
WebSphere Event Broker

CMP Programming
Version 6 Release 0

���

WebSphere Event Broker

CMP Programming
Version 6 Release 0

���

Note
Before you use this information and the product that it supports, read the information in the Notices appendix.

This edition applies to version 6, release 0, modification 0, fix pack 9 of IBM® WebSphere Event Broker and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2009.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this topic collection. v

Part 1. Developing applications
using the CMP 1

Developing applications that use the
Configuration Manager Proxy Java API . 3
Configuration Manager Proxy 3
The Configuration Manager Proxy samples 5
Configuring an environment for developing and
running Configuration Manager Proxy applications . 11
Connecting to a Configuration Manager using the
Configuration Manager Proxy 15
Navigating broker domains using the Configuration
Manager Proxy 16

Using the Configuration Manager Proxy API to
deploy 22
Managing broker domains using the Configuration
Manager Proxy 25
Advanced features of the Configuration Manager
Proxy 35

Part 2. Appendixes. 39

Appendix. Notices for WebSphere
Event Broker 41
Trademarks in the WebSphere Event Broker
information center 43

Index 45

© Copyright IBM Corp. 2000, 2009 iii

iv CMP Programming

About this topic collection

This PDF file has been created from the WebSphere Event Broker Version 6.0
(March 2009) information center topics. Always refer to the WebSphere Event
Broker online information center to access the most current information. The
information center is periodically updated on the document update site and this
PDF and others that you can download from that Web site might not contain the
most current information.

The topic content included in the PDF does not include the ″Related Links″
sections provided in the online topics. Links within the topic content itself are
included, but are active only if they link to another topic in the same PDF
collection. Links to topics outside this topic collection are also shown, but result in
a "file not found "error message. Use the online information to navigate freely
between topics.

Feedback: do not provide feedback on this PDF. Refer to the online information to
ensure that you have access to the most current information, and use the Feedback
link that appears at the end of each topic to report any errors or suggestions for
improvement. Using the Feedback link provides precise information about the
location of your comment.

The content of these topics is created for viewing online; you might find that the
formatting and presentation of some figures, tables, examples, and so on are not
optimized for the printed page. Text highlighting might also have a different
appearance.

© Copyright IBM Corp. 2000, 2009 v

ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs

vi CMP Programming

Part 1. Developing applications using the CMP

Developing applications that use the
Configuration Manager Proxy Java API 3
Configuration Manager Proxy 3
The Configuration Manager Proxy samples 5

Running the Deploy BAR sample 5
Running the broker domain management sample 6
Running the Configuration Manager Proxy API
Exerciser sample 7
Modifying the Configuration Manager Proxy
samples. 11

Configuring an environment for developing and
running Configuration Manager Proxy applications . 11

Configuring the Windows command-line
environment 12
Configuring Linux, UNIX, and z/OS
command-line environments. 12
Configuring the Eclipse environment 13
Configuring environments without the broker
component installed 13

Connecting to a Configuration Manager using the
Configuration Manager Proxy 15
Navigating broker domains using the Configuration
Manager Proxy 16
Using the Configuration Manager Proxy API to
deploy 22

Configuration Manager Proxy Exerciser 23
Checking the results of deployment using the
Configuration Manager Proxy API. 23

Managing broker domains using the Configuration
Manager Proxy 25

Checking the results of broker domain
management using the Configuration Manager
Proxy 27
Creating domain objects using the Configuration
Manager Proxy 33

Advanced features of the Configuration Manager
Proxy 35

The Configuration Manager Proxy subscriptions
API 35
Submitting batch requests using the
Configuration Manager Proxy 37

© Copyright IBM Corp. 2000, 2009 1

2 CMP Programming

Developing applications that use the Configuration Manager
Proxy Java API

Develop Configuration Manager Proxy applications to communicate with broker
domain components.

A number of tasks are involved in developing applications that use the
Configuration Manager Proxy (CMP) Java™ API:
v Configuring an environment for developing and running CMP applications
v Connecting to a Configuration Manager using the CMP
v Navigating broker domains using the CMP
v Managing broker domains using the CMP

Samples are provided to demonstrate typical CMP scenarios. Run and explore the
samples to learn about what you can do with the CMP; see “The Configuration
Manager Proxy samples” on page 5.

When you have finished, you can deploy your message flow to one or more
production brokers. See Deploying for further information.

Configuration Manager Proxy
The Configuration Manager Proxy (CMP) is an application programming interface
that your applications can use to control broker domains through a remote
interface to the Configuration Manager.

Your applications have complete access to the Configuration Manager functions
and resources through the set of Java classes that constitute the CMP. For example,
you can use the CMP to interact with the Configuration Manager to:
v Deploy BAR files, Publish/Subscribe topology, topic trees, and broker

configuration.
v Modify the Publish/Subscribe topology; add and remove brokers, broker

connections, and collectives.
v Create, modify, and delete execution groups
v Enquire and set status of objects in the domain (for example, run state), and be

informed if status changes.
v Manipulate the topics hierarchy.
v View the broker event log and active subscriptions table.
v Modify domain Access Control Lists, when connected to a Version 6.0

Configuration Manager only.

The CMP is a set of Java classes that sit logically between the user application and
the Configuration Manager, inside the Java Virtual Machine (JVM) of the user
application. It requires the WebSphere® MQ Classes for Java in order to function,
as shown below.

© Copyright IBM Corp. 2000, 2009 3

The CMP application can be on the same physical machine as the Configuration
Manager, connected by a JNI (Java Native Interface) connection to the queue
manager using the WebSphere MQ Java Bindings transport. Alternatively, it can be
distributed over a TCP/IP network, and connected to the queue manager by a
WebSphere MQ SVRCONN channel using the WebSphere MQ Java Client
transport.

You can use the CMP to communicate with more than one Configuration Manager
from within the same application:

Using the API, you can connect to and manipulate a Configuration Manager in the
following products:
v WebSphere Message Broker Version 6.0
v WebSphere Event Broker Version 6.0
v WebSphere Business Integration Message Broker Version 5.0
v WebSphere Business Integration Message Broker with Rules and Formatter

Extension Version 5.0
v WebSphere Business Integration Event Broker Version 5.0

A domain controlled by a Version 5.0 Configuration Manager can include Version
2.1 and Version 5.0 brokers; you can deploy to both versions from a single CMP
application.

JVM

Configuration
Manager

User
Application

Config
Manager
Proxy

MQ
Classes
for Java

SVRCONN

SVRCONN

SVRCONN

JNI

JVM CM

CM

CM

CM

User
Application

Config
Manager
Proxy

MQ
Classes
for Java

4 CMP Programming

The Configuration Manager Proxy samples
Through using the Configuration Manager Proxy (CMP) samples, you can deploy a
BAR file, manage a broker domain, or use the CMP API Exerciser to perform
various tasks. The CMP samples introduce you, at a basic level, to the features
available with the CMP.

Deploy BAR

The Deploy BAR sample attempts to deploy a BAR file to an execution group, and
displays the outcome, see “Running the Deploy BAR sample.”

Managing a broker domain

The broker domain management sample uses the CMP to display to the screen the
complete run state of the domain, see “Running the broker domain management
sample” on page 6.

Using the Configuration Manager Proxy API Exerciser

The CMP API Exerciser sample uses the API Exerciser to view and manage a
Configuration Manager, customize the API Exerciser, or record and play back
configuration scripts, see “Running the Configuration Manager Proxy API Exerciser
sample” on page 7.

Modifying a CMP sample

You can modify the CMP samples and change various parameters, which will
effect how the sample runs, see “Modifying the Configuration Manager Proxy
samples” on page 11.

Running the Deploy BAR sample

Before you start:

The Deploy BAR sample is one of the Configuration Manager Proxy (CMP)
samples. The CMP samples can be run as they are shipped, or they can be
modified.
v If the Deploy BAR sample has no modifications, there are no prerequisite tasks.
v If the Deploy BAR sample has been modified, the environment must be setup

before the sample is run, see “Modifying the Configuration Manager Proxy
samples” on page 11.

The source file for this sample is located in the following directory:

INST_DIR/sample/ConfigManagerProxy/cmp/DeployBar.java

Where INST_DIR is the installation directory.

The Deploy BAR sample attempts to deploy a BAR file to an execution group and
display the outcome. The BAR file, execution group name, and other connection
details are hard coded into the application.

Run the Deploy BAR sample.

Developing applications that use the Configuration Manager Proxy Java API 5

v On Windows®, use the Command Console to execute the following command
from the installation directory:
INST_DIR\sample\ConfigManagerProxy\StartDeployBAR.bat

v On other platforms, execute the following shell script from the installation
directory:
INST_DIR\sample\ConfigManagerProxy\StartDeployBAR

Where INST_DIR is the installation directory.
The default connection parameters used by the sample follow:

Connection parameter Description

"localhost" Host name of the Configuration Manager.

1414 Port of the Configuration Manager.

"BROKER" Queue manager name of the Configuration Manager.

"BROKER" Name of the broker.

"default" Name of the execution group.

"c://mybar.bar" BAR file name to deploy.

The CMP connects to the Configuration Manager running on machine, localhost,
on port, 1414, with queue manager, BROKER. Next, the CMP attempts to deploy the
file, mybar.bar, to the predefined execution group, default, on broker, BROKER.

Note: The constants that represent the default connection parameters for this
sample can be modified, see “Modifying the Configuration Manager Proxy
samples” on page 11.

Running the broker domain management sample

Before you start:

The broker domain management sample is one of the Configuration Manager
Proxy (CMP) samples. The CMP samples can be run as they are, or they can be
modified.
v If the broker domain management sample has no modifications, there are no

prerequisite tasks.
v If the broker domain management sample has been modified, the environment

must be setup before the sample is run, see “Modifying the Configuration
Manager Proxy samples” on page 11.

The source file for this sample is located in the following directory:

INST_DIR/sample/ConfigManagerProxy/cmp/DomainInfo.java

Where INST_DIR is the installation directory.

The broker domain management sample uses the CMP to display to the screen the
complete run state of the domain.

Run the broker domain management sample.
v On Windows, use the Command Console to execute the following command

from the installation directory, specifying an additional parameter that indicates
the Configuration Manager whose domain is to be iterated:

6 CMP Programming

INST_DIR\sample\ConfigManagerProxy\StartDomainInfo.bat
CONFIG_MANAGER

Where INST_DIR is the installation directory, and CONFIG_MANAGER is the
full file path to a Configuration Manager file (with extension .configmgr).

v On other platforms, execute the following shell script from the installation
directory, specifying an additional parameter that indicates the Configuration
Manager whose domain is to be iterated:
INST_DIR\sample\ConfigManagerProxy\StartDomainInfoCONFIG_MANAGER

Where INST_DIR is the installation directory, and CONFIG_MANAGER is the
full file path to a Configuration Manager file (with extension .configmgr).

v An alternative is to run the sample in interactive mode. This causes the sample
to listen for changes to the domain.
To run the sample in interactive mode, specify the -i option. For example,
\sample\ConfigManagerProxy\StartDomainInfo.bat c:\myConfigMgr.configmgr
-i.
To stop the sample when running interactively, forcibly terminate it using
CTRL+C.

The complete run state of the domain is displayed. For example, the following
output could be displayed:

(13/08/04 15:47:37) Connecting. Please wait...
(13/08/04 15:47:38) Successfully connected to the Configuration Manager’s

Queue Manager.
(13/08/04 15:47:39) Successfully connected to the Configuration Manager.
(13/08/04 15:47:41) Broker ’BROKER’ is running.
(13/08/04 15:47:42) Execution group ’default’ on ’BROKER’ is running.
(13/08/04 15:47:43) Message flow ’flow1’ on ’default’ on ’BROKER’ is

running.
(13/08/04 15:47:44) Disconnected.

In addition, if running in interactive mode, the following output could be
displayed:

(13/08/04 15:53:46) Listening for changes to the domain...

Running the Configuration Manager Proxy API Exerciser
sample

Before you start:

The Configuration Manager Proxy API Exerciser sample is one of the
Configuration Manager Proxy (CMP) samples. The CMP samples can be run as
they are shipped, or they can be modified.
v If the CMP API Exerciser sample has no modifications, there are no prerequisite

tasks.
v If the CMP API Exerciser sample has been modified, the environment must be

setup before the sample is run, see “Modifying the Configuration Manager
Proxy samples” on page 11.

The source files for this sample is located in the following directory:

INST_DIR/sample/ConfigManagerProxy/cmp/exerciser

Developing applications that use the Configuration Manager Proxy Java API 7

Where INST_DIR is the installation directory.

In this sample you can use the API Exerciser to view and manage a Configuration
Manager, customize the API Exerciser, or record and play back configuration
scripts. See the following topics:
v “Viewing and managing a broker domain using the Configuration Manager

Proxy API Exerciser”
v “Customizing the Configuration Manager Proxy API Exerciser” on page 9
v “Recording and playing back configuration scripts using the Configuration

Manager Proxy API Exerciser” on page 10

Viewing and managing a broker domain using the Configuration
Manager Proxy API Exerciser

The Configuration Manager Proxy API Exerciser sample can be used to view and
manipulate a broker domain using the CMP. To view and manage a broker domain
using the CMP, take the following steps:
1. Start the Configuration Manager Proxy API Exerciser.
v On Windows, click Start → IBM WebSphere Message Brokers 6.0 → Java

Programming APIs → Configuration Manager Proxy API Exerciser.
v On other operating systems, run the following shell script from the

installation directory:
INST_DIR\sample\ConfigManagerProxy\StartConfigManagerProxyExerciser
Where INST_DIR is the installation directory.

The Configuration Manager Proxy API Exerciser window is displayed.
2. Connect to a running Configuration Manager by clicking File → Connect to

Configuration Manager...

The Connect to a Configuration Manager... dialog is displayed.
3. Enter the connection parameters to the Configuration Manager, then click

Submit.
broker domain information is retrieved and displayed in the Configuration
Manager Proxy API Exerciser window. You have now connected to the
Configuration Manager using the Configuration Manager Proxy API Exerciser.
The top left of the screen contains a hierarchical representation of the broker
domain to which you are connected. Selecting objects in the tree causes the
table on the right to change, reflecting the attributes of the selected object. The
Method column lists CMP methods that can be invoked in your own Java
applications, and the Result column indicates the data that would be returned
by calling the CMP method on the selected object.

4. Execute a CMP method against a broker object. CMP methods are used to
manage objects in a broker domain.
a. In the navigation tree view, right-click a broker.

A context-sensitive menu is displayed that shows all the available CMP
methods.

b. Select List connections.
Information is displayed in the log view of the Configuration Manager
Proxy API Exerciser window. For example, the following output could be
displayed

8 CMP Programming

(12/08/04 18:24:45) ----> cmp.exerciser.ClassTesterForBrokerProxy.
testListConnections(<B1>)

(12/08/04 18:24:45) There are no connections defined.
(12/08/04 18:24:45) <---- cmp.exerciser.ClassTesterForBrokerProxy.

testListConnections

The first line indicates that the method
cmp.exerciser.ClassTesterForBrokerProxy.testListConnections() was
invoked with the parameter of the AdministeredObject representing the
broker, B1. The second line is output from the method, and the third line
indicates that the method completed.
The available CMP methods are used to manage the broker domain.

During these steps you connected to a broker domain, viewed the domain
information, and performed a management task using the Configuration Manager
Proxy API Exerciser.

Customizing the Configuration Manager Proxy API Exerciser

To customize the Configuration Manager Proxy API Exerciser, take the following
steps:
1. Start the Configuration Manager Proxy API Exerciser.
v On Windows, click Start → IBM WebSphere Message Brokers 6.0 → Java

Programming APIs → Configuration Manager Proxy API Exerciser.
v On other platforms, run the following shell script from the installation

directory:
INST_DIR\sample\ConfigManagerProxy\StartConfigManagerProxyExerciser
Where INST_DIR is the installation directory.

The Configuration Manager Proxy API Exerciser window is displayed.
2. Customize the Configuration Manager Proxy API Exerciser by selecting any of

the following options from the File menu.
a. Optional: Click File → Discover Subcomponent Tree Recursively.

Clicking Discover Subcomponent Tree Recursively enables or disables this
option.
v If enabled, when the Configuration Manager Proxy API Exerciser

connects to a Configuration Manager it discovers as many domain objects
as possible.

v If disabled, only the top level objects are discovered, and you need to
select the context-sensitive option, Discover subcomponents, in order to
iterate down the tree.

b. Optional: Click File → Use Incremental Deployment.
Clicking Use Incremental Deployment enables or disables this option.
If enabled, all deploy operations cause a delta or incremental deploy where
relevant.

c. Optional: Click File → Show Advanced Properties.
Clicking Show Advanced Properties enables or disables this option.
v If enabled, output from all available methods is displayed in the right

pane of the Configuration Manager Proxy API Exerciser.
v If disabled, output from a subset of the available methods is displayed in

the right pane of the Configuration Manager Proxy API Exerciser.
d. Optional: Click File → Connect Using .configmgr Properties File.

Developing applications that use the Configuration Manager Proxy Java API 9

Clicking Connect Using .configmgr Properties File enables or disables this
option.
If enabled, when you connect to a Configuration Manager a file dialog is
displayed instead of a prompt for the queue manager parameters, security
exit parameters, hostname, and port. The file dialog allows you to navigate
to a file with a configmgr extension which provides the connection
parameters to the Configuration Manager.

e. Optional: Click File → Enable MQ Java Client Service Trace.
Clicking Enable MQ Java Client Service Trace enables or disables this
option.
v If enabled, a level 5 service trace of the MQ Classes for Java runs.

Initially, a dialog is displayed which allows you to provide a file name to
which trace is to be sent.

v If disabled, level 5 service tracing of the MQ Classes for Java is disabled.
f. Optional: Click File → Enable Config Manager Proxy Service Trace.

Clicking Enable Config Manager Proxy Service Trace enables or disables
this option.
v If enabled, a service trace of the CMP run. Initially, a dialog is displayed

which allows you to provide a file name to which trace is to be sent.
v If disabled, service tracing of the CMP is disabled.

g. Optional: Click File → Set Timeout Characteristics.
Specify the time, in seconds, that the Configuration Manager Proxy API
Exerciser will wait for responses from the Configuration Manager and
brokers. The default is 6 seconds.

Recording and playing back configuration scripts using the
Configuration Manager Proxy API Exerciser

You can execute a script file from the command line, a shell window, or from a
batch file. Ensure the first action performed by the script is connecting to a
Configuration Manager. The Configuration Manager Proxy API Exerciser sample
can be used to record and play back configuration scripts.
1. Start the Configuration Manager Proxy API Exerciser.
v On Windows, click Start → IBM WebSphere Message Brokers 6.0 → Java

Programming APIs → Configuration Manager Proxy API Exerciser.
v On other platforms, run the following shell script from the installation

directory:
INST_DIR\sample\ConfigManagerProxy\
StartConfigManagerProxyExerciser
Where INST_DIR is the installation directory.

The Configuration Manager Proxy API Exerciser window is displayed.
2. Start recording a script by clicking Scripting → Record New Script.

The Save dialog is displayed.
3. Type a name for the script file and select an appropriate file location.
4. Click Save.
5. Perform a number of actions on a Configuration Manager using the

Configuration Manager Proxy API Exerciser.
In this case the first action performed will be connecting to a Configuration
Manager, however you can start recording a script at any point during the
management of a Configuration Manager.

10 CMP Programming

6. Optional: Insert a pause by clicking Scripting → Insert a pause.
A pause causes the Configuration Manager Proxy API Exerciser to wait for a
period of time so that responses can be returned before the next action is
issued. This is important in order to remove naming conflicts if you are
deleting and recreating objects of the same name.
The Insert a pause dialog box is displayed, which allows you to specify the
duration of the pause.

7. Stop recording the script by clicking Scripting → Stop Recording.
Information relating to the actions preformed are saved to the script file.

8. To replay the script file, click Scripting → Play Back Recorded Script.
The Open dialog box is displayed.

9. Select the appropriate script file.
10. Click Open.

The script file is replayed.

Modifying the Configuration Manager Proxy samples

You can modify the Configuration Manager Proxy (CMP) samples to change
various parameters. Once recompiled this will effect how the sample runs.

The constants used in the samples can represent various attributes of the sample,
for example the default connection parameters. By modifying them, you can
change how the sample runs.

To modify a sample, perform the following steps:
1. Set up the environment, as described in “Configuring an environment for

developing and running Configuration Manager Proxy applications.”
2. Locate the sample source file.

The source files for the CMP samples are located in the following directories:

Deploy BAR sample
INST_DIR/sample/ConfigManagerProxy/cmp/DeployBAR.java

broker domain management sample
INST_DIR/sample/ConfigManagerProxy/cmp/DomainInfo.java

Configuration Manager Proxy API Exerciser sample
INST_DIR/sample/ConfigManagerProxy/cmp/exerciser

Where INST_DIR is the installation directory.
3. Open the source file, and modify the appropriate parameters.
4. Recompile the source file.

The sample is now modified, and can be run.

Configuring an environment for developing and running Configuration
Manager Proxy applications

Prepare your application environment for use with the CMP.

Before you start:

Developing applications that use the Configuration Manager Proxy Java API 11

To develop and run Java applications that use the CMP (CMP applications), you
must have the following prerequisites available in your environment:
v The WebSphere MQ Classes for Java.

These classes provide the internal wire protocol for communicating with the
Configuration Manager.

v A JDK at a supported Java level. Java support is defined in Additional software
requirements.

The Configuration Manager Proxy (CMP) is a set of Java classes that are packaged
in a single JAR file. To set up a computer in preparation for building and running
CMP applications, you must configure your CLASSPATH so that it includes the
WebSphere MQ Classes for Java and the CMP files.

Follow the instructions provided for the appropriate environment:
v “Configuring the Windows command-line environment”
v “Configuring Linux, UNIX, and z/OS command-line environments”
v “Configuring the Eclipse environment” on page 13

You can also run CMP applications and, therefore, control one or more
Configuration Manager components on computers that do not have a WebSphere
Event Broker product installed. For more information, see “Configuring
environments without the broker component installed” on page 13.

ConfigManagerProxy.jar contains the English message catalog for displaying broker
(BIP) messages from the event log of the Configuration Manager. If you want a
CMP application to display broker messages in a language other than English, you
must also add the directory that contains the localized message catalogs to your
CLASSPATH, for example, C:\Program Files\IBM\MQSI\6.0\messages.

You can also use the CMP to display or log messages from a catalog that you
create yourself.

Configuring the Windows command-line environment

To configure the CLASSPATH:
1. Add the WebSphere MQ Classes for Java JARs to your CLASSPATH. (Refer to

the WebSphere MQ Classes for Java documentation for information on how to do
this.)

2. Add the Configuration Manager Proxy (CMP) JAR to your CLASSPATH:
set CLASSPATH = %CLASSPATH%;%installdir%/classes/ConfigManagerProxy.jar

where %installdir% specifies the installation directory of the product.
3. Add your Java development directory to the CLASSPATH in the same way.

Configuring Linux, UNIX, and z/OS command-line
environments

To configure the CLASSPATH:
1. Add the WebSphere MQ Classes for Java JARs to your CLASSPATH. See the

WebSphere MQ Classes for Java documentation for information on how to do
this.

2. Add the Configuration Manager Proxy (CMP) JAR to your CLASSPATH:

12 CMP Programming

|
|

export CLASSPATH = $CLASSPATH%;$installdir/classes/ConfigManagerProxy.jar

where %installdir% specifies the installation directory of the product.
3. Add your Java development directory to the CLASSPATH in the same way.

Configuring the Eclipse environment

To configure the CLASSPATH:
1. Select File → New → Project → Java → Java Project. Click Next.
2. Enter the project name. Click Next.
3. In the Libraries tab, click Add External Jars....
4. Navigate to, and add, the WebSphere MQ JARs to the build path:
v com.ibm.mq.jar

v jms.jar

v jta.jar

v connector.jar

a. If you are using WebSphere MQ Version 5.3, import mqji.properties into
your project to suppress the ″Message Catalog not found″ error that the
WebSphere MQ classes generate. mqji.properties is located in the program
installation directory for WebSphere MQ and to import it:
1) Right-click your Java project in Eclipse.
2) Select Import → File System.
3) In the file selector pane, select mqji.properties, then click OK to import

it.
b. If you want to connect to a Configuration Manager that is running on the

local machine and you want to use the WebSphere MQ Java Bindings to set
up this connection, you must also add the bindings shared library (for
example, mqjbnd02.dll, mqjbnd05.dll or wmqjbnd.so) to your project. To
add this to your project:
1) Right-click your Java project in Eclipse.
2) Select Import → File System.
3) In the file selector pane, select the bindings shared library, then click OK

to import it.
5. Navigate to and add the Configuration Manager Proxy (CMP) JAR to the build

path (ConfigManagerProxy.jar).
6. Click OK.

Configuring environments without the broker component
installed

Install Configuration Manager Proxy (CMP) applications and run a set of Java
applications in environments that do not have the broker component installed.

You can run a set of Java applications that use the CMP applications in
environments that do not have the broker component installed. This set of CMP
applications includes user-written applications and the following command
utilities:
v mqsicreateexecutiongroup
v mqsideleteexecutiongroup
v mqsistartmsgflow

Developing applications that use the Configuration Manager Proxy Java API 13

v mqsistopmsgflow
v mqsideploy

WebSphere Event Broker for Windows provides two variants of the mqsideploy
command, mqsideploy.bat and mqsideploy.exe. mqsideploy.bat can be used
only in environments that do not have the broker component installed.

To install CMP applications in an environment that does not have the broker
component installed, perform the following steps:
1. Ensure that the computer that does not have the broker component installed,

the target computer, has a compatible Java Runtime Environment (JRE). Java
support is defined in Additional software requirements.

2. Copy the following set of files from a computer that has the broker component
installed to the target computer:
a. ConfigManagerProxy.jar from the classes directory.
b. The WebSphere MQ Classes for Java.
v On Windows, these classes are located in com.ibm.mq.jar.
v On other platforms, these are located in the component’s installation

image.
c. Your CMP application and any configuration files, for example *.configmgr

files.
d. If you want to run any of the available broker utilities on the target

computer, perform the following steps:
1) Copy ConfigUtil.jar from the classes directory.
2) Copy the required utility bat files, or shell scripts, from the bin directory.

Copy one or more of the following bat files:
v mqsicreateexecutiongroup.bat

v mqsideleteexecutiongroup.bat

v mqsistartmsgflow.bat

v mqsistopmsgflow.bat

v mqsideploy.bat

e. If you want to display broker (BIP) messages in English environments other
than US English, copy all BIPv600*.properties files from the messages
directory.

3. On the target computer, update the CLASSPATH environment variable to
include the following files:
v The CMP classes, ConfigManagerProxy.jar.
v The user-supplied applications that import the CMP classes.
v The WebSphere MQ Classes for Java, com.ibm.mq.jar, and any additional

JARs required by this package.
v Any other required JARs and directories. For example, if you require any of

the available command utilities on the target computer, include
ConfigUtil.jar; if you require the broker (BIP) messages to be displayed in
environments other than US English, include a directory that contains
BIPv600*.properties.

4. Ensure that the user ID that the target computer uses has the following
authorities:
v Authority to connect to the queue manager that the Configuration Manager

uses.
v Authority to manipulate broker domain objects.

14 CMP Programming

You can now run user-written CMP applications, and the specified command
utilities, on the target computer.

Connecting to a Configuration Manager using the Configuration
Manager Proxy

Connect a CMP application to a Configuration Manager to send requests about
resources in the broker domain.

Before you start

Before starting this step, you must have completed “Configuring an environment
for developing and running Configuration Manager Proxy applications” on page
11.

Consider the following program ConnectToConfigManager.java. It attempts to
connect to a Configuration Manager that is running on the default queue manager
of the local machine.
import com.ibm.broker.config.proxy.*;

public class ConfigManagerRunStateChecker {

public static void main(String[] args) {
displayConfigManagerRunState("localhost", 1414, "");

}

public static void displayConfigManagerRunState(String hostname,
int port,
String qmgr) {

ConfigManagerProxy cmp = null;
try {

ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters(hostname, port, qmgr);

cmp = ConfigManagerProxy.getInstance(cmcp);
String configManagerName = cmp.getName();

System.out.println("Configuration Manager '"+configManagerName+
"' is available!");

cmp.disconnect();
} catch (ConfigManagerProxyException ex) {

System.out.println("Configuration Manager is NOT available"+
" because "+ex);

}
}

}

The first line of the program requests Java to import the CMP classes. All CMP
classes are in the com.ibm.broker.config.proxy package.

The first line inside the try block of the displayConfigManagerRunState() method
instantiates a ConfigManagerConnectionParameters object. This method is an
interface which states that implementing classes are able to provide the parameters
to connect to a Configuration Manager.

The only class that implements this interface is
MQConfigManagerConnectionParameters, which defines a set of WebSphere MQ
connection parameters. The constructor used here takes three parameters:
1. The host name of the Configuration Manager machine

Developing applications that use the Configuration Manager Proxy Java API 15

2. The port on which the WebSphere MQ listener service for the Configuration
Manager is listening

3. The name of the queue manager that is associated with the Configuration
Manager

When you have defined this object, you can connect to the queue manager with
those characteristics. The connection is achieved by the static getInstance() factory
method just inside the try block. When a valid handle to the Configuration
Manager is obtained, the application attempts to discover the name of the
Configuration Manager (cmp.getName()) and display it.

getName(), and other methods that request information from the Configuration
Manager, block until the information is supplied, or a timeout occurs. Therefore, if
the Configuration Manager is not running, the application hangs for a period. You
can control the timeout period by using the
ConfigManagerProxy.setRetryCharacteristics() method. Typically, blocking only
occurs when a given resource is accessed for the first time within an application.

Finally, the disconnect() method is called. This method frees up resources
associated with the connection in both the CMP and Configuration Manager.

When a ConfigManagerProxy handle is first returned from the getInstance()
method, the Configuration Manager service is not necessarily running. It is only
when the application attempts to make use of the handle (by calling getName() in
this example) that the application can be assured that a two-way connection with
the Configuration Manager is active.

Navigating broker domains using the Configuration Manager Proxy

Before you start

Before starting this step, you must have completed “Connecting to a Configuration
Manager using the Configuration Manager Proxy” on page 15.

Each domain object that is controllable from the Configuration Manager is
represented as a single object in the Configuration Manager Proxy (CMP) and this
includes:
v Brokers
v Execution groups
v Deployed message flows
v Topics
v Collectives
v Subscriptions
v Publish/Subscribe topology
v Broker event log

Collectively known as administered objects these objects provide the bulk of the
interface to the Configuration Manager, and as such are fundamental to
understanding the Configuration Manager Proxy API.

Each administered object is an instance of a Java class that describes the
underlying type of object in the Configuration Manager. The possible Java classes
follow:

16 CMP Programming

Java class Class function

TopologyProxy Describes the pub/sub topology.

CollectiveProxy Describes pub/sub collectives.

BrokerProxy Describes brokers.

ExecutionGroupProxy Describes execution groups.

MessageFlowProxy Describes message flows that have already been deployed to
execution groups; does NOT describe message flows in the Broker
Application Development perspective of the toolkit.

TopicProxy Describes topics.

TopicRootProxy Describes the root of the topic hierarchy.

LogProxy Describes the broker’s event log for the current user.

SubscriptionsProxy Describes a subset of the active subscriptions.

ConfigManagerProxy Describes the Configuration Manager itself.

Each administered object describes a single object that is controllable from the
Configuration Manager. For example, every broker within a broker domain will
have one BrokerProxy instance that represents it within the CMP application, and
so on.

Declared in each administered object is a set of public methods that programs can
use to enquire and manipulate properties of the underlying Configuration Manager
object to which the instance refers. For example, on a BrokerProxy object that refers
to broker B1, it is possible to invoke methods that cause the broker to reveal its
run-state, or cause it to start all its message flows and so on.

To access an administered object, and make use of its API, it is necessary to first
request a handle to it from the object that logically owns it. For example, as
brokers logically own execution groups, in order to gain a handle to execution
group EG1 running on broker B1 the application needs to ask the BrokerProxy
object represented by B1 for a handle to the ExecutionGroupProxy object
represented by EG1.

In the ConnectToConfigManager example a handle is gained to the
ConfigManagerProxy object. The ConfigManagerProxy is logically the root of the
administered object tree, which means that all other objects in the Configuration
Manager are directly, or indirectly, accessible from it. The Configuration Manager
directly owns the Publish/Subscribe topology and so there is a method that
applications can invoke from ConfigManagerProxy in order to gain a handle to the
TopologyProxy object. Similarly, the topology logically contains the set of all
brokers and so it is possible to call methods on the TopologyProxy object to access
the BrokerProxy objects. The complete hierarchy of these access relationships is
shown below:

Developing applications that use the Configuration Manager Proxy Java API 17

Using the ConnectToConfigManager example as a starting point, the following
program traverses the administered object hierarchy to discover the run state of a
deployed message flow. Note that the program assumes that message flow MF1 is
deployed to EG1 on broker B1, although it is possible to substitute these values in
the code for any that are valid in the domain.
import com.ibm.broker.config.proxy.*;

public class GetMessageFlowRunState {

public static void main(String[] args) {

ConfigManagerProxy cmp = null;
try {

ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters(

"localhost",
1414,
"");

cmp = ConfigManagerProxy.getInstance(cmcp);
} catch (ConfigManagerProxyException cmpex) {

System.out.println("Error connecting: "+cmpex);
}

if (cmp != null) {
System.out.println("Connected to Config Manager!");
displayMessageFlowRunState(cmp, "B1", "EG1", "MF1");
cmp.disconnect();

}
}

private static void displayMessageFlowRunState(
ConfigManagerProxy cmp,
String brokerName,

Config
Manager

Proxy

Log Proxy Topology
Proxy

Collective
Proxy

Subscriptions
Proxy

Broker
Proxy

Execution
Group
Proxy

Message
Flow
Proxy

Topic Root
Proxy

Topic
Proxy

18 CMP Programming

String egName,
String flowName) {

try {
TopologyProxy topology = cmp.getTopology();

if (topology != null) {
BrokerProxy b = topology.getBrokerByName(brokerName);

if (b != null) {
ExecutionGroupProxy eg =

b.getExecutionGroupByName(egName);

if (eg != null) {
MessageFlowProxy mf =

eg.getMessageFlowByName(flowName);

if (mf != null) {
boolean isRunning = mf.isRunning();
System.out.print("Flow "+flowName+" on " +

egName+" on "+brokerName+" is ");

if (isRunning) {
System.out.println("running");

} else {
System.out.println("stopped");

}
} else {

System.err.println("No such flow "+flowName);
}

} else {
System.err.println("No such exegrp "+egName+"!");

}
} else {

System.err.println("No such broker "+brokerName);
}

} else {
System.err.println("Topology not available!");

}
} catch(ConfigManagerProxyPropertyNotInitializedException

ex) {
System.err.println("Comms problem! "+ex);

}
}

}

The method that does most of the work is displayMessageFlowRunState(). This
method takes the valid ConfigManagerProxy handle gained previously and
discovers the run-state of the message flow as follows:
1. The ConfigManagerProxy instance is used to gain a handle to the TopologyProxy.

As there is only ever one topology per Configuration Manager, the
getTopology() method does not need qualifying with an identifier.

2. If a valid topology is returned, the TopologyProxy instance is used to gain a
handle to its BrokerProxy object with the name described by the string
brokerName.

3. If a valid broker is returned, the BrokerProxy instance is used to gain a handle
to its ExecutionGroupProxy object with the name described by the string egName.

4. If a valid execution group is returned, the ExecutionGroupProxy instance is used
to gain a handle to its MessageFlowProxy object with the name described by the
string flowName.

5. If a valid message flow is returned, the run-state of the MessageFlowProxy object
is queried and the result is displayed.

Developing applications that use the Configuration Manager Proxy Java API 19

It is not necessary to know the names of objects that you intend to manipulate.
Each administered object contains methods to return sets of objects that it logically
owns. The following example demonstrates this by looking up the names of all
brokers within the domain:
import java.util.Enumeration;
import com.ibm.broker.config.proxy.*;

public class DisplayBrokerNames {

public static void main(String[] args) {

ConfigManagerProxy cmp = null;
try {

ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters(

"localhost",
1414,
"");

cmp = ConfigManagerProxy.getInstance(cmcp);
} catch (ConfigManagerProxyException cmpex) {

System.out.println("Error connecting: "+cmpex);
}

if (cmp != null) {
System.out.println("Connected to Config Manager!");
displayBrokerNames(cmp);
cmp.disconnect();

}
}

private static void displayBrokerNames(ConfigManagerProxy cmp)
{

try {
TopologyProxy topology = cmp.getTopology();

if (topology != null) {
Enumeration allBrokers = topology.getBrokers(null);

while (allBrokers.hasMoreElements()) {
BrokerProxy thisBroker =

(BrokerProxy) allBrokers.nextElement();
System.out.println("Broker "+thisBroker.getName());

}
}

} catch(ConfigManagerProxyPropertyNotInitializedException
ex) {

System.err.println("Comms problem! "+ex);
}

}
}

The key method is TopologyProxy.getBrokers(Properties). When supplied with a
null argument, it returns an Enumeration of all the BrokerProxy objects in the
domain. The program uses this method to look at each BrokerProxy in turn and
display its name.

The Properties argument of TopologyProxy.getBrokers(Properties) can be used to
exactly specify the characteristics of the brokers that are sought. It is possible to do
this for nearly all of the methods that return administered objects, and is a
powerful way of filtering those objects with which the program needs to work.

Examples of those characteristics that can be used to filter object look ups are the
run-state and short description, as well as more obvious properties such as the

20 CMP Programming

name and UUID. In order to write logic to achieve this, it is necessary for you to
understand how each administered object stores its information.

The properties of each administered object are stored locally inside the object using
a hash table, where each property is represented as a {key, value} tuple. Each key
is the name of an attribute (for example, name) and each value is the value (for
example, BROKER1).

Each key name must be expressed using a constant from the AttributeConstants
class (com.ibm.broker.config.proxy). A complete set of keys and possible values
for each administered object is described in the Java documentation for the
AttributesConstant class, or by using the Show raw property table for this
object function in the Configuration Manager Proxy API Exerciser sample
program. The latter displays the complete list of {key, value} pairs for each
administered object.

The Properties argument supplied to the look up methods is a set of those {key,
value} pairs that must exist in each administered object in the returned
enumeration. To demonstrate this, consider the following code fragment:
Properties p = new Properties();

p.setProperty(AttributeConstants.OBJECT_RUNSTATE_PROPERTY,
AttributeConstants.OBJECT_RUNSTATE_RUNNING);

Enumeration e = executionGroup.getMessageFlows(p);

Providing that the variable executionGroup is a valid ExecutionGroupProxy object,
the returned enumeration only contains running message flows
(OBJECT_RUN_STATE_PROPERTY equal to OBJECT_RUNSTATE_RUNNING).

When property filtering is applied to a method that returns a single administered
object rather than an enumeration of objects, only the first result is returned (which
is non deterministic if more than one match applies). This means that:
Properties p = new Properties();

p.setProperty(AttributeConstants.NAME_PROPERTY,
"shares");

TopicProxy t = topicProxy.getTopic(p);

is an alternative to:
TopicProxy t = topicProxy.getTopicByName("shares");

If multiple {key, value} pairs are added to a property filter, all properties must be
present in the child object in order for an object to match. It is not possible to
perform a logical OR, or a logical NOT, on a filter without writing specific
application code to do this.

When AdministeredObjects are first instantiated in an application, the CMP asks
the Configuration Manager for the current set of properties for that object. This
happens asynchronously, which means that the first time a property is requested
there may be a pause while the CMP waits for the information to be supplied by
the Configuration Manager. If the information does not arrive within a certain time
(for example, if the Configuration Manager is not running), a
ConfigManagerProxyPropertyNotInitializedException is thrown. The maximum
time that the CMP waits is determined by the
ConfigManagerProxy.setRetryCharacteristics() method.

Developing applications that use the Configuration Manager Proxy Java API 21

Using the Configuration Manager Proxy API to deploy
Deploy to the brokers in your broker domain from a CMP application.

You can use the Configuration Manager Proxy API for all possible types of
deployment.

Deployment type Description

TopologyProxy.deploy() Deploys the publish/subscribe topology to
all affected brokers.

BrokerProxy.deploy() Deploys the broker configuration.

ExecutionGroupProxy.deploy() Deploys a BAR file to an execution group.

TopicRootProxy.deploy() Deploys the topic hierarchy to all brokers.

ConfigManagerProxy.cancelDeployment() Cancels all outstanding deploys in the
domain.

BrokerProxy.cancelDeployment() Cancels any outstanding deploy to a specific
broker.

The Configuration Manager Proxy API has more information about each of these
methods, and you can find an example of the code that you might use for each
type of deployment in the appropriate topic in the Deploying section.

You can also check the result of a deployment using the Configuration Manager
Proxy API.

An example

This example adds to the domain a broker called B2 that is running on queue
manager QMB2 and associates with it an execution group called ’default’. This
configuration is then deployed to the broker.

For this example to work successfully, the broker B2 has been created on the
machine running queue manager QMB2, and it has not already been deployed to
by another Configuration Manager.
import com.ibm.broker.config.proxy.*;

public class AddBroker {

public static void main(String[] args) {
ConfigManagerProxy cmp = null;
try {

ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters(
"localhost",
1414,
"");

cmp = ConfigManagerProxy.getInstance(cmcp);
}
catch (ConfigManagerProxyException cmpex) {

System.out.println("Error connecting: "+cmpex);
}
if (cmp !=null) {

System.out.println("Connected to Config Manager");
addBroker(cmp, "B2", "QMB2", "default");
cmp.disconnect();

}
}

22 CMP Programming

private static void addBroker(ConfigManagerProxy cmp,
String bName,
String bQMgr,
String egName) {

TopologyProxy topology = null;
try {

topology = cmp.getTopology();
}
catch(ConfigManagerProxyPropertyNotInitializedException ex) {

System.err.println("Comms problem! "+ex);
}
if (topology != null) {

try {
BrokerProxy b2 = topology.createBroker(bName, bQMgr);
ExecutionGroupProxy e = b2.createExecutionGroup(egName);
b2.deploy();

}

catch (ConfigManagerProxyException ex) {
System.err.println("Could not perform an action: "+ex);

}
}

}
}

Configuration Manager Proxy Exerciser

You can also use the Configuration Manager Proxy Exerciser to deploy. The
exerciser is a graphical interface to the Configuration Manager Proxy that allows
you to view and manipulate Configuration Manager domains. For example:
1. Connect to the Configuration Manager: File → Connect to Configuration

Manager. This action opens the Connect to Configuration Manager dialog.
2. Enter the relevant connection parameters in the dialog. A hierarchical

representation of the domain is displayed.
3. You can perform a number of operations. For example:
v Click an object in the tree to display the attributes of that object.
v Right-click an object in the tree to call Configuration Manager Proxy methods

that manipulate that object. For example, right-clicking a broker opens a
drop-down menu that has items such as ’start user trace’, ’deploy broker
configuration’ and ’cancel all outstanding deploys to this broker’.

v Use the log pane at the bottom of the screen to view useful information
relating to the operation being performed.

Checking the results of deployment using the Configuration
Manager Proxy API

If you are using a Configuration Manager Proxy application, you can find out the
result of a publish/subscribe topology deployment operation, for example, by
using code similar to this:
TopologyProxy t = cmp.getTopology();

boolean isDelta = true;
long timeToWaitMs = 10000;
DeployResult dr = topology.deploy(isDelta, timeToWaitMs);

System.out.println("Overall result = "+dr.getCompletionCode());

// Display overall log messages

Developing applications that use the Configuration Manager Proxy Java API 23

Enumeration logEntries = dr.getLogEntries();
while (logEntries.hasMoreElements()) {

LogEntry le = (LogEntry)logEntries.nextElement();
System.out.println("General message: " + le.getDetail());

}

// Display broker specific information
Enumeration e = dr.getDeployedBrokers();
while (e.hasMoreElements()) {

// Discover the broker
BrokerProxy b = (BrokerProxy)e.nextElement();

// Completion code for broker
System.out.println("Result for broker "+b+" = " +

dr.getCompletionCodeForBroker(b));

// Log entries for broker
Enumeration e2 = dr.getLotEntriesForBroker(b);
while (e2.hasMoreElements()) {

LogEntry le = (LogEntry)e2.nextElement();
System.out.println("Log message for broker " + b +

le.getDetail()));
}

}

The deploy method blocks other processes until all affected brokers have
responded to the deployment request.

When the method returns, the DeployResult object represents the outcome of the
deployment at the time when the method returned; the object is not updated by
the Configuration Manager Proxy.

If the deployment message could not be sent to the Configuration Manager, a
ConfigManagerProxyLoggedException exception is thrown at the time of
deployment. If the Configuration Manager receives the deployment message, log
messages for the overall deployment are displayed, followed by completion codes
specific to each broker affected by the deployment. The completion code is one of
the following static instances from the CompletionCodeType class:

Completion
code

Description

pending The deployment is held in a batch and will not be sent until you issue
ConfigManagerProxy.sendUpdates().

submitted The deploy message was sent to the Configuration Manager but no
response was received before the timeout period expired.

initiated The Configuration Manager indicated that deployment has started, but
no broker responses were received before the timeout period expired.

successSoFar The Configuration Manager indicated that deployment has started and
some, but not all, brokers responded successfully before the timeout
period expired. No brokers responded negatively.

success The Configuration Manager indicated that deployment has started and
all relevant brokers responded successfully before the timeout period
expired.

failure The Configuration Manager indicated that deployment has started and
at least one broker responded negatively. You can use
getLogEntriesForBroker method of the DeployResult class to get more
information about the deployment failure. This method returns an
enumeration of available LogEntry objects.

24 CMP Programming

Completion
code

Description

notRequired The deployment request submitted to the Configuration Manager was
not sent to the broker because the broker’s configuration is already up to
date.

Managing broker domains using the Configuration Manager Proxy

Before you start

Before starting this topic, you must have completed “Connecting to a
Configuration Manager using the Configuration Manager Proxy” on page 15.

Using the CMP it is possible to change the state of objects in the domain– that is,
create, delete, modify, and deploy objects stored within the Configuration Manager.
The following example attempts to set the long description field of a broker
called B1:
import com.ibm.broker.config.proxy.*;

public class SetLongDescription {

public static void main(String[] args) {

ConfigManagerProxy cmp = null;
try {

ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters(

"localhost",
1414,
"");

cmp = ConfigManagerProxy.getInstance(cmcp);
} catch (ConfigManagerProxyException cmpex) {

System.out.println("Error connecting: "+cmpex);
}

if (cmp != null) {
System.out.println("Connected to Config Manager!");
describeBroker(cmp, "B1", "this is my broker");
cmp.disconnect();

}
}

private static void describeBroker(ConfigManagerProxy cmp,
String brokerName,
String newDesc)

{
BrokerProxy b = null;
try {

TopologyProxy topology = cmp.getTopology();
if (topology != null) {

b = topology.getBrokerByName(brokerName);
}

} catch(ConfigManagerProxyPropertyNotInitializedException
ex) {

System.err.println("Comms problem! "+ex);
}

if (b != null) {
try {

b.setLongDescription(newDesc);
} catch (ConfigManagerProxyException ex) {

Developing applications that use the Configuration Manager Proxy Java API 25

System.err.println("Could not send request to CM: "+ex);
}

} else {
System.err.println("Broker "+brokerName+" not found");

}
}

}

The setLongDescription() method works by asking the Configuration Manager to
modify a (key, value) property of the broker B1, where the key name represents
the long description tag, and the value is the new long description. So an
alternative to calling setLongDescription() is:
Properties p = new Properties();

p.setProperty(AttributeConstants.LONG_DESCRIPTION_PROPERTY,
newDesc);

b.setProperties(p);

When the request to change properties is sent to the Configuration Manager, The
CMP’s internal properties tables are not updated until the Configuration Manager
reports that its copy of the attributes has been changed successfully. This is done in
order to keep all copies of the information consistent. This process is shown below.

Note, that if the current user does not have the necessary permissions, as
SetLongDescription.java works it is not possible to determine if the request gets
rejected by the Configuration Manager. The CMP method to set the long
description field throws a ConfigManagerProxyException if, and only if, the
message to perform the operation can not be sent to the Configuration Manager.
This means that output from the program is exactly the same, even if the
Configuration Manager can not change the required property.

The reason for this is that the Configuration Manager processes requests from the
CMP asynchronously, and so it could theoretically be a considerable time until the
action is performed at the Configuration Manager. If methods such as the one
described within this topic did not return control to the program until the
completion codes became available, the performance of the CMP application would
be wholly dependent on the performance of the Configuration Manager.

Next:

Config Manager Proxy Config Manager

Update API called - e.g. Request received.

Update object.

Notify Config
Manager Proxy

Applications

Update local properties
table

setLongDescription()

26 CMP Programming

The design of most state-changing CMP methods is to return immediately without
informing the calling application of the outcome of the request. To discover this
information refer to “Checking the results of broker domain management using the
Configuration Manager Proxy”

Checking the results of broker domain management using the
Configuration Manager Proxy

This is part of the larger task of developing Configuration Manager Proxy (CMP)
applications.

There are three ways of determining the outcome of requests to manipulate, that is,
create, delete, modify, and deploy Configuration Manager objects:
v For deployment methods only, it is possible to use the return code from the

deployment API; see “Checking the results of broker domain management using
the Configuration Manager Proxy with return codes”

v By using an API to query an object’s last completion code; see “Checking the
results of broker domain management using the Configuration Manager Proxy
with the last completion code” on page 29

v By using the administered object notification mechanism which is the
recommended approach; see “Checking the results of broker domain
management using the Configuration Manager Proxy with object notification”
on page 30

Checking the results of broker domain management using the
Configuration Manager Proxy with return codes

This is part of the larger task of developing Configuration Manager Proxy (CMP)
applications.

The only state-changing methods that supply a return code representing the
outcome of the request are the deploy() methods. The following sample of code
shows how to discover the outcome of a topology deploy operation using the
returned DeployResult object:
...

TopologyProxy t = cmp.getTopology();

boolean isDelta = true;
long timeToWaitMs = 10000;
DeployResult dr = topology.deploy(isDelta, timeToWaitMs);

System.out.println("Overall result = "+dr.getCompletionCode());

// Display overall log messages
Enumeration logEntries = dr.getLogEntries();
while (logEntries.hasMoreElements()) {

LogEntry le = (LogEntry)logEntries.nextElement();
System.out.println("General message: " + le.getDetail());

}

// Display broker specific information
Enumeration e = dr.getDeployedBrokers();
while (e.hasMoreElements()) {

// Discover the broker
BrokerProxy b = (BrokerProxy)e.nextElement();

// Completion code for broker

Developing applications that use the Configuration Manager Proxy Java API 27

System.out.println("Result for broker "+b+" = " +
dr.getCompletionCodeForBroker(b));

// Log entries for broker
Enumeration e2 = dr.getLogEntriesForBroker(b);
while (e2.hasMoreElements()) {

LogEntry le = (LogEntry)e2.nextElement();
System.out.println("Log message for broker " + b +

le.getDetail()));
}

}

In this code the deploy() method is blocked until all affected brokers have
responded to the deployment request. However, the method includes a long
parameter that describes the maximum length of time the CMP waits for the
responses to arrive.

Note that when the method finally returns, the DeployResult represents the
outcome of the deployment at the time the method returned. In other words, once
returned to the application, the object is not updated by the CMP.

After the deploy() method completes, the example interrogates the returned
DeployResult and displays the overall completion code for the deploy operation.
This takes one of the following values:

(com.ibm.broker.config.proxy.)CompletionCodeType.pending
Means that the deploy is held in a batch and is not sent until you issue
ConfigManagerProxy.sendUpdates(). Note that if this message applies it is
returned immediately – that is, without waiting for the timeout period to
expire.

CompletionCodeType.submitted
Means that the deploy message was sent to the Configuration Manager but
no response was received before the timeout occurred. Note that if the
deployment message can not be sent to the Configuration Manager, a
ConfigManagerProxyLoggedException is thrown at deploy time instead.

CompletionCodeType.initiated
Means that the Configuration Manager replied stating that deployment has
started, but no broker responses were received before the timeout occurred.

CompletionCodeType.successSoFar
Means that the Configuration Manager issued the deployment request and
some, but not all, brokers responded with a ″success″ message before the
timeout period expired. No brokers responded negatively.

CompletionCodeType.success
Means that the Configuration Manager issued the deployment request, and
all relevant brokers responded successfully before the timeout period
expired. This message is sent as soon as all relevant brokers have
responded successfully.

CompletionCodeType.failure
Means that the Configuration Manager issued the deployment request, and
at least one broker responded negatively.

Note, that not all completion codes apply to all deploys. For example, deploying to
a single specific broker cannot result in a completion code of 'successSoFar'.

The example next displays any log messages from the deployment that can not be
attributed to any specific broker. On a successful deploy, these messages always

28 CMP Programming

include a ″deploy initiated″ log entry originating from the Configuration Manager,
even if the deployment subsequently completed.

Finally, the example displays the completion code and any log messages specific to
each broker affected by the deployment. Note that on a topology or topic tree
deploy, this is every broker in the domain.

The set of completion codes applicable to a response from a specific broker are:

CompletionCodeType.pending
Means that the deploy is held in a batch and is not sent until you issue
ConfigManagerProxy.sendUpdates().

CompletionCodeType.submitted
Means that the deploy message was sent but no response has yet been
received from the Configuration Manager stating that deployment has been
initiated.

CompletionCodeType.initiated
Means that the Configuration Manager has replied, stating that
deployment has started, but no reply has yet been returned from the
broker.

CompletionCodeType.success
Means that the Configuration Manager issued the deployment request, and
the broker successfully applied the deployment changes.

CompletionCodeType.failure
Means that the Configuration Manager issued the deployment request, and
the broker responded by stating that the deployment was not successful.
Use getLogEntriesForBroker() for more information on why the
deployment failed.

CompletionCodeType.notRequired
Means that a deployment request was submitted to the Configuration
Manager that involved the supplied broker, but the broker was not sent the
request because its configuration is already up to date.

See “Running the Deploy BAR sample” on page 5 or “Running the broker domain
management sample” on page 6 CMPAPIExerciser.reportDeployResult() method
for examples of how to parse DeployResult objects.

Checking the results of broker domain management using the
Configuration Manager Proxy with the last completion code

This is part of the larger task of developing Configuration Manager Proxy (CMP)
applications.

Most state-changing methods in the CMP do not make use of the return code in
this way. For such methods, discovering the outcome of an action can be slightly
more complicated. Assuming that administered objects are not shared across
threads, the following code fragment can be used to discover the outcome of a
request to modify a broker’s LongDescription, where b is an instance of
BrokerProxy:
GregorianCalendar oldCCTime =

b.getTimeOfLastCompletionCode();
b.setLongDescription(newDesc);
GregorianCalendar newCCTime = oldCCTime;
while ((newCCTime == null) || (newCCTime.equals(oldCCTime))) {

newCCTime = b.getTimeOfLastCompletionCode());

Developing applications that use the Configuration Manager Proxy Java API 29

Thread.sleep(1000);
}
CompletionCodeType ccType = b.getLastCompletionCode();
if (ccType == CompletionCodeType.success) {

// etc.
}

In this example, the application initially determines when an action on the broker
was last completed, using the getTimeOfLastCompletionCode() method. This
method returns the time that the topology last received a completion code or, if no
return codes have been received, a null value. The application attempts to update
the broker’s LongDescription and then continually monitors the topology waiting
for the results of the setLongDescription() command to be returned to the CMP.
When this occurs, control breaks out of the while loop and the last completion
code is determined.

As well as being unsuitable for a multi-threaded application, this algorithm for
determining the outcome of commands is inefficient as it causes the CMP
application to wait while the Configuration Manager processes the request.

A better way of doing this is to make use of administered object notifications; see
“Checking the results of broker domain management using the Configuration
Manager Proxy with object notification.”

Checking the results of broker domain management using the
Configuration Manager Proxy with object notification

This is part of the larger task of developing Configuration Manager Proxy (CMP)
applications.

It is possible to notify applications whenever commands complete, or whenever
changes occur to administered objects. By making use of the OBSERVER design
pattern, it is possible to supply the CMP with a handle to a user-supplied object
that has a specific method invoked if an object is modified, deleted, or whenever a
response to a previously submitted action is returned from the Configuration
Manager.

The user-supplied code must implement the AdministeredObjectListener interface.
It defines methods that are invoked by the CMP when an event occurs on an
administered object to which the listener is registered. These methods are:
v processModify(...)

v processDelete(...)

v processActionResponse(...)

processModify(...) is invoked whenever the administered object to which the
listener is registered has one or more of its attributes modified by the
Configuration Manager. Information supplied on this notification, through the use
of the processModify() method arguments are a:
1. Handle to the AdministeredObject to which the notification refers.
2. List of strings containing the key names that have been changed.
3. List of strings describing any new subcomponents that have just been created

for the object, for example, new execution groups in a broker.
4. List of strings describing any subcomponents that have just been removed for

the object.

30 CMP Programming

The format of the strings passed to the final two parameters is an internal
representation of the administered object. It is possible to turn this representation
into an administered object type by using the getSubcomponentFromString()
method.

Note:

1. Strings are passed within these lists to enhance performance; the CMP
does not use resource instantiating administered objects unless they are
specifically requested by the calling application.

2. The first time you call the processModify() method for a listener, the
changed attributes parameter can include a complete set of attribute
names for the object, if the application is using a batch method, or if the
CMP is experiencing communication problems with the Configuration
Manager.

processDelete(...) is invoked if the object with which the listener is registered is
completely removed from the Configuration Manager. Supplied to
processDelete(...) is one parameter – a handle to the administered object that
has been deleted; once this method returns, the administered object handle might
no longer be valid. Around the same time that a processDelete(...) event occurs,
a processModify(...) event is sent to listeners of the deleted object’s parent, to
announce a change in the parent’s list of subcomponents.

processActionResponse(...) is the event that informs the application that a
previous action submitted by that application is complete, and there is only one
processActionResponse(...) event received for each state-changing operation
issued by the CMP application. Supplied to this event are the following pieces of
information:
1. A handle to the administered object for which a request was submitted.
2. The completion code of the request.
3. A set of zero, or more, informational (BIP) messages associated with the result.
4. A set of (key, value) pairs that describes the submitted request in more detail.

Consult the Configuration Manager Proxy API Reference for information on parsing
the pairs in the last parameter.

In order to register a listener, each administered object has a registerListener()
method that is used to tell the CMP to call the supplied code whenever an event
occurs on that object. It is possible to register the same
AdministeredObjectListener for notifications from multiple administered objects.
In addition, it is possible to register multiple AdministeredObjectListeners against
the same administered object.

The following example demonstrates this by registering a listener on the topology
object and displaying a message whenever it is modified:
import com.ibm.broker.config.proxy.*;
import com.ibm.broker.config.common.CompletionCodeType;
import java.util.List;
import java.util.ListIterator;
import java.util.Properties;

public class MonitorTopology implements AdministeredObjectListener {

public static void main(String[] args) {

ConfigManagerProxy cmp = null;
try {

Developing applications that use the Configuration Manager Proxy Java API 31

ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters(

"localhost",
1414,
"");

cmp = ConfigManagerProxy.getInstance(cmcp);
} catch (ConfigManagerProxyException cmpex) {

System.out.println("Error connecting: "+cmpex);
}

if (cmp != null) {
System.out.println("Connected to Config Manager!");
TopologyProxy topology = cmp.getTopology();
listenForChanges(topology);
cmp.disconnect();

}
}

private static void listenForChanges(AdministeredObject obj)
{

try {
if (obj != null) {
obj.registerListener(new MonitorTopology());
while(true) {

// thread could do something else here instead
try {

Thread.sleep(10000);
} catch (InterruptedException ex) {

// ignore
}
}

}
} catch(ConfigManagerProxyPropertyNotInitializedException

ex) {
System.err.println("Comms problem! "+ex);

}
}

public void processActionResponse(AdministeredObject obj,
CompletionCodeType cc,
List bipMessages,
Properties refProperties) {

// Event ignored in this example
}

public void processDelete(AdministeredObject deletedObject) {
// Event ignored in this example
}

public void processModify(AdministeredObject affectedObject,
List changedAttributes,
List newChildren,
List removedChildren) {

System.out.println(affectedObject+" has changed:");
ListIterator e = changedAttributes.listIterator();
while (e.hasNext()) {

String changedAttribute = (String) e.next();
System.out.println("Changed: "+changedAttribute);

}
ListIterator e2 = newChildren.listIterator();
while (e2.hasNext()) {

String newChildStr = (String) e2.next();
AdministeredObject newChild =

affectedObject.getSubcomponentFromString(newChildStr);
System.out.println("New child: "+newChild);

}

32 CMP Programming

ListIterator e3 = removedChildren.listIterator();
while (e3.hasNext()) {

String remChildStr = (String) e3.next();
AdministeredObject removedChild =

affectedObject.getSubcomponentFromString(remChildStr);
System.out.println("Removed child: "+removedChild);

}

}
}

The listenForChanges() method attempts to register an instance of the
MonitorTopology class for notifications of topology changes. If successful, the main
thread pauses indefinitely to prevent the application from exiting once the method
returns. Once the listener is registered, whenever the topology changes - for
example, if a broker is added - the processModify() method is called. This displays
details of each notification on the screen.

There are three ways to stop receiving notifications:
v AdministeredObject.deregisterListener(AdministeredObjectListener)

v ConfigManagerProxy.deregisterListeners()

v ConfigManagerProxy.disconnect()

The first method de-registers a single listener from a single administered object; the
other two methods deregister all listeners connected with that ConfigManagerProxy
instance. In addition, the final method shows that all listeners are implicitly
removed when connection to the Configuration Manager is stopped.

Note: You can also implement the AdvancedAdministeredObjectListener interface
which, when registered, yields additional information to applications.

Creating domain objects using the Configuration Manager
Proxy

This is part of the larger task of developing Configuration Manager Proxy (CMP)
applications.

The following example adds a broker called B2, that is running on queue manager
QMB2, to the domain and associates with it an execution group called default.
Finally, this configuration is deployed to the broker.

In order for this example to work successfully, the broker B2 must already exist on
the machine running queue manager QMB2, and another Configuration Manager
must not have deployed to it previously.
import com.ibm.broker.config.proxy.*;

public class AddBroker {

public static void main(String[] args) {

ConfigManagerProxy cmp = null;
try {

ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters(

"localhost",
1414,
"");

cmp = ConfigManagerProxy.getInstance(cmcp);

Developing applications that use the Configuration Manager Proxy Java API 33

} catch (ConfigManagerProxyException cmpex) {
System.out.println("Error connecting: "+cmpex);

}

if (cmp != null) {
System.out.println("Connected to Config Manager!");
addBroker(cmp, "B2", "QMB2", "default");
cmp.disconnect();

}
}
private static void addBroker(ConfigManagerProxy cmp,

String bName,
String bQMgr,
String egName)

{
TopologyProxy topology = null;
try {

topology = cmp.getTopology();
} catch(ConfigManagerProxyPropertyNotInitializedException

ex) {
System.err.println("Comms problem! "+ex);

}

if (topology != null) {
try {

BrokerProxy b2 = topology.createBroker(bName, bQMgr);
ExecutionGroupProxy e = b2.createExecutionGroup(egName);
b2.deploy();

} catch (ConfigManagerProxyException ex) {
System.err.println("Could not perform an action: "+ex);

}
}

}
}

The critical statements in this example are the three lines inside the try block
towards the end of the addBroker() method. The first statement attempts to add
the broker to the Configuration Manager’s topology, the second attempts to create
the default execution group, and the third attempts to deploy the configuration
(that is, the new execution group) to the broker.

Note that the createBroker() method assumes that the ″physical″ broker
component has already been created using the mqsicreatebroker command.

Because requests are processed asynchronously by the Configuration Manager, the
BrokerProxy object that is returned from the createBroker() method is a ″skeleton″
object when returned to your application, as it refers to an object that may not yet
exist on the Configuration Manager.

This is also true of the ExecutionGroupProxy object e returned from the
createExecutionGroup() method. In both cases, the object can be manipulated by
the application as if it existed on the Configuration Manager, although the actual
creation of the underlying object might not happen for some time.

Once the object represented by the skeleton is created in the Configuration
Manager, any requests that refer to it can be processed. In this example, once the
broker has actually been added to the topology in the Configuration Manager, the
Configuration Manager can honor the request to create the execution group.

If, for any reason the request to create the object described by the skeleton fails,
any requests that use the skeleton also fails. So, if broker B2 can not be created, any
requests involving the skeleton BrokerProxy object b2, that is,

34 CMP Programming

b2.createExecutionGroup() and b2.deploy() also fail. However, the CMP
application works, as in the successful case, as no exception is thrown. See
“Checking the results of broker domain management using the Configuration
Manager Proxy” on page 27 for further information on how to detect problems
such as these.

Advanced features of the Configuration Manager Proxy

This is part of the larger task of developing Configuration Manager Proxy (CMP)
applications and introduces the advanced features of the CMP.

Follow the link for the advanced feature that you require:
v “The Configuration Manager Proxy subscriptions API”
v “Submitting batch requests using the Configuration Manager Proxy” on page 37

The Configuration Manager Proxy subscriptions API
View and work with active subscriptions.

This task is part of the larger task of developing Configuration Manager Proxy
(CMP) applications, and describes one of the advanced features of the CMP.

You can use the CMP to show and delete the set of active subscriptions in the
domain. The following example gives information on all subscriptions to topics
with names that begin with the string ″shares″.
import java.util.Enumeration;
import com.ibm.broker.config.proxy.*;

public class QuerySubscriptions {

public static void main(String[] args) {

ConfigManagerProxy cmp = null;
BrokerProxy bp = null;
TopologyProxy tp = null;
try {

ConfigManagerConnectionParameters cmcp =
new MQConfigManagerConnectionParameters(

"localhost",
1414,
"");

cmp = ConfigManagerProxy.getInstance(cmcp);
tp = cmp.getTopology();
bp = tp.getBrokerByName("BROKER_A");

} catch (ConfigManagerProxyException cmpex) {
System.out.println("Error connecting: "+cmpex);

}

if (cmp != null) {
System.out.println("Connected to Config Manager!");
querySubscriptionsByTopic(cmp, "shares%");
cmp.disconnect();

}
}

private static void querySubscriptionsByTopic(
ConfigManagerProxy cmp,
String topic)

{
try {

SubscriptionQuery sq = bp.createSubscriptionQuery();

Developing applications that use the Configuration Manager Proxy Java API 35

sq.setString(SubscriptionParameters.TOPIC, topic); // set the topic
SubscriptionsProxy matchingSubscriptions = sq.executeQuery();

Enumeration e = matchingSubscriptions.elements();
int matches = matchingSubscriptions.getSize();
System.out.println("Found "+matches+" matches:");

while (e.hasMoreElements()) {
Subscription thisSub = (Subscription)e.nextElement();
System.out.println("-----");
System.out.println("Broker="+thisSub.getBroker());
System.out.println("Topic="+thisSub.getTopicName());
System.out.println("Client="+thisSub.getClient());
System.out.println("Filter="+thisSub.getFilter());
System.out.println("Reg date="

+thisSub.getRegistrationDate());
System.out.println("User="+thisSub.getUser());
System.out.println("Sub point="

+thisSub.getSubscriptionPoint());
}

} catch (ConfigManagerProxyException e) {
e.printStackTrace();

}
}

}

The class that queries the set of active subscriptions is SubscriptionsQuery(), which
defines the query that is used to filter the subscriptions. The parameters that you
define in SubscriptionsParameters and SubscriptionsParameters.MQ can be set on
an instance of the class to build up a query. You can include the % character to
denote wildcard characters in parameters of type string.

The parameters SubscriptionsParameters.STARTDATE and
SubscriptionsParameters.ENDDATE are of type GregorianCalendar. Use these
parameters to constrain the registration time of the matching subscriptions.

In the preceding example, only the topic parameter, of type string, is set is
shares%. This setting tells the CMP to return all subscriptions whose topic name
begins with ″shares″.

The query is issued when you call the SubscriptionQuery.executeQuery() method.
It returns an instance of SubscriptionsProxy, which represents the results of the
query. Because this class inherits from the class AdministeredObject, the attributes
of this object are supplied asynchronously by the Configuration Manager.
Therefore, the methods that interrogate the SubscriptionsProxy attributes can
temporarily block while the CMP waits for the information to arrive.

The class Subscription, and its subclass MQSubscription which represents an
individual match from the query, is a small data structure that is used for
convenience by the SubscriptionsProxy, and does not block or throw exceptions.

Even though SubscriptionsProxy objects are of AdministeredObject type, you cannot
register AdministeredObjectListeners against them. This characteristic means that
when the results of a query are returned from the Configuration Manager, you are
not notified if the set of matching subscriptions changes, unless you resubmit the
query. The consequence of this behavior is that the results of subscriptions queries
are guaranteed correct only at the time the original query was made.

36 CMP Programming

You can delete subscriptions using the SubscriptionsProxy.deleteSubscriptions()
method. Because SubscriptionsProxy objects cannot have
AdministeredObjectListeners, the outcome of such an action is published to
listeners of the ConfigManagerProxy object.

Submitting batch requests using the Configuration Manager
Proxy

This is part of the larger task of developing Configuration Manager Proxy (CMP)
applications and is one of the advanced features of the CMP.

Using the CMP it is possible to group multiple requests destined for the same
Configuration Manager together and submit them as a single unit of work.

To start a batch the application must call the beginUpdates() method on the
ConfigManagerProxy handle. This tells the CMP to hold back from submitting any
state-changing requests to the Configuration Manager until it is told otherwise. The
sendUpdates() method tells the CMP to submit as a batch any requests received
since the last beginUpdates() call, and clearUpdates() can be used to discard a
batch without submitting it to the Configuration Manager. It is possible to
determine whether a batch is currently in progress by using the isBatching()
method. Note that there can only be one batch in progress for each CMP handle.

One advantage of using a batch method is that it provides an assurance that no
other applications can have messages processed by the Configuration Manager
during the batch. When a Configuration Manager receives a batch of requests, it
processes each request in the batch in the order it was added to the batch (FIFO),
and requests from no other CMP application are processed until the entire batch is
completed.

To illustrate this, consider the following sequence of commands:
BrokerProxy b2 = topology.createBroker("B2", "QMB2");
ExecutionGroupProxy e = b2.createExecutionGroup("default");
b2.deploy();

Without using a batch method it is not possible to guarantee the success of these
actions. For example, even if each command would otherwise succeed, it is
possible for a second (possibly remote) application to delete the broker B2 after it
has been created by the first application, but before the other two commands are
processed.

If the sequence is extended to use a batch method, the Configuration Manager is
now guaranteed to process all the commands together, meaning that no other
application can disturb the logic intended by the application.
cmp.startUpdates();
BrokerProxy b2 = topology.createBroker("B2", "QMB2");
ExecutionGroupProxy e = b2.createExecutionGroup("default");
b2.deploy();
cmp.sendUpdates();

Another advantage of using a batch method is performance. The CMP typically
sends one WebSphere MQ message to the Configuration Manager for each request.
In a situation that requires lots of requests to be sent in quick succession – the
creation of a topic hierarchy, for example, a batch method has a significant impact
on performance in terms of both time taken to process the requests and memory.

Developing applications that use the Configuration Manager Proxy Java API 37

Each batch of requests is sent in a single WebSphere MQ message and so the
overhead for each method is drastically reduced.

Batch mode does not provide transactional (commit and backout) capability; it is
possible that some requests in a batch succeed and others fail. If the Configuration
Manager processes a request in a batch that fails, it continues to process the next
request in the batch regardless.

38 CMP Programming

Part 2. Appendixes

© Copyright IBM Corp. 2000, 2009 39

40 CMP Programming

Appendix. Notices for WebSphere Event Broker

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this information
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this information. The furnishing of this information does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032,
Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2000, 2009 41

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Programming License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information includes examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not

42 CMP Programming

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks in the WebSphere Event Broker information center

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at Copyright and trademark information at www.ibm.com/legal/
copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Intel and Pentium are trademarks of Intel Corporation in the United States and
other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix. Notices for WebSphere Event Broker 43

http://www.ibm.com/legal/copytrade.shtml

44 CMP Programming

Index

C
CMP

advanced features 35
batch requests 37
Broker domain

managing 25
navigating 16

Configuration Manager,
connecting 15

configuring environment 11
Linux, UNIX, and z/OS 12
Windows 12
with brokers 13
without brokers 13

creating domain objects 33
overview 3
subscriptions API 35

D
deployment

checking results using CMP 23
using the CMP 22

T
trademarks 43

© Copyright IBM Corp. 2000, 2009 45

46 CMP Programming

����

Printed in USA

	Contents
	About this topic collection
	Part 1. Developing applications using the CMP
	Developing applications that use the Configuration Manager Proxy Java API
	Configuration Manager Proxy
	The Configuration Manager Proxy samples
	Running the Deploy BAR sample
	Running the broker domain management sample
	Running the Configuration Manager Proxy API Exerciser sample
	Modifying the Configuration Manager Proxy samples

	Configuring an environment for developing and running Configuration Manager Proxy applications
	Configuring the Windows command-line environment
	Configuring Linux, UNIX, and z/OS command-line environments
	Configuring the Eclipse environment
	Configuring environments without the broker component installed

	Connecting to a Configuration Manager using the Configuration Manager Proxy
	Navigating broker domains using the Configuration Manager Proxy
	Using the Configuration Manager Proxy API to deploy
	Configuration Manager Proxy Exerciser
	Checking the results of deployment using the Configuration Manager Proxy API

	Managing broker domains using the Configuration Manager Proxy
	Checking the results of broker domain management using the Configuration Manager Proxy
	Creating domain objects using the Configuration Manager Proxy

	Advanced features of the Configuration Manager Proxy
	The Configuration Manager Proxy subscriptions API
	Submitting batch requests using the Configuration Manager Proxy

	Part 2. Appendixes
	Appendix. Notices for WebSphere Event Broker
	Trademarks in the WebSphere Event Broker information center

	Index
	C
	D
	T

