leading keyword,
which is one of file://, iiop://, or ldap://.

The following parameters are optional:
- LDAP Principal matches the value that is set for the broker by using the

mqsicreatebroker or mqsichangebroker commands.
- LDAP Credentials matches the value that is set for the broker by using the

mqsicreatebroker or mqsichangebroker commands.
- Recovery Connection Factory Name is the JNDI administered connection

factory that is defined in the bindings file. If a value is not specified, you
must add a default value for recoverXAQCF to the bindings file. In either
case, the Recovery Connection Factory must be defined as an XA Queue
Connection Factory for the JMS provider that is associated with the Initial
context factory.

The optional parameters are comma separated and are positional. Therefore,
any parameters that are missing must be represented by a comma.
1. Update the Java CLASSPATH environment variable for the broker’s queue

manager to include a reference to xarecovery.jar; for example:
install_dir/classes/xarecovery.jar

2. Update the Java PATH environment variable for the broker’s queue
manager to point to the bin directory in which the SwitchFile is located;
for example:
install_dir/bin

For more information, see the System Administration Guide section of the
WebSphere MQ Version 6 information center online, or the Version 5.3 book on
the WebSphere MQ library Web page.
To use the same queue manager for both the broker and the JMS provider,
ensure that your WebSphere MQ installation is at the minimum required level:
Version 5.3 CSD12 or Version 6.0 Fix Pack 1.

Message flows 137

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/

To use the same queue manager for both the broker and the JMS provider,
ensure that your WebSphere MQ installation is at the minimum required level:
WebSphere MQ Version 6.0 Fix Pack 1 or above is required for XA to use the
same queue manager for both the broker and the provider.

v z/OS On z/OS, the external sync point manager is Resource Recovery
Services (RRS). The only JMS provider that is supported on z/OS is WebSphere
MQ JMS. The only transport option that is supported for WebSphere MQ JMS on
z/OS is the bind option.
sync point control for the JMS provider is managed with RRS sync point
coordination of the queue manager of the broker. You do not need to modify the
.ini file.

Terminals and properties

When you have put an instance of the JMSInput node into a message flow, you
can configure it; see “Configuring a message flow node” on page 59. The
properties of the node are displayed in the Properties view. To display the
properties of the node in the Properties dialog, either double-click the node, or
right-click the node and click Properties. All mandatory properties that do not
have a default value defined are marked with an asterisk.

The terminals of the JMSInput node are described in the following table.

Terminal Description

Failure The output terminal to which the message is routed if an error occurs. Even if the Validation property
is set, messages that are propagated to this terminal are not validated.

Out The output terminal to which the message is routed if it is retrieved successfully.

Catch The output terminal to which the message is routed if an exception is generated downstream and
caught by this node.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the JMSInput node are described in the following
table.

Property M C Default Description

Node name No No The node type,
JMSInput

The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

The JMS Connection properties of the JMSInput node are described in the
following table.

138 Message Flows

Property M C Default Description

Initial
context
factory

Yes Yes com.sun.jndi.fscontext.
RefFSContextFactory

The starting point for a JNDI name space.

Enter an Initial context factory value. A JMS application uses the
initial context to obtain and look up the JNDI administered objects
for the JMS provider. The default value is
com.sun.jndi.fscontext.RefFSContextFactory, which defines the
file-based Initial context factory for the WebSphere MQ JMS
provider. To identify the name of the Initial context factory for the
JMS provider, see the JMS provider documentation.

Location
JNDI
bindings

Yes Yes The system path or the LDAP location for the bindings file. The
bindings file contains definitions for the JNDI administered objects
that are used by the JMSInput node.

When you enter a value for Location JNDI bindings, ensure that it
complies with the following instructions:
v Construct the bindings file before you deploy a message flow

that contains a JMSInput node.
v Do not include the file name of the bindings file in this field.
v If you have specified an LDAP location that requires

authentication, configure the LDAP principal (userid) and
LDAP credentials (password) separately. These values are
configured at broker level. For information about configuring
these values, see mqsicreatebroker command and
mqsichangebroker command.

v The string value must include the leading keyword, which must
be one of the following options:
– file://
– iiop://
– ldap://

For information about constructing the JNDI administered objects
bindings file, see the JMS provider documentation.

Connection
factory name

Yes Yes The name of the connection factory that is used by the JMSInput
node to create a connection to the JMS provider. This name must
already exist in the bindings file.

Backout
destination

No Yes The JMSInput node sends input messages to this destination when
errors prevent the message flow from processing the message, and
the message must be removed from the input destination. The
backout destination name must exist in the bindings file.

Backout
threshold

No Yes 0 The value that controls when a redelivered message is put to the
backout destination. For example, if the value is 3, the JMS
provider attempts to deliver the message to the input destination
three times. After the third attempted delivery, the message is
removed from the input destination and is sent to the Backout
destination.

The Advanced properties of the JMSInput node are described in the following
table.

Message flows 139

Property M C Default Description

Transaction
mode

Yes No none This property controls whether the incoming message is received under external
sync point, local sync point, or out of sync point.
v Select None if the incoming message is to be treated as non persistent. If you

select this value, the message is received using a non-transacted JMS session
that is created using the Session.AUTO_ACKNOWLEDGE flag.

v Select Local if the JMSInput node must coordinate the commit or roll back of
JMS messages that are received by the node, along with any other resources
such as DB2® or WebSphere MQ that perform work within the message flow.
If you select this value, the node uses a transacted JMS session.

v Select Global if the JMSInput node must participate in a global message flow
transaction that is managed by the broker’s external sync point coordinator.
The sync point coordinator is the broker’s queue manager on distributed
systems and RRS (Resource Recovery Services) on z/OS. If you select this
value, any messages that are received by the node are globally coordinated
using an XA JMS session.

JMSMQTransform node
Use the JMSMQTransform node to transform a message with a JMS message tree
into a message that has a message tree structure that is compatible with the format
of messages that are produced by the WebSphere MQ JMS provider.

This topic contains the following sections:
v “Purpose”
v “Using the JMSMQTransform node in a message flow”
v “Terminals and properties”

Purpose

You can use the JMSMQTransform node to send messages to existing message
flows and to work with WebSphere MQ JMS and WebSphere Event Broker
publish/subscribe.

The JMSMQTransform node is contained in the JMS drawer of the palette, and is
represented in the workbench by the following icon:

Using the JMSMQTransform node in a message flow

The following sample contains a message flow in which the JMSMQTransform
node is used. Look at this sample for an example of how to use the
JMSMQTransform node.
v JMS Nodes sample

You can view samples only when you use the information center that is integrated
with the Message Brokers Toolkit.

Terminals and properties

When you have put an instance of the JMSMQTransform node into a message flow,
you can configure it; see “Configuring a message flow node” on page 59. The

140 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.jmsnode.res

properties of the node are displayed in the Properties view. To display the
properties of the node in the Properties dialog, either double-click the node, or
right-click the node and click Properties.

The terminals of the JMSMQTransform node are described in the following table.

Terminal Description

Failure The output terminal to which the message is routed if an error occurs. Even if the Validation property
is set, messages that are propagated to this terminal are not validated.

Out The output terminal to which the message is routed if it is successfully retrieved from the JMS
destination.

In The input terminal that accepts a message for processing by the node.

The following table describes the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The JMSMQTransform node Description properties are described in the following
table.

Property M C Default Description

Node name No No The node type,
JMSMQTransform

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message flow.

JMSOutput node
Use the JMSOutput node to send messages to JMS destinations.

This topic contains the following sections:
v “Purpose”
v “Using the JMSOutput node in a message flow” on page 142
v “Controlling the type of the JMS output message” on page 142
v “Making the JMS provider client available to the JMS nodes” on page 142
v “Using the Message Destination Mode” on page 143
v “Configuring for coordinated transactions” on page 144
v “Connecting the terminals” on page 146
v “Terminals and properties” on page 146

Purpose

The JMSOutput node acts as a JMS message producer, and can publish all six
message types that are defined in the Java Message Service Specification, version
1.1. Messages are published by using method calls, which are described in the JMS
specification.

The JMSOutput node is contained in the JMS drawer of the palette, and is
represented in the workbench by the following icon:

Message flows 141

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

Using the JMSOutput node in a message flow

The following sample contains a message flow in which the JMSOutput node is
used. Look at this sample for an example of how to use the JMSOutput node.
v JMS Nodes sample

You can view samples only when you use the information center that is integrated
with the Message Brokers Toolkit.

Message flows that handle messages that are received from connections to JMS
providers must always start with a JMSInput node. If you include the JMSOutput
node in a message flow, you do not need to include a JMSInput node; but if you
do not include a JMSInput node, you must include the MQJMSTransform node to
transform the message to the format that is expected by the JMSOutput node.

If you are propagating JMS messages and creating a message flow to use as a
subflow, use an instance of the JMSOutput node as the last node to create an out
terminal for the subflow.

Controlling the type of the JMS output message

In the JMS message tree, the JMS message type is represented by the PayloadType
field of the Message_MetaData subfolder. To control the type of JMS message that
is created by the JMSOutput node, use ESQL code to set the Payload value, as
shown in the following example:
SET OutputRoot.JMSTransport.Transport_Folders.Message_MetaData.PayloadType=Payload value

For more information about the JMS message tree and payload values, see
Representation of messages across the JMS Transport.

Making the JMS provider client available to the JMS nodes

Configurable services are defined for a number of JMSProviders. You can choose
one of the predefined services, or you can create a new service for a new provider,
or for one of the existing providers.

To display one or more of the defined configurable services, use the
mqsireportproperties command. The following example displays all configurable
services that are available for a single broker:
mqsireportproperties brokerName -c AllTypes -o AllReportableEntityNames -r

v If you want to use the WebSphere MQ JMS Provider, and you have installed
WebSphere MQ in the default location on the broker system, the properties are
already set and you do not have to make any changes.

v If you want to use the WebSphere MQ JMS Provider, and you have installed
WebSphere MQ in a different (non default) location, or if you want to use one of
the other defined services, you must set the jarsURL property to identify the
location of the service JAR files on the broker system.
Use the mqsireportproperties command to view the provider properties, and the
mqsichangeproperties command to set or modify the properties.

142 Message Flows

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.jmsnode.res

v If no service is defined for your JMS provider, or if you want to create another
service for an existing JMS provider, use the mqsicreateconfigurableservice
command to identify the new service and set its properties.

v When you configure the node, select the appropriate service from the list of
predefined services shown for the JMS provider name property, or type in the
name of your new service.

Using the Message Destination Mode

The JMSOutput node acts as a message producer and supports the following
message scenarios:
v “Sending a datagram message”
v “Sending a reply message”
v “Sending a request message” on page 144

Sending a datagram message

A datagram is a self-contained, independent entity of data that carries sufficient
information to be routed from the source to the destination computer, without
reliance on earlier exchanges between the source and destination computer and the
transporting network. The following instructions describe how to send a datagram
message:
1. On the Basic tab, set the message destination depending on the message model

that is being used. Set one of the following properties to a valid JNDI
administered object name:
v Publication Topic
v Destination Queue

2. Leave the Reply To Destination field blank.

The node resolves the name of the JNDI administered object, which is supplied in
either Publication Topic or Destination Queue, and sends the message to that JMS
Destination.

Sending a reply message

The sender of a message might want the recipient to reply to the message. In this
case, the JMSOutput message can treat the outgoing message as a reply, and route
it according to the value that is obtained from the JMSReplyTo property from the
request message. You can modify the value of the JMSReplyTo property in the
MbMessage; for example, using a Compute node or a JavaCompute node. This
action allows dynamic routing of messages from the JMSOutput node. The node
sends the message to the JMS Destination name that is set in the JMSReplyTo field
of the MbMessage Tree.

The JMSReplyTo value in the MbMessage Tree represents the name of the JMS
Destination that is resolved from JNDI. For example:
queue://QM_mn2/myJMSQueue4

In this case, the value is the JMS-provider specific representation of a JMS
Destination for the WebSphere MQ JMS provider.

If you do not want to specify a resolved JMS destination name, the JMSOutput
node can also accept a JNDI administered object name in the JMSReplyTo field.
However, the node must resolve an administered object name through JNDI before

Message flows 143

it can route the message to the underlying JMS Destination. In this case, the value
in the JMSReplyTo field must be prefixed with the string: jndi:\\. For example:
jndi:\\jmsQ4

where jmsQ4 is the name of the JNDI-administered object.

Performance might be slightly impacted when you use this method because of the
need to look up the administered object in JNDI.

Sending a request message

The JMSOutput node can send a message to a JMS Destination with the
expectation of a response from the message consumer that processes the request.
The following instructions describe how to send a request message:
1. On the Basic tab, set the message destination depending on the message model

that is being used. Set one of the following properties to a valid
JNDI-administered object name:
v Publication Topic
v Destination Queue

2. The JMSReplyTo destination in the outgoing message can be derived from the
JMSReplyTo field of the MbMessage Tree that is passed to the node.
Alternatively, this value can be overridden by a JNDI-administered object name
that is set in the Reply To Destination node property.
To allow the JMSOutput node to set the JMSReplyTo property dynamically in
the outgoing message, leave the Reply To Destination field blank on the Basic
tab, and set the JMSReplyTo value in the MbMessage using a Compute node or
a JavaCompute node.

The node looks first for a value in the JMSReplyTo field of the MbMessage. If the
node finds the value, it passes this value into the JMSReplyTo field of the outgoing
message. However, if the Reply To Destination field of the Basic tab has been
specified, this value overrides anything that is set previously in the JMSReplyTo
property of the outgoing message, after first resolving the name of the
JNDI-administered object.

The node resolves the name of the JNDI-administered object that is supplied in
either Publication Topic or Destination Queue, and sends the message to that JMS
Destination.

Configuring for coordinated transactions

When you include a JMSOutput node in a message flow, the value that you set for
Transaction Mode defines whether messages are sent under syncpoint.
v If you set the Transaction Mode to Global, the message is sent under external

syncpoint coordination; that is, within a WebSphere MQ unit of work. Any
messages that are sent subsequently by an output node in the same instance of
the message flow are put under syncpoint, unless the output node overrides this
setting explicitly.

v If you set the Transaction Mode to Local, the message is sent under the local
syncpoint control of the JMSOutput node. Any messages that are sent
subsequently by an output node in the flow are not put under local syncpoint,
unless an individual output node specifies that the message must be put under
local syncpoint.

v If you set the Transaction Mode to None, the message is not sent under
syncpoint. Any messages that are sent subsequently by an output node in the

144 Message Flows

flow are not put under syncpoint, unless an individual output node specifies
that the message must be put under syncpoint.

When you want to send messages under external syncpoint, you must perform
additional configuration steps, which need to be applied only the first time that a
JMSOutput or JMSInput is deployed to the broker for a particular JMS provider:
v On distributed systems, the external syncpoint coordinator for the broker is

WebSphere MQ. Before you deploy a message flow in which the Transaction
Mode is set to Global, modify the queue manager .ini file to include extra
definitions for each JMS provider resource manager that participates in globally
coordinated transactions:

– Windows On Windows systems, if you have WebSphere MQ Version 5
installed:
1. Start WebSphere MQ Services.
2. Right-click the queue manager name and click Properties.
3. Click the Resource properties tab.
4. Set the SwitchFile property to the following value:

install_dir/bin/ JMSSwitch.dll
XAOpenString=Initial Context,location JNDI,Optional_parms
ThreadOfControl=THREAD

– Windows On Windows systems, if you have WebSphere MQ Version 6.0
installed:
1. Start WebSphere MQ Explorer.
2. Right-click the queue manager name in the left pane and click Properties.
3. Click XA resource managers in the left pane.
4. Set the SwitchFile property to the following value:

install_dir/bin/ JMSSwitch.dll
XAOpenString=Initial Context,location JNDI,Optional_parms
ThreadOfControl=THREAD

For more information, see the System Administration Guide section of the
WebSphere MQ Version 6 information center online or the Version 5.3 book
on the WebSphere MQ library Web page.

– Linux UNIX On Linux and UNIX systems, add a stanza to the queue
manager’s .ini file for each JMS provider.
For example:
XAResourceManager:
Name=Jms_Provider_Name
SwitchFile=/install_dir/bin/JMSSwitch.so
XAOpenString=Initial Context,location JNDI,Optional_parms
ThreadOfControl=THREAD

Where:

Name is an installation-defined name that identifies a JMS provider resource
manager.

SwitchFile
is the file system path to the JMSSwitch library that is supplied in the
bin directory of the broker.

XAOpenString can have the following values:
- Initial Context is the value that is set in the JMSInput node basic property

Initial context factory.

Message flows 145

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/

- location JNDI is the value that is set in the JMSInput node basic property
Location of JNDI. This value must include the leading keyword, which is
file://, iiop:// or ldap://

The following parameters are optional:
- LDAP Principal matches the value that is set for the broker by using the

mqsicreatebroker or mqsichangebroker commands.
- LDAP Credentials matches the value that is set for the broker by using the

mqsicreatebroker or mqsichangebroker commands.
- Recovery Connection Factory Name is the JNDI administered connection

factory that is defined in the bindings file. If a value is not specified, a
default value for recoverXAQCF must be added to the bindings file. In either
case, the Recovery Connection Factory must be defined as an XA Queue
Connection Factory for the JMS provider that is associated with the Initial
Context Factory.

The optional parameters are comma-separated and are positional. Therefore,
any parameters that are missing must be represented by a comma.
1. Update the Java CLASSPATH environment variable for the broker’s queue

manager to include a reference to xarecovery.jar; for example:
install_dir/classes/xarecovery.jar

2. Update the Java PATH environment variable for the broker’s queue
manager to point to the bin directory, which is where the switch file is
located; for example:
install_dir/bin

For more information, see the System Administration Guide section of the
WebSphere MQ Version 6 information center online or the Version 5.3 book
on the WebSphere MQ library Web page.
To use the same queue manager for both the broker and the JMS provider,
ensure that your WebSphere MQ installation is at the minimum required
level: Version 5.3 CSD12.

– z/OS On z/OS, the external syncpoint manager is Resource Recovery
Services (RRS). The only JMS provider that is supported on z/OS is
WebSphere MQ JMS. The only transport option that is supported for
WebSphere MQ JMS on z/OS is the bind option.
Syncpoint control for the JMS provider is managed with RRS syncpoint
coordination of the queue manager of the broker. You do not need to modify
the .ini file.

Connecting the terminals

Connect the In terminal of the JMSOutput node to the node from which outbound
messages are routed.

Connect the Out terminal of the JMSOutput node to another node in the message
flow to process the message further, to process errors, or to send the message to an
additional destination.

Terminals and properties

When you have put an instance of the JMSOutput node into a message flow, you
can configure it; see “Configuring a message flow node” on page 59. The
properties of the node are displayed in the Properties view. To display the
properties of the node in the Properties dialog, either double-click the node, or

146 Message Flows

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/

right-click the node and click Properties. All mandatory properties that do not
have a default value defined are marked with an asterisk.

The terminals of the JMSOutput node are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if an error occurs. Even if the Validation property is
set, messages that are propagated to this terminal are not validated.

Out The output terminal to which the message is routed if it is successfully retrieved from the
WebSphere MQ queue.

Catch The output terminal to which the message is routed if an exception is thrown downstream and caught
by this node.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined), the column headed C indicates whether the
property is configurable (you can change the value when you add the message
flow to the BAR file to deploy it).

The Description properties of the JMSOutput node are described in the following
table.

Property M C Default Description

Node name No No The node type,
JMSOutput

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message flow.

The JMS Connection properties of the JMSOutput node are described in the
following table.

Property M C Default Description

Initial Context
Factory

Yes Yes com.sun.jndi.fscontext.
RefFSContextFactory

This property is the starting point for a JNDI name space. A
JMS application uses the initial context to obtain and look up
the connection factory and queue or topic objects for the JMS
provider.

Enter an Initial context factory value. A JMS application uses
the initial context to obtain and look up the JNDI
administered objects for the JMS provider. The default value
is com.sun.jndi.fscontext.RefFSContextFactory, which
defines the file-based initial context factory for the
WebSphere MQ JMS provider.

To identify the name of the Initial Context Factory for the
JMS provider, see the JMS provider documentation.

Message flows 147

Property M C Default Description

Location JNDI
Bindings

No Yes The system path or the LDAP location for the bindings file.
The bindings file contains definitions for the
JNDI-administered objects that are used by the JMSOutput
node.

When you enter a value for Location JNDI Bindings, ensure
that it complies with the following instructions:
v Construct the bindings file before you deploy a message

flow that contains a JMSOutput node.
v Do not include the file name of the bindings file in this

field.
v If you have specified an LDAP location that requires

authentication, configure both the LDAP principal (userid)
and LDAP credentials (password) separately. These values
are configured at broker level. For information about
configuring these values, see mqsicreatebroker command
and mqsichangebroker command.

v The string value must include the leading keyword, which
is one of:
– file://
– iiop://
– ldap://

For information about constructing the JNDI-administered
objects bindings file, see the documentation that is supplied
with the JMS provider.

Connection
Factory Name

No Yes The name of the connection factory that is used by the
JMSOutput node to create a connection to the JMS provider.
This name must already exist in the bindings file.

The Advanced properties of the JMSOutput node are described in the following
table.

Property M C Default Description

New
Correlation ID

No Yes If the JMSOutput node is required to generate a new Correlation
ID for the message, select New Correlation ID. If you leave the
check box cleared, the Correlation ID of the output message is
taken from the JMSCorrelationID field in the
JMSTransport_Header_Values section of the message tree.

148 Message Flows

Property M C Default Description

Transaction
Mode

Yes No None This property controls whether the incoming message is received
under syncpoint.
v Select None if the outgoing message is to be treated as non

persistent. If you select this value, the message is sent using a
non-transacted JMS session that is created using the
Session.AUTO_ACKNOWLEDGE flag.

v Select Local if the input node that received the message must
coordinate the commit or roll-back of JMS messages that have
been sent by the JMSOutput node, along with any other
resources, such as DB2 or WebSphere MQ, that perform work
within the message flow. If you select this value, the node uses
a transacted JMS session.

v Select Global if the JMSOutput node must participate in a
global message flow transaction that is managed by the
broker’s external syncpoint coordinator. The syncpoint
coordinator is the broker’s queue manager on distributed
systems, and RRS (Resource Recovery Services) on z/OS. If you
select this value, any messages that are received by the node
are globally coordinated using an XA JMS session.

Delivery Mode No Yes Non Persistent This property controls the persistence mode that a JMS provider
uses for a message. Valid values are:
v Automatic: the mode from the input message is inherited
v Persistent: the message survives if the JMS provider has a

system failure
v Non Persistent: the message is lost if the JMS provider has a

system failure

Message
Expiration
(ms)

No Yes 0 This property controls the length of time, in milliseconds, for
which the JMS provider keeps the output JMS message. The
default value, 0, is used to indicate that the message must not
expire.

Message
Priority

No Yes 4 This property assigns relative importance to the message and it
can be used for message selection by a receiving JMS client
application or a JMSOutput node.

Valid values for message priority are from 0 (lowest priority) to 9
(highest priority). The default value is 4, which indicates medium
priority. Priorities in the range 0 to 4 relate to typical delivery.
Priorities in the range 5 to 9 relate to graduations of expedited
delivery.

MQeInput node
Use the MQeInput node to receive messages from clients that connect to the broker
using the WebSphere MQ Mobile Transport protocol.

Attention: Using message flows that contain MQeInput and MQeOutput nodes in
Version 6.0 is deprecated. The behavior that is described here is intended only for
when you are deploying from Version 6.0 to a previous version, and to provide a
route for migration. Redesign your flows to remove the MQe nodes and replace
them with MQ nodes that are configured to your own specifications and
coordinated with your MQe gateway configuration. For more details, see Migrating
a message flow that contains WebSphere MQ Everyplace nodes.

This topic contains the following sections:
v “Purpose” on page 150
v “Using the MQeInput node in a message flow” on page 151

Message flows 149

v “WebSphere MQ Everyplace documentation” on page 151
v “Configuring the MQeInput node” on page 151
v “Terminals and properties” on page 154

Purpose

The MQeInput node receives messages that are put to a message flow from a
specified bridge queue on the broker’s WebSphere MQ Everyplace queue manager.
The node also establishes the processing environment for the messages. You must
create and configure the WebSphere MQ Everyplace queue manager before you
deploy a message flow that contains this node.

Message flows that handle messages that are received across WebSphere MQ
connections must always start with an MQeInput node. You can set the MQeInput
node’s properties to control the way in which messages are received; for example,
you can indicate that a message is to be processed under transaction control.

When you deploy message flows that contain WebSphere MQ Everyplace nodes to
a broker, you must deploy them to a single execution group, regardless of the
number of message flows. The WebSphere MQ Everyplace nodes in the message
flows must all specify the same WebSphere MQ Everyplace queue manager name.
If you do not meet this restriction, an error is raised when you deploy.
v MRM
v XML
v XMLNS
v JMSMap
v JMSStream
v BLOB

If you include an output node in a message flow that starts with an MQeInput
node, it can be any of the supported output nodes, including user-defined output
nodes; you do not need to include an MQeOutput node. You can create a message
flow that receives messages from WebSphere MQ Everyplace clients and generates
messages for clients that use any of the supported transports to connect to the
broker, because you can configure the message flow to request the broker to
provide any conversion that is necessary.

WebSphere MQ Everyplace Version 1.2.6 is used by WebSphere Event Broker. This
version is compatible with later versions of WebSphere MQ Everyplace. Clients
that use later versions of WebSphere MQ Everyplace (for example, Version 2.0),
work correctly when connected to this node, although additional functionality that
is not supported in Version 1.2.6 (for example, JMS support) does not work.

Queue managers are not interchangeable between different versions of WebSphere
MQ Everyplace. Nodes must use a queue manager that was created using Version
1.2.6. Similarly, the client must use its own level of the code when creating a queue
manager.

z/OS You cannot use MQeInput nodes in message flows that you deploy to
z/OS systems.

If you create a message flow to use as a subflow, you cannot use a standard input
node; you must use an instance of the Input node as the first node to create an In
terminal for the subflow.

150 Message Flows

If your message flow does not receive messages across WebSphere MQ
connections, you can choose another supported input node.

The MQeInput node is contained in the WebSphere MQ drawer of the palette, and
is represented in the workbench by the following icon:

Using the MQeInput node in a message flow

For an example of how this node can be used, consider a farmer who checks his
fields to see how well they are irrigated. He is carrying a PDA device with
WebSphere MQ Everyplace installed. He sees an area of field that requires water,
and uses his PDA and a Global Satellite Navigation link to send a message to an
MQeInput node. A message is published by a Publication node so that a remote
SCADA device can pick up the message and trigger the irrigation sprinklers. The
farmer can see the water delivered to the field, minutes after sending his message.

WebSphere MQ Everyplace documentation

Find further information about WebSphere MQ Everyplace, and the properties of
the node, in the WebSphere MQ Everyplace documentation on the WebSphere MQ
Web page.

Configuring the MQeInput node

When you have put an instance of the MQeInput node into a message flow, you
can configure it; see “Configuring a message flow node” on page 59. The
properties of the node are displayed in the Properties view. To display the
properties of the node in the Properties dialog, either double-click the node, or
right-click the node and click Properties.

All mandatory properties for which you must enter a value (those that do not have
a default value defined) are marked with an asterisk.

Configure the MQeInput node as follows:
1. Optional: On the Description tab, enter a Short description, a Long description,

or both. You can also rename the node on this tab.
2. On the General tab, set the following properties:

a. Enter the Queue name of the WebSphere MQ Everyplace bridge queue from
which this input node retrieves messages. If the queue does not exist, it is
created for you when the message flow is deployed to the broker.

b. Set the level of Trace that you want for this node. If trace is active, the trace
information is recorded in the file identified by Trace filename (described
later in this section). Choose a level of trace:
v None (the default). No trace output is produced, unless an unrecoverable

error occurs.
v Standard. Minimal trace output is generated to reflect the overall

operations of the node.
v Debug. Trace information is recorded at a level that helps you to debug

WebSphere MQ Everyplace programs.
v Full. All available debug information is recorded to provide a full record

of the node activities.

Message flows 151

http://www.ibm.com/software/integration/wmq
http://www.ibm.com/software/integration/wmq

If you set the trace level to Debug or Full, you will impact the performance
of WebSphere MQ Everyplace, and significant trace files can be generated.
Use these options for short periods only.

c. In Trace filename, specify the name of the file to which the trace
information is written. The directory structure in which the file is specified
must already exist; it cannot be created during operation.

d. Select the Transaction mode to define the transactional characteristics of
how this message is handled:
v If you select Automatic, the incoming message is received under sync

point if it is marked persistent; otherwise it is not. The transactionality of
any derived messages that are sent subsequently by an output node is
determined by the incoming persistence property, unless the output node
has overridden transactionality explicitly.

v If you select Yes, the incoming message is received under sync point. Any
derived messages that are sent subsequently by an output node in the
same instance of the message flow are sent transactionally, unless the
output node has overridden transactionality explicitly.

v If you select No, the incoming message is not received under sync point.
Any derived messages that are sent subsequently by an output node in
the message flow are sent non-transactionally, unless the output node has
specified that the message must be put under sync point.

e. The Use config file check box is not selected by default; values for all
properties for the MQeInput node are taken from the Properties view.
If you select the check box, the definition of all properties is extracted from
the file that is identified by Config filename (described later in this section)
with the exception of the following properties:
v The Queue name and Config filename General properties
v All Default properties

Use a configuration file only to specify additional properties for the node. If
the properties in the Properties view are sufficient for your needs, do not
select the Use config file check box.

f. If you have selected the Use config file check box, enter the full path and
name of the configuration file for WebSphere MQ Everyplace in Config
filename. This file must be installed on the system that supports every
broker to which this message flow is deployed. If the file does not exist, an
error is detected when you deploy the message flow. The default file name
is MQeConfig.ini.

g. In Queue manager name, specify the name of the WebSphere MQ
Everyplace queue manager. This queue manager is not related to the queue
manager of the broker to which you deploy the message flow that contains
this node.
Only one WebSphere MQ Everyplace queue manager can be supported.
Only one execution group can contain MQeInput or MQeOutput nodes.
This property must therefore be set to the same value in every MQeInput
node that is included in every message flow that you deploy to the same
broker.

3. On the Channel tab, set the maximum number of channels that are supported
by WebSphere MQ Everyplace in Max channels. The default value is zero,
which means that there is no limit.

4. On the Registry tab, set the following properties:
a. Select the type of registry from the Registry type list:

152 Message Flows

v FileRegistry. Registry and security information is provided in the
Directory specified later in this section.

v PrivateRegistry. You create the queue manager manually within
WebSphere MQ Everyplace, specifying the security parameters that you
need.

b. In Directory, specify the directory in which the registry file is located. This
property is valid only if you have selected a Registry type of FileRegistry.

c. If you have selected a Registry type of PrivateRegistry, complete the
following properties (for further details of these properties, see the
WebSphere MQ Everyplace documentation):
v Specify a PIN for the associated queue manager.
v Specify a Certificate request PIN for authentication requests.
v Provide a Keyring password to be used as a seed for the generation of

crypto keys.
v In Certificate host, specify the name of the certificate server that

WebSphere MQ Everyplace uses for authentication.
v In Certificate port, specify the number of the port for the certificate server

that WebSphere MQ Everyplace uses for authentication.
5. On the Listener tab, set the following properties that define the connection type

for WebSphere MQ Everyplace:
a. In Listener type, select the adapter type to use from the list. The default

value is Http; you can also select Length or History. For further details, see
the WebSphere MQ Everyplace documentation.

b. In Hostname, specify the hostname of the server. Set this property to the
special value localhost or to the TCP/IP address 127.0.0.1 (the default
value), both of which resolve correctly to the hostname of the server to
which the message flow is deployed. You can also use any valid hostname
or TCP/IP address in your network, but you must use a different message
flow for each broker to which you deploy it, or configure this property at
deploy time.

c. In Port, specify the port number on which WebSphere MQ Everyplace is
listening. If more than one MQeInput node is included in a message flow
that is deployed to a single broker, each MQeInput node must specify a
different number for this property. You must also ensure that the number
that you specify does not conflict with other listeners on the broker system;
for example, with WebSphere MQ. The default value is 8081.

d. In Time interval (sec), specify the timeout value, in seconds, before idle
channels are timed out. The default value is 300 seconds.
Channels are persistent logical entities that last longer than a single queue
manager request, and can survive network breakages, so it might be
necessary to time out channels that have been inactive for a period of time.

Connecting the terminals:

The MQeInput node routes each message that it retrieves successfully to the Out
terminal; if this fails, the message is retried. If the retry timeout expires (as defined
by the BackoutThreshold attribute of the input queue), the message is routed to the
Failure terminal; you can connect nodes to this terminal to handle this condition. If
you have not connected the Failure terminal, the message is written to the backout
queue.

If the message is caught by this node after an exception has been thrown further
on in the message flow, the message is routed to the Catch terminal. If you have

Message flows 153

not connected the Catch terminal, the message loops continually through the node
until the problem is resolved. You must define a backout queue or a dead-letter
queue (DLQ) to prevent the message looping continuously through the node.

Configuring for coordinated transactions:

When you include an MQeInput node in a message flow, the value that you set for
the Transaction mode property defines whether messages are received under sync
point:
v If you set the property to Yes (the default), the message is received under sync

point (that is, within a WebSphere MQ unit of work). Any messages that are
sent subsequently by an output node in the same instance of the message flow
are put under sync point, unless the output node has overridden this explicitly.

v If you set the property to Automatic, the message is received under sync point if
the incoming message is marked persistent. Otherwise, it is not. Any message
that is sent subsequently by an output node is put under sync point, as
determined by the incoming persistence property, unless the output node has
overridden this explicitly.

v If you set the property to No, the message is not received under sync point. Any
messages that are sent subsequently by an output node in the flow are not put
under sync point, unless an individual output node has specified that the
message must be put under sync point.

The MQeOutput node is the only output node that you can configure to override
this option.

Terminals and properties

The MQeInput node terminals are described in the following table.

Terminal Description

Failure The output terminal to which the message is routed if an error occurs.

Out The output terminal to which the message is routed if it is successfully retrieved from
the WebSphere MQ Everyplace queue.

Catch The output terminal to which the message is routed if an exception is thrown
downstream and caught by this node.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The MQeInput node Description properties are described in the following table.

Property M C Default Description

Node name No No MQeInput The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the
message flow.

The MQeInput node General properties are described in the following table.

154 Message Flows

Property M C Default Description

Queue name Yes Yes The name of the WebSphere MQ Everyplace bridge
queue from which this node retrieves messages for
processing by this message flow.

Trace Yes No None The level of trace required for this node. Valid values
are None, Standard, Debug, and Full.

Trace filename Yes Yes \MQeTraceFile.trc The name of the file to which trace records are
written.

Transaction mode Yes No Yes This property controls whether the incoming
message is received under sync point. Valid values
are Automatic, Yes, and No.

Use config file Yes No Cleared If you select the check box, a configuration file is
used for this node.

Config filename Yes Yes \MQeconfig.ini The name of the configuration file to be used if the
Use config file check box is selected.

Queue manager
name

Yes Yes ServerQM1 The name of the WebSphere MQ Everyplace queue
manager.

The MQeInput node Channel properties are described in the following table.

Property M C Default Description

Max channels Yes No 0 The maximum number of channels that are
supported by the WebSphere MQ Everyplace queue
manager.

The MQeInput node Registry properties are described in the following table.

Property M C Default Description

Registry type Yes Yes FileRegistry The type of registry information to be used. Valid
values are FileRegistry and PrivateRegistry.

Directory Yes Yes \ServerQM1\registry The directory in which the registry file exists (valid
only if FileRegistry is selected).

PIN Yes Yes The PIN that is associated with the WebSphere MQ
Everyplace queue manager (valid only if
PrivateRegistry is selected).

Certificate request
PIN

Yes Yes The PIN that is used to request authentication (valid
only if PrivateRegistry is selected).

Keyring password Yes Yes The password that is used to see crypto keys (valid
only if PrivateRegistry is selected).

Certificate host Yes Yes The name of the certificate server (valid only if
PrivateRegistry is selected).

Certificate port Yes Yes The port of the certificate server (valid only if
PrivateRegistry is selected).

The MQeInput node Listener properties are described in the following table.

Property M C Default Description

Listener type Yes Yes Http The adapter type for the listener. Valid values are
Http, Length, and History.

Message flows 155

Property M C Default Description

Hostname Yes Yes 127.0.0.1 The hostname of the server.

Port Yes Yes 8081 The port on which WebSphere MQ Everyplace
listens.

Time interval (sec) Yes Yes 300 The WebSphere MQ Everyplace polling interval,
specified in seconds.

MQeOutput node
Use the MQeOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Mobile Transport protocol.

Attention: Using message flows that contain MQeInput and MQeOutput nodes in
Version 6.0 is deprecated. The behavior that is described here is intended only for
when you are deploying from Version 6.0 to a previous version, and to provide a
route for migration. Redesign your flows to remove the MQe nodes and replace
them with MQ nodes that are configured to your own specifications and
coordinated with your MQe gateway configuration. For more details see Migrating
a message flow that contains WebSphere MQ Everyplace nodes.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 157
v “WebSphere MQ Everyplace documentation” on page 157
v “Connecting the terminals” on page 157
v “Terminals and properties” on page 157

Purpose

The MQeOutput node forwards messages to WebSphere MQ Everyplace queue
managers. If you specify a non-local destination queue manager, ensure that there
is either a route to the queue manager, or store-and-forward queue servicing for
the queue manager, if it exists.

You cannot use the MQeOutput node to change the transactional characteristics of
the message flow. The transactional characteristics that are set by the message
flow’s input node determine the transactional behavior of the flow.

z/OS You cannot use MQeOutput nodes in message flows that you deploy to
z/OS systems.

If you create a message flow to use as a subflow, you cannot use a standard output
node; you must use an instance of the Output node to create an out terminal for
the subflow through which to propagate the message.

If you do not want your message flow to send messages to a WebSphere MQ
Everyplace queue, choose another supported output node.

The MQeOutput node is contained in the WebSphere MQ drawer of the palette,
and is represented in the workbench by the following icon:

156 Message Flows

Using this node in a message flow

For an example of how this node can be used, consider a farmer who checks his
fields to see how well they are irrigated. He is carrying a PDA device with
WebSphere MQ Everyplace installed. He sees that his fields are not being irrigated,
and uses his PDA and a Global Satellite Navigation link to check the water flow
valve, and finds that it is faulty. This information is available because the remote
SCADA device that is responsible for controlling the valve has published a
diagnostic message, which was retrieved by the broker and forwarded to an
MQeOutput node and on to the WebSphere MQ Everyplace client on his PDA.

WebSphere MQ Everyplace documentation

You can find further information about WebSphere MQ Everyplace, and the
properties of the node, in the WebSphere MQ Everyplace documentation on the
WebSphere MQ Web page.

Connecting the terminals

Connect the In terminal to the node from which outbound messages bound are
routed.

Connect the Out or Failure terminal of this node to another node in this message
flow if you want to send the message to an additional destination.

Terminals and properties

When you have put an instance of the MQeOutput node into a message flow, you
can configure it; see “Configuring a message flow node” on page 59. The
properties of the node are displayed in the Properties view. To display the
properties of the node in the Properties dialog, either double-click the node, or
right-click the node and click Properties. All mandatory properties for which you
must enter a value (those that do not have a default value defined) are marked
with an asterisk.

The MQeOutput node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected when the message is put
to the output queue.

Out The output terminal to which the message is routed if it has been successfully put to the output
queue, and if further processing is required within this message flow.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The MQeOutput node Description properties are described in the following table.

Property M C Default Description

Node name No No MQeOutput The name of the node.

Message flows 157

http://www.ibm.com/software/integration/wmq

Property M C Default Description

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

The MQeOutput node Basic properties are described in the following table.

Property M C Default Description

Queue
manager
name

No Yes The name of the WebSphere MQ Everyplace queue manager to which the
output queue, which is specified in Queue name, is defined. Enter a value for
this property if you select Queue Name in Destination mode (on the
Advanced tab). If you select another option for Destination mode, you do not
need to set this property.

Queue
name

No Yes The name of the WebSphere MQ Everyplace output queue to which this node
puts messages. Enter a value for this property if you select Queue Name in
Destination mode (on the Advanced tab). If you select another option for
Destination mode, you do not need to set these properties.

The MQeOutput node Advanced property is described in the following table.

Property M C Default Description

Destination
mode

Yes No Destination
List

The queues to which the output message is sent:
v Queue Name: the message is sent to the queue that is named in the

Queue name property. The properties Queue manager name and Queue
name (on the Basic tab) are mandatory if you select this option.

v Reply To Queue: the message is sent to the queue that is named in the
ReplyToQ field in the MQMD.

v Destination List (the default): the message is sent to the list of queues that
are named in the LocalEnvironment (also known as DestinationList) that
is associated with the message.

The MQeOutput node Request properties are described in the following table.

Property M C Default Description

Request Yes No Cleared Select Request to indicate that each output message is marked in the MQMD
as a request message (MQMD_REQUEST), and the message identifier field is
cleared (set to MQMI_NONE) to ensure that WebSphere MQ generates a new
identifier. Clear the check box to indicate that each output message is not
marked as a request message. You cannot select this check box if you have
selected a Destination mode of Reply To Queue.

Reply-to
queue
manager

No Yes The name of the queue manager to which the output queue, which is specified
in Reply-to queue, is defined. This name is inserted into the MQMD of each
output message as the reply-to queue manager. This new value overrides the
current value in the MQMD.

Reply-to
queue

No Yes The name of the reply-to queue to which to put a reply to this request. This
name is inserted into the MQMD of each output message as the reply-to
queue. This new value overrides the current value in the MQMD.

158 Message Flows

MQInput node
Use the MQInput node to receive messages from clients that connect to the broker
by using the WebSphere MQ Enterprise Transport, and that use the MQI and AMI
application programming interfaces.

This topic contains the following sections:
v “Purpose”
v “Using the MQInput node in a message flow”
v “Connecting the terminals” on page 160
v “Configuring for coordinated transactions” on page 160
v “Terminals and properties” on page 161

Purpose

The MQInput node receives a message from a WebSphere MQ message queue that
is defined on the broker’s queue manager. The node uses MQGET to read a
message from a specified queue, and establishes the processing environment for
the message. If appropriate, you can define the input queue as a WebSphere MQ
clustered queue or shared queue.

Message flows that handle messages that are received across WebSphere MQ
connections must always start with an MQInput node. You can set the properties
of the MQInput node to control the way in which messages are received, by
causing appropriate MQGET options to be set. For example, you can indicate that
a message is to be processed under transaction control. You can also request that
data conversion is performed on receipt of every input message.

If you include an output node in a message flow that starts with an MQInput
node, the output node can be any one of the supported output nodes, including
user-defined output nodes; you do not need to include an MQOutput node. You
can create a message flow that receives messages from WebSphere MQ clients and
generates messages for clients that use any of the supported transports to connect
to the broker, because you can configure the message flow to request that the
broker provides any conversion that is necessary.

If you create a message flow to use as a subflow, you cannot use a standard input
node; you must use an Input node as the first node to create an In terminal for the
subflow.

If your message flow does not receive messages across WebSphere MQ
connections, you can choose one of the supported input nodes.

The MQInput node is contained in the WebSphere MQ drawer of the palette, and
is represented in the workbench by the following icon:

Using the MQInput node in a message flow

Look at the following sample to see how to use the MQInput node:
v Soccer Results sample

You can view samples only when you use the information center that is integrated
with the Message Brokers Toolkit.

Message flows 159

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.soccer.res

Connecting the terminals

The MQInput node routes each message that it retrieves successfully to the Out
terminal. If this action fails, the message is retried. If the backout count is exceeded
(as defined by the BackoutThreshold attribute of the input queue), the message is
routed to the Failure terminal; you can connect nodes to this terminal to handle
this condition. If you have not connected the Failure terminal, the message is
written to the backout queue.

If the message is caught by this node after an exception has been thrown further
on in the message flow, the message is routed to the Catch terminal. If you have
not connected the Catch terminal, the message loops continually through the node
until the problem is resolved.

You must define a backout queue or a dead-letter queue (DLQ) to prevent the
message from looping continually through the node.

Configuring for coordinated transactions

When you include an MQInput node in a message flow, the value that you set for
Transaction mode defines whether messages are received under sync point:
v If you set the property to Automatic, the message is received under sync point if

the incoming message is marked as persistent; otherwise, it is not received
under sync point. Any message that is sent subsequently by an output node is
put under sync point, as determined by the incoming persistence property,
unless the output node has overridden this explicitly.

v If you set the property to Yes (the default), the message is received under sync
point; that is, within a WebSphere MQ unit of work. Any messages that are sent
subsequently by an output node in the same instance of the message flow are
put under sync point, unless the output node has overridden this explicitly.

v If you set the property to No, the message is not received under sync point. Any
messages that are sent subsequently by an output node in the message flow are
not put under sync point, unless an individual output node has specified that
the message must be put under sync point.

The MQOutput node is the only output node that you can configure to override
this option.

MQGET buffer size

The MQGET buffer size is implemented internally by the broker and you cannot
change it. The following description is provided for information only. You must not
rely on it when you develop your message flows, because the internal
implementation might change.

When the MQInput node initializes, it sets the size of the default buffer for the first
MQGET to 4 KB. The MQInput node monitors the size of messages and increases
or reduces the size of the buffer:
1. If an MQGET fails because the message is larger than the size of the buffer, the

node immediately increases the size of the buffer to accommodate the message,
issues the MQGET again, and zeros a message count.

2. When 10 messages have been counted since the increase in the size of the
buffer, the node compares the size of the largest of the 10 messages with the
size of the buffer. If the size of the largest message is less than 75% of the size
of the buffer, the buffer is reduced to the size of the largest of the 10 messages.

160 Message Flows

If an MQGET fails during the 10 messages because the message is larger than
the size of the buffer, the node takes action 1.

For example, if the first message that the node receives is 20 MB, and the next 10
messages are each 14 MB, the size of the buffer is increased from 4 KB to 20 MB
and remains at 20 MB for 10 messages. However, after the 10th message the size of
the buffer is reduced to 14 MB.

Terminals and properties

When you have put an MQInput node into a message flow, you can configure the
node; see “Configuring a message flow node” on page 59. The properties of the
node are displayed in the Properties view. To display the properties of the node in
the Properties dialog, either double-click the node, or right-click the node and click
Properties. All mandatory properties that do not have a default value defined are
marked with an asterisk.

The terminals of the MQInput node are described in the following table.

Terminal Description

Failure The output terminal to which the message is routed if an error occurs. Even if the Validation property
is set, messages propagated to this terminal are not validated.

Out The output terminal to which the message is routed if it is successfully retrieved from the
WebSphere MQ queue.

Catch The output terminal to which the message is routed if an exception is thrown downstream and caught
by this node.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Description properties of the MQInput node are described in the following
table.

Property M C Default Description

Node name No No The node
type,
MQInput

The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

The Basic properties of the MQInput node are described in the following table.

Property M C Default Description

Queue name Yes Yes The name of the WebSphere MQ input queue from which this node
retrieves messages (using MQGET) for processing by this message flow.
You must predefine this WebSphere MQ queue to the queue manager that
hosts the broker to which the message flow is deployed.

Message flows 161

The Advanced properties of the MQInput node are described in the following
table. Set these properties to determine how the message is processed, such as its
transactional characteristics. Many of these properties map to options on the
MQGET call.

Property M C Default Description

Transaction
mode

Yes No Yes This property controls whether the incoming message is received under
sync point. Valid values are Automatic, Yes, and No.

v If you select Automatic, the incoming message is received under sync
point if it is marked persistent, otherwise it is not received under
sync point. The transactionality of any derived messages that are sent
subsequently by an output node is determined by the incoming
persistence property, unless the output node has overridden
transactionality explicitly.

v If you select Yes, the incoming message is received under sync point.
Any derived messages that are sent subsequently by an output node
in the same instance of the message flow are sent transactionally,
unless the output node has overridden transactionality explicitly.

v If you select No, the incoming message is not received under sync
point. Any derived messages that are sent subsequently by an output
node in the message flow are sent non-transactionally, unless the
output node has specified that the messages must be put under sync
point.

Order mode Yes No Default The order in which messages are retrieved from the input queue and
processed. Valid values are Default, By User ID, and By Queue Order.
This property has an effect only if the message flow property Additional
instances on the Instances tab, is set to greater than zero; that is, if
multiple threads read the input queue. Valid values are:

v Default. Messages are retrieved in the order that is defined by the
queue attributes, but this order is not guaranteed because the
messages are processed by the message flow.

v By User ID. Messages that have the same UserIdentifier in the
MQMD are retrieved and processed in the order that is defined by
the queue attributes; this order is guaranteed to be preserved when
the messages are processed. A message that is associated with a
particular UserIdentifier that is being processed by one thread, is
completely processed before the same thread, or another thread, can
start to process another message with the same UserIdentifier. No
other ordering is guaranteed to be preserved.

v By Queue Order. Messages are retrieved and processed by this node
in the order that is defined by the queue attributes; this order is
guaranteed to be preserved when the messages are processed. This
behavior is identical to the behavior that is exhibited if the message
flow property Additional instances is set to zero. However, if you set
Order mode to By Queue Order then redeploy the message flow,
additional instances that are already running are not released.
Therefore, when you set Order mode to By Queue Order, either stop
and restart the message flow, or run the mqsireload command for the
execution group after you redeploy the flow.

For more details about using this option, see “Receiving messages in a
WebSphere MQ message group” on page 80.

162 Message Flows

|
|
|
|
|
|
|
|
|
|

|
|

Property M C Default Description

Logical order Yes No Selected If you select this check box, messages are received in logical order, as
defined by WebSphere MQ. This option maps to the
MQGMO_LOGICAL_ORDER option of the MQGMO of the MQI.

If you clear the check box, messages that are sent as part of a group are
not received in a predetermined order. If a broker expects to receive
messages in groups, and you have not selected this check box, either
the order of the input messages is not significant, or you must design
the message flow to process them appropriately.

You must also select Commit by message group if you want message
processing to be committed only after the final message of a group has
been received and processed.

More information about the options to which this property maps is
available in the Application Programming Reference section of the
WebSphere MQ Version 6 information center online, or the Version 5.3
book on the WebSphere MQ library Web page.

For more details about using this option, see “Receiving messages in a
WebSphere MQ message group” on page 80.

All messages
available

Yes No Cleared Select All messages available if you want message retrieval and
processing to be done only when all messages in a single group are
available. This property maps to the MQGMO_ALL_MSGS_AVAILABLE
option of the MQGMO of the MQI. Clear this check box if message
retrieval does not depend on all of the messages in a group being
available before processing starts.

More information about the options to which this property maps is
available in the Application Programming Reference section of the
WebSphere MQ Version 6 information center online, or the Version 5.3
book on the WebSphere MQ library Web page.

Match message
ID

No No A message ID that must match the message ID in the MQMD of the
incoming message. Enter a message identifier if you want the input
node to receive only messages that contain a matching message
identifier value in the MsgId field of the MQMD.

Enter an even number of hexadecimal digits (characters 0 to 9, A to F,
and a to f are valid) up to a maximum of 48 digits. If the matching
message identifier that you enter is shorter than the size of the MsgId
field, Match message ID is padded on the right with X'00' characters.
This property maps to the MQMO_MATCH_MSG_ID option of the
MQGMO of the MQI.

Leave this property blank if you do not want the input node to check
that the message ID matches.

More information about the options to which this property maps is
available in the Application Programming Reference section of the
WebSphere MQ Version 6 information center online, or the Version 5.3
book on the WebSphere MQ library Web page.

Message flows 163

|
|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/

Property M C Default Description

Match
correlation ID

No No A correlation ID that must match the correlation ID in the MQMD of
the incoming message. Enter a message identifier if you want the input
node to receive only messages that contain a matching correlation
identifier value in the CorrelId field of the MQMD.

Enter an even number of hexadecimal digits (characters 0 to 9, A to F,
and a to f are valid) up to a maximum of 48 digits. If the ID that you
enter is shorter than the size of the CorrelId field, it is padded on the
right with X'00' characters. This property maps to the
MQMO_MATCH_CORREL_ID option of the MQGMO of the MQI.

Leave this property blank if you do not want the input node to check
that the CorrelID matches.

More information about the options to which this property maps is
available in the Application Programming Reference section of the
WebSphere MQ Version 6 information center online, or the Version 5.3
book on the WebSphere MQ library Web page.

164 Message Flows

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/

Property M C Default Description

Convert Yes No Cleared If you select this check box, WebSphere MQ converts data in the
message to be received, in conformance with the CodedCharSetId and
Encoding values set in the MQMD. Select Convert if you want
WebSphere MQ to perform data conversion on the message when it is
retrieved from the queue. This option is useful if you are handling
messages in the BLOB domain, or are using a user-defined parser. Do
not select this option if you are parsing messages with the XML or
MRM domains, because the parser does the conversion.

WebSphere MQ converts the incoming message to the encoding and
coded character set that is specified in the MQMD that the input node
supplies on the MQGET call to retrieve the message from the input
queue. The broker uses the MQGMO_CONVERT option on the MQGET
call; typical rules for WebSphere MQ conversion apply. The values that
you specify in the Convert encoding and Convert coded character set
ID options are used in the MsgDesc Encoding and CCSID fields in the
MQGET call. WebSphere MQ can convert the incoming message only if
the MQMD Format field is a built-in WebSphere MQ value that
identifies character data, or if a data conversion exit exists in
WebSphere MQ.

This property maps to the MQGMO_CONVERT option of the MQGMO
of the MQI.

Clear the check box if you do not want WebSphere MQ to convert the
message.

If you select this check box, you can also specify:

v Convert encoding. Enter the number that represents the encoding to
which you want to convert numeric data in the message body. Valid
values include:

– Windows 546 for DOS and all Windows systems

– Linux UNIX 273 for all Linux and UNIX systems

– z/OS 785 for z/OS systems

The encoding is used only in the following circumstances:

– If a user-defined WebSphere MQ data conversion exit uses the
encoding.

– If the built-in WebSphere MQ conversion exit uses the encoding to
convert messages in any of the predefined WebSphere MQ
formats.

If you specify an incorrect value, no conversion is done.

v Convert coded character set ID. Enter the value that represents the
character set identifier to which you want to convert character data in
the message body.

If you specify an incorrect value, no conversion is done.

For more information about WebSphere MQ data conversion, and why
you might choose to use this option, see the Application Programming
Guide section of the WebSphere MQ Version 6 information center online,
or the Version 5.3 book on the WebSphere MQ library Web page. For
further information about the values that you can specify for Convert
encoding and Convert coded character set ID, see the Application
Programming Reference section of the WebSphere MQ Version 6
information center online, or the Version 5.3 book on the WebSphere
MQ library Web page.

Message flows 165

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/

Property M C Default Description

Convert
encoding

No No The representation used for numeric values in the message data,
expressed as an integer value. This property is valid only if you have
selected Convert.

Convert coded
character set
ID

No No The coded character set identifier of character data in the message data,
expressed as an integer value. This property is valid only if you have
selected Convert.

Commit by
message group

Yes No Cleared This property controls when a transaction is committed when
processing messages that are part of a message group. If you select the
check box, the transaction is committed when the message group has
been processed. If you leave this check box cleared, a commit is
performed after each message has been propagated completely through
the message flow.

This property is relevant only if you have selected Logical order.

Set the Order mode property to By Queue Order if the messages in a
group must be retrieved and processed in the order in which they are
displayed on the queue.

z/OS
serialization
token

No No On z/OS only: A user-defined token for serialized application support.
The value that is specified must conform to the rules for a valid
ConnTag in the WebSphere MQ MQCNO structure. Enter a serialization
token if you want to use the serialized access to shared resources that is
provided by WebSphere MQ.

The value that you provide for the serialization token must conform to
the rules described in the Application Programming Reference section of
the WebSphere MQ Version 6 information center online, or the Version
5.3 book on the WebSphere MQ library Web page.

For more information about serialization and queue sharing on z/OS,
see the Concepts and Planning Guide section of the WebSphere MQ
Version 6 information center online, or the Version 5.3 book on the
WebSphere MQ library Web page.

Topic No Yes The default topic for the input message. You can associate a message
with a publish/subscribe topic by using this property. You can enter
any characters as the topic name. When messages pass through the
MQInput node, they take on whatever topic name you have entered. (If
you are using publish/subscribe, you can subscribe to a topic and see
any messages that passed through the MQInput node and were
published under that topic name.) If the incoming message has an
MQRFH2 header, you do not need to set a value for the Topic property
because the value can be obtained from the <psc> folder in the
MQRFH2 header; for example:

<psc><Topic>stockquote</Topic></psc>

If you set a Topic property value, and that value differs from the
<Topic> value in the MQRFH2 header, the value in the MQRFH2
header takes precedence.

MQJMSTransform node
Use the MQJMSTransform node to receive messages that have a WebSphere MQ
JMS provider message tree format, and transform them into a format that is
compatible with messages that are to be sent to JMS destinations.

This topic contains the following sections:
v “Purpose” on page 167

166 Message Flows

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/

v “Using the MQJMSTransform node in a message flow”
v “Terminals and properties”

Purpose

Use the MQJMSTransform node to send messages to existing message flows and to
interoperate with WebSphere MQ JMS and WebSphere Event Broker
publish/subscribe.

The MQJMSTransform node is contained in the JMS drawer of the palette, and is
represented in the workbench by the following icon:

Using the MQJMSTransform node in a message flow

The following sample contains a message flow in which the MQJMSTransform
node is used. Look at this sample for an example of how to use the
MQJMSTransform node.
v JMS Nodes sample

You can view samples only when you use the information center that is integrated
with the Message Brokers Toolkit.

Terminals and properties

When you have put an instance of the MQJMSTransform node into a message flow,
you can configure it; see “Configuring a message flow node” on page 59. The
properties of the node are displayed in the Properties view. To display the
properties of the node in the Properties dialog, either double-click the node, or
right-click the node and click Properties.

The terminals of the MQJMSTransform node are described in the following table.

Terminal Description

Failure The output terminal to which the message is routed if an error occurs. Even if the Validation property
is set, messages that are propagated to this terminal are not validated.

Out The output terminal to which the message is routed if it is successfully retrieved from the
WebSphere MQ queue.

In The input terminal that accepts a message for processing by the node.

The following table describes the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The MQJMSTransform node Description properties are described in the following
table.

Message flows 167

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.jmsnode.res

Property M C Default Description

Node name No No The node type,
MQJMSTransform

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message
flow.

MQOptimizedFlow node
Use the MQOptimizedFlow node to provide a high-performance publish/subscribe
message flow. The node supports publishers and subscribers that use Java Message
Service (JMS) application programming interfaces and the WebSphere MQ
Enterprise Transport.

To take advantage of any performance gain that this node can provide, ensure that
you have installed WebSphere MQ Version 5.3 Fix Pack 10 for distributed systems.
See the release notes for this fix pack, which are accessible through the
WebSphere MQ support Web page, for details of the JMS configuration that is
required.

Restriction: z/OS You cannot use an MQOptimizedFlow node in message
flows that you deploy to z/OS systems.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties” on page 169

Purpose

Use the MQOptimizedFlow node to replace a publish/subscribe message flow that
consists of an MQInput node that is connected to a Publication node and that uses
the Java Message Service (JMS) over WebSphere MQ transport.

Use the MQOptimizedFlow node to improve performance, particularly where a
single publisher produces a persistent publication for a single subscriber.

The MQOptimizedFlow node is contained in the WebSphere MQ drawer of the
palette, and is represented in the workbench by the following icon:

Using this node in a message flow

Use an MQOptimizedFlow node in a message flow to publish a persistent JMS
message to a single subscriber.

The MQOptimizedFlow node has no terminals, so you cannot connect it to any
other message flow node.

168 Message Flows

http://www.ibm.com/software/integration/wmq/support/

Terminals and properties

When you have put an instance of the MQOptimizedFlow node into a message
flow, you can configure it; see “Configuring a message flow node” on page 59. The
properties of the node are displayed in the Properties view. To display the
properties of the node in the Properties dialog, either double-click the node, or
right-click the node and click Properties. All mandatory properties for which you
must enter a value (those that do not have a default value defined) are marked
with an asterisk.

The MQOptimizedFlow node has no terminals. It is a complete message flow and
you cannot connect it to other message flow nodes to extend the message
processing.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory; that is, whether you must enter a value if no
default value is defined; an asterisk next to the name of the property denotes this.
The column headed C indicates whether the property is configurable; that is,
whether you can change the value in the BAR file.

The MQOptimizedFlow node Description properties are described in the following
table.

Property M C Default Description

Node name No No MQOptimizedFlow The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message
flow.

The MQOptimizedFlow node Basic properties are described in the following table.

Property M C Default Description

Queue
name

Yes Yes None The name of the WebSphere MQ input queue from which this node retrieves
messages for processing by this message flow.

The MQOptimizedFlow node Advanced properties are described in the following
table.

Property M C Default Description

Transaction
mode

Yes No Yes This property controls whether the incoming message is received under
syncpoint. Valid values are Automatic, Yes, and No.

MQOutput node
Use the MQOutput node to send messages to clients that connect to the broker
using the WebSphere MQ Enterprise Transport and that use the MQI and AMI
application programming interfaces.

This topic contains the following sections:
v “Purpose” on page 170
v “Using this node in a message flow” on page 170
v “Configuring the MQOutput node” on page 170

Message flows 169

v “Contents of the WebSphere MQ reply message” on page 173
v “Terminals and properties” on page 174

Purpose

The MQOutput node delivers an output message from a message flow to a
WebSphere MQ queue. The node uses MQPUT to put the message to the
destination queue that you specify.

If appropriate, define the queue as a WebSphere MQ clustered queue or shared
queue. When you use a WebSphere MQ clustered queue, leave the Queue
Manager Name empty.

You can configure the MQOutput node to put a message to a specific
WebSphere MQ queue that is defined on any queue manager that is accessible by
the broker’s queue manager.

Set other properties to control the way in which messages are sent, by causing
appropriate MQPUT options to be set; for example, you can request that a message
is processed under transaction control. You can also specify that WebSphere MQ
can, if appropriate, break the message into segments in the queue manager.

If you create a message flow to use as a subflow, you cannot use a standard output
node; use an instance of the Output node to create an Out terminal for the subflow
through which to propagate the message.

If you do not want your message flow to send messages to a WebSphere MQ
queue, choose another supported output node.

The MQOutput node is contained in the WebSphere MQ drawer of the palette,
and is represented in the workbench by the following icon:

Using this node in a message flow

For an example of how to use this node, assume that you have written a
publishing application that publishes stock updates on a regular basis. The
application sends the messages to the broker on an MQInput node, and the
message flow makes the publications available to multiple subscribers through a
Publication node. You include an MQOutput node to send the message to an
application that records each price change that occurs.

Configuring the MQOutput node

When you have put an instance of the MQOutput node into a message flow, you
can configure it; see “Configuring a message flow node” on page 59. The
properties of the node are displayed in the Properties view. To display the
properties of the node either double-click the node, or right-click the node and
click Properties.

All mandatory properties for which you must enter a value (those that do not have
a default value defined) are marked with an asterisk.

Configure the MQOutput node.

170 Message Flows

|

1. Optional: On the Description tab, enter a short description, a long description,
or both. You can also rename the node on this page.

2. On the Basic tab:
v To send the output message to a single destination queue that is defined by

this node, enter the name of the queue to which the message flow sends
messages in Queue Name.

v Enter the name of the queue manager to which this queue is defined in
Queue Manager Name. You must set these properties if you set the
Destination Mode property on the Advanced tab (described later in this
section) to Queue Name. If you set Destination Mode to another value, these
properties are ignored.

3. The properties on the Advanced tab define the transactional control for the
message and the way in which the message is put to the queue. Many of these
properties map to options on the MQPUT call.
v Select the Destination Mode from the list. This property identifies the queues

to which the output message is put:
– Queue Name (the default). The message is sent to the queue that is named

in the Queue Name property. The Queue Manager Name and Queue
Name properties on the Basic tab are mandatory if you select this option.

– Reply To Queue. The message is sent to the queue that is named in the
ReplyToQ field in the MQMD.
When you select this option, the MQOutputnode constructs a
WebSphere MQ reply message. See “Contents of the WebSphere MQ
reply message” on page 173 for further information on the settings used
by the MQOutput node and the Root.MQMD folder in this situation.

v Select the Transaction Mode from the list to determine how the message is
put:
– If you select Automatic (the default), the message transactionality is

derived from the way that it was specified at the input node.
– If you select Yes, the message is put transactionally.
– If you select No, the message is put non-transactionally.

For more information, see “Configuring for coordinated transactions” on
page 174.

v Select the Persistence Mode from the list to determine whether the message
is put persistently:
– If you select Automatic (the default), the persistence is as specified in the

incoming message.
– If you select Yes, the message is put persistently.
– If you select No, the message is put non-persistently.
– If you select As Defined for Queue, the message persistence is set as

defined for the WebSphere MQ queue.
v Select New Message ID to generate a new message ID for this message. This

property maps to the MQPMO_NEW_MSG_ID option of the MQPMO of the
MQI.
Clear the check box if you do not want to generate a new ID. A new message
ID is still generated if you select Request on the Request tab.
More information about the options to which this property maps is available
in the Application Programming Reference section of the WebSphere MQ
Version 6 information center online, or the Version 5.3 book on the
WebSphere MQ library Web page.

Message flows 171

|
|
|
|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/

v Select New Correlation ID to generate a new correlation ID for this message.
This property maps to the MQPMO_NEW_CORREL_ID option of the
MQPMO of the MQI. Clear the check box if you do not want to generate a
new ID.
More information about the options to which this property maps is available
in the Application Programming Reference section of the WebSphere MQ
Version 6 information center online, or the Version 5.3 book on the
WebSphere MQ library Web page.

v Select Segmentation Allowed if you want WebSphere MQ to segment the
message within the queue manager when appropriate. Clear the check box if
you do not want segmentation to occur. See “Sending message segments in a
WebSphere MQ message” on page 83 for more information about message
segmentation.
More information about the options to which this property maps is available
in the Application Programming Reference section of the WebSphere MQ
Version 6 information center online, or the Version 5.3 book on the
WebSphere MQ library Web page.

v Select the Message Context to indicate how origin context is handled. Choose
one of the following options:
– Pass All maps to the MQPMO_PASS_ALL_CONTEXT option of the

MQPMO of the MQI.
– Pass Identity maps to the MQPMO_PASS_IDENTITY_CONTEXT option of

the MQPMO of the MQI.
– Set All maps to the MQPMO_SET_ALL_CONTEXT option of the MQPMO

of the MQI.
– Set Identity maps to the MQPMO_SET_IDENTITY_CONTEXT option of

the MQPMO of the MQI.
– Default maps to the MQPMO_DEFAULT_CONTEXT option of the

MQPMO of the MQI.
– None maps to the MQPMO_NO_CONTEXT option of the MQPMO of the

MQI.
More information about the options to which these properties map is
available in the Application Programming Reference section of the WebSphere
MQ Version 6 information center online, or the Version 5.3 book on the
WebSphere MQ library Web page.

v Select Alternate User Authority if you want the
MQOO_ALTERNATE_USER_AUTHORITY option to be set in the open
options (MQOO) of the MQI. If you select this check box, this option is
specified when the queue is opened for output. The alternative user
information is retrieved from the context information in the message. Clear
the check box if you do not want to specify alternative user authority. If you
clear the check box, the broker service user ID is used when the message is
put.

4. On the Request tab, set the properties to define the characteristics of each
output message that is generated.
v Select Request to mark each output message in the MQMD as a request

message (MQMT_REQUEST), and clear the message identifier field (which is
set to MQMI_NONE) to ensure that WebSphere MQ generates a new
identifier. Clear the check box to indicate that each output message is not
marked as a request message. You cannot select this check box if you have
selected a Destination Mode of Reply To Queue.

172 Message Flows

|
|
|

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/

A new message identifier is generated even if the New Message ID check
box is not selected on the Advanced tab.

v Enter a queue manager name in Reply-to Queue Manager. This name is
inserted into the MQMD of each output message as the reply-to queue
manager.

v Enter a queue name in Reply-to Queue. This name is inserted into the
MQMD of each output message as the reply-to queue.

Connecting the terminals:

Connect the In terminal to the node from which outbound messages bound are
routed.

Connect the Out or Failure terminal of this node to another node in this message
flow to send the message to an additional destination.

Contents of the WebSphere MQ reply message:

The:
v Values of the following fields in MQMD are set, irrespective of the settings you

make:
MQMD.Report = 0;
MQMD.PutApplType = MQAT_BROKER;
MQMD.PutDate = Taken from current Timestamp
MQMD.PutTime = Taken from current Timestamp
MQMD.PutApplName = MsgTree.MQMD.ReplyToQMgr (first 28 chars)

v Values of the following fields are set from the values in the Root.MQMD folder:
MQMD.Version
MQMD.Format
MQMD.Priority
MQMD.Persistence
MQMD.Expiry
MQMD.Encoding
MQMD.CodedCharSetId
MQMD.GroupId
MQMD.MsgSeqNumber
MQMD.Offset
MQMD.MsgFlags
MQMD.OriginalLength

v Following values in MQMD are set conditionally, based on values in the
MQOutput node and the Root.MQMD folder:

IF MsgTree.MQMD.MsgType = MQMT_REQUEST THEN
MQMD.MsgType = MQMT_REPLY;

IF Nodes Message Context is Default, PassAll or PassIdentity THEN
MQMD.UserIdentifer = MsgTree.MQMD.UserIdentifier;

IF MsgTree.MQMD.Report contains MQRO_PASS_CORREL_ID THEN
MQMD.CorrelId = MsgTree.MQMD.CorrelId;

ELSE
MQMD.CorrelId = MsgTree.MQMD.MsgId;

IF MsgTree.MQMD.Report contains MQRO_PASS_MSG_ID THEN
MQMD.MsgId = MsgTree.MQMD.MsgId;

ELSE
MQMD.MsgId = MQMI_NONE;

v Value of the MQMD.Persistence field is set based on the Persistence mode on the
MQOutput node.

When the output MQMD structure has been constructed, the Message Context on
the MQOutput node is ignored, and the behavior is as set All.

Message flows 173

|

|

|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|

The values that are overridden, are done only in the output MQMD structure; no
updates are made to the MQMD folder in the message tree.

Configuring for coordinated transactions:

When you define an MQOutput node, the option that you select for the
Transaction Mode property defines whether the message is written under sync
point:
v If you select Yes, the message is written under sync point (that is, within a

WebSphere MQ unit of work).
v If you select Automatic (the default), the message is written under sync point if

the incoming input message is marked as persistent.
v If you select No, the message is not written under sync point.

Another property of the MQOutput node, Persistence Mode, defines whether the
output message is marked as persistent when it is put to the output queue:
v If you select Yes, the message is marked as persistent.
v If you select Automatic (the default), the message persistence is determined from

the properties of the incoming message, as set in the MQMD.
v If you select No, the message is not marked as persistent.
v If you select As Defined for Queue, the message persistence is set as defined in

the WebSphere MQ queue by the MQOutput node specifying the
MQPER_PERSISTENCE_AS_Q_DEF option in the MQMD.

Terminals and properties

The MQOutput node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected when the
message is put to the output queue.

Out The output terminal to which the message is routed if it has been successfully put to
the output queue, and if further processing is required within this message flow.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The MQOutput node Description properties are described in the following table.

Property M C Default Description

Node name No No The node
type,
MQOutput

The name of the node.

Short Description No No A brief description of the node.

Long Description No No Text that describes the purpose of the node in the
message flow.

The MQOutput node Basic properties are described in the following table.

174 Message Flows

|
|

Property M C Default Description

Queue Manager Name No Yes The name of the WebSphere MQ queue manager to
which the output queue, which is specified in Queue
Name, is defined.

Queue Name No Yes The name of the WebSphere MQ output queue to which
this node puts messages (using MQPUT).

The MQOutput node Advanced properties are described in the following table.

Property M C Default Description

Destination Mode Yes No Queue Name The queues to which the output message is sent. Valid
values are , Reply To Queue, and Queue Name.

Transaction Mode Yes No Automatic This property controls whether the message is put
transactionally. Valid values are Automatic, Yes, and
No.

Persistence Mode Yes No Automatic This property controls whether the message is put
persistently. Valid values are Automatic, Yes, No, and
As Defined for Queue.

New Message ID Yes No Cleared If you select this check box, WebSphere MQ generates
a new message identifier to replace the contents of the
MsgId field in the MQMD.

New Correlation ID Yes No Cleared If you select this check box, WebSphere MQ generates
a new correlation identifier to replace the contents of
the CorrelId field in the MQMD.

Segmentation Allowed Yes No Cleared If you select this check box, WebSphere MQ breaks the
message into segments in the queue manager.

Message Context Yes No Pass All This property controls how origin context is handled.
Valid values are Pass All, Pass Identity, Set All, Set
Identity, and Default.

Alternate User
Authority

Yes No Cleared If you select this check box, alternate authority is used
when the output message is put.

The MQOutput node Request properties are described in the following table.

Property M C Default Description

Request Yes No Cleared If you select the check box, each output message is
generated as a request message.

Reply-to Queue
Manager

No Yes The name of the WebSphere MQ queue manager to
which the output queue, which is specified in Reply-to
Queue, is defined.

Reply-to Queue No Yes The name of the WebSphere MQ queue to which to put
a reply to this request.

Output node
Use the Output node as an out terminal for an embedded message flow (a
subflow).

This topic contains the following sections:
v “Purpose” on page 176
v “Terminals and properties” on page 176

Message flows 175

Purpose

You can use a subflow to provide a common destination for output messages.

You must use an Output node to provide the Out terminal to a subflow; you
cannot use a standard output node (a built-in output node such as MQOutput, or a
user-defined output node).

You can include one or more Output nodes in a subflow. Each one that you
include provides a terminal through which you can propagate messages to
subsequent nodes in the message flow in which you include the subflow.

The Output node is contained in the Construction drawer of the palette, and is
represented in the workbench by the following icon:

When you select and include a subflow in a message flow, it is represented by the
following icon:

When you include the subflow in a message flow, this icon exhibits a terminal for
each Output node that you included in the subflow, and the name of the terminal
(which you can see when you hover over it) matches the name of that instance of
the Output node. Give your Output nodes meaningful names, you can easily
recognize them when you use their corresponding terminal on the subflow node in
your message flow.

Terminals and properties

When you have put an instance of the Output node into a message flow, you can
configure it; see “Configuring a message flow node” on page 59. The properties of
the node are displayed in the Properties view. To display the properties of the
node in the Properties dialog, either double-click the node, or right-click the node
and click Properties.

The Output node terminals are described in the following table.

Terminal Description

In The output terminal that defines an out terminal for the subflow.

The following table describes the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Output node Description properties are described in the following table.

176 Message Flows

Property M C Default Description

Node name No No The node
type, Output

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message
flow.

Publication node
Use the Publication node to filter output messages from a message flow and
transmit them to subscribers who have registered an interest in a particular set of
topics. The Publication node must always be an output node of a message flow
and has no output terminals of its own.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties” on page 178

Purpose

Use the Publication node (or a user-defined node that provides a similar service) if
your message flow supports publish/subscribe applications. Applications that
expect to receive publications must register a subscription with a broker, and can
optionally qualify the publications that they get by providing restrictive criteria
(such as a specific publication topic).

If your subscriber applications use the WebSphere MQ Enterprise Transport to
connect to the broker, you can define the queues to which messages are published
as WebSphere MQ clustered queues or shared queues.

Publications can also be sent to subscribers within a WebSphere MQ cluster if a
cluster queue is nominated as the subscriber queue. In this case, the subscriber
should use the name of an ″imaginary″ queue manager that is associated with the
cluster, and should ensure that a corresponding blank queue manager alias
definition for this queue manager is made on the broker that satisfies the
subscription.

The Publication node is contained in the Routing drawer of the palette, and is
represented in the workbench by the following icon:

Using this node in a message flow

Look at the following sample to see how to use this node:
v Soccer Results sample

You can view samples only when you use the information center that is integrated
with the Message Brokers Toolkit.

Message flows 177

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.soccer.res

For an example of how to use this node, assume that you have written a
publishing application that publishes stock updates on a regular basis. The
application sends the messages to the broker on an MQInput node, and the stock
publications are made available to multiple subscribers through a Publication node.

Terminals and properties

When you have put an instance of the Publication node into a message flow, you
can configure it; see “Configuring a message flow node” on page 59. The
properties of the node are displayed in the Properties view. To display the
properties of the node in the Properties dialog, either double-click the node, or
right-click the node and click Properties. All mandatory properties for which you
must enter a value (those that do not have a default value defined) are marked
with an asterisk.

The Publication node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Publication node Description properties are described in the following table.

Property M C Default Description

Node name No No The node type:
Publication

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message flow.

The Publication node Basic properties are described in the following table.

Property M C Default Description

Implicit
Stream
Naming

Yes No Cleared Select Implicit Stream Naming to take the name of the WebSphere MQ
queue on which the message was received by the message flow as the
stream name. This property provides forward compatibility with WebSphere
MQ Publish/Subscribe, and applies to messages with an MQRFH header
when MQPSStream is not specified.

Clear the check box if you do not want this action to be taken.

Subscription
Point

No No The subscription point value for the node. If you do not specify a value for
this property, the default subscription point is assumed. This value uniquely
identifies the node, and can be used by subscribers to get a specific
publication (as described in the example scenario in “Using this node in a
message flow” on page 177).

For more information, see Subscription points.

178 Message Flows

Real-timeInput node
Use the Real-timeInput node to receive messages from clients that connect to the
broker using the WebSphere MQ Real-time Transport or the WebSphere MQ
Multicast Transport, and that use JMS application programming interfaces.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow”
v “Terminals and properties”

Purpose

An output node in a message flow that starts with a Real-timeInput node can be
any of the supported output nodes, including user-defined output nodes. You can
create a message flow that receives messages from real-time clients and generates
messages for clients that use all supported transports to connect to the broker,
because you can configure the message flow to request the broker to provide any
conversion that is required.

If you create a message flow to use as a subflow, you cannot use a standard input
node; you must use an instance of the Input node as the first node to create an In
terminal for the subflow.

If your message flow does not receive messages from JMS applications, choose one
of the supported input nodes.

The Real-timeInput node is contained in the Additional Protocols drawer of the
palette, and is represented in the workbench by the following icon:

Using this node in a message flow

For an example of how to use this node, assume that you have written a
publishing application that publishes stock updates on a regular basis. The
application sends the messages to the broker on a Real-timeInput node, and the
message flow makes the publications available to multiple subscribers through a
Publication node.

Terminals and properties

When you have put an instance of the Real-timeInput node into a message flow,
you can configure it; see “Configuring a message flow node” on page 59. The
properties of the node are displayed in the Properties view. To display the
properties of the node in the Properties dialog, either double-click the node, or
right-click the node and click Properties. All mandatory properties for which you
must enter a value (those that do not have a default value defined) are marked
with an asterisk.

The Real-timeInput node terminals are described in the following table.

Terminal Description

Out The output terminal to which the message is routed if it is successfully retrieved from JMS. If this
routing fails, the message is retried.

Message flows 179

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined), the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Real-timeInput node Description properties are described in the following
table.

Property M C Default Description

Node name No No The node type:
Real-timeInput

The name of the node.

Short
Description

No No A brief description of the node.

Long
Description

No No Text that describes the purpose of the node in the message flow.

The Real-timeInput node Basic properties are described in the following table.

Property M C Default Description

Port Yes Yes The port number on which the input node listens for publish or
subscribe requests from JMS applications. Ensure that the port number
that you specify does not conflict with any other listener service. No
default value is provided for this property; you must enter a value.

Authentication Yes No Cleared To authenticate users that send messages on receipt of their messages,
select this check box. If you clear the check box (the default setting),
users are not authenticated.

Tunnel through
HTTP

Yes No Cleared Select the check box to indicate that users use HTTP tunneling. If you
clear the check box (the default setting), messages do not use HTTP
tunneling. If you select the check box, all client applications that connect
must use this feature. If they do not use this feature, their connection is
rejected. The client application cannot use this option in conjunction with
the connect-via proxy setting, which is activated from the client side.

Read Threads No Yes 10 The number of threads that you want the broker to allocate to read
messages. The broker starts as many instances of the message flow as are
necessary to process current messages, up to this limit.

Write Threads No Yes 10 The number of threads that you want the broker to allocate to write
messages. The broker starts as many instances of the message flow as are
necessary to process current messages, up to this limit.

Authentication
Threads

No Yes 10 The number of threads that you want the broker to allocate to user
authentication checks. The user authentication check is performed when
a message is received. The broker starts as many instances of the
message flow as are necessary to process current messages, up to this
limit.

The properties of the General Message Options for the Real-timeInput node are
described in the following table.

180 Message Flows

Real-timeOptimizedFlow node
Use the Real-timeOptimizedFlow node to receive messages from clients that
connect to the broker using the WebSphere MQ Real-time Transport or the
WebSphere MQ Multicast Transport, and that use JMS application programming
interfaces.

This topic contains the following sections:
v “Purpose”
v “Terminals and properties”

Purpose

The Real-timeOptimizedFlow node is a complete message flow that provides a
high performance publish/subscribe message flow. The actions that are taken by
this node are all internalized; you cannot influence the node’s operation except by
configuring its properties, and you cannot connect it to any other node.

This node also supports publication to, or subscription from, standard WebSphere
MQ applications, but its performance for these applications is not as good as the
performance achieved for JMS applications.

Include the Real-timeOptimizedFlow node in a message flow when you want to
distribute messages through a broker to and from client applications that use JMS.

The Real-timeOptimizedFlow node is contained in the Additional Protocols
drawer of the palette, and is represented in the workbench by the following icon:

Terminals and properties

When you have put an instance of the Real-timeOptimizedFlow node into a
message flow, you can configure it. For more information, see “Configuring a
message flow node” on page 59. The properties of the node are displayed in the
Properties view. To display the properties of the node in the Properties dialog,
either double-click the node, or right-click the node and click Properties. All
mandatory properties for which you must enter a value (those that do not have a
default value defined) are marked with an asterisk.

The Real-timeOptimizedFlow node has no terminals. It is a complete message flow
and cannot be connected to other nodes to extend the message processing.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined), the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The Real-timeOptimizedFlow node Description properties are described in the
following table.

Message flows 181

Property M C Default Description

Node
name

No No Real-
timeOptimizedFlow

The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

The Real-timeOptimizedFlow node Basic properties are described in the following
table.

Property M C Default Description

Port Yes Yes The port number on which the node listens for publish or subscribe
requests from JMS applications. Ensure that the port number that you
specify does not conflict with any other listener service. No default value is
provided for this property; you must enter a value.

Authentication Yes No Cleared For users to authenticate that send messages on receipt of their messages,
select Authentication. If you clear the check box (the default setting), users
are not authenticated.

Tunnel through
HTTP

Yes No Cleared For clients to use HTTP tunneling, select Tunnel through HTTP. If you clear
the check box (the default setting), messages do not use HTTP tunneling. If
you select the check box, all client applications that connect must use this
feature. If they do not use this feature, their connection is rejected. The
client application cannot use this option in conjunction with the
connect-via-proxy setting, which is activated from the client side.

Read threads No Yes 10 The number of threads that you want the broker to allocate to read
messages. The broker starts as many instances of the message flow as are
necessary to process current messages, up to this limit.

Write threads No Yes 10 The number of threads that you want the broker to allocate to write
messages. The broker starts as many instances of the message flow as are
necessary to process current messages, up to this limit.

Authentication
threads

No Yes 10 The number of threads that you want the broker to allocate to user
authentication checks. The user authentication check is performed when a
message is received. The broker starts as many instances of the message
flow as are necessary to process current messages, up to this limit.

SCADAInput node
Use the SCADAInput node to receive messages from clients that connect to the
broker across the WebSphere MQ Telemetry Transport.

This topic contains the following sections:
v “Purpose”
v “Using this node in a message flow” on page 183
v “Configuring the SCADAInput node” on page 184
v “Terminals and properties” on page 185

Purpose

SCADA device clients use the MQIsdp protocol to send messages that are
converted by the SCADAInput node into a format that is recognized by WebSphere
Event Broker. The node also establishes the processing environment for these
messages.

182 Message Flows

Message flows that handle messages received from SCADA devices must always
start with a SCADAInput node. Set the SCADAInput node properties to control
the way in which messages are received; for example, you can indicate that a
message is to be processed under transaction control.

When you deploy message flows that contain SCADA nodes to a broker, deploy
them to a single execution group, regardless of the number of message flows.

The execution group to which the SCADA flows are deployed must be the default
execution group. The default execution group can be identified by inspecting the
defaultExecutionGroup field in the BIP2201 message at the execution group
startup. A value of true denotes the default execution group.

SCADA is primarily a publish/subscribe protocol; therefore, you typically include
a Publication node to end the flow. In scenarios where you do not want to use a
Publication node, include a SCADAOutput node. If you include a SCADAOutput
node, you must also include a SCADAInput node, regardless of the source of the
messages, because the SCADAInput node provides the connectivity information
that is required by the SCADAOutput node.

If you include an output node in a message flow that starts with a SCADAInput
node, it can be any of the supported output nodes, including user-defined output
nodes. You can create a message flow that receives messages from SCADA devices,
and generates messages for clients that use all of the supported transports to
connect to the broker, because you can configure the message flow to request the
broker to provide any necessary conversion.

You can request that the broker starts or stops a SCADA listener by publishing
messages with a specific topic. This request can apply to all ports or to a single
port that is identified in the message.

z/OS You cannot use SCADAInput nodes in message flows that are to be
deployed on z/OS systems.

If you create a message flow to use as a subflow, you cannot use a standard input
node; you must use an Input node as the first node to create an In terminal for the
subflow.

If your message flow does not receive messages across SCADA connections, choose
one of the supported input nodes.

The SCADAInput node is contained in the Additional Protocols drawer of the
palette, and is represented in the workbench by the following icon:

Using this node in a message flow

For an example of how to use this node, assume that you create a message flow
with a SCADAInput node that receives messages from a remote sensor when it
detects a change in its operating environment (for example, a drop in outside
temperature). You connect the node to an MQOutput node, which makes these
messages available on a queue that is serviced by a WebSphere MQ application
that analyses and responds to the information that is received.

Message flows 183

Configuring the SCADAInput node

When you have put an instance of the SCADAInput node into a message flow, you
can configure the node. For more information, see “Configuring a message flow
node” on page 59. The properties of the node are displayed in the Properties view.
To display the properties of the node in the Properties dialog, either double-click
the node, or right-click the node and click Properties.

All mandatory properties for which you must enter a value (those that do not have
a default value defined) are marked with an asterisk.
1. Optional: On the Description tab, enter a Short description, a Long description,

or both. You can also rename the node on this tab.
2. On the Basic tab, set the following properties:
v Update the status of the listener by publishing on the control topic

$SYS/SCADA/MQIsdpListener/<port_number> with the Payload part of the
message set to ON or OFF. Enable listener on startup is initially selected, which
means that the listener for MQIsdp clients is initialized when the message
flow is deployed.

v Specify the Port number on which the MQIsdp server listens. This value
must be a unique port number, and must not conflict with other listeners (for
example, those set up for WebSphere MQ or WebSphere MQ Everyplace).
The default number is 1883.

v Set the Max threads value to indicate the maximum number of threads
available to the MQIsdp server to support clients. The default value is 500.
If you are using DB2 as your broker database, specify a value that is less
than or equal to the value that you have set for the DB2 configuration
parameters maxappls and maxagents. For further information, see Enabling
ODBC connections to the databases.

v Select Use thread pooling if you want the node to use a pool of threads to
service clients. If you select this option, the number of threads that are
available to the MQIsdp server is limited by Max threads, which is most
effective when set to a value between 20 and 40. If you do not select this
option, a new thread is created for each client that connects. The check box is
cleared initially.
Use this option only if you expect a large number of clients (greater than
200) to connect.

3. On the Advanced tab, set the required value for Transaction mode to define the
transactional characteristics of how this message is handled:
v If you select Automatic, the incoming message is received under sync point if

it is marked as persistent; otherwise, it is not received under sync point. The
transactionality of any derived messages that are sent subsequently by an
output node is determined by the incoming persistence property, unless the
output node has overridden transactionality explicitly.

v If you select Yes, the incoming message is received under sync point. Any
derived messages that are sent subsequently by an output node in the same
instance of the message flow are sent transactionally, unless the output node
has overridden transactionality explicitly.

v If you select No, the incoming message is not received under sync point. Any
derived messages that are sent subsequently by an output node in the flow
are sent non-transactionally, unless the output node has specified that the
message must be put under sync point.

Connecting the terminals:

184 Message Flows

The SCADAInput node routes each message that it retrieves successfully to the
Out terminal. If this action fails, the message is propagated to the Failure terminal;
you can connect nodes to this terminal to handle this condition. If you have not
connected the Failure terminal, the message loops continually through the node
until the problem is resolved.

If the message is caught by this node after an exception has been thrown further
on in the message flow, the message is routed to the Catch terminal. If you have
not connected the Catch terminal, the message loops continually through the node
until the problem is resolved. Ensure that a node is always connected to this
terminal if there is the possibility of the message rolling back within a message
flow.

Configuring for coordinated transactions:

When you include a SCADAInput node in a message flow, the value that you set
for Transaction mode defines whether messages are received under sync point:
v If you set this property to Yes (the default), the message is received under sync

point; that is, within a WebSphere MQ unit of work. Any messages that are sent
subsequently by an output node in the same instance of the message flow are
put under sync point, unless the output node has overridden this explicitly.

v If you set this property to Automatic, the message is received under sync point
if the incoming message is marked as persistent; otherwise, it is not received
under sync point. Any message that is sent subsequently by an output node is
put under sync point, as determined by the incoming persistence property,
unless the output node has overridden this explicitly.

v If you set this property to No, the message is not received under sync point.
Any messages that are sent subsequently by an output node in the message flow
are not put under sync point, unless an individual output node has specified
that the message must be put under sync point.

The MQOutput node is the only output node that you can configure to override
this option.

Terminals and properties

The SCADAInput node terminals are described in the following table.

Terminal Description

Failure The output terminal to which the message is routed if an error occurs.

Out The output terminal to which the message is routed if it is successfully retrieved from
the queue.

Catch The output terminal to which the message is routed if an exception is thrown
downstream and caught by this node.

The following tables describe the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The SCADAInput node Description properties are described in the following table.

Message flows 185

Property M C Default Description

Node name No No The node
type,
SCADAInput

The name of the node.

Short description No No A brief description of the node.

Long description No No Text that describes the purpose of the node in the
message flow.

The SCADAInput node Basic properties are described in the following table.

Property M C Default Description

Enable listener on
startup

Yes No Selected This property controls when the listener is started. If
you select the check box, the listener starts when the
message flow is started by the broker. If you clear the
check box, the listener starts on the arrival of a message
on the specified port.

Port Yes Yes 1883 The port on which the SCADA protocol is listening.

Max threads Yes Yes 500 The maximum number of threads to be started to
support SCADA devices.

Use thread pooling Yes Yes Cleared If you select the check box, thread pooling is used.

The SCADAInput node Advanced property is described in the following table.

Property M C Default Description

Transaction mode Yes No Yes This property controls whether the incoming message
is received under sync point. Valid values are
Automatic, Yes, and No.

SCADAOutput node
Use the SCADAOutput node to send a message to a client that connects to the
broker using the MQIsdp protocol across the WebSphere MQ Telemetry Transport.

This topic contains the following sections:
v “Purpose”
v “Connecting the terminals” on page 187
v “Terminals and properties” on page 187

Purpose

You use the Publication node to send output to a SCADA client. The
SCADAOutput node lets you write your own Publication node.

If you include a SCADAOutput node in a message flow, also include a
SCADAInput node, regardless of the source of the messages, because the
SCADAInput node provides the connectivity information that is required by the
SCADAOutput node.

When you deploy message flows that contain SCADA nodes to a broker, deploy
them to a single execution group, regardless of the number of message flows.

186 Message Flows

The execution group to which the SCADA flows are deployed must be the default
execution group. The default execution group can be identified by inspecting the
defaultExecutionGroup field in the BIP2201 message at the execution group
startup. A value of true denotes the default execution group.

You cannot use the SCADAOutput node to change the transactional characteristics
of the message flow. The transactional characteristics that are set by the message
flow’s input node determine the transactional behavior of the flow.

z/OS You cannot use SCADAOutput nodes in message flows that you deploy
to z/OS systems.

If you create a message flow to use as a subflow, you cannot use a standard output
node; use an instance of the Output node to create an out terminal for the subflow
through which the message can be propagated.

If you do not want your message flow to send messages to a SCADA device,
choose another supported output node.

The SCADAOutput node is contained in the Additional Protocols drawer of the
message flow node palette, and is represented in the workbench by the following
icon:

Connecting the terminals

Connect the In terminal to the node from which messages that are bound for
SCADA destinations are routed.

Connect the Out or Failure terminal of this node to another node in this message
flow to send the message to an additional destination.

Terminals and properties

When you have put an instance of the SCADAOutput node into a message flow,
you can configure it. For more information, see “Configuring a message flow
node” on page 59. The properties of the node are displayed in the Properties view.
To display the properties of the node in the Properties dialog, either double-click
the node, or right-click the node and click Properties. All mandatory properties for
which you must enter a value (those that do not have a default value defined) are
marked with an asterisk.

The SCADAOutput node terminals are described in the following table.

Terminal Description

In The input terminal that accepts a message for processing by the node.

Failure The output terminal to which the message is routed if a failure is detected when the message is put to
the output queue.

Out The output terminal to which the message is routed if it has been successfully put to the output queue,
and if further processing is required within this message flow.

Message flows 187

The following table describes the node properties. The column headed M indicates
whether the property is mandatory (marked with an asterisk if you must enter a
value when no default is defined); the column headed C indicates whether the
property is configurable (you can change the value when you add the message flow
to the BAR file to deploy it).

The SCADAOutput node Description properties are described in the following
table.

Property M C Default Description

Node name No No The node type,
SCADAOutput

The name of the node.

Short
description

No No A brief description of the node.

Long
description

No No Text that describes the purpose of the node in the message flow.

If a message is propagated to the Failure terminal of the node, it is not validated.
For more details, see Validating messages and Validation properties.

User-defined nodes

You can deploy user-defined nodes that are created and supplied by WebSphere
Message Broker Version 6.0 users, or by independent software vendors and other
companies. Use these nodes in message flows, to add to the function that is
provided by the supplied or built-in nodes.

WebSphere Message Broker Version 6.0 users and other vendors can provide help
information for user-defined nodes. If help information has been provided, it is
displayed after this topic in the information center when you install the
user-defined node.

Supported code pages
Application messages must conform to supported code pages.

The message flows that you create, configure, and deploy to a broker can process
application messages in any code page that is listed in the following tables. You
can also generate a new code page converter.

For detailed information about Chinese code page GB18030 support, see “Chinese
code page GB18030” on page 215.

By default, WebSphere Event Broker supports the code pages that are given in the
following tables. To find a code page for a specific CCSID, search for an internal
converter name in the form ibm-ccsid, where ccsid is the CCSID for which you are
looking.
v Unicode converters
v European and American language converters
v Asian language converters
v Windows US and European converters
v MAC-related converters

188 Message Flows

v Hebrew, Cyrillic and ECMA language converters
v Indian language converters
v EBCDIC converters

Unicode converters

Internal converter name Aliases

UTF-8 UTF-8

ibm-1208

ibm-1209

ibm-5304

ibm-5305

windows-65001

cp1208

UTF-16 UTF-16

ISO-10646-UCS-2

unicode

csUnicode

ucs-2

UTF-16BE UTF-16BE

x-utf-16be

ibm-1200

ibm-1201

ibm-5297

ibm-13488

ibm-17584

windows-1201

cp1200

cp1201

UTF16_BigEndian

UTF-16LE UTF-16LE

x-utf-16le

ibm-1202

ibm-13490

ibm-17586

UTF16_LittleEndian

windows-1200

UTF-32 UTF-32

ISO-10646-UCS-4

csUCS4

ucs-4

UTF-32BE UTF-32BE

UTF32_BigEndian

ibm-1232

ibm-1233

Message flows 189

Internal converter name Aliases

UTF-32LE UTF-32LE

UTF32_LittleEndian

ibm-1234

UTF16_PlatformEndian UTF16_PlatformEndian

UTF16_OppositeEndian UTF16_OppositeEndian

UTF32_PlatformEndian UTF32_PlatformEndian

UTF32_OppositeEndian UTF32_OppositeEndian

UTF-7 UTF-7

windows-65000

IMAP-mailbox-name IMAP-mailbox-name

SCSU SCSU

BOCU-1 BOCU-1

csBOCU-1

CESU-8 CESU-8

European and American language converters

Internal converter name Aliases

ISO-8859-1 ISO-8859-1

ibm-819

IBM819

cp819

latin1

8859_1

csISOLatin1 iso-ir-100

ISO_8859-1:1987 l1 819

US-ASCII US-ASCII

ASCII

ANSI_X3.4-1968

ANSI_X3.4-1986

ISO_646.irv:1991

iso_646.irv:1983

ISO646-US

us

csASCII

iso-ir-6

cp367

ascii7

646

windows-20127

190 Message Flows

Internal converter name Aliases

gb18030 gb18030

ibm-1392

windows-54936

ibm-367_P100-1995 ibm-367_P100-1995

ibm-367 IBM367

ibm-912_P100-1995 ibm-912_P100-1995

ibm-912

iso-8859-2

ISO_8859-2:1987

latin2

csISOLatin2

iso-ir-101

l2

8859_2

cp912 912

windows-28592

ibm-913_P100-2000 ibm-913_P100-2000

ibm-913

iso-8859-3

ISO_8859-3:1988

latin3

csISOLatin3

iso-ir-109

l3

8859_3

cp913

913

windows-28593

ibm-914_P100-1995 ibm-914_P100-1995

ibm-914

iso-8859-4

latin4

csISOLatin4

iso-ir-110

ISO_8859-4:1988

l4

8859_4

cp914

914

windows-28594

Message flows 191

Internal converter name Aliases

ibm-915_P100-1995 ibm-915_P100-1995

ibm-915

iso-8859-5

cyrillic

csISOLatinCyrillic

iso-ir-144

ISO_8859-5:1988

8859_5

cp915

915

windows-28595

ibm-1089_P100-1995 ibm-1089_P100-1995

ibm-1089

iso-8859-6

arabic

csISOLatinArabic

iso-ir-127

ISO_8859-6:1987

ECMA-114

ASMO-708

8859_6

cp1089

1089

windows-28596

ISO-8859-6-I

ISO-8859-6-E

ibm-813_P100-1995 ibm-813_P100-1995

ibm-813

iso-8859-7

greek

greek8

ELOT_928

ECMA-118

csISOLatinGreek

iso-ir-126

ISO_8859-7:1987

8859_7

cp813

813

windows-28597

192 Message Flows

Internal converter name Aliases

ibm-916_P100-1995 ibm-916_P100-1995

ibm-916 iso-8859-8

hebrew

csISOLatinHebrew

iso-ir-138

ISO_8859-8:1988

ISO-8859-8-I ISO-8859-8-E

8859_8

cp916

916

windows-28598

ibm-920_P100-1995 ibm-920_P100-1995

ibm-920

iso-8859-9

latin5

csISOLatin5

iso-ir-148

ISO_8859-9:1989

l5

8859_9

cp920

920

windows-28599

ECMA-128

ibm-921_P100-1995 ibm-921_P100-1995

ibm-921

iso-8859-13

8859_13

cp921

921

ibm-923_P100-1998 ibm-923_P100-1998

ibm-923

iso-8859-15

Latin-9

l9

8859_15

latin0

csisolatin0

csisolatin9

iso8859_15_fdis

cp923

923

windows-28605

Asian language converters

Message flows 193

Internal converter name Aliases

ibm-942_P12A-1999 ibm-942_P12A-1999

ibm-942

ibm-932

cp932

shift_jis78

sjis78 ibm-942_VSUB_VPUA

ibm-932_VSUB_VPUA

ibm-943_P15A-2003 ibm-943_P15A-2003

ibm-943

Shift_JIS

MS_Kanji

csShiftJIS

windows-31j

csWindows31J

x-sjis

x-ms-cp932

cp932

windows-932

cp943c

IBM-943C

ms932

pck

sjis

ibm-943_VSUB_VPUA

ibm-943_P130-1999 ibm-943_P130-1999

ibm-943

Shift_JIS

cp943

943

ibm-943_VASCII_VSUB_VPUA

ibm-33722_P12A-1999 ibm-33722_P12A-1999

ibm-33722

ibm-5050

EUC-JP

Extended_UNIX_Code_Packed_Format_for_Japanese

csEUCPkdFmtJapanese

X-EUC-JP

eucjis

windows-51932

ibm-33722_VPUA

IBM-eucJP

194 Message Flows

Internal converter name Aliases

ibm-33722_P120-1999 ibm-33722_P120-1999

ibm-33722

ibm-5050

cp33722

33722

ibm-33722_VASCII_VPUA

ibm-954_P101-2000 ibm-954_P101-2000

ibm-954

EUC-JP

ibm-1373_P100-2002 ibm-1373_P100-2002

ibm-1373

windows-950

windows-950-2000 windows-950-2000

Big5

csBig5

windows-950 x-big5

ibm-950_P110-1999 ibm-950_P110-1999

ibm-950

cp950

950

macos-2566-10.2 macos-2566-10.2

Big5-HKSCS

big5hk

HKSCS-BIG5

ibm-1375_P100-2003 ibm-1375_P100-2003

ibm-1375

Big5-HKSCS

ibm-1386_P100-2002 ibm-1386_P100-2002

ibm-1386

cp1386

windows-936

ibm-1386_VSUB_VPUA

windows-936-2000 windows-936-2000

GBK

CP936

MS936

windows-936

Message flows 195

Internal converter name Aliases

ibm-1383_P110-1999 ibm-1383_P110-1999

ibm-1383

GB2312

csGB2312

EUC-CN

ibm-eucCN

hp15CN

cp1383

1383

ibm-1383_VPUA

ibm-5478_P100-1995 ibm-5478_P100-1995

ibm-5478

GB_2312-80

chinese

iso-ir-58

csISO58GB231280

gb2312-1980

GB2312.1980-0

ibm-964_P110-1999 ibm-964_P110-1999

ibm-964

EUC-TW

ibm-eucTW

cns11643

cp964

964

ibm-964_VPUA

ibm-949_P110-1999 ibm-949_P110-1999

ibm-949

cp949

949

ibm-949_VASCII_VSUB_VPUA

ibm-949_P11A-1999 ibm-949_P11A-1999

ibm-949

cp949c

ibm-949_VSUB_VPUA

ibm-970_P110-1995 ibm-970_P110-1995

ibm-970 EUC-KR

KS_C_5601-1987

windows-51949

csEUCKR

ibm-eucKR

KSC_5601

5601

ibm-970_VPUA

196 Message Flows

Internal converter name Aliases

ibm-971_P100-1995 ibm-971_P100-1995

ibm-971

ibm-971_VPUA

ibm-1363_P11B-1998 ibm-1363_P11B-1998

ibm-1363

KS_C_5601-1987

KS_C_5601-1989

KSC_5601

csKSC56011987

korean

iso-ir-149

5601

cp1363

ksc

windows-949

ibm-1363_VSUB_VPUA

ibm-1363_P110-1997 ibm-1363_P110-1997

ibm-1363

ibm-1363_VASCII_VSUB_VPUA

windows-949-2000 windows-949-2000

windows-949

KS_C_5601-1987

KS_C_5601-1989

KSC_5601

csKSC56011987

korean

iso-ir-149

ms949

ibm-1162_P100-1999 ibm-1162_P100-1999

ibm-1162

ibm-874_P100-1995 ibm-874_P100-1995

ibm-874

ibm-9066

cp874

TIS-620

tis620.2533

eucTH

cp9066

windows-874-2000 windows-874-2000

TIS-620

windows-874

MS874

Windows US and European converters

Message flows 197

Internal converter name Aliases

ibm-437_P100-1995 ibm-437_P100-1995

ibm-437

IBM437

cp437

437

csPC8CodePage437

windows-437

ibm-850_P100-1995 ibm-850_P100-1995

ibm-850 IBM850

cp850

850

csPC850Multilingual

windows-850

ibm-851_P100-1995 ibm-851_P100-1995

ibm-851

IBM851

cp851

851

csPC851

ibm-852_P100-1995 ibm-852_P100-1995

ibm-852

IBM852

cp852

852

csPCp852

windows-852

ibm-855_P100-1995 ibm-855_P100-1995

ibm-855

IBM855

cp855

855

csIBM855

csPCp855

ibm-856_P100-1995 ibm-856_P100-1995

ibm-856

cp856

856

ibm-857_P100-1995 ibm-857_P100-1995

ibm-857

IBM857

cp857

857

csIBM857

windows-857

198 Message Flows

Internal converter name Aliases

ibm-858_P100-1997 ibm-858_P100-1997

ibm-858

IBM00858

CCSID00858

CP00858

PC-Multilingual-850+euro cp858

ibm-860_P100-1995 ibm-860_P100-1995

ibm-860

IBM860

cp860

860

csIBM860

ibm-861_P100-1995 ibm-861_P100-1995

ibm-861

IBM861

cp861

861

cp-is

csIBM861

windows-861

ibm-862_P100-1995 ibm-862_P100-1995

ibm-862

IBM862

cp862

862

csPC862LatinHebrew

DOS-862

windows-862

ibm-863_P100-1995 ibm-863_P100-1995

ibm-863

IBM863

cp863

863

csIBM863

ibm-864_X110-1999 ibm-864_X110-1999

ibm-864

IBM864

cp864

csIBM864

Message flows 199

Internal converter name Aliases

ibm-865_P100-1995 ibm-865_P100-1995

ibm-865

IBM865

cp865

865

csIBM865

ibm-866_P100-1995 ibm-866_P100-1995

ibm-866

IBM866

cp866

866

csIBM866

windows-866

ibm-867_P100-1998 ibm-867_P100-1998

ibm-867

cp867

ibm-868_P100-1995 ibm-868_P100-1995

ibm-868

IBM868

cp868

868

csIBM868

cp-ar

ibm-869_P100-1995 ibm-869_P100-1995

ibm-869

IBM869

cp869

869

cp-gr

csIBM869

windows-869

ibm-878_P100-1996 ibm-878_P100-1996

ibm-878

KOI8-R

koi8

csKOI8R

cp878

ibm-901_P100-1999 ibm-901_P100-1999

ibm-901_P100-1999

ibm-901

ibm-902_P100-1999 ibm-902_P100-1999

ibm-902

200 Message Flows

Internal converter name Aliases

ibm-922_P100-1999 ibm-922_P100-1999

ibm-922

cp922

922

ibm-4909_P100-1999 ibm-4909_P100-1999

ibm-4909

ibm-5346_P100-1998 ibm-5346_P100-1998

ibm-5346

windows-1250

cp1250

ibm-5347_P100-1998 ibm-5347_P100-1998

ibm-5347

windows-1251

cp1251

ibm-5348_P100-1997 ibm-5348_P100-1997

ibm-5348

windows-1252

cp1252

ibm-5349_P100-1998 ibm-5349_P100-1998

ibm-5349

windows-1253

cp1253

ibm-5350_P100-1998 ibm-5350_P100-1998

ibm-5350

windows-1254

cp1254

ibm-9447_P100-2002 ibm-9447_P100-2002

ibm-9447

windows-1255

cp1255

windows-1256-2000 windows-1256-2000

windows-1256

cp1256

ibm-9449_P100-2002 ibm-9449_P100-2002

ibm-9449

windows-1257

cp1257

ibm-5354_P100-1998 ibm-5354_P100-1998

ibm-5354

windows-1258

cp1258

Message flows 201

Internal converter name Aliases

ibm-1250_P100-1995 ibm-1250_P100-1995

ibm-1250

windows-1250

ibm-1251_P100-1995 ibm-1251_P100-1995

ibm-1251

windows-1251

ibm-1252_P100-2000 ibm-1252_P100-2000

ibm-1252

windows-1252

ibm-1253_P100-1995 ibm-1253_P100-1995

ibm-1253

windows-1253

ibm-1254_P100-1995 ibm-1254_P100-1995

ibm-1254

windows-1254

ibm-1255_P100-1995 ibm-1255_P100-1995

ibm-1255

ibm-5351_P100-1998 ibm-5351_P100-1998

ibm-5351

windows-1255

ibm-1256_P110-1997 ibm-1256_P110-1997

ibm-1256

ibm-5352_P100-1998 ibm-5352_P100-1998

ibm-5352

windows-1256

ibm-1257_P100-1995 ibm-1257_P100-1995

ibm-1257

ibm-5353_P100-1998 ibm-5353_P100-1998

ibm-5353

windows-1257

ibm-1258_P100-1997 ibm-1258_P100-1997

ibm-1258

windows-1258

MAC-related converters

Internal converter name Aliases

macos-0_2-10.2 macos-0_2-10.2

macintosh

mac

csMacintosh

windows-10000

202 Message Flows

Internal converter name Aliases

macos-6-10.2 macos-6-10.2

x-mac-greek

windows-10006

macgr

macos-7_3-10.2 macos-7_3-10.2

x-mac-cyrillic

windows-10007

maccy

macos-29-10.2 macos-29-10.2

x-mac-centraleurroman

windows-10029

x-mac-ce macce

macos-35-10.2 macos-35-10.2

x-mac-turkish

windows-10081

mactr

ibm-1051_P100-1995 ibm-1051_P100-1995

ibm-1051

hp-roman8

roman8

r8

csHPRoman8

ibm-1276_P100-1995 ibm-1276_P100-1995

ibm-1276

Adobe-Standard-Encoding

csAdobeStandardEncoding

ibm-1277_P100-1995 ibm-1277_P100-1995

ibm-1277

Adobe-Latin1-Encoding

Hebrew, Cyrillic, and ECMA language converters

Internal converter name Aliases

ibm-1006_P100-1995 ibm-1006_P100-1995

ibm-1006

cp1006

1006

ibm-1098_P100-1995 ibm-1098_P100-1995

ibm-1098

cp1098

1098

Message flows 203

Internal converter name Aliases

ibm-1124_P100-1996 ibm-1124_P100-1996

ibm-1124

cp1124

1124

ibm-1125_P100-1997 ibm-1125_P100-1997

ibm-1125 cp1125

ibm-1129_P100-1997 ibm-1129_P100-1997

ibm-1129

ibm-1131_P100-1997 ibm-1131_P100-1997

ibm-1131

cp1131

ibm-1133_P100-1997 ibm-1133_P100-1997

ibm-1133

ibm-1381_P110-1999 ibm-1381_P110-1999

ibm-1381

cp1381

1381

ISO_2022,locale=ja,version=0 ISO_2022,locale=ja,version=0

ISO-2022-JP

csISO2022JP

ISO_2022,locale=ja,version=1 ISO_2022,locale=ja,version=1

ISO-2022-JP-1

JIS

JIS_Encoding

ISO_2022,locale=ja,version=2 ISO_2022,locale=ja,version=2

ISO-2022-JP-2

csISO2022JP2

ISO_2022,locale=ja,version=3 ISO_2022,locale=ja,version=3

JIS7

csJISEncoding

ISO_2022,locale=ja,version=4 ISO_2022,locale=ja,version=4

JIS8

ISO_2022,locale=ko,version=0 ISO_2022,locale=ko,version=0

ISO-2022-KR

csISO2022KR

ISO_2022,locale=ko,version=1 ISO_2022,locale=ko,version=1

ibm-25546

ISO_2022,locale=zh,version=0 ISO_2022,locale=zh,version=0

ISO-2022-CN

ISO_2022,locale=zh,version=1 ISO_2022,locale=zh,version=1

ISO-2022-CN-EXT

204 Message Flows

Internal converter name Aliases

HZ HZ

HZ-GB-2312

ibm-897_P100-1995 ibm-897_P100-1995

ibm-897

JIS_X0201

X0201

csHalfWidthKatakana

Indian language converters

Internal converter name Aliases

ISCII,version=0 ISCII,version=0 x-iscii-de

windows-57002

iscii-dev

ISCII,version=1 ISCII,version=1 x-iscii-be

windows-57003

iscii-bng

windows-57006

x-iscii-as

ISCII,version=2 ISCII,version=2 x-iscii-pa

windows-57011

iscii-gur

ISCII,version=3 ISCII,version=3 x-iscii-gu

windows-57010

iscii-guj

ISCII,version=4 ISCII,version=4 x-iscii-or

windows-57007

iscii-ori

ISCII,version=5 ISCII,version=5 x-iscii-ta

windows-57004

iscii-tml

ISCII,version=6 ISCII,version=6 x-iscii-te

windows-57005

iscii-tlg

ISCII,version=7 ISCII,version=7 x-iscii-ka

windows-57008

iscii-knd

ISCII,version=8 ISCII,version=8 x-iscii-ma

windows-57009

iscii-mlm

EBCDIC converters

Message flows 205

Internal converter name Aliases

LMBCS-1 LMBCS-1

lmbcs

LMBCS-2 LMBCS-2

LMBCS-3 LMBCS-3

LMBCS-4 LMBCS-4

LMBCS-5 LMBCS-5

LMBCS-6 LMBCS-6

LMBCS-8 LMBCS-8

LMBCS-11 LMBCS-11

LMBCS-16 LMBCS-16

LMBCS-17 LMBCS-17

LMBCS-18 LMBCS-18

LMBCS-19 LMBCS-19

ibm-37_P100-1995 ibm-37_P100-1995

ibm-37

IBM037

ibm-037

ebcdic-cp-us

ebcdic-cp-ca

ebcdic-cp-wt

ebcdic-cp-nl

csIBM037

cp037

037

cpibm37

cp37

ibm-273_P100-1995 ibm-273_P100-1995

ibm-273

IBM273

CP273

csIBM273

ebcdic-de

cpibm273

273

206 Message Flows

Internal converter name Aliases

ibm-277_P100-1995 ibm-277_P100-1995

ibm-277

IBM277

cp277

EBCDIC-CP-DK

EBCDIC-CP-NO

csIBM277

ebcdic-dk

cpibm277

277

ibm-278_P100-1995 ibm-278_P100-1995

ibm-278

IBM278

cp278

ebcdic-cp-fi

ebcdic-cp-se

csIBM278

ebcdic-sv

cpibm278

278

ibm-280_P100-1995 ibm-280_P100-1995

ibm-280

IBM280

CP280

ebcdic-cp-it

csIBM280

cpibm280

280

ibm-284_P100-1995 ibm-284_P100-1995

ibm-284

IBM284

CP284

ebcdic-cp-es

csIBM284

cpibm284

284

ibm-285_P100-1995 ibm-285_P100-1995

ibm-285

IBM285

CP285

ebcdic-cp-gb

csIBM285

ebcdic-gb

cpibm285

285

Message flows 207

Internal converter name Aliases

ibm-290_P100-1995 ibm-290_P100-1995

ibm-290

IBM290

cp290

EBCDIC-JP-kana

csIBM290

ibm-297_P100-1995 ibm-297_P100-1995

ibm-297

IBM297

cp297

ebcdic-cp-fr

csIBM297

cpibm297

297

ibm-420_X120-1999 ibm-420_X120-1999

IBM420

cp420

ebcdic-cp-ar1

csIBM420 420

ibm-424_P100-1995 ibm-424_P100-1995

ibm-424

IBM424

cp424

ebcdic-cp-he

csIBM424

424

ibm-500_P100-1995 ibm-500_P100-1995

ibm-500

IBM500

CP500

ebcdic-cp-be

csIBM500

ebcdic-cp-ch

cpibm500

500

ibm-803_P100-1999 ibm-803_P100-1999

ibm-803

cp803

208 Message Flows

Internal converter name Aliases

ibm-838_P100-1995 ibm-838_P100-1995

ibm-838

IBM-Thai

csIBMThai

cp838

838

ibm-9030

ibm-870_P100-1995 ibm-870_P100-1995

ibm-870

IBM870

CP870

ebcdic-cp-roece

ebcdic-cp-yu

csIBM870

ibm-871_P100-1995 ibm-871_P100-1995

ibm-871

IBM871

ebcdic-cp-is

csIBM871

CP871

ebcdic-is

cpibm871

871

ibm-875_P100-1995 ibm-875_P100-1995

ibm-875

IBM875

cp875

875

ibm-918_P100-1995 ibm-918_P100-1995

ibm-918

IBM918

CP918

ebcdic-cp-ar2

csIBM918

ibm-930_P120-1999 ibm-930_P120-1999

ibm-930

ibm-5026

cp930

cpibm930

930

Message flows 209

Internal converter name Aliases

ibm-933_P110-1995 ibm-933_P110-1995

ibm-933

cp933

cpibm933

933

ibm-935_P110-1999 ibm-935_P110-1999

ibm-935

cp935

cpibm935

935

ibm-937_P110-1999 ibm-937_P110-1999

ibm-937

cp937

cpibm937

937

ibm-939_P120-1999 ibm-939_P120-1999

ibm-939

ibm-931

ibm-5035

cp939

939

ibm-1025_P100-1995 ibm-1025_P100-1995

ibm-1025

cp1025

1025

ibm-1026_P100-1995 ibm-1026_P100-1995

ibm-1026

IBM1026

CP1026

csIBM1026

1026

ibm-1047_P100-1995 ibm-1047_P100-1995

ibm-1047

IBM1047

cpibm1047

ibm-1097_P100-1995 ibm-1097_P100-1995

ibm-1097

cp1097

1097

ibm-1112_P100-1995 ibm-1112_P100-1995

ibm-1112

cp1112

1112

210 Message Flows

Internal converter name Aliases

ibm-1122_P100-1999 ibm-1122_P100-1999

ibm-1122

cp1122

1122

ibm-1123_P100-1995 ibm-1123_P100-1995

ibm-1123

cp1123

1123

cpibm1123

ibm-1130_P100-1997 ibm-1130_P100-1997

ibm-1130

ibm-1132_P100-1998 ibm-1132_P100-1998

ibm-1132

ibm-1140_P100-1997 ibm-1140_P100-1997

ibm-1140

IBM01140

CCSID01140

CP01140

cp1140

cpibm1140

ebcdic-us-37+euro

ibm-1141_P100-1997 ibm-1141_P100-1997

ibm-1141

IBM01141

CCSID01141

CP01141

cp1141

cpibm1141

ebcdic-de-273+euro

ibm-1142_P100-1997 ibm-1142_P100-1997

ibm-1142

IBM01142

CCSID01142

CP01142

cp1142

cpibm1142

ebcdic-dk-277+euro

ebcdic-no-277+euro

Message flows 211

Internal converter name Aliases

ibm-1143_P100-1997 ibm-1143_P100-1997

ibm-1143

IBM01143

CCSID01143

CP01143

cp1143

cpibm1143

ebcdic-fi-278+euro

ebcdic-se-278+euro

ibm-1144_P100-1997 ibm-1144_P100-1997

ibm-1144

IBM01144

CCSID01144

CP01144

cp1144

cpibm1144

ebcdic-it-280+euro

ibm-1145_P100-1997 ibm-1145_P100-1997

ibm-1145

IBM01145

CCSID01145

CP01145

cp1145

cpibm1145

ebcdic-es-284+euro

ibm-1146_P100-1997 ibm-1146_P100-1997

ibm-1146

IBM01146

CCSID01146

CP01146

cp1146

cpibm1146

ebcdic-gb-285+euro

ibm-1147_P100-1997 ibm-1147_P100-1997

ibm-1147

IBM01147

CCSID01147

CP01147

cp1147

cpibm1147

ebcdic-fr-297+euro

212 Message Flows

Internal converter name Aliases

ibm-1148_P100-1997 ibm-1148_P100-1997

ibm-1148

IBM01148

CCSID01148

CP01148

cp1148

cpibm1148

ebcdic-international-500+euro

ibm-1149_P100-1997 ibm-1149_P100-1997

ibm-1149

IBM01149

CCSID01149

CP01149

cp1149

cpibm1149

ebcdic-is-871+euro

ibm-1153_P100-1999 ibm-1153_P100-1999

ibm-1153

cpibm1153

ibm-1154_P100-1999 ibm-1154_P100-1999

ibm-1154

cpibm1154

ibm-1155_P100-1999 ibm-1155_P100-1999

ibm-1155

cpibm1155

ibm-1156_P100-1999 ibm-1156_P100-1999

ibm-1156

cpibm1156

ibm-1157_P100-1999 ibm-1157_P100-1999

ibm-1157

cpibm1157

ibm-1158_P100-1999 ibm-1158_P100-1999

ibm-1158

cpibm1158

ibm-1160_P100-1999 ibm-1160_P100-1999

ibm-1160

cpibm1160

ibm-1164_P100-1999 ibm-1164_P100-1999

ibm-1164

cpibm1164

ibm-1364_P110-1997 ibm-1364_P110-1997

ibm-1364

cp1364

Message flows 213

Internal converter name Aliases

ibm-1371_P100-1999 ibm-1371_P100-1999

ibm-1371

cpibm1371

ibm-1388_P103-2001 ibm-1388_P103-2001

ibm-1388

ibm-9580

ibm-1390_P110-2003 ibm-1390_P110-2003

ibm-1390

cpibm1390

ibm-1399_P110-2003 ibm-1399_P110-2003

ibm-1399

ibm-16684_P110-2003 ibm-16684_P110-2003

ibm-16684

ibm-4899_P100-1998 ibm-4899_P100-1998

ibm-4899

cpibm4899

ibm-4971_P100-1999 ibm-4971_P100-1999

ibm-4971

cpibm4971

ibm-12712_P100-1998 ibm-12712_P100-1998

ibm-12712

cpibm12712

ebcdic-he

ibm-16804_X110-1999 ibm-16804_X110-1999

ibm-16804

cpibm16804

ebcdic-ar

ibm-1137_P100-1999 ibm-1137_P100-1999

ibm-1137

ibm-5123_P100-1999 ibm-5123_P100-1999

ibm-5123

ibm-8482_P100-1999 ibm-8482_P100-1999

ibm-8482

ibm-37_P100-1995,swaplfnl ibm-37_P100-1995,swaplfnl

ibm-37-s390

ibm037-s390

ibm-1047_P100-1995,swaplfnl ibm-1047_P100-1995,swaplfnl

ibm-1047-s390

ibm-1140_P100-1997,swaplfnl ibm-1140_P100-1997,swaplfnl

ibm-1140-s390

214 Message Flows

Internal converter name Aliases

ibm-1142_P100-1997,swaplfnl ibm-1142_P100-1997,swaplfnl

ibm-1142-s390

ibm-1143_P100-1997,swaplfnl ibm-1143_P100-1997,swaplfnl

ibm-1143-s390

ibm-1144_P100-1997,swaplfnl ibm-1144_P100-1997,swaplfnl

ibm-1144-s390

ibm-1145_P100-1997,swaplfnl ibm-1145_P100-1997,swaplfnl

ibm-1145-s390

ibm-1146_P100-1997,swaplfnl ibm-1146_P100-1997,swaplfnl

ibm-1146-s390

ibm-1147_P100-1997,swaplfnl ibm-1147_P100-1997,swaplfnl

ibm-1147-s390

ibm-1148_P100-1997,swaplfnl ibm-1148_P100-1997,swaplfnl

ibm-1148-s390

ibm-1149_P100-1997,swaplfnl ibm-1149_P100-1997,swaplfnl

ibm-1149-s390

ibm-1153_P100-1999,swaplfnl ibm-1153_P100-1999,swaplfnl

ibm-1153-s390

ibm-12712_P100-1998,swaplfnl ibm-12712_P100-1998,swaplfnl

ibm-12712-s390

ibm-16804_X110-1999,swaplfnl ibm-16804_X110-1999,swaplfnl

ibm-16804-s390

ebcdic-xml-us ebcdic-xml-us

Chinese code page GB18030
If you are working with messages in Chinese code page GB18030,

There are some restrictions.

The broker can input and output application messages encoded in code page
IBM-5488 (GB18030 support) with the following restrictions:
v To enable support for GB18030 in the workbench and Configuration Manager:

– If you run a workbench or Configuration Manager that requires GB18030
support on a Windows 2003 system, apply the GB18030 patch supplied by
Microsoft®. This support is included in Windows XP.

– Change the text font preference in the workbench to use GB18030:
- Select Preferences in the Window menu.
- Expand the Workbench item in the left pane of the Preferences dialog (click

the plus sign) and select Fonts.
- In the Fonts window, select Text Font. Click Change, and select the correct

values in the Fonts selection dialog.
- Click OK to confirm the selection and close the dialog.

Message flows 215

- Click Apply to apply the change, then OK to close the Preference dialog.

Data integrity within message flows

Code pages in which data is manipulated must be compatible between brokers and
databases.

Subscription data retrieved from client applications (for example, topics from
publishers and subscribers, and content filters from subscribers) and the character
data entered through the workbench (for example, message flow names) are stored
in the configuration repository. This data is translated from its originating code
page to the code page of the process in which the broker or Configuration
Manager is running, and then by the database manager to the code page in which
the database or databases were created.

To preserve data consistency and integrity, ensure that all this subscription data
and workbench character data is originated in a compatible code page to the two
code pages to which it is translated. If you do not do so, you might get
unpredictable results and lose data.

Data stored in the broker database is not affected in this way.

Configurable message flow properties
When you add a message flow to a broker archive (BAR) file in preparation for
deploying it to a broker, you can set additional properties that influence its run
time operation. These properties are available for review and update when you
select the Configure tab for the broker archive file.

Additional Instances
Specifies the number of additional threads that the broker can use to
service the message flow. These additional threads are created only if there
are sufficient input messages. You can use up to 256 threads. The default
value is 0. Additional threads can increase the throughput of a message
flow but you should consider the potential impact on message order.

If the message flow processes WebSphere MQ messages, you can configure
the message flow to control the message order. Set the Order Mode
property on the MQInput node accordingly. You might also need to set the
Commit by Message Group and Logical Order properties.

An MQInput node opens the input queue with
MQOO_INPUT_AS_Q_DEF, which uses the DEFSOPT property of the
input queue. Therefore, you must ensure that the input queue has been
defined with DEFSOPT(SHARED) and with the SHARE property set to
enable multiple broker threads to read from the input queue. If these
properties are not set in this way, the message flow threads report that the
queue is in use (MQRC=2042), and the message flow might stop processing
messages on the input queue.

Commit Count
For WebSphere MQ messages, specifies how many input messages are
processed by a message flow before a syncpoint is taken (by issuing an
MQCMIT).

216 Message Flows

|
|
|
|
|
|
|
|

The default value of 1 is also the minimum permitted value. Change this
property to avoid frequent MQCMIT calls when messages are being
processed quickly and the lack of an immediate commit can be tolerated
by the receiving application.

Use the Commit Interval to ensure that a commit is performed periodically
when not enough messages are received to fulfill the Commit Count.

This property has no effect if the message flow does not process
WebSphere MQ messages.

Commit Interval
For WebSphere MQ messages, specifies a time interval at which a commit
is taken when the Commit Count property is greater than 1 (that is, where
the message flow is batching messages), but the number of messages
processed has not reached the value of the Commit Count property. It
ensures that a commit is performed periodically when not enough
messages are received to fulfill the Commit Count.

The time interval is specified in seconds , as a decimal number with a
maximum of 3 decimal places (millisecond granularity). The value must be
in the range 0.000 through 60.000. The default value is 0.

This property has no effect if the message flow does not process
WebSphere MQ messages.

You can view and update other configurable properties for the message flow. The
properties that are displayed depend on the nodes within the message flow; some
have no configurable properties to display. The node properties that are
configurable are predominantly system-related properties that are likely to change
for each broker to which the message flow is deployed. These properties include
the names of WebSphere MQ queues and queue managers. For full details of
configurable properties for a node, see the appropriate node description.

Message flow porting considerations
If you have configured a message flow that runs on a broker on a distributed
system, and you now want to deploy it to a broker that runs on z/OS, you might
have to take additional actions to port the flow successfully.

Consider the following resources and attributes:

WebSphere MQ queue manager and queue names
WebSphere MQ imposes some restrictions for resource names on z/OS:
v The queue manager name cannot be greater than four characters.
v All queue names must be in uppercase. Although using quotation marks

preserves the case, certain WebSphere MQ activities on z/OS cannot
find the queue names being referenced.

For more information about configuring on z/OS, refer to the Concepts and
Planning Guide section of the WebSphere MQ Version 6 information center
online or the WebSphere MQ Version 5.3 book from the WebSphere MQ
library Web page

File system references
File system references must reflect a UNIX file path. If you deploy a
message flow to z/OS that you have previously run on Windows, you

Message flows 217

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp
http://www.ibm.com/software/integration/wmq/library/
http://www.ibm.com/software/integration/wmq/library/

might have to make changes. If you have previously deployed the message
flow to a UNIX system (AIX, Linux, Solaris, or HP-UX), you do not have
to make any changes.

Message flow accounting and statistics data

This section provides information for message flow accounting and statistics data.

Details of the information that is collected, and the output formats in which it can
be recorded, are provided:
v Statistics details
v Data formats
v Example output

You can also find information on how to use accounting and statistics data to
improve the performance of a message flow in this developerWorks article on
message flow performance.

Message flow accounting and statistics details
You can collect message flow, thread, node, and terminal statistics for message
flows.

Message flow statistics
One record is created for each message flow in an execution group. Each
record contains the following details:
v Message flow name and UUID
v Execution group name and UUID
v Broker name and UUID
v Start and end times for data collection
v Type of data collected (snapshot or archive)
v Processor and elapsed time spent processing messages
v Processor and elapsed time spent waiting for input
v Number of messages processed
v Minimum, maximum, and average message sizes
v Number of threads available and maximum assigned at any time
v Number of messages committed and backed out
v Accounting origin

Thread statistics
One record is created for each thread assigned to the message flow. Each
record contains the following details:
v Thread number (this has no significance and is for identification only)
v Processor and elapsed time spent processing messages
v Processor and elapsed time spent waiting for input
v Number of messages processed
v Minimum, maximum, and average message sizes

Node statistics
One record is created for each node in the message flow. Each record
contains the following details:
v Node name
v Node type (for example MQInput)
v Processor time spent processing messages
v Elapsed time spent processing messages
v Number of times that the node is invoked
v Number of messages processed

218 Message Flows

http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0406_dunn/0406_dunn.html

v Minimum, maximum, and average message sizes

Terminal statistics
One record is created for each terminal on a node. Each record contains the
following details:
v Terminal name
v Terminal type (input or output)
v Number of times that a message is propagated to this terminal

For further details about specific output formats, see the following topics:
v “User trace entries for message flow accounting and statistics data” on page 223
v “XML publication for message flow accounting and statistics data”
v “z/OS SMF records for message flow accounting and statistics data” on page

226

Message flow accounting and statistics output formats

The message flow accounting and statistics data is written in one of three formats:
v User trace entries
v XML publication
v z/OS SMF records

XML publication for message flow accounting and statistics data
Certain information is written to the XML publication for message flow accounting
and statistics data.

The data is created within the folder WMQIStatisticsAccounting, which contains
sub-folders that provide more detailed information. All folders are present in the
publication even if you set current data collection parameters to specify that the
relevant data is not collected.

Snapshot data is used for performance analysis, and is published as retained and
non-persistent. Archive data is used for accounting where an audit trail might be
required, and is published as retained and persistent. All publications are global
and can be collected by a subscriber that has registered anywhere in the network.
They can also be collected by more than one subscriber.

One XML publication is generated for each message flow that is producing data
for the time period that you have chosen. For example, if MessageFlowA and
MessageFlowB are both producing archive data over a period of 60 minutes, both
MessageFlowA and MessageFlowB produce an XML publication every 60 minutes.

If you are concerned about the safe delivery of these messages (for example, for
charging purposes), use a secure delivery mechanism such as WebSphere MQ.

The folders and subfolders in the XML publication have the following identifiers:
v WMQIStatisticsAccounting
v MessageFlow
v Threads
v ThreadStatistics
v Nodes
v NodesStatistics
v TerminalStatistics

The tables provided here describe the contents of each of these folders.

Message flows 219

The table below describes the general accounting and statistics information, created
in folder WMQIStatisticsAccounting.

Field Data type Details

RecordType Character Type of output, one of:
v Archive
v Snapshot

RecordCode Character Reason for output, one of:
v MajorInterval
v Snapshot
v Shutdown
v ReDeploy
v StatsSettingsModified

The table below describes the message flow statistics information, created in folder
MessageFlow.

Field Data type Details

BrokerLabel Character
(maximum 32)

Broker name

BrokerUUID Character
(maximum 32)

Broker universal unique identifier

ExecutionGroupName Character
(maximum 32)

Execution group name

ExecutionGroupUUID Character
(maximum 32)

Execution group universal unique
identifier

MessageFlowName Character
(maximum 32)

Message flow name

StartDate Character Interval start date
(YYYY-MM-DD)

StartTime Character Interval start time
(HH:MM:SS:NNNNNN)

EndDate Character Interval end date
(YYYY-MM-DD)

EndTime Character Interval end time
(HH:MM:SS:NNNNNN)

TotalElapsedTime Numeric Total elapsed time spent
processing input messages
(microseconds)

MaximumElapsedTime Numeric Maximum elapsed time spent
processing an input message
(microseconds)

MinimumElapsedTime Numeric Minimum elapsed time spent
processing an input message
(microseconds)

TotalCPUTime Numeric Total processor time spent
processing input messages
(microseconds)

MaximumCPUTime Numeric Maximum processor time spent
processing an input message
(microseconds)

220 Message Flows

Field Data type Details

MinimumCPUTime Numeric Minimum processor time spent
processing an input message
(microseconds)

CPUTimeWaitingForInputMessage Numeric Total processor time spent waiting
for input messages (microseconds)

ElapsedTimeWaitingForInputMessage Numeric Total elapsed time spent waiting
for input messages (microseconds)

TotalInputMessages Numeric Total number of messages
processed

TotalSizeOfInputMessages Numeric Total size of input messages (bytes)

MaximumSizeOfInputMessages Numeric Maximum input message size
(bytes)

MinimumSizeOfInputMessages Numeric Minimum message input size
(bytes)

NumberOfThreadsInPool Numeric Number of threads in pool

TimesMaximumNumberofThreadsReached Numeric Number of times the maximum
number of threads is reached

TotalNumberOfMQErrors1 Numeric Number of MQGET errors
(MQInput node)

TotalNumberOfMessagesWithErrors2 Numeric Number of messages that contain
errors

TotalNumberOfErrorsProcessingMessages Numeric Number of errors processing a
message

TotalNumberOfTimeOutsWaitingForRepliesToAggregateMessages Numeric Number of timeouts processing a
message (AggregateReply node
only)

TotalNumberOfCommits Numeric Number of transaction commits

TotalNumberOfBackouts Numeric Number of transaction backouts

AccountingOrigin Character
(maximum
32)

Accounting origin

Notes:
1. For example, a conversion error occurs when the message is got from the queue.
2. These errors include exceptions that are thrown downstream of the input node, and errors detected by the input

node after it has successfully retrieved the message from the queue but before it has propagated it to the out
terminal (for example, a format error).

The table below describes the thread statistics information, created in folder
Threads.

Field Data type Details

Number Numeric Number of thread statistics subfolders within Threads
folder

The table below describes the thread statistics information for each individual
thread, created in folder ThreadStatistics, a subfolder of Threads.

Message flows 221

Field Data type Details

Number Numeric Relative thread number in pool

TotalNumberOfInputMessages Numeric Total number of messages processed by thread

TotalElapsedTime Numeric Total elapsed time spent processing input messages
(microseconds)

TotalCUPTime Numeric Total processor time spent processing input messages
(microseconds)

CPUTimeWaitingForInputMessage Numeric Total processor time spent waiting for input
messages (microseconds)

ElapsedTimeWaitingForInputMessage Numeric Total elapsed time spent waiting for input messages
(microseconds)

TotalSizeOfInputMessages Numeric Total size of input messages (bytes)

MaximumSizeOfInputMessages Numeric Maximum size of input messages (bytes)

MinimumSizeOfInputMessages Numeric Minimum size of input messages (bytes)

The table below describes the node statistics information, created in folder Nodes.

Field Data type Details

Number Numeric Number of node statistics subfolders within Nodes
folder

The table below describes the node statistics information for each individual node,
created in folder NodesStatistics, a subfolder of Nodes.

Field Data type Details

Label Character Name of node (Label)

Type Character Type of node

TotalElapsedTime Numeric Total elapsed time spent processing input messages
(microseconds)

MaximumElapsedTime Numeric Maximum elapsed time spent processing input
messages (microseconds)

MinimumElapsedTime Numeric Minimum elapsed time spent processing input
messages (microseconds)

TotalCPUTime Numeric Total processor time spent processing input messages
(microseconds)

MaximumCPUTime Numeric Maximum processor time spent processing input
messages (microseconds)

MinimumCPUTime Numeric Minimum processor time spent processing input
messages (microseconds)

CountOfInvocations Numeric Total number of messages processed by this node

NumberOfInputTerminals Numeric Number of input terminals

NumberOfOutputTerminals Numeric Number of output terminals

The table below describes the terminal statistics information, created in folder
TerminalStatistics.

222 Message Flows

Field Data type Details

Label Character Name of terminal

Type Character Type of terminal, one of:
v Input
v Output

CountOfInvocations Numeric Total number of invocations

User trace entries for message flow accounting and statistics
data
Certain information is written to the user trace log for message flow accounting
and statistics data.

The data records are identified by the following message numbers:
v BIP2380I
v BIP2381I
v BIP2382I
v BIP2383I

The inserts for each message are described in the following tables.

This table describes the inserts in message BIP2380I. One message is written for the
message flow.

Field Data type Details

ProcessID Numeric Process ID

Key Numeric Key used to associate related
accounting and statistics BIP
messages

Type Character Type of output, one of:
v Archive
v Snapshot

Reason Character Reason for output, one of:
v MajorInterval
v Snapshot
v Shutdown
v ReDeploy
v StatsSettingsModified

BrokerLabel Character
(maximum
32)

Broker name

BrokerUUID Character
(maximum
32)

Broker universal unique identifier

ExecutionGroupName Character
(maximum
32)

Execution group name

ExecutionGroupUUID Character
(maximum
32)

Execution group universal unique
identifier

MessageFlowName Character
(maximum
32)

Message flow name

Message flows 223

Field Data type Details

StartDate Character Interval start date (YYYY-MM-DD)

StartTime Character Interval start time
(HH:MM:SS:NNNNNN)

EndDate Character Interval end date (YYYY-MM-DD)

EndTime Character Interval end time
(HH:MM:SS:NNNNNN)

TotalElapsedTime Numeric Total elapsed time spent processing
input messages (microseconds)

MaximumElapsedTime Numeric Maximum elapsed time spent
processing an input message
(microseconds)

MinimumElapsedTime Numeric Minimum elapsed time spent
processing an input message
(microseconds)

TotalCPUTime Numeric Total processor time spent
processing input messages
(microseconds)

MaximumCPUTime Numeric Maximum processor time spent
processing an input message
(microseconds)

MinimumCPUTime Numeric Minimum processor time spent
processing an input message
(microseconds)

CPUTimeWaitingForInputMessage Numeric Total processor time spent waiting
for input messages (microseconds)

ElapsedTimeWaitingForInputMessage Numeric Total elapsed time spent waiting for
input messages (microseconds)

TotalInputMessages Numeric Total number of messages processed

TotalSizeOfInputMessages Numeric Total size of input messages (bytes)

MaximumSizeOfInputMessages Numeric Maximum input message size
(bytes)

MinimumSizeOfInputMessages Numeric Minimum input message size (bytes)

NumberOfThreadsInPool Numeric Number of threads in pool

TimesMaximumNumberofThreadsReached Numeric Number of times the maximum
number of threads is reached

TotalNumberOfMQErrors1 Numeric Number of MQGET errors
(MQInput node)

TotalNumberOfMessagesWithErrors2 Numeric Number of messages that contain
errors

TotalNumberOfErrorsProcessingMessages Numeric Number of errors processing a
message

TotalNumberOfTimeOutsWaitingForRepliesToAggregateMessages Numeric Number of timeouts processing a
message (AggregateReply node
only)

TotalNumberOfCommits Numeric Number of transaction commits

TotalNumberOfBackouts Numeric Number of transaction backouts

224 Message Flows

Field Data type Details

AccountingOrigin Character
(maximum
32)

Accounting origin

Notes:
1. For example, a conversion error occurs when the message is got from

the queue.
2. These errors include exceptions that are thrown downstream of the

input node, and errors that are detected by the input node after it has
successfully retrieved the message from the queue (for example, a
format error).

The following table describes the inserts in message BIP2381I. One message is
written for each thread.

Field Data type Details

ProcessID Numeric Process ID

Key Numeric Key used to associate related accounting and statistics
BIP messages

Number Numeric Relative thread number in pool

TotalNumberOfInputMessages Numeric Total number of messages processed by thread

TotalElapsedTime Numeric Total elapsed time spent processing input messages
(microseconds)

TotalCUPTime Numeric Total processor time spent processing input messages
(microseconds)

CPUTimeWaitingForInputMessage Numeric Total processor time spent waiting for input messages
(microseconds)

ElapsedTimeWaitingForInputMessage Numeric Total elapsed time spent waiting for input messages
(microseconds)

TotalSizeOfInputMessages Numeric Total size of input messages (bytes)

MaximumSizeOfInputMessages Numeric Maximum size of input messages (bytes)

MinimumSizeOfInputMessages Numeric Minimum size of input messages (bytes)

The following table describes the inserts in message BIP2382I. One message is
written for each node.

Field Data type Details

ProcessID Numeric Process ID

Key Numeric Key used to associate related accounting and statistics BIP
messages

Label Character Name of node (Label)

Type Character Type of node

TotalElapsedTime Numeric Total elapsed time spent processing input messages
(microseconds)

MaximumElapsedTime Numeric Maximum elapsed time spent processing input messages
(microseconds)

MinimumElapsedTime Numeric Minimum elapsed time spent processing input messages
(microseconds)

Message flows 225

Field Data type Details

TotalCPUTime Numeric Total processor time spent processing input messages
(microseconds)

MaximumCPUTime Numeric Maximum processor time spent processing input messages
(microseconds)

MinimumCPUTime Numeric Minimum processor time spent processing input messages
(microseconds)

CountOfInvocations Numeric Total number of messages processed by this node

NumberOfInputTerminals Numeric Number of input terminals

NumberOfOutputTerminals Numeric Number of output terminals

The following table describes the inserts in message BIP2383I. One message is
written for each terminal on each node.

Field Data type Details

ProcessID Numeric Process ID

Key Numeric Key used to associate related accounting and statistics BIP
messages

Label Character Name of terminal

Type Character Type of terminal, one of:
v Input
v Output

CountOfInvocations Numeric Total number of invocations

z/OS SMF records for message flow accounting and statistics
data
Certain information is written to z/OS SMF records for message flow accounting
and statistics data.

The data records are type 117 records with the following identifiers:
v BipSMFDate
v BipSMFRecordHdr
v BipSMFTriplet
v BipSMFMessageFlow
v BipSMFThread
v BipSMFNode
v BipSMFTerminal

The following tables describe the contents of each of these records.

The following table describes the contents of the BipSMFDate record.

Field Data type Details

YYYY signed short int 2 byte year

MM char 1 byte month

DD char 1 byte day

The following table describes the contents of the BipSMFRecordHdr record.

226 Message Flows

Field Data type Details

SM117LEN unsigned short int SMF record length

SM117SEG unsigned short int System reserved

SM117FLG char System indicator

SM117RTY char Record type 117 (x’75’)

SM117TME unsigned int Time when SMF moved the record (time since
midnight in hundredths of a second)

SM117DTE unsigned int Date when SMF moved the record in packed decimal
form 0cyydddF where:

c is 0 (19xx) or 1 (20xx)
yy is the current year (0-99)
ddd is the current day (1-366)
F is the sign

SM117SID unsigned int System ID

SM117SSI unsigned int Subsystem ID

SM117STY unsigned short int Record subtype, one of :
v 1 (only message flow or threads data is being

collected)
v 2 (node data is being collected)1

SM117TCT unsigned int Count of triplets

SM117SRT unsigned char Record type, one of:
v Archive
v Snapshot

SM117SRC unsigned char Record code, one of:
v 00 = None
v 01 = Major Interval
v 02 = Snapshot
v 03 = Shutdown
v 04 = Redeploy
v 05 = Stats Settings Modified

SM117RSQ unsigned short int Sequence number of the record when multiple records
are written for a collection interval.

SM117NOR unsigned short int Total number of related records in a collection interval.

Note:

1. When only nodes data is being collected, a single subtype 2 record is written. If nodes and terminals data is
being collected, multiple subtype 2 records are written.

The following table describes the contents of the BipSMFTriplet record.

Field Data type Details

TRPLTOSE signed int Offset of record from start of SMF record

TRPLTDLE signed short int Length of data type

TRPLTNDR signed short int Number of data types in SMF record

The following table describes the contents of the BipSMFMessageFlow record.

Field Data type Details

IMFLID short int Control block hex ID (BipSMFMessageFlow_ID)

Message flows 227

Field Data type Details

IMFLLEN short int Length of control block

IMFLEYE char[4] Eyecatcher (IMFL)

IMFLVER int Version number (BipSMFRecordVersion)

IMFLBKNM char32] Broker name

IMFLBKID char[36] Broker universal unique identifier

IMFLEXNM char[32] Execution group name

IMFLEXID char[36] Execution group universal unique identifier

IMFLMFNM char[32] Message flow name

IMFLSTDT BipSMFDate Interval start date

IMFLSTTM unsigned int Interval start time (format as for SM117TME)

IMFLENDT BipSMFDate Interval end date

IMFLENTM unsigned int Interval end time (format as for SM117TME)

IMFLTPTM long long int Total elapsed time spent processing input messages (8
bytes binary, microseconds)

IMFLMXTM long long int Maximum elapsed time spent processing an input message
(8 bytes binary, microseconds)

IMFLMNTM long long int Minimum elapsed time spent processing an input message
(8 bytes binary, microseconds)

IMFLTPCP long long int Total processor time spent processing input messages (8
bytes binary, microseconds)

IMFLMXCP long long int Maximum processor time spent processing an input
message (8 bytes binary, microseconds)

IMFLMNCP long long int Minimum processor time spent processing an input
message (8 bytes binary, microseconds)

IMFLWTCP long long int Total processor time spent waiting for input messages (8
bytes binary, microseconds)

IMFLWTIN long long int Total elapsed time spent waiting for input messages (8
bytes binary, microseconds)

IMFLTPMG unsigned int Total number of messages processed

IMFLTSMG long long int Total size of input messages (bytes)

IMFLMXMG long long int Maximum input message size (bytes)

IMFLMNMG long long int Minimum input message size (bytes)

IMFLTHDP unsigned int Number of threads in pool

IMFLTHDM unsigned int Number of times the maximum number of threads is
reached

IMFLERMQ1 unsigned int Number of MQGET errors (MQInput node)

IMFLERMG2 unsigned int Number of messages that contain errors

IMFLERPR unsigned int Number of errors processing a message

IMFLTMOU unsigned int Number of timeouts processing a message
(AggregateReply node only)

IMFLCMIT unsigned int Number of transaction commits

IMFLBKOU unsigned int Number of transaction backouts

IMFLACCT char[32] Accounting origin

228 Message Flows

Field Data type Details

Notes:
1. For example, a conversion error occurs when the message is got from the queue.
2. These include exceptions that are thrown downstream of the input node, and errors detected by the input node

after it has successfully retrieved the message from the queue (for example, a format error).

The following table describes the contents of the BipSMFThread record.

Field Data type Details

ITHDID short int Control block hex ID (BipSMFThread_ID)

ITHDLEN short int Length of control block

ITHDEYE char[4] Eyecatcher (ITHD)

ITHDVER int Version number (BipSMFRecordVersion)

ITHDNBR unsigned int Relative thread number in pool

ITHDTPMG unsigned int Total number of messages processed by thread

ITHDTPTM long long int Total elapsed time spent processing input messages (8 bytes
binary, microseconds)

ITHDTPCP long long int Total processor time spent processing input messages (8 bytes
binary, microseconds)

ITHDWTCP long long int Total processor time spent waiting for input messages (8
bytes binary, microseconds)

ITHDWTIN long long int Total elapsed time spent waiting for input messages (8 bytes
binary, microseconds)

ITHDTSMG long long int Total size of input messages (bytes)

ITHDMXMG long long int Maximum size of input messages (bytes)

ITHDMNMG long long int Minimum size of input messages (bytes)

The following table describes the contents of the BipSMFNode record.

Field Data type Details

INODID short int Control block hex ID (BipSMFNode_ID)

INODLEN short int Length of control block

INODEYE char[4] Eyecatcher (INOD)

INODVER int Version number (BipSMFRecordVersion)

INODNDNM char[32] Name of node (Label)

INODTYPE char[32] Type of node

INODTPTM long long int Total elapsed time spent processing input messages (8 bytes
binary, microseconds)

INODMXTM long long int Maximum elapsed time spent processing input messages (8
bytes binary, microseconds)

INODMNTM long long int Minimum elapsed time spent processing input messages (8
bytes binary, microseconds)

INODTPCP long long int Total processor time spent processing input messages (8
bytes binary, microseconds)

INODMXCP long long int Maximum processor time spent processing input messages
(8 bytes binary, microseconds)

Message flows 229

Field Data type Details

INODMNCP long long int Minimum processor time spent processing input messages
(8 bytes binary, microseconds)

INODTPMG unsigned int Total number of messages processed by this node

INODNITL unsigned int Number of input terminals

INODNOTL unsigned int Number of output terminals

The following table describes the contents of the BipSMFTerminal record.

Field Data type Details

ITRMID short int Control block hex ID (BipSMFTerminal_ID)

ITRMLEN short int Length of control block

ITRMEYE char[4] Eyecatcher (ITRM)

ITRMVER int Version number (BipSMFRecordVersion)

ITRMTLNM char[32] Name of terminal

ITRMTYPE char[8] Type of terminal, one of:
v Input
v Output

ITRMTINV unsigned int Total number of invocations

Example message flow accounting and statistics data

The following topics give example output in two formats:
v XML publication
v User trace entries

An example is not provided for z/OS SMF records, because these contain
hexadecimal data and are not easily viewed in that form. To view SMF records, use
any available utility program that processes SMF records. For example, you can
download WebSphere MQ SupportPac IS11, which generates formatted SMF
records that are very similar to formatted user trace entries.

Example of an XML publication for message flow accounting and
statistics
This example shows an XML publication that contains message flow accounting
and statistics data.

The following example shows what is generated for a snapshot report. The content
of this publication message shows that the message flow is called XMLflow, and
that it is running in an execution group named default on broker MQ02BRK. The
message flow contains the following nodes:
v An MQInput node called INQueue3
v An MQOutput node called OUTQueue
v An MQOutput node called FAILQueue

The MQInput node’s Out terminal is connected to the OUTQueue node. The
MQInput node’s Failure terminal is connected to the FAILQueue node.

During the interval for which statistics have been collected, this message flow
processed no messages.

230 Message Flows

A publication that is generated for this data always includes the appropriate
folders, even if there is no current data.

The following command has been issued to achieve these results:
mqsichangeflowstats MQ02BRK -s -c active -e default -f XMLFlow -n advanced -t basic -b basic -o xml

Blank lines have been added between folders to improve readability.

The broker takes information about statistics and accounting from the operating
system. On some operating systems, such as Windows, UNIX, and Linux, rounding
can occur because the system calls that are used to determine the processor times
are not sufficiently granular. This rounding might affect the accuracy of the data.

The following example is the subscription message. The <psc> and <mcd> elements
are part of the RFH header, and the <WMQIStatisticsAccounting> element is the
message body.

<psc>
<Command>Publish</Command>
<PubOpt>RetainPub</PubOpt>
<Topic>$SYS/Broker/MQ02BRK/StatisticsAccounting/SnapShot/default/XMLflow
</Topic>

</psc>

<mcd>
<Msd>xml</Msd>

</mcd>

<WMQIStatisticsAccounting RecordType="SnapShot" RecordCode="Snapshot">

The following example is the publication that the broker generates:
<MessageFlow BrokerLabel="MQ02BRK"
BrokerUUID="7d951e31-f200-0000-0080-efe1b9d849dc"
ExecutionGroupName="default"
ExecutionGroupUUID="77cf1e31-f200-0000-0080-efe1b9d849dc"
MessageFlowName="XMLflow" StartDate="2003-01-17"
StartTime="14:44:34.581320" EndDate="2003-01-17" EndTime="14:44:44.582926"
TotalElapsedTime="0"
MaximumElapsedTime="0" MinimumElapsedTime="0" TotalCPUTime="0"
MaximumCPUTime="0"MinimumCPUTime="0" CPUTimeWaitingForInputMessage="685"
ElapsedTimeWaitingForInputMessage="10001425" TotalInputMessages="0"
TotalSizeOfInputMessages="0" MaximumSizeOfInputMessages="0"
MinimumSizeOfInputMessages="0" NumberOfThreadsInPool="1"
TimesMaximumNumberOfThreadsReached="0" TotalNumberOfMQErrors="0"
TotalNumberOfMessagesWithErrors="0" TotalNumberOfErrorsProcessingMessages="0"
TotalNumberOfTimeOutsWaitingForRepliesToAggregateMessages="0"
TotalNumberOfCommits="0" TotalNumberOfBackouts="0" AccoutingOrigin="Anonymous"/>

<Threads Number="1">
<ThreadStatistics Number="5" TotalNumberOfInputMessages="0"
TotalElapsedTime="0" TotalCPUTime="0" CPUTimeWaitingForInputMessage="685"
ElapsedTimeWaitingForInputMessage="10001425" TotalSizeOfInputMessages="0"
MaximumSizeOfInputMessages="0" MinimumSizeOfInputMessages="0"/>
</Threads>

<Nodes Number="3">

<NodeStatistics Label="FAILQueue" Type="MQOutput" TotalElapsedTime="0"
MaximumElapsedTime="0" MinimumElapsedTime="0" TotalCPUTime="0"

Message flows 231

MaximumCPUTime="0" MinimumCPUTime="0" CountOfInvocations="0"
NumberOfInputTerminals="1" NumberOfOutputTerminals="2">
<TerminalStatistics Label="failure" Type="Output" CountOfInvocations="0"/>
<TerminalStatistics Label="in" Type="Input" CountOfInvocations="0"/>
<TerminalStatistics Label="out" Type="Output" CountOfInvocations="0"/>
</NodeStatistics>

<NodeStatistics Label="INQueue3" Type="MQInput" TotalElapsedTime="0"
MaximumElapsedTime="0" MinimumElapsedTime="0" TotalCPUTime="0"
MaximumCPUTime="0" MinimumCPUTime="0"CountOfInvocations="0"
NumberOfInputTerminals="0" NumberOfOutputTerminals="3">
<TerminalStatistics Label="catch" Type="Output" CountOfInvocations="0"/>
<TerminalStatistics Label="failure" Type="Output" CountOfInvocations="0"/>
<TerminalStatistics Label="out" Type="Output" CountOfInvocations="0"/>
</NodeStatistics>

<NodeStatistics Label="OUTQueue" Type="MQOutput" TotalElapsedTime="0"
MaximumElapsedTime="0" MinimumElapsedTime="0" TotalCPUTime="0"
MaximumCPUTime="0" MinimumCPUTime="0" CountOfInvocations="0"
NumberOfInputTerminals="1" NumberOfOutputTerminals="2">
<TerminalStatistics Label="failure" Type="Output" CountOfInvocations="0"/>
<TerminalStatistics Label="in" Type="Input" CountOfInvocations="0"/>
<TerminalStatistics Label="out" Type="Output" CountOfInvocations="0"/>
</NodeStatistics>

</Nodes>

</WMQIStatisticsAccounting>

Example of user trace entries for message flow accounting and
statistics
This example shows a user trace that contains message flow accounting and
statistics data.

The following example shows what is generated for a snapshot report. The
messages that are written to the trace show that the message flow is called
myExampleFlow, and that it is running in an execution group named default on
broker MQ01BRK. The message flow contains the following nodes:
v An MQInput node called inNode
v An MQOutput node called outNode

The nodes are connected together (Out terminal to In terminal for each
connection).

During the interval for which statistics have been collected, this message flow
processed 150 input messages.

The records show that two threads are assigned to this message flow. One thread is
assigned when the message flow is deployed (the default number); an additional
thread (thread 0) listens on the input queue. The listening thread starts additional
threads to process input messages that are dependent on the number of instances
that you have configured for the message flow, and on the rate of arrival of the
input messages on the input queue.

The following command has been issued to achieve these results:
mqsichangeflowstats MQ01BRK -s -c active -e default -f myExampleFlow -n advanced -t basic -b basic

232 Message Flows

The trace entries have been retrieved with the mqsireadlog command and
formatted using the mqsiformatlog command. The output from mqsiformatlog is
shown below. Line breaks have been added to aid readability.

The broker takes information about statistics and accounting from the operating
system. On some operating systems, such as Windows, UNIX, and Linux, rounding
can occur because the system calls that are used to determine the processor times
are not sufficiently granular. This rounding might affect the accuracy of the data.

BIP2380I: WMQI message flow statistics. ProcessID='328467', Key='6', Type='SnapShot', Reason='Snapshot',
BrokerLabel='MQ01BRK', BrokerUUID='18792e66-e100-0000-0080-f197e5ed81bd',
ExecutionGroupName='default', ExecutionGroupUUID='15d4314a-3607-11d4-8000-09140f7b0000',
MessageFlowName='myExampleFlow',
StartDate='2003-05-20', StartTime='13:44:31.885862',
EndDate='2003-05-20', EndTime='13:44:51.310080',
TotalElapsedTime='9414843', MaximumElapsedTime='1143442', MinimumElapsedTime='35154',
TotalCPUTime='760147', MaximumCPUTime='70729', MinimumCPUTime='3124',
CPUTimeWaitingForInputMessage='45501', ElapsedTimeWaitingForInputMessage='11106438',
TotalInputMessages='150', TotalSizeOfInputMessages='437250',
MaximumSizeOfInputMessages='2915', MinimumSizeOfInputMessages='2915',
NumberOfThreadsInPool='1', TimesMaximumNumberOfThreadsReached='150',
TotalNumberOfMQErrors='0', TotalNumberOfMessagesWithErrors='0',
TotalNumberOfErrorsProcessingMessages='0', TotalNumberOfTimeOuts='0',
TotalNumberOfCommits='150', TotalNumberOfBackouts='0', AccountingOrigin="Anonymous".
Statistical information for message flow 'myExampleFlow' in broker 'MQ01BRK'.
This is an information message produced by WMQI statistics.

BIP2381I: WMQI thread statistics. ProcessID='328467', Key='6', Number='0',
TotalNumberOfInputMessages='0',
TotalElapsedTime='0', TotalCPUTime='0', CPUTimeWaitingForInputMessage='110',
ElapsedTimeWaitingForInputMessage='5000529', TotalSizeOfInputMessages='0',
MaximumSizeOfInputMessages='0', MinimumSizeOfInputMessages='0'.
Statistical information for thread '0'.
This is an information message produced by WMQI statistics.

BIP2381I: WMQI thread statistics. ProcessID='328467', Key='6', Number='18',
TotalNumberOfInputMessages='150',
TotalElapsedTime='9414843', TotalCPUTime='760147', CPUTimeWaitingForInputMessage='45391',
ElapsedTimeWaitingForInputMessage='6105909', TotalSizeOfInputMessages='437250',
MaximumSizeOfInputMessages='2915', MinimumSizeOfInputMessages='2915'.
Statistical information for thread '18'.
This is an information message produced by WMQI statistics.

BIP2382I: WMQI node statistics. ProcessID='328467', Key='6',
Label='inNode', Type='MQInputNode',
TotalElapsedTime='1813446', MaximumElapsedTime='1040209', MinimumElapsedTime='1767',
TotalCPUTime='70565', MaximumCPUTime='686', MinimumCPUTime='451',
CountOfInvocations='150', NumberOfInputTerminals='0', NumberOfOutputTerminals='3'.
Statistical information for node 'inNode'.
This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID='328467', Key='6',
Label='catch', Type='Output', CountOfInvocations='0',
Statistical information for terminal 'catch'.
This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID='328467', Key='6',
Label='failure', Type='Output', CountOfInvocations='0',
Statistical information for terminal 'failure'.
This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID='328467', Key='6',
Label='out', Type='Output', CountOfInvocations='150',
Statistical information for terminal 'out'.
This is an information message produced by WMQI statistics.

BIP2382I: WMQI node statistics. ProcessID='328467', Key='6',

Message flows 233

Label='outNode', Type='MQOutputNode',
TotalElapsedTime='1172582', MaximumElapsedTime='177516', MinimumElapsedTime='3339',
TotalCPUTime='85522', MaximumCPUTime='762', MinimumCPUTime='536',
CountOfInvocations='150', NumberOfInputTerminals='1', NumberOfOutputTerminals='2'.
Statistical information for node 'outNode'.
This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID='328467', Key='6',
Label='failure', Type='Output', CountOfInvocations='0',
Statistical information for terminal 'failure'.
This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID='328467', Key='6',
Label='in', Type='Input', CountOfInvocations='150',
Statistical information for terminal 'in'.
This is an information message produced by WMQI statistics.

BIP2383I: WMQI terminal statistics. ProcessID='328467', Key='6',
Label='out', Type='Output', CountOfInvocations='0',
Statistical information for terminal 'out'.
This is an information message produced by WMQI statistics.

234 Message Flows

Part 5. Appendixes

© Copyright IBM Corp. 2000, 2009 235

236 Message Flows

Appendix. Notices for WebSphere Event Broker

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this information
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032,
Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2000, 2009 237

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information includes examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not

238 Message Flows

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks in the WebSphere Event Broker information center

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at Copyright and trademark information at www.ibm.com/legal/
copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Intel and Pentium are trademarks of Intel Corporation in the United States and
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix. Notices for WebSphere Event Broker 239

http://www.ibm.com/legal/copytrade.shtml

240 Message Flows

Index

A
accounting and statistics data 11

accounting origin 13
collecting 75
collection options 12
details 218
example output 230
output data formats 219
output formats 13
parameters, modifying 79
parameters, viewing 78
resetting archive data 79
setting accounting origin 77
starting 75
stopping 77

accounting origin 13
setting 77

alignment, nodes 66
archive data 12

resetting 79

B
BAR files 93

creating 99
deploying 104
editing

manually 101
properties 102

message flows
adding 100
adding multiple instances 102

redeploying 104
bend points 9

adding 64
removing 65

broker archive 93
configurable properties 93
deployment 91

broker archive files
creating 99
deploying 104
editing

manually 101
properties 102

message flows
adding 100
adding multiple instances 102

redeploying 104
broker configuration deployment 94
broker configuration, deploying 107
broker schema 10

creating 44
brokers

cancel deployment 97

C
cancel deployment 97
cluster queues 24

code pages
conversion 15

comment and path, message flows 7
complete broker archive deployment 91
complete topics deployment 96
complete topology deployment 95
configurable properties, broker

archive 93
configurable properties, message

flow 216
configurable services 7
connections 9

creating with the mouse 62
creating with the Terminal Selection

dialog box 63
removing 64

D
data conversion 15

configuring message flows 31
databases

code page support 216
datagram message, sending 141
delta topics deployment 96
delta topology deployment 95
deployment 87

broker archive (bar) files 104
broker configuration 107
canceling 114
checking results 112
complete 87
delta 87
message flow application 98
message flows 87
overview 88

broker archive (bar) files 93
broker configuration 94
cancel 97
configurable properties 93
message flow applications 91
methods 88
topics 96
topology 95
types 90

publish/subscribe topics
hierarchy 110

publish/subscribe topology 108
domains

cancel deployment 97

E
editors

palette
customizing 55
layout, changing 55
settings, changing 55

encoding 15

errors
connecting failure terminals 37
handling 35
input node 37
MQInput node 38

errors, from saving 53
execution groups

message flows, removing 116

F
failure terminals, connecting 37
Favorites category (palette) 56

I
incremental broker archive

deployment 91
Input node 132

J
JMSInput node 134
JMSMQTransform node 140
JMSOutput node 141
JVM heap size 24

K
keywords 130

description properties 129
displaying 51
subflows 21

L
lost messages, avoiding 33

M
message destination mode 141
message flow application, deploying 98
message flow nodes 132

Input 132
JMSInput 134
JMSMQTransform 140
JMSOutput 141
MQeInput 149
MQeOutput 156
MQInput 159
MQJMSTransform 166
MQOptimizedFlow 168
MQOutput 169
Output 175
Publication 177
Real-timeInput 179
Real-timeOptimizedFlow 181
SCADAInput 182

© Copyright IBM Corp. 2000, 2009 241

message flow nodes (continued)
SCADAOutput 186

message flows 4
accounting and statistics data 11

accounting origin 13
collecting 75
collection options 12
details 218
example output 230
output data formats 219
output formats 13
parameters, modifying 79
parameters, viewing 78
resetting archive data 79
setting accounting origin 77
starting 75
stopping 77

bend points 9
adding 64
removing 65

broker archive (bar) file, adding
to 100

broker schemas
creating 44
deleting 50

built-in nodes 132
Chinese code page GB18030 215
cluster queues 24
code page support 188
comment and path 7
configurable properties 216

Additional Instances 216
Commit Count 216
Commit Interval 216
Coordinated Transaction 216

connections 9
adding with the mouse 62
adding with the Terminal Selection

dialog 63
removing 64

copying 47
correcting save errors 53
creating 45
data conversion 31
data integrity 216
default version 129
defining content 54
deleting 49
deploying 87
description properties 129

keywords 129
designing 16
errors 35

connecting failure terminals 37
input node 37
MQInput node 38

input nodes
configuring JMS nodes 26
using more than one 20

JVM heap size 24
keywords

description properties 129
guidance 130

lost messages, avoiding 33
moving 48
nodes 4

adding with the GUI 57

message flows (continued)
nodes (continued)

adding with the keyboard 58
aligning 66
arranging 66
configuring 59
connecting with the mouse 62
connecting with the Terminal

Selection dialog 63
deciding which to use 17
removing 61
renaming 59

opening 47
palette 6

Favorites category 56
porting considerations 217
preferences 129
projects 4

creating 42
deleting 43
managing 42

promoted properties 10
converging 73
promoting 68
removing 71
renaming 71

properties 9
removing from an execution

group 116
renaming 48
response time, optimizing 22
restrictions for code page

GB18030 215
save errors, correcting 53
saving 52
saving as 53
shared queues 26
stack size, determining 23
subflows 4

adding 58
configuring 59
keywords 21
removing 61
renaming 59
using 20

supported code sets 188
system considerations 23
terminals 9
user-defined nodes 188
version and keywords 7
version and keywords, displaying 51
WebSphere MQ message groups

receiving messages 80
sending messages 82

WebSphere MQ message segments
sending segments 83

message groups
receiving 80
sending 82

message segments
sending 83

MQeInput node 149
MQeOutput node 156
MQInput node 159
MQJMSTransform node 166
MQOptimizedFlow node 168
MQOutput node 169

N
numeric order in data conversion 15

O
object keyword 93
object version 93
Output node 175

P
palette 6

customizing 55
Favorites category 56
layout, changing 55
settings, changing 55

performance
message flow response time 22

projects
message flows 4

promoted properties 10
converging 73
promoting 68
removing 71
renaming 71

properties
message flow 9

Publication node 177

Q
queues

cluster 24
shared 26

R
Real-timeInput node 179
Real-timeOptimizedFlow node 181
redeploying BAR files 104
renaming deployed objects 116
reply message, sending 141
request message, sending 141

S
SCADAInput node 182
SCADAOutput node 186
schemas, broker 10
server project, creating 98
setting accounting origin 77
shared queues 26
snapshot data 12
stack size

increasing 23
statistics and accounting data 11

accounting origin 13
collecting 75
collection options 12
output formats 13
parameters, modifying 79
parameters, viewing 78
resetting archive data 79
setting accounting origin 77

242 Message Flows

statistics and accounting data (continued)
starting 75
stopping 77

subflows 4
adding 58
configuring 59
keywords 21
removing 61
renaming 59
using 20

T
terminals

dynamic 9
message flows 9

topics
deployment 96

topics hierarchy, deploying 110
topology

deploying 108
deployment 95

trademarks 239

U
user-defined nodes 188

V
version

default value 129
displaying 51

version and keywords, message flows 7

W
WebSphere MQ

message groups
receiving messages 80
sending messages 82

message segments
sending segments 83

Index 243

244 Message Flows

����

Printed in USA

	Contents
	About this topic collection
	Part 1. Developing message flows
	Developing message flows
	Message flows overview
	Message flow projects
	Message flow nodes
	Configurable services
	Message flow version and keywords
	Message flow connections
	Properties
	Broker schemas
	Message flow accounting and statistics data
	Converting data with message flows

	Designing a message flow
	Deciding which nodes to use
	Using more than one input node
	Using subflows
	Optimizing message flow response times
	System considerations for message flow development
	Using WebSphere MQ cluster queues for input and output
	Using WebSphere MQ shared queues for input and output (z/OS)
	Configuring JMSInput and JMSOutput nodes to support global transactions
	Configuring message flows for data conversion
	Ensuring that messages are not lost
	Handling errors in message flows

	Managing message flows
	Creating a message flow project
	Deleting a message flow project
	Creating a broker schema
	Creating a message flow
	Opening an existing message flow
	Copying a message flow using copy
	Renaming a message flow
	Moving a message flow
	Deleting a message flow
	Deleting a broker schema
	Version and keyword information for deployable objects
	Saving a message flow

	Defining message flow content
	Using the node palette
	Adding a message flow node
	Adding a subflow
	Renaming a message flow node
	Configuring a message flow node
	Removing a message flow node
	Connecting message flow nodes
	Removing a node connection
	Adding a bend point
	Removing a bend point
	Aligning and arranging nodes

	Defining a promoted property
	Promoting a property
	Renaming a promoted property
	Removing a promoted property
	Converging multiple properties

	Collecting message flow accounting and statistics data
	Starting to collect message flow accounting and statistics data
	Stopping message flow accounting and statistics data collection
	Viewing message flow accounting and statistics data collection parameters
	Modifying message flow accounting and statistics data collection parameters
	Resetting message flow accounting and statistics archive data

	Configuring flows to handle WebSphere MQ message groups
	Receiving messages in a WebSphere MQ message group
	Sending messages in a WebSphere MQ message group
	Sending message segments in a WebSphere MQ message

	Part 2. Deploying
	Deploying
	Deployment overview
	Deployment methods
	Types of deployment
	Message flow application deployment
	Broker configuration deployment
	Publish/subscribe topology deployment
	Publish/subscribe topics hierarchy deployment
	Cancel deployment

	Deploying a message flow application
	Creating a server project
	Creating a broker archive
	Adding files to a broker archive
	Refreshing the contents of a broker archive
	Deploying a broker archive file

	Deploying a broker configuration
	Using the Message Brokers Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy

	Deploying a publish/subscribe topology
	Using the Message Brokers Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy

	Deploying a publish/subscribe topics hierarchy
	Using the Message Brokers Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy

	Checking the results of deployment
	Using the Message Brokers Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy API

	Canceling a deployment that is in progress
	Using the Message Brokers Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy

	Renaming objects that are deployed to execution groups
	Removing a deployed object from an execution group
	Using the Message Brokers Toolkit
	Using the mqsideploy command
	Using the Configuration Manager Proxy API

	Part 3. Exploiting user-defined extensions
	User-defined nodes
	Installing a user-defined node on a broker domain
	Deleting a user-defined node
	Part 4. Reference
	Message flows
	Message flow preferences
	Description properties for a message flow
	Guidance for defining keywords

	Built-in nodes
	Input node
	JMSInput node
	JMSMQTransform node
	JMSOutput node
	MQeInput node
	MQeOutput node
	MQInput node
	MQJMSTransform node
	MQOptimizedFlow node
	MQOutput node
	Output node
	Publication node
	Real-timeInput node
	Real-timeOptimizedFlow node
	SCADAInput node
	SCADAOutput node

	User-defined nodes
	Supported code pages
	Chinese code page GB18030

	Data integrity within message flows
	Configurable message flow properties
	Message flow porting considerations
	Message flow accounting and statistics data
	Message flow accounting and statistics details
	Message flow accounting and statistics output formats
	Example message flow accounting and statistics data

	Part 5. Appendixes
	Appendix. Notices for WebSphere Event Broker
	Trademarks in the WebSphere Event Broker information center

	Index
	A
	B
	C
	D
	E
	F
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

