
WebSphere Message Broker

ESQL

Version 6 Release 0

���

WebSphere Message Broker

ESQL

Version 6 Release 0

���

Note

Before using this information and the product it supports, read the information in the Notices appendix.

Fourth Edition (July 2006)

This edition applies to IBM® WebSphere® Message Broker Version 6.0 and to all subsequent releases and

modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2000, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this topic collection v

Part 1. Developing ESQL 1

Developing ESQL 3

ESQL overview 3

Managing ESQL files 13

Writing ESQL 25

Part 2. Reference 143

ESQL reference 145

Syntax diagrams: available types 146

ESQL data types in message flows 146

ESQL variables 157

ESQL field references 158

ESQL operators 164

ESQL statements 171

ESQL functions: reference material, organized by

function type 255

Broker properties accessible from ESQL and Java 349

Special characters, case sensitivity, and comments

in ESQL 352

ESQL reserved keywords 354

ESQL non-reserved keywords 354

Example message 357

Part 3. Appendixes 359

Appendix. Notices 361

Trademarks 363

Index 365

© Copyright IBM Corp. 2000, 2006 iii

iv ESQL

About this topic collection

This PDF has been created from the WebSphere Message Broker Version 6.0 (Fix

Pack 2 update, July 2006) information center topics. Always refer to the WebSphere

Message Broker online information center to access the most current information.

The information center is periodically updated on the document update site and

this PDF and others that you can download from that Web site might not contain

the most current information.

The topic content included in the PDF does not include the ″Related Links″

sections provided in the online topics. Links within the topic content itself are

included, but are active only if they link to another topic in the same PDF

collection. Links to topics outside this topic collection are also shown, but these

attempt to link to a PDF that is called after the topic identifier (for example,

ac12340_.pdf) and therefore fail. Use the online information to navigate freely

between topics.

Feedback: do not provide feedback on this PDF. Refer to the online information to

ensure that you have access to the most current information, and use the Feedback

link that appears at the end of each topic to report any errors or suggestions for

improvement. Using the Feedback link provides precise information about the

location of your comment.

The content of these topics is created for viewing online; you might find that the

formatting and presentation of some figures, tables, examples, and so on are not

optimized for the printed page. Text highlighting might also have a different

appearance.

© Copyright IBM Corp. 2000, 2006 v

ftp://ftp.software.ibm.com/software/integration/wbibrokers/docs

vi ESQL

Part 1. Developing ESQL

Developing ESQL 3

ESQL overview 3

ESQL data types 4

ESQL variables 5

Broker properties 8

ESQL field references 9

ESQL operators 9

ESQL statements 9

ESQL functions 11

ESQL procedures 11

ESQL modules 12

Managing ESQL files 13

Creating an ESQL file 14

Opening an existing ESQL file 15

Creating ESQL for a node 15

Modifying ESQL for a node 19

Saving an ESQL file 20

Copying an ESQL file 21

Renaming an ESQL file 22

Moving an ESQL file 22

Changing ESQL preferences 23

Deleting ESQL for a node 24

Deleting an ESQL file 25

Writing ESQL 25

ESQL examples 26

Tailoring ESQL code for different node types . . 27

Manipulating message body content 28

Manipulating other parts of the message tree . . 47

Transforming from one data type to another . . 55

Adding keywords to ESQL files 62

Accessing databases from ESQL 62

Coding ESQL to handle errors 72

Manipulating messages in the MRM domain . . 78

Manipulating messages in the XML domain . . 97

Manipulating messages in the XMLNS domain 125

Manipulating messages using the XMLNSC

parser 127

Manipulating messages in the JMS domains . . 134

Manipulating messages in the IDoc domain . . 135

Manipulating messages in the MIME domain 135

Manipulating messages in the BLOB domain 137

Using the CALL statement to invoke a

user-written routine 138

Accessing broker properties from ESQL . . . 140

Configuring a message flow at deployment time

using UDPs 140

© Copyright IBM Corp. 2000, 2006 1

2 ESQL

Developing ESQL

When you use the built-in nodes Compute, Database, and Filter, you must

customize them to determine the exact processing that they provide. To do this,

you must create, for each node, an ESQL module in which you code the ESQL

statements and functions to tailor the behavior of the node, referring to message

content, or database content, or both, to achieve the results that you require. ESQL

modules are maintained in ESQL files, managed through the Broker Application

Development perspective.

This section provides information on:

v “ESQL overview”

v “Managing ESQL files” on page 13

v “Writing ESQL” on page 25

You can use the ESQL debugger, which is part of the flow debugger, to debug the

code that you write. The debugger steps through ESQL code statement by

statement, so that you can view and check the results of every line of code that is

executed.

Note: In previous releases there were several types of debugger, each of which

handled a specific type of code, such as ESQL, message flows, or Java. In

Version 6, these separate debuggers are integrated into a single debugger,

which is known simply as “the debugger”, and which handles all types of

code.

ESQL overview

Extended Structured Query Language (ESQL) is a programming language defined

by WebSphere Message Broker to define and manipulate data within a message

flow.

This section contains introductory information about ESQL.

v For descriptions of ESQL user tasks, see “Writing ESQL” on page 25.

v For reference information about ESQL, see “ESQL reference” on page 145.

Read the following information before you proceed:

v An overview of message flows, see Message flows overview.

v An overview of message trees, see The message tree, and the topics within this

container, paying special attention to Logical tree structure.

ESQL is based on Structured Query Language (SQL) which is in common usage

with relational databases such as DB2. ESQL extends the constructs of the SQL

language to provide support for you to work with message and database content

to define the behavior of nodes in a message flow.

The ESQL code that you create to customize nodes within a message flow is

defined in an ESQL file, typically named <message_flow_name>.esql,, which is

associated with the message flow project. You can use ESQL in the following

built-in nodes:

v Compute node

v Database node

© Copyright IBM Corp. 2000, 2006 3

v Filter node

You can also use ESQL to create functions and procedures that you can use in the

following built-in nodes:

v DataDelete node

v Datalnsert node

v DataUpdate node

v Extract node

v Mapping node

v Warehouse node

To use ESQL correctly and efficiently in your message flows, you must also

understand the following concepts:

v Data types

v Variables

v Field references

v Operators

v Statements

v Functions

v Procedures

v Modules

Use the ESQL debugger, which is part of the flow debugger, to debug the code that

you write. The debugger steps through ESQL code statement by statement, so that

you can view and check the results of every line of code that is executed.

Note: In previous releases there were several types of debugger, each of which

handled a specific type of code, such as ESQL, message flows, or Java. In

Version 6, these separate debuggers are integrated into a single debugger,

which is known simply as “the debugger”, and which handles all types of

code.

ESQL data types

A data type defines the characteristics of an item of data, and determines how that

data is processed. ESQL supports six data types, listed below. Data that is retrieved

from databases, received in a self-defining message, or defined in a message model

(using MRM data types), is mapped to one of these basic ESQL types when it is

processed in ESQL expressions.

Within a broker, the fields of a message contain data that has a definite data type.

It is also possible to use intermediate variables to help process a message. You

must declare all such variables with a data type before use. A variable’s data type

is fixed; If you try to assign values of a different type you get either an implicit

cast or an exception. Message fields do not have a fixed data type, and you can

assign values of a different type. The field adopts the new value and type.

It is not always possible to predict the data type that results from evaluating an

expression. This is because expressions are compiled without reference to any kind

of message schema, and so some type errors are not caught until runtime.

ESQL defines the following categories of data. Each category contains one or more

data types.

v Boolean

v Datetime

v Null

4 ESQL

v Numeric

v Reference

v String

ESQL variables

An ESQL variable is a data field used to help process a message.

You must declare a variable and state its type before you can use it. A variable’s

data type is fixed; if you code ESQL that assigns a value of a different type, either

an implicit cast to the data type of the target is implemented or an exception is

raised (if the implicit cast is not supported).

To define a variable and give it a name, use the DECLARE statement.

Note: The names of ESQL variables are case sensitive, so it is important to make

sure that you use the correct case in all places. The simplest way to

guarantee this is always to define variables using upper case names.

The Message Broker Toolkit flags, with warning markers, variables that have not

been defined. It is best practice to remove all these warnings before deploying a

message flow.

You can assign an initial value to the variable on the DECLARE statement. If an

initial value isn’t specified, scalar variables are initialized with the special value

NULL, while ROW variables are initialized to an empty state. Subsequently, you

can change the variable’s value using the SET statement.

There are three types of built-in node that can contain ESQL code and hence

support the use of ESQL variables:

v Compute node

v Database node

v Filter node

Variable scope, lifetime, and sharing

How widespread and for how long a particular ESQL variable is available, is

described by its scope, lifetime, and sharing:

A variable’s scope is a measure of the range over which it is visible. In the broker

environment, the scope of variables is normally limited to the individual node.

A variable’s lifetime is a measure of the time for which it retains its value. In the

broker environment, the lifetime of a variable varies but is typically restricted to

the life of a thread within a node.

A variable’s sharing characteristics indicate whether each thread has its own copy

of the variable or whether one variable is shared between many threads. In the

broker environment, variables are typically not shared.

Types of variable

You can use the “DECLARE statement” on page 217 to define three types of

variable:

External

External variables (defined with the EXTERNAL keyword) are also known as

Developing ESQL 5

user-defined properties (UDPs): see “User-defined properties in ESQL.” They

exist for the entire lifetime of a message flow and are visible to all messages

passing through the flow. Their initial values (optionally set by the DECLARE

statement) can be modified, at design time, by the Message Flow editor, or, at

deployment time, by the BAR editor. Their values cannot be modified by

ESQL.

Normal

“Normal” variables have a lifetime of just one message passing through a

node. They are visible to that message only. To define a “normal” variable,

omit both the EXTERNAL and SHARED keywords.

Shared

Shared variables can be used to implement an in-memory cache in the message

flow, see Optimizing message flow response times. Shared variables have a

long lifetime and are visible to multiple messages passing through a flow, see

“Long-lived variables” on page 7. They exist for the lifetime of the execution

group process, the lifetime of the flow or node, or the lifetime of the node’s

SQL that declares the variable (whichever is the shortest). They are initialized

when the first message passes through the flow or node after each broker start

up.

 See also the ATOMIC option of the “BEGIN ... END statement” on page 174.

The BEGIN ATOMIC construct is useful when a number of changes need to be

made to a shared variable and it is important to prevent other instances seeing

the intermediate states of the data.

For information about specific types of variable, see:

v “User-defined properties in ESQL” (external variables)

v “Long-lived variables” on page 7 (shared variables)

User-defined properties in ESQL

A user-defined property (UDP) is a variable that is defined in your ESQL program

by specifying the EXTERNAL keyword on a “DECLARE statement” on page 217.

For example, the ESQL statement DECLARE today EXTERNAL CHARACTER ’monday’

defines a user-defined property called today with an initial value ’monday’.

Before you can use a user-defined property, you must also define the property

when you construct a message flow that uses it. Use the Message Flow editor to

do this.

When you define a UDP using the Message Flow editor, a value and property type

is also defined. The value might be a default value, which varies according to the

UDP’s type. The value assigned to the UDP in the Message Flow editor takes

precedence over any value that you have assigned to the UDP in your ESQL

program.

Before you deploy the message flow that uses the UDP, you can change the value

of the UDP by using the Broker Archive editor. A deployment failure occurs if you

try to deploy a message flow that contains a UDP that has had no value assigned

to it.

See “Configuring a message flow at deployment time using UDPs” on page 140 for

more information.

Using UDPs, configuration data can be set easily and used just like normal

constants. Because no external calls to user-written plug-ins or parsing of

environment trees are involved, the ESQL code is easier to write and maintain, and

6 ESQL

performs better. Also, the parsing costs of reading data out of trees are removed.

The value of the UDP is stamped into the variable at deployment time, which

makes it quick to access.

You can declare UDPs only in modules or schemas.

UDPs can be accessed by any built-in node that uses ESQL:

v Compute

v Database

v Filter

v Nodes derived from these node-types, for example DataInsert, DataDelete, and

DataUpdate.

See Accessing user-defined properties from a JavaCompute node for a description

of how to access a UDP from a JavaCompute node.

Long-lived variables

It is sometimes desirable to store data for longer than the lifetime of a single

message passing through a flow. One way to do this, is to store the data in a

database. This is good for long-term persistence and transactionality, but access

(particularly write access) is slow.

Alternatively, you can use appropriate “long-lived” ESQL data types to provide an

in-memory cache of the data for a certain period of time. This makes access much

faster than it would be from a database, though this is at the expense of shorter

persistence and no transactionality.

Long-lifetime variables are created by using the SHARED keyword on the

DECLARE statement.

The Message Routing sample demonstrates how to define shared variables using

the DECLARE statement. The sample demonstrates how to store routing

information in a database table and use shared variables to store the database table

in memory in the message flow to improve performance.

Long-lived data types have an extended lifetime beyond that of a single message

passing through a node. They are shared between threads and exist for the life of a

message flow (strictly speaking the time between configuration changes to a

message flow), as described in this table:

 Scope Life Shared

Short lifetime variables

Schema & Module Node Thread within

node

Not at all

Routine Local Node Thread within

routine

Not at all

Block Local Node Thread within

block

Not at all

 Long lifetime variables

Node Shared Node Life of node All threads of flow

Flow Shared Flow Life of flow All threads of flow

Developing ESQL 7

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.routing.res

Features of long-lived ESQL data types include:

v Ability to handle large amounts of long-lifetime data.

v Joining data to messages is fast.

v On multiple processor machines, multiple threads are able to access the same

data simultaneously.

v Subsequent messages can access the data left by a previous message.

v Long lifetime read-write data can be shared between threads, because there is no

long term association between threads and messages.

v In contrast to data stored in database tables in the “environment”, this sort of

data is stored “privately”; that is, within the broker.

v The use of ROW variables can be used to create a modifiable copy of the input

message.

v It is possible to create shared constants.

A typical use of these data types might be in a flow in which data tables are

’read-only’ as far as the flow is concerned. Although the table data is not actually

static, the flow does not change it, and thousands of messages pass through the

flow before there is any change to the table data.

An example is a table which contains a day’s credit card transactions. The table is

created each day and that day’s messages will be run against it. Then the flow is

stopped, the table updated and the next day’s messages run. It is very likely that

such flows would perform better if they cached the table data rather than read it

from a database for each message.

Another use of these data types might be the accumulation and integration of data

from multiple messages.

Broker properties

For each broker, WebSphere Message Broker maintains a set of properties. You can

access some of these properties from your ESQL programs. A subset of the

properties is also accessible from Java code. It can be useful, during the runtime of

your code, to have real-time access to details of a specific node, flow, or broker.

There are four categories of broker properties:

v Those relating to a specific node

v Those relating to nodes in general

v Those relating to a message flow

v Those relating to the execution group

“Broker properties accessible from ESQL and Java” on page 349 shows the broker,

flow, and node properties that are accessible from ESQL and indicates which

properties are also accessible from Java.

Broker properties:

v Are grouped by broker, execution group, flow, and node.

v Are case sensitive. Their names always start with an uppercase letter.

v Return NULL if they do not contain a value.

All nodes that allow user programs to edit ESQL support access to broker

properties. These are:

v Compute nodes

8 ESQL

v Database nodes

v Filter nodes

v All derivatives of these nodes

ESQL field references

An ESQL field reference is a sequence of period-separated values that identify a

specific field (which might be a structure) within a message tree or a database

table. The path from the root of the information to the specific field is traced using

the parent/child relationships.

A field reference is used in an ESQL statement to identify the field that is to be

referenced, updated, or created within the message or database table. For example,

you might use the following identifier as a message field reference:

 You can use an ESQL variable of type REFERENCE to set up a dynamic pointer to

contain a field reference. This might be useful in creating a fixed reference to a

commonly-referenced point within a message; for example the start of a particular

structure that contains repeating fields.

A field reference can also specify element types, XML namespace identifications,

indexes and a type constraint. These are discussed in detail later.

The first name in a field reference is sometimes known as a Correlation name.

ESQL operators

An ESQL operator is a character or symbol that you can use in expressions to

specify relationships between fields or values.

ESQL supports the following groups of operators:

v Comparison operators, to compare one value to another value (for example, less

than). Refer to “ESQL simple comparison operators” on page 164 for details of

the supported operators and their use.

v Logical operators, to perform logical operations on one or two terms (for

example, AND). Refer to “ESQL logical operators” on page 168 for details of the

supported operators and their use.

v Numeric operators, to indicate operations on numeric data (for example, +).

Refer to “ESQL numeric operators” on page 169 for details of the supported

operators and their use.

There are some restrictions on the application of some operators to data types; not

all lead to a meaningful operation. These are documented where they apply to

each operator.

Operators that return a boolean value (TRUE or FALSE), for example the greater

than operator, are also known as predicates.

ESQL statements

An ESQL statement is an instruction that represents a step in a sequence of actions

or a set of declarations.

ESQL provides a large number of different statements that perform different types

of operation. All ESQL statements start with a keyword that identifies the type of

Body.Invoice.Payment

Developing ESQL 9

statement and end with a semicolon. An ESQL program consists of a number of

statements that are processed in the order they are written.

As an example, consider the following ESQL program:

 This program consists of two statements. The first starts with the keyword

DECLARE and ends at the first semicolon. The second statement starts with the

keyword SET and ends at the second semicolon. These two statements are written

on separate lines and it is conventional (but not required) that they be so. You will

notice that the language keywords are written in capital letters. This is also the

convention but is not required; mixed and lower case are acceptable.

The first statement declares a variable called x of type INTEGER, that is, it reserves

a space in the computer’s memory large enough to hold an integer value and

allows this space to be subsequently referred to in the program by the name x. The

second statement sets the value of the variable x to 42. A number appearing in an

ESQL program without decimal point and not within quotes is known as an

integer literal.

ESQL has a number of data types and each has its own way of writing literal

values. These are described in “ESQL data types” on page 4.

For a full description of all the ESQL statements, see “ESQL statements” on page

171.

ESQL nested statements

An ESQL nested statement is a statement that is contained within another

statement.

Consider the following ESQL program fragment:

 In this example, you can see a single IF statement containing the optional ELSE

clause. Both the IF and ELSE portions contain three nested statements. Those

within the IF clause are executed if the operator > (greater than) returns the value

TRUE (that is, if Size has a value greater than 100.00); otherwise, those within the

ELSE clause are processed.

Many statements can have expressions nested within them, but only a few can

have statements nested within them. The key difference between an expression and

a statement is that an expression calculates a value to be used, whereas a statement

performs an action (usually changing the state of the program) but does not

produce a value.

DECLARE x INTEGER;

SET x = 42;

IF Size > 100.00 THEN

 SET X = 0;

 SET Y = 0;

 SET REVERSE = FALSE;

ELSE

 SET X = 639;

 SET Y = 479;

 SET REVERSE = TRUE;

END IF;

10 ESQL

ESQL functions

A function is an ESQL construct that calculates a value from a number of given

input values.

A function usually has input parameters and can, but does not usually have,

output parameters. It returns a value calculated by the algorithm described by its

statement. This statement is usually a compound statement, such as BEGIN... END,

because this allows an unlimited number of nested statements to be used to

implement the algorithm.

ESQL provides a number of predefined, or “built-in”, functions which you can use

freely within expressions. You can also use the CREATE FUNCTION statement to

define your own functions.

When you define a function, you must give it a unique name. The name is

handled in a case insensitive way (that is, use of the name with any combination

of upper and lower case letters matches the declaration). This is in contrast to the

names that you declare for schemas, constants, variables, and labels, which are

handled in a case sensitive way, and which you must specify exactly as you

declared them.

Consider the following ESQL program fragment:

 In this example, the function SQRT (square root) is given the value inside the

brackets (itself the result of an expression, a divide operation) and its result is used

in a further expression, a multiply operation. Its return value is assigned to the

variable Diameter. See “Calling ESQL functions” on page 258 for information about

all the built-in ESQL functions.

In addition, an ESQL expression can refer to a function in another broker schema

(that is, a function defined by a CREATE FUNCTION statement in an ESQL file in

the same or in a different dependent project). To resolve the name of the called

function, you must do one of the following:

v Specify the fully-qualified name (<SchemaName>.<FunctionName>) of the called

function.

v Include a PATH statement to make all functions from the named schema visible.

Note that this technique only works if the schemas do not contain

identically-named functions. The PATH statement must be coded in the same

ESQL file, but not within any MODULE.

Note that you cannot define a function within an EVAL statement or an EVAL

function.

ESQL procedures

An procedure is a subroutine that has no return value. It can accept input

parameters from, and return output parameters to, the caller.

Procedures are very similar to functions. The main difference between them is that,

unlike functions, procedures have no return value. Thus they cannot form part of

an expression and are invoked by using the CALL statement. Procedures

commonly have output parameters

SET Diameter = SQRT(Area / 3.142) * 2;

Developing ESQL 11

You can implement a procedure in ESQL (an internal procedure) or as a database

stored procedure (an external procedure). The ESQL procedure must be a single

ESQL statement, although that statement can be a compound statement such as

BEGIN END. You cannot define a procedure within an EVAL statement or an

EVAL function.

When you define a procedure, give it a name. The name is handled in a case

insensitive way (that is, use of the name with any combination of upper and lower

case letters matches the declaration). That is in contrast to the names that you

declare for schemas, constants, variables, and labels, which are handled in a case

sensitive way, and which you must specify exactly as you declared them.

An ESQL expression can include a reference to a procedure in another broker

schema (defined in an ESQL file in the same or a different dependent project). If

you want to use this technique, either fully qualify the procedure, or include a

PATH statement that sets the qualifier. The PATH statement must be coded in the

same ESQL file, but not within a MODULE.

An external database procedure is indicated by the keyword EXTERNAL and the

external procedure name. This procedure must be defined in the database and in

the broker, and the name specified with the EXTERNAL keyword and the name of

the stored database procedure must be the same, although parameter names do not

have to match. The ESQL procedure name can be different to the external name it

defines.

Overloaded procedures are not supported to any database. (An overloaded

procedure is one that has the same name as another procedure in the same

database schema which has a different number of parameters, or parameters with

different types.) If the broker detects that a procedure has been overloaded, it

raises an exception.

Dynamic schema name resolution for stored procedures is supported; when you

define the procedure you must specify a wildcard for the schema that is resolved

before invocation of the procedure by ESQL. This is explained further in “Invoking

stored procedures” on page 70.

ESQL modules

A module is a sequence of declarations that define variables and their initialization,

and a sequence of subroutine (function and procedure) declarations that define a

specific behavior for a message flow node.

A module must begin with the CREATE node_type MODULE statement and end with

an END MODULE statement. The node_type must be one of COMPUTE, DATABASE,

or FILTER. The entry point of the ESQL code is the function named MAIN, which

has MODULE scope.

Each module is identified by a name which follows CREATE node_type MODULE. The

name might be created for you with a default value, which you can modify, or you

can create it yourself. The name is handled in a case insensitive way (that is, use of

the name with any combination of upper and lower case letters matches the

declaration). That is in contrast to the names that you declare for schemas,

constants, variables, and labels, which are handled in a case sensitive way, and

which you must specify exactly as you declared them.

12 ESQL

You must create the code for a module in an ESQL file which has a suffix of .esql.

You must create this file in the same broker schema as the node that references it.

There must be one module of the correct type for each corresponding node, and it

is specific to that node and cannot be used by any other node.

When you create an ESQL file (or complete a task that creates one), you indicate

the message flow project and broker schema with which the file is associated as

well as specifying the name for the file.

Within the ESQL file, the name of each module is determined by the value of the

corresponding property of the message flow node. For example, the property ESQL

Module for the Compute node specifies the name of the node’s module in the ESQL

file. The default value for this property is the name of the node. You can specify a

different name, but you must ensure that the value of the property and the name

of the module that provides the required function are the same.

The module must contain the function MAIN, which is the entry point for the

module. This is included automatically if the module is created for you. Within

MAIN, you can code ESQL to configure the behavior of the node. If you include

ESQL within the module that declares variables, constants, functions, and

procedures, these are of local scope only and can be used within this single

module.

If you want to reuse ESQL constants, functions, or procedures, you must declare

them at broker schema level. You can then refer to these from any resource within

that broker schema, in the same or another project. If you want to use this

technique, either fully qualify the procedure, or include a PATH statement that sets

the qualifier. The PATH statement must be coded in the same ESQL file, but not

within any MODULE.

Managing ESQL files

Within a message flow project, you can create ESQL files to contain the ESQL code

that you provide to modify or customize the behavior of Compute, Database, or

Filter nodes.

The ESQL code is contained within a module that is associated with the node.

Each module must be created within an ESQL file. The name of the module within

the ESQL file must match the name specified for the module in the ESQL Module

property of the corresponding node. Although you can modify the module name,

and change it from its default value (which is the name of the message flow,

concatenated with the name of the node with which the module is associated),

ensure that the module in the ESQL file matches the node property.

The following topics describe how you can manage these files:

v “Creating an ESQL file” on page 14

v “Opening an existing ESQL file” on page 15

v “Creating ESQL for a node” on page 15

v “Modifying ESQL for a node” on page 19

v “Saving an ESQL file” on page 20

v “Copying an ESQL file” on page 21

v “Renaming an ESQL file” on page 22

v “Moving an ESQL file” on page 22

v “Changing ESQL preferences” on page 23

v “Deleting ESQL for a node” on page 24

Developing ESQL 13

v “Deleting an ESQL file” on page 25

Creating an ESQL file

When you include a node in your message flow that requires ESQL to customize

its function (the Compute, Database, and Filter nodes), you must code the ESQL

statements that provide the customization in an ESQL module within an ESQL file.

You can use the same ESQL file for more than one module, if you choose.

Before you start

To complete this task, you must have completed the following task:

v Creating a message flow project

ESQL files are stored in a file system or in a shared repository. If you are using a

file system, this can be the local file system or a shared drive. If you store files in a

repository, you can use any of the available repositories that are supported by

Eclipse, for example CVS.

To create an ESQL file:

1. Switch to the Broker Application Development perspective.

2. Click File → New → Message Flow ESQL File.

You can also press Ctrl+N. This displays a dialog that allows you to select the

wizard to create a new object. Click Message Brokers in the left view; the right

view displays a list of objects that you can create for WebSphere Message

Broker. Click Message Flow ESQL File in the right view, then click Next. The

New Message Flow ESQL File wizard is displayed.

3. Enter the name of the message flow project in which to create the ESQL file.

You must enter the name of an existing message flow project. The dialog is

displayed with the current project name entered in the project name field. You

can accept this value or change it to specify a different project. You can also

click Browse to view a list of valid projects (projects that are defined and

displayed in the Navigator view), and select the appropriate value from that

list.

If you type in the name of a project that does not exist, the error message The

specified project does not exist is displayed in the dialog and you cannot

continue until you specify a valid project name.

4. If you want the ESQL file to be defined within a specific broker schema, enter

the name of the broker schema in the appropriate entry field, or click Browse

to select the broker schema from the list of valid broker schema for this project.

(If only the default broker schema is defined in this project, Browse is

disabled.)

5. Enter a name for the new ESQL file. If you enter a name that is already in use

for an ESQL file in this project, the error message The resource <name>.esql

already exists is displayed in the dialog and you cannot continue until you

specify a valid name.

When creating ESQL files, the overall file path length must not exceed 256

characters, due to a Windows file system limitation. If you try to add a

message flow to a broker archive file with ESQL or mapping files with a path

length that exceeds 256 characters, the compiled message flow will not be

generated and cannot be deployed. Therefore, make sure that the names of

your ESQL files, mapping files, projects, and broker schema are as short as

possible.

14 ESQL

An ESQL file can also be created automatically for you. If you select Open ESQL

from the menu displayed when you right-click a Compute, Database, or Filter

node, and the module identified by the appropriate property does not already exist

within the broker schema, a module is automatically created for you. This is

created in the file <message_flow_name>.esql in the same broker schema within

the same project as the <message_flow_name>.msgflow file. If that ESQL file does

not already exist, that is also created for you.

The contents of a single ESQL file do not have any specific relationship with

message flows and nodes. It is your decision which modules are created in which

files (unless the specified module, identified by the appropriate property, is created

by default in the file <message_flow_name>.esql as described above). Monitor the

size and complexity of the ESQL within each file, and split the file if it becomes

difficult to view or manage.

If you create reusable subroutines (at broker schema level) within an ESQL file,

you might want to refer to these routines from ESQL modules in another project.

To do this, specify that the project that wants to invoke the subroutines depends

on the project in which the ESQL file containing them is defined. You can specify

this when you create the second project, or you can update project dependencies

by selecting the project, clicking Properties, and updating the dependencies in the

Project Reference page of the properties dialog.

Opening an existing ESQL file

You can add to and modify ESQL code that you have created in an ESQL file in a

message flow project.

Before you start

To complete this task, you must have completed the following task:

v “Creating an ESQL file” on page 14

To open an existing ESQL file:

1. Switch to the Broker Application Development perspective.

2. In the Navigator view, double-click the ESQL file that you want to open. The

file is opened in the editor view.

3. Work with the contents of file to make your changes. The file can contain

modules relating to specific nodes in a message flow, PATH statements, and

declarations at broker schema level such as reusable constants and procedures.

Scroll through the file to find the specific content that you want to work with.

4. You can select the content that you want to work with by selecting its name in

the Outline view. The code for the selected resource is highlighted.

You can also open an ESQL file when you have a message flow open in the editor

view by selecting an appropriate node (of type Compute, Database, or Filter),

right-clicking, and selecting Open ESQL. In this case, the ESQL file that contains

this module is opened, and the module for the selected node is highlighted in the

editor view.

Creating ESQL for a node

Create ESQL to customize the behavior of a Compute, Database, or Filter node

within an ESQL file.

Developing ESQL 15

Before you start

To complete this task, you must have completed the following task:

v “Creating an ESQL file” on page 14

Within the ESQL file, create a module that is associated with a node in your

message flow. A module can be associated with only one node of a particular type

(Compute, Database, or Filter). Within the module you can create and use

functions and procedures as well as the supplied statements and functions. You

can also create local constants and variables.

If you have created constants, functions, or procedures at the broker schema level,

you can also refer to these within the module. You can define routines at a level at

which many different modules can use them, which can save you development

time and maintenance effort.

To create ESQL for a node:

1. Switch to the Broker Application Development perspective.

2. In the Navigator view, double-click the message flow that includes the node for

which you want to create ESQL. The message flow opens in the editor view.

3. Right-click the node (which must be Compute, Database, or Filter) and click

Open ESQL. The default ESQL file for this message flow,

<message_flow_name>.esql, is opened in the editor view (the file is created if it

does not already exist).

(If you have already created the default file and you click Open ESQL, the file

is opened in the editor view and a new module is created and highlighted.) A

skeleton module is created for this node at the end of the ESQL file. Its exact

content depends on the type of node.

The following module is created for a Compute node:

To make the preceding ESQL deployable to a Version 2.1 broker, you must pass

the InputRoot and OutputRoot module level variables to the procedure or

function as shown by the bold text in the following example:

CREATE COMPUTE MODULE <module_name>

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 -- CALL CopyMessageHeaders(InputRoot, OutputRoot);

CREATE COMPUTE MODULE <module_name>

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 -- CALL CopyMessageHeaders();

 -- CALL CopyEntireMessage();

 RETURN TRUE;

 END;

 CREATE PROCEDURE CopyMessageHeaders() BEGIN

 DECLARE I INTEGER 1;

 DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

 WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I = I + 1;

 END WHILE;

 END;

 CREATE PROCEDURE CopyEntireMessage() BEGIN

 SET OutputRoot = InputRoot;

 END;

END MODULE;

16 ESQL

-- CALL CopyEntireMessage(InputRoot, OutputRoot);

 RETURN TRUE;

 END;

 CREATE PROCEDURE CopyMessageHeaders(IN InputRoot REFERENCE, IN

 OutputRoot REFERENCE) BEGIN

 DECLARE I INTEGER 1;

 DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

 WHILE I < J DO

 CREATE LASTCHILD OF OutputRoot DOMAIN FIELDNAME (

 InputRoot.*[I]); /*create the parser for OutputRoot*/

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I = I + 1;

 END WHILE;

 END;

 CREATE PROCEDURE CopyEntireMessage(IN InputRoot REFERENCE, IN

 OutputRoot REFERENCE) BEGIN

 SET OutputRoot = InputRoot;

 END;

END MODULE;

The module name is determined by the value that you have set for the

corresponding node property. The default is

<message_flow_name>_<node_type>. The Main function contains calls to two

procedures, described below, that are declared within the Compute node

module following the function Main. These calls are commented out. If you

want to include the function that they provide, uncomment these lines and

place them at the appropriate point in the ESQL that you create for Main.

CopyMessageHeaders

This procedure loops through the headers contained in the input

message and copies each one to the output message.

 If you are migrating from Version 2.1, this procedure is equivalent to

the code generated when you select the Copy message headers button

on the Compute node properties dialog.

CopyEntireMessage

This procedure copies the entire contents of the input message,

including the headers, to the output message.

 If you are migrating from Version 2.1, this procedure is equivalent to

the code generated when you select the Copy entire message button on

the Compute node properties dialog.
If you create an ESQL module for a Database node, the following module is

created:

For a Filter node, the module is identical to that created for the Database node

except for the first line, which reads:

4. Add ESQL to this file to customize the behavior of the node.

CREATE DATABASE MODULE <module_name>

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 RETURN TRUE;

 END;

END MODULE;

CREATE FILTER MODULE <module_name>

Developing ESQL 17

You should start by adding ESQL statements within the Main function, that is

after the BEGIN statement, and before RETURN TRUE. You can add DECLARE

statements within the module that are not within the Main function. To add a

new line into the file, press Enter.

To help you to code valid ESQL, the editor displays a list of valid statements

and functions at the point of the cursor. To invoke this assistance, click Edit →

Content Assist. On some systems, you might also be able to use the key

combination Ctrl+Space. Scroll through the list displayed to find and highlight

the one that you want, and press Enter. The appropriate code is inserted into

your module, and the list disappears.

Content assistance is provided in the following areas:

v Applicable keywords, based on language syntax.

v Blocks of code that go together, such as BEGIN END;.

v Constants that you have defined, identifiers, labels, functions, and

procedures that can be used, where the routines can be in any projects, even

if these are not referenced by the current project.

v Database schema and table names after the database correlation name, as

well as table column names in INSERT, UPDATE, DELETE, and SELECT

statements, and, in most cases, the WHERE clauses of those statements.

v Elements of message field reference: runtime domain (parser) names, format

of type expression, namespace identifiers, namespace-qualified element and

attribute names, and format of index expression.

v Content in the Properties folder under the output message root.

v For the DECLARE NAMESPACE statement, target namespaces of message

sets and schema names.

Content assistance works only if the ESQL can be parsed correctly. Errors such

as END missing after BEGIN, and other unterminated block statements, cause

parser failures and no content assistance is provided. Try content assistance in

other areas around the statement where it does not work to narrow down the

point of error. Alternatively, save the ESQL file; saving the file causes validation

and all syntax errors are written to the Tasks view. Refer to the errors reported

to understand and correct the ESQL syntax. If you use content assistance to

generate most statements (such as block statements), these are correctly entered

and there is less opportunity for error.

5. When you have finished working with this module, you can close the ESQL

file. Save the file before you close it to retain all your changes and validate

your ESQL.

If you prefer, you can open the ESQL file directly and create the module within

that file using the editor. To do this:

1. Switch to the Broker Application Development perspective.

2. Select the ESQL file in which you want to create the module. Either

double-click to open this file in the editor view, or right-click and click Open.

3. In the editor view, position your cursor on a new line and use content

assistance to select the appropriate module skeleton for this type of node, for

example CREATE COMPUTE MODULE END MODULE;. You can type this in yourself if

you prefer, but you must ensure that what you type is consistent with the

required skeleton, shown above. Use content assistance to give you additional

help by inserting only valid ESQL, and by inserting matching end statements

(for example, END MODULE;) where these are required.

4. Complete the coding of the module as appropriate.

18 ESQL

Whichever method you use to open the ESQL file, be aware that the editor

provides functions to help you to code ESQL. This section refers to content

assistance but there are further functions available in the editor. For information

about these functions, see ESQL editor.

Modifying ESQL for a node

If you want to change the customization of a node that requires ESQL (Compute,

Database, or Filter), you can modify the ESQL statements within the module that

you created for that node.

Before you start

To complete this task, you must have completed the following task:

v “Creating ESQL for a node” on page 15

To modify ESQL code:

1. Switch to the Broker Application Development perspective.

2. In the Navigator view, select the message flow that you want to work with and

double-click it. The message flow is opened in the editor view.

3. Right-click the node corresponding to the ESQL module that you want to

modify and click Open ESQL. The ESQL file is opened in the editor view. The

module for this node is highlighted.

4. Make the changes that you want in the module, by entering new statements

(remember that you can use Content Assist, available from the Edit menu or, on

some systems, by pressing Ctrl+Space), changing existing statements by

overtyping, or deleting statements using the Delete or backspace keys. Note

that, to get Content Assist to work with message references, you must set up a

project reference from the project containing the ESQL to the project containing

the message set. For information about setting up a project reference, see

Project references.

5. You can change the name of the module that you are working with, by

over-typing the current name with the new one. Remember that, if you do that,

you must also change the node property ESQL Module to reflect the new name

to ensure that the correct ESQL code is deployed with the node.

6. When you have finished working with this module, you can close the ESQL

file. Save the file before you close it to retain all your changes and validate

your ESQL.

If you prefer, you can open the ESQL file directly by double-clicking it in the

Navigator view. You can select the module that you want to work with from the

Outline view.

The editor provides functions that you can use to help you modify your ESQL

code. These functions are described in ESQL editor.

You can also modify the ESQL source by selecting Source → Format. This option

formats all selected lines of code (unless only partially selected, when they are

ignored), or, if no lines are selected, formats the entire file (correcting alignments

and indentation).

Adding comments to ESQL

You can add comments to and remove comments from your ESQL code:

Developing ESQL 19

1. To change an existing line of code into a comment line, click Source →

Comment.

2. To change a comment line to a code line, click Source → Uncomment.

3. To create a new comment line, press Enter to create a new line and either type

the comment identifier -- or click Source → Comment. You can enter any text

after the identifier: everything you type is ignored by the ESQL editor.

Saving an ESQL file

When you edit your ESQL file, you can save it both to preserve the additions and

modifications that you have made and to force the editor to validate the file’s

content.

Before you start

To complete this task, you must have completed the following task:

v “Creating an ESQL file” on page 14

To save an ESQL file:

1. Switch to the Broker Application Development perspective.

2. Create a new ESQL file or open an existing ESQL file.

3. Make the changes to the contents of the ESQL file.

4. When you have finished working, save the file to retain all your changes by

clicking File → Save <filename>.esql or File → Save All (the menu always

shows the current filename correctly).

When you save the file, the validator is invoked by the editor to check that the

ESQL obeys all grammar and syntax rules (specified by the syntax diagrams

and explanations in “ESQL reference” on page 145).

You can request additional validation when you set ESQL preferences. Click

Window → Preferences. The Preferences dialog is displayed:

5. Expand the item for ESQL and Mapping on the left and click Validation. You

can choose a value of warning (the default), error, or ignore for the following

four categories of error:

a. Unresolved identifiers

b. Message references do not match message definitions

c. Database references do not match database schema

d. Use of deprecated keywords

Validating message definitions can impact response times in the editor,

particularly if you have complicated ESQL that makes many references to a

complex message definition. You might choose to delay this validation. Invoke

validation when you have finished developing the message flow and are about

to deploy it, to avoid runtime errors. For each error found, the editor writes an

entry in the Tasks view, providing both the code line number and the reason

for the error.

6. If you double-click the error, the editor positions your cursor on the line in

which it found that error. The line is also highlighted by the error icon

in

the margin to the left.

The editor might also find potential error situations, that it highlights as

warnings (with the warning icon

), which it also writes to the tasks view.

20 ESQL

For example, you might have included a BROKER SCHEMA statement that

references an invalid schema (namespace).

Check your code, and make the corrections required by that statement or

function.

Save As

You can save a copy of this ESQL file by using File → Save As....

1. Click File → Save <name> As....

2. Specify the message flow project in which you want to save a copy of the ESQL

file. The project name defaults to the current project. You can accept this name,

or choose another name from the valid options that are displayed in the File

Save dialog.

3. Specify the name for the new copy of the ESQL file. If you want to save this

ESQL file in the same project, you must either give it another name, or confirm

that you want to overwrite the current copy (that is, copy the file to itself).

If you want to save this ESQL file in another project, the project must already

exist (you can only select from the list of existing projects). You can save the file

with the same or another name in another project.

4. Click OK. The message flow is saved and the message flow editor validates its

contents. The editor provides a report of any errors that it finds in the Tasks

view.

Copying an ESQL file

You might find it useful to copy an ESQL file as a starting point for a new ESQL

file that has similar function.

Before you start

To complete this task, you must have completed the following task:

v “Creating an ESQL file” on page 14

To copy an ESQL file:

1. Switch to the Broker Application Development perspective.

2. In the Navigator view, select the ESQL file (<message_flow_name>.esql) that

you want to copy. Right-click the file and click Copy from the menu.

3. Right-click the broker schema within the message flow project to which you

want to copy the ESQL file and click Paste. You can copy the ESQL file to the

same broker schema within the same message flow project, or to a different

broker schema within the same message flow project, or to a broker schema in

a different message flow project.

When you copy an ESQL file, the associated files (message flow, and mapping

if present) are not automatically copied to the same target message flow project.

If you want these files copied as well, you must do this explicitly following this

procedure.

If you want to use this ESQL file with another message flow, ensure that the

modules within the ESQL file match the nodes that you have in the message

flow, and that the node properties are set correctly.

You can also use File → Save As to copy an ESQL file. This is described in “Saving

an ESQL file” on page 20.

Developing ESQL 21

Renaming an ESQL file

You can rename an ESQL file within the message flow project. You might want to

do this, for example, if you have renamed the message flow with which it is

associated.

Before you start

To complete this task, you must have completed the following task:

v “Creating an ESQL file” on page 14

To rename an ESQL file:

1. Switch to the Broker Application Development perspective.

2. In the Navigator view, right-click the ESQL file that you want to rename. Its

default name is <message_flow_name>.esql. Click Rename or click File →

Rename. If you have selected the ESQL file, you can press F2. The Rename

Resource dialog is displayed.

3. Enter the new name for the ESQL file. Click OK to complete the action, or

Cancel to cancel the request. If you click OK, the ESQL file is renamed.

When the rename is done, any references that you have to this ESQL file are no

longer valid and you must correct them. If you are unsure where the references

are, click File → Save All. This saves and validates all resources. Unresolved

references are listed in the Tasks view, and you can click each error listed to

locate and update the references.

Moving an ESQL file

If you move a message flow from one broker schema to another, or from one

project to another, you might want to move any ESQL file that is associated with

that message flow.

Before you start

To complete this task, you must have completed the following task:

v “Creating an ESQL file” on page 14

To move an ESQL file:

1. Switch to the Broker Application Development perspective.

2. Move the ESQL file in one of the following ways:

a. Drag and drop the ESQL file that you want to move from its current

location to a broker schema within the same or another message flow

project.

If the target location that you have chosen is not valid (for example, if an

ESQL file of this name already exists in the broker schema), the invalid icon

is displayed and the move is not completed.

b. Right-click the ESQL file and click Move, or click File → Move. The Move

dialog is displayed.

Select the project and the broker schema from the list of valid targets that is

shown in the dialog.

Click OK to complete the move, or Cancel to cancel the request.

If you click OK, the ESQL file is moved to its new location.

22 ESQL

3. Check the Tasks view for any errors (indicated by the error icon

) or

warnings (indicated by the warning icon

) generated by the move.

The errors in the Tasks view include those caused by broken references. When

the move is completed, all references to this ESQL file are checked. If you have

moved the file within the same named broker schema within the same message

flow project, all references are still valid. If you have moved the file to another

broker schema in the same or another message flow project, the references are

broken. If you have moved the file to the same named broker schema in

another message flow project, the references might be broken if the project

references are not set correctly to recognize external references in this file. These

errors occur because resources are linked by a fully-qualified name.

4. Double-click each error or warning to correct it. This opens the message flow

that has the error in the editor view and highlights the node in error.

When you move an ESQL file, its associated files (for example, the message flow

file) are not automatically moved to the same target broker schema. You must

move these files yourself.

Changing ESQL preferences

You can modify the way in which ESQL is displayed in the editor and validated by

the editor:

v “Changing ESQL editor settings”

v “Changing ESQL validation settings” on page 24

Changing ESQL editor settings

When you open an ESQL file in the editor view, you can tailor the editor

appearance by changing editor settings.

To change ESQL editor settings:

1. Switch to the Broker Application Development perspective.

2. Click Window → Preferences. The Preferences dialog is displayed.

3. Expand the item for ESQL on the left and click ESQL Editor.

4. Update the settings available for tab width and colors:

v Click the General tab to change the displayed tab width within the ESQL

editor.

v Click the Colors tab to change the color of the editor view background, and

of the entities displayed in the editor view. These include comments and

keywords within your ESQL code.
5. When you have completed your changes, click Apply to close the Preferences

dialog, apply your changes and leave the Preferences dialog open. Click OK to

apply your changes and close the dialog. Click Cancel to close the dialog and

discard your changes.

6. If you want to return your ESQL editor settings to the initial values, click

Restore Defaults. All values are reset to the original settings.

If you change the editor settings when you have an editor session active, the

changes are implemented immediately. If you do not have an editor session open,

you see the changes when you next edit an ESQL file.

To change font settings for the ESQL editor:

Developing ESQL 23

|

|

|

|

1. Click Window → Preferences. The Preferences dialog is displayed.

2. Expand the item for Workbench on the left of the Preferences dialog, and click

Colors and Fonts.

3. Expand Basic in the Colors and Fonts tab

4. Select a font or text color option and click on Change . The Font dialog will be

displayed.

5. When you have completed your changes, click Apply to close the Preferences

dialog, apply your changes and leave the Preferences dialog open. Click OK to

apply your changes and close the dialog. Click Cancel to close the dialog and

discard your changes.

6. If you want to return your ESQL editor settings to the initial values, click

Restore Defaults.

Changing ESQL validation settings

You can specify the level of validation that the ESQL editor performs when you

save a .esql file. If the validation you have requested results in warnings, you can

deploy a bar file containing this message flow. However, if errors are reported, you

cannot deploy the bar file.

To change ESQL validation settings:

1. Switch to the Broker Application Development perspective.

2. Click Window → Preferences. The Preferences dialog is displayed.

3. Expand the item for ESQL on the left and click Validation.

4. Update the settings for what is validated, and for what warnings or errors are

reported. See ESQL editor for details of the settings and their values.

5. When you have completed your changes, click Apply to close the Preferences

dialog, apply your changes and leave the Preferences dialog open. Click OK to

apply your changes and close the dialog. Click Cancel to close the dialog and

discard your changes.

6. If you want to return your ESQL editor preferences to the initial values, click

Restore Defaults. All values are reset to the original settings.

If you make changes to the validation settings, the changes are implemented

immediately for currently open edit sessions and for subsequent edit sessions.

Deleting ESQL for a node

If you delete a node from a message flow, you can delete the ESQL module that

you created to customize its function.

Before you start

To complete this task, you must have completed the following task:

v “Creating ESQL for a node” on page 15

To delete ESQL code:

1. Switch to the Broker Application Development perspective.

2. Open the message flow that you want to work with by double-clicking it in the

Navigator view. The message flow is opened in the editor view.

24 ESQL

|

|
|

|

|
|

|
|
|
|

|
|

3. Select the node for which you want to delete the ESQL module, right-click and

click Open ESQL. The ESQL file is opened in the editor view, with the module

for this node highlighted.

4. Press the Delete or backspace key to delete the whole module.

5. When you have finished working with this module, you can close the ESQL

file. Save the file before you close it to retain all your changes. Save also

validates your ESQL: see “Saving an ESQL file” on page 20.

If you prefer, you can open the ESQL file directly by double-clicking it in the

Navigator view. The ESQL file is opened in the editor view. Select the module that

you want to delete from the Outline view and delete it as described above. You

can also right-click on the module name in the Navigator view (the modules in the

ESQL file are visible if you expand the view of the file by clicking the + beside the

file name) and click Delete.

Deleting an ESQL file

If you delete a message flow, or if you have deleted all the ESQL code in an ESQL

file, you can delete the ESQL file.

Before you start

To complete this task, you must have completed the following task:

v “Creating an ESQL file” on page 14

To delete an ESQL file:

1. Switch to the Broker Application Development perspective.

2. Within the Navigator view, right-click the ESQL file that you want to delete,

and click Delete. A dialog is displayed that asks you to confirm the deletion.

You can also select the file in the Navigator view, and click Edit → Delete. A

dialog is displayed that asks you to confirm the deletion.

3. Click Yes to delete the file, or No to cancel the delete request.

If you maintain resources in a shared repository, a copy is retained in that

repository. You can follow the instructions provided by the repository supplier

to retrieve the file if required.

If you are using the local file system or a shared file system to store your

resources, no copy of the file is retained. Be careful to select the correct file

when you complete this task.

Writing ESQL

When you create a message flow, you include input nodes that receive the

messages and, optionally, output nodes that send out new or updated messages. If

required by the processing that must be performed on the message, you can

include other nodes after the input node that complete the actions that your

applications need.

Some of the built-in nodes allow you to customize the processing that they

provide. The Compute, Database, and Filter nodes require you to provide a

minimum level of ESQL, and you can provide much more than the minimum to

control precisely the behavior of each node. This set of topics discusses ESQL and

the ways in which you can use it to customize these nodes.

Developing ESQL 25

The DataDelete, DataInsert, DataUpdate, Extract, Mapping, and Warehouse nodes

provide a mapping interface with which you can customize their function. The

ways in which you can use the mapping functions associated with these nodes are

described in Developing message mappings.

ESQL provides a rich and flexible syntax for statements and functions that let you

check and manipulate message and database content. You can:

v Read the contents of the input message

v Modify message content with data from databases

v Modify database content with data from messages

v Construct new output messages created from all, part, or none of the input

message (in the Compute node only)

The following topics provide more information about these and other tasks that

you can perform with ESQL. Unless otherwise stated, these guidelines apply to

messages in all message domains except the BLOB domain, for which you can

implement a limited set of actions.

v “Tailoring ESQL code for different node types” on page 27

v “Manipulating message body content” on page 28

v “Manipulating other parts of the message tree” on page 47

v “Transforming from one data type to another” on page 55

v “Adding keywords to ESQL files” on page 62

v “Accessing databases from ESQL” on page 62

v “Coding ESQL to handle errors” on page 72

v “Accessing broker properties from ESQL” on page 140

v “Configuring a message flow at deployment time using UDPs” on page 140

The following topics provide additional information specific to the parser that you

have specified for the input message:

v “Manipulating messages in the MRM domain” on page 78

v “Manipulating messages in the XML domain” on page 97

v “Manipulating messages in the XMLNS domain” on page 125

v “Manipulating messages using the XMLNSC parser” on page 127

v “Manipulating messages in the JMS domains” on page 134

v “Manipulating messages in the IDoc domain” on page 135

v “Manipulating messages in the MIME domain” on page 135

v “Manipulating messages in the BLOB domain” on page 137

ESQL examples

Most of the examples included in the topics listed above show parser-independent

ESQL. If examples include reference to MRM, they assume that you have modeled

the message in the MRM and that you have set the names of the MRM objects to

be identical to the names of the corresponding tags or attributes in the XML source

message. Some examples are also shown for the XML domain. Unless stated

otherwise, the principals illustrated are the same for all message domains. For

domain-specific information, refer to the appropriate link in the list above.

Most of the topics that include example ESQL use the ESQL sample message,

Invoice, as the input message to the logic. This message is provided in XML source

format (with tags and attributes) in “Example message” on page 357, and is shown

below in diagrammatic form.

The topics specific to the MRM domain use the message that is created in the

Video Rental sample sample.

26 ESQL

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.res

A few other input messages are used to show ESQL that provides function on

messages with a structure or content that is not included in the Invoice or Video

samples. Where this occurs, the input message is included in the topic that refers

to it.

Tailoring ESQL code for different node types

When you code ESQL to configure Compute, Database, and Filter node behavior,

be aware of the limitations of each type of node:

Compute node

You can configure the Compute node to do any of the following

operations:

v Update data in a database.

v Insert data into a database.

v Delete data from a database.

v Update the Environment tree.

v Update the LocalEnvironment tree.

v Create one or more output messages, with none, some, or all the content

of the input message, and propagate these new messages to the next

node in the message flow.

Payment

Purchases

InvoiceDate TillNumber

CashierInvoiceTimeInvoiceNo

DirectMail

StoreRecord Error

Customer

Address Address

Address PostCode

FirstName Title PhoneHome Billing

LastName DOB PhoneWork

CardType CardName Expires

ValidCardNo

Invoice

Item Item Item

Title PublishDate QuantityAuthor

Publisher UnitPriceISBN

Developing ESQL 27

If you want to propagate the input LocalEnvironment to the output

LocalEnvironment, remember to set the Compute node property Compute

mode to an appropriate value. The Environment is always propagated in

the output message.

Database node

You can configure the Database node to do any of the following

operations:

v Update data in a database.

v Insert data into a database.

v Delete data from a database.

v Update the Environment tree.

v Update the LocalEnvironment tree.

v Propagate the input message to the next node in the message flow.

Filter node

You can configure the Filter node to do any of the following operations:

v Update data in a database.

v Insert data into a database.

v Delete data from a database.

v Update the Environment tree.

v Update the LocalEnvironment tree.

v Propagate the input message to the next node in the message flow (the

terminal through which the message is propagated depends on the

result of the filter expression).

View the remaining tasks in this section to find the details of how you can perform

these operations.

Manipulating message body content

The message body is always the last child of root, and is identified by its parser

name, for example XML or MRM.

The following topics describe how you can refer to, modify, and create message

body data. The information provided here is domain independent.

v “Referencing field types” on page 29

v “Accessing elements in the message body” on page 29

v “Accessing known multiple occurrences of an element” on page 33

v “Accessing unknown multiple occurrences of an element” on page 34

v “Using anonymous field references” on page 36

v “Creating dynamic field references” on page 36

v “Creating new fields” on page 37

v “Generating multiple output messages” on page 40

v “Using numeric operators with datetime values” on page 41

v “Calculating a time interval” on page 42

v “Selecting a subfield from a larger field” on page 43

v “Copying repeating fields” on page 44

v “Manipulating repeating fields in a message tree” on page 46

28 ESQL

Referencing field types

Some message parsers have complex models in which it is not enough to identify a

field simply by its name and an array subscript. In these cases, you associate an

optional field type with an element of data in the tree format.

Each element within the parsed tree can be one of three types:

Name element

A name element has a string, which is the name of the element, associated

with it. An example of a name element is XMLElement, described in XML

element.

Value element

A value element has a value associated with it. An example of a value

element is XMLContent, described in XML content.

Name-value element

A name-value element is an optimization of the case where a name

element contains only a value element and nothing else. The element

contains both a name and a value. An example of a name-value element is

XMLAttribute, described in XML attribute.

Accessing elements in the message body

When you want to access the contents of a message, for reading or writing, use the

structure and arrangement of the elements in the tree that is created from the input

bit stream by the parser. Follow the relevant parent and child relationships from

the top of the tree downwards, until you reach the required element.

v If you are referring to the input message tree to interrogate its content in a

Compute node, use correlation name InputBody followed by the path to the

element to which you are referring. InputBody is equivalent to InputRoot

followed by the parser name (for example, InputRoot.MRM), which you can use if

you prefer.

v If you are referring to the output message tree to set or modify its content in the

Compute node, use correlation name OutputRoot followed by the parser name

(for example, OutputRoot.MRM).

v If you are referring to the input message to interrogate its contents in a Database

or Filter node, use correlation name Body to refer to the start of the message.

Body is equivalent to Root followed by the parser name (for example, Root.XML),

which you can use if you prefer.

You must use these different correlation names because there is only one

message to which to refer in a Database or Filter node; you cannot create a new

output message in these nodes. Use a Compute node to create a new output

message.

When you construct field references, the names that you use must be valid ESQL

identifiers that conform to ESQL rules. If you enclose anything in double quotation

marks, ESQL interprets it as an identifier. If you enclose anything in single

quotation marks, ESQL interprets it as a character literal. You must enclose all

strings (character strings, byte strings, or binary (bit) strings) in quotation marks,

as shown in the examples below. To include a single or double quotation mark

within a string, include two consecutive single or double quotation marks.

Developing ESQL 29

Important: For a full description of field reference syntax, see “ESQL field

references” on page 158.
For more information about ESQL data types, see “ESQL data types in message

flows” on page 146.

Assume that you have created a message flow that handles the message Invoice,

shown in the figure in “Writing ESQL” on page 25. If, for example, you want to

interrogate the element CardType from within a Compute node, use the following

statement:

IF InputBody.Invoice.Payment.CardType=’Visa’ THEN

 DO;

 -- more ESQL --

END IF;

If you want to make the same test in a Database or Filter node (where the

reference is to the single input message), code:

IF Body.Invoice.Payment.CardType=’Visa’ THEN

 DO;

 -- more ESQL --

END IF;

If you want to copy an element from an input XML message to an output message

in the Compute node without changing it, use the following ESQL:

SET OutputRoot.XML.Invoice.Customer.FirstName =

 InputBody.Invoice.Customer.FirstName;

If you want to copy an element from an input XML message to an output message

and update it, for example by folding to uppercase or by calculating a new value,

code:

SET OutputRoot.XML.Invoice.Customer.FirstName =

 UPPER(InputBody.Invoice.Customer.FirstName);

SET OutputRoot.XML.Invoice.InvoiceNo = InputBody.Invoice.InvoiceNo + 1000;

If you want to set a STRING element to a constant value, code:

SET OutputRoot.XML.Invoice.Customer.Title = ’Mr’;

You can also use the equivalent statement:

SET OutputRoot.XML.Invoice.Customer.Title VALUE = ’Mr’;

If you want to update an INTEGER or DECIMAL, for example the element

TillNumber, with the value 26, use the following assignment (valid in the Compute

node only):

The integer data type stores numbers using the 64-bit twos complement form,

allowing numbers that range from -9223372036854775808 to 9223372036854775807.

You can specify hexadecimal notation for integers as well as normal integer literal

format. The hexadecimal letters A to F can be written in upper or lower case, as

can the X after the initial zero, which is required. The example below produces the

same result as the example shown above:

The following examples show SET statements for element types that do not appear

in the example Invoice message.

SET OutputRoot.MRM.Invoice.TillNumber=26;

SET OutputRoot.MRM.Invoice.TillNumber= 0x1A;

30 ESQL

To set a FLOAT element to a non-integer value, code:

To set a BINARY element to a constant value, code:

For BINARY values, you must use an initial character X (upper or lower case) and

enclose the hexadecimal characters (also upper or lower case) in single quotation

marks, as shown.

To set a BOOLEAN element to a constant value (the value 1 equates to true, 0

equates to false), code:

or

You can use the SELECT statement to filter records from an input message without

reformatting the records, and without any knowledge of the complete format of

each record. Consider the following example:

This writes all records from the input Invoice message to the output message if the

WHERE condition (LastName = Smith) is met. All records that do not meet the

condition are not copied from input to output. I is used as an alias for the

correlation name InputRoot.XML.Invoice[].

The declared variable CurrentCustomer is initialized on the DECLARE statement:

this is the most efficient way of declaring a variable for which the initial value is

known.

You can use this alias technique with other SELECT constructs. For example, if you

want to select all the records of the input Invoice message, and create an additional

record:

You could also include an AS clause to place records in a subfolder in the message

tree:

SET OutputRoot.MRM.FloatElement1 = 1.2345e2;

SET OutputRoot.MRM.BinaryElement1 = X’F1F1’;

SET OutputRoot.MRM.BooleanElement1 = true;

SET OutputRoot.MRM.BooleanElement1 = 1;

-- Declare local variable

DECLARE CurrentCustomer CHAR ’Smith’;

-- Loop through the input message

SET OutputRoot.XML.Invoice[] =

 (SELECT I FROM InputRoot.XML.Invoice[] AS I

 WHERE I.Customer.LastName = CurrentCustomer

);

-- Loop through the input message

SET OutputRoot.XML.Invoice[] =

 (SELECT I, ’Customer’ || I.Customer.LastName AS ExtraField

 FROM InputRoot.XML.Invoice[] AS I

);

Developing ESQL 31

If you are querying or setting elements that contain, or might contain, null values,

be aware of the following considerations:

Querying null values

When you compare an element to the ESQL keyword NULL, this tests

whether the element is present in the logical tree that has been created

from the input message by the parser.

 For example, you can check if an invoice number is included in the current

Invoice message with the following statement:

 You can also use an ESQL reference. The following example illustrates this.

 For more information about declaring and using references, see “Creating

dynamic field references” on page 36. For a description of the LASTMOVE

and FIELDVALUE functions, see “LASTMOVE function” on page 301 and

“FIELDTYPE function” on page 296.

 If the message is in the MRM domain, there are additional considerations

for querying null elements that depend on the physical format. For further

details, see “Querying null values in a message in the MRM domain” on

page 87.

Setting null values

There are two statements that you can use to set null values.

1. If you set the element to NULL using the following statement, the

element is deleted from the message tree:

If the message is in the MRM domain, there are additional

considerations for null values that depend on the physical format. For

further details, see “Setting null values in a message in the MRM

domain” on page 87.

This is called implicit null processing.

2. If you set the value of this element to NULL as follows:

-- Loop through the input message

SET OutputRoot.XML.Invoice[] =

 (SELECT I AS Order

 FROM InputRoot.XML.Invoice[] AS I

);

IF InputRoot.XML.Invoice.InvoiceNo IS NULL THEN

 DO;

 -- more ESQL --

END IF;

DECLARE cursor REFERENCE TO InputRoot.MRM.InvoiceNo;

IF LASTMOVE(cursor) = FALSE THEN

 SET OutputRoot.MRM.Analysis = ’InvoiceNo does not exist in logical tree’;

ELSEIF FIELDVALUE(cursor) IS NULL THEN

 SET OutputRoot.MRM.Analysis =

 ’InvoiceNo does exist in logical tree but is defined as an MRM NULL value’;

ELSE

 SET OutputRoot.MRM.Analysis = ’InvoiceNo does exist and has a value’;

END IF;

SET OutputRoot.XML.Invoice.Customer.Title = NULL;

32 ESQL

the element is not deleted from the message tree. Instead, a special

value of NULL is assigned to the element.

If the message is in the MRM domain, the content of the output bit

stream depends on the settings of the physical format null handling

properties. For further details, see “Setting null values in a message in

the MRM domain” on page 87.

This is called explicit null processing.

If you set an MRM complex element or an XML, XMLNS, or JMS parent

element to NULL without using the VALUE keyword, that element and all

its children are deleted from the logical tree.

Accessing known multiple occurrences of an element

When you refer to or create the content of messages, it is very likely that the data

contains repeating fields. If you know how many instances there are of a repeating

field, and you want to access a specific instance of such a field, you can use an

array index as part of a field reference.

For example, you might want to filter on the first line of an address, to expedite

the delivery of an order. Three instances of the element Billling.Address are always

present in the sample message. To test the first line, write an expression such as:

The array index [1] indicates that it is the first instance of the repeating field that

you are interested in (array indices start at 1). An array index such as this can be

used at any point in a field reference, so you could, for example, filter on the

following test:

You can refer to the last instance of a repeating field using the special [<] array

index, and to instances relative to the last (for example, the second to last) as

follows:

v Field[<] indicates the last element.

v Field[<1] indicates the last element.

v Field[<2] indicates the last but one element (the penultimate element).

You can also use the array index [>] to represent the first element, and elements

relative to the first element in a similar way.

v Field[>] indicates the first element. This is equivalent to Field[1].

The following examples refer to the Invoice message using these indexes:

SET OutputRoot.XML.Invoice.Customer.Title VALUE = NULL;

SET OutputRoot.XML.Invoice.Customer.Title = NULL;

IF Body.Invoice.Customer.Billing.Address[1] = ’Patent Office’ THEN

 DO;

 -- more ESQL --

END IF;

IF Body.Invoice."Item"[1].Quantity > 2 THEN

 DO;

 -- more ESQL --

END IF;

Developing ESQL 33

You can also use these special indexes for elements that repeat an unknown

number of times.

Deleting repeating fields:

If you pass a message with several repeats of an element through a message flow

and you want to delete some of the repeats, be aware that the numbering of the

repeats is reordered after each delete. For example, if you have a message with five

repeats of a particular element, and in the message flow you have the following

ESQL:

You might expect elements one and four to be deleted. However, because repeating

elements are stored on a stack, when you delete one, the one above it takes its

place. This means that, in the above example, elements one and five are deleted. To

avoid this problem, delete in reverse order, that is, delete element four first, then

delete element one.

Accessing unknown multiple occurrences of an element

You are very likely to deal with messages that contain repeating fields with an

unknown number of repeats. This is the situation with the Item field in the

example message in “Example message” on page 357.

To write a filter that takes into account all instances of the Item field, you need to

use a construct that can iterate over all instances of a repeating field. The

quantified predicate allows you to execute a predicate against all instances of a

repeating field, and collate the results.

For example, you might want to verify that none of the items that are being

ordered has a quantity greater than 50. To do this you could write:

With the quantified predicate, the first thing to note is the brackets [] on the end of

the field reference after FOR ALL. These tell you that you are iterating over all

instances of the Item field.

In some cases, this syntax appears unnecessary because you can get that

information from the context, but it is done for consistency with other pieces of

syntax.

The AS clause associates the name I with the current instance of the repeating

field. This is similar to the concept of iterator classes used in some object oriented

languages such as C++. The expression in parentheses is a predicate that is

evaluated for each instance of the Item field.

IF Body.Invoice.Customer.Billing.Address[<] = ’Hampshire’ THEN

 DO;

 -- more ESQL --

END IF;

IF Body.Invoice.Customer.Billing.Address[<2] = ’Southampton’ THEN

 DO;

 -- more ESQL --

END IF;

SET OutputRoot.MRM.e_PersonName[1] = NULL;

SET OutputRoot.MRM.e_PersonName[4] = NULL;

FOR ALL Body.Invoice.Purchases."Item"[]

 AS I (I.Quantity <= 50)

34 ESQL

A description of this example is:

Iterate over all instances of the field Item inside Body.Invoice. For each iteration:

1. Bind the name I to the current instance of Item.

2. Evaluate the predicate I.Quantity <= 50. If the predicate:

v Evaluates to TRUE for all instances of Item, return TRUE.

v Is FALSE for any instance of Item, return FALSE.

v For a mixture of TRUE and UNKNOWN, return UNKNOWN.

The above is a description of how the predicate is evaluated if you use the ALL

keyword. An alternative is to specify SOME, or ANY, which are equivalent. In this

case the quantified predicate returns TRUE if the sub-predicate returns TRUE for

any instance of the repeating field. Only if the sub-predicate returns FALSE for all

instances of the repeating field does the quantified predicate return FALSE. If a

mixture of FALSE and UNKNOWN values are returned from the sub-predicate, an

overall value of UNKNOWN is returned.

In the following filter expression:

the sub-predicate evaluates to TRUE. However this next expression returns FALSE:

because the C Primer is not included on this invoice. If some of the items in the

invoice do not include a book title field, the sub-predicate returns UNKNOWN,

and the quantified predicate returns the value UNKNOWN.

To deal with the possibility of null values appearing, write this filter with an

explicit check on the existence of the field, as follows:

The predicate IS NOT NULL ensures that, if an Item field does not contain a Book,

a FALSE value is returned from the sub-predicate.

You can also manipulate arbitrary repeats of fields within a message by using a

SELECT expression, as described in “Referencing columns in a database” on page

64.

You can refer to the first and last instances of a repeating field using the [>] and

[<] array indexes, and to instances relative to the first and last, even if you do not

know how many instances there are. These indexes are described in “Accessing

known multiple occurrences of an element” on page 33.

Alternatively, you can use the CARDINALITY function to determine how many

instances of a repeating field there are. For example:

FOR ANY Body.Invoice.Purchases."Item"[]

 AS I (I.Title = ’The XML Companion’)

FOR ANY Body.Invoice.Purchases."Item"[]

 AS I (I.Title = ’C Primer’)

FOR ANY Body.Invoice.Purchases."Item"[]

 AS I (I.Book IS NOT NULL AND I.Book.Title = ’C Primer’)

DECLARE I INTEGER CARDINALITY(Body.Invoice.Purchases."Item"[])

Developing ESQL 35

Using anonymous field references

You can refer to the array of all children of a particular element by using a path

element of *. So, for example:

is a path that identifies the array of all children of InputRoot. This is often used in

conjunction with an array subscript to refer to a particular child of an entity by

position, rather than by name. For example:

InputRoot.*[<]

Refers to the last child of the root of the input message, that is, the body of

the message.

InputRoot.*[1]

Refers to the first child of the root of the input message, the message

properties.

You might want to find out the name of an element that has been identified with a

path of this kind. To do this, use the FIELDNAME function, which is described in

“FIELDNAME function” on page 295.

Creating dynamic field references

You can use a variable of type REFERENCE as a dynamic reference to navigate a

message tree. This acts in a similar way to a message cursor or a variable pointer.

It is generally simpler and more efficient to use reference variables in preference to

array indexes when you access repeating structures. Reference variables are

accepted everywhere. Field references are accepted and come with a set of

statements and functions to allow detailed manipulation of message trees.

You must declare a dynamic reference before you can use it. A dynamic reference

is declared and initialized in a single statement. The following example shows how

to create and use a reference.

This example declares a dynamic reference, myref, which points to the first item in

the array within Purchases. The value in the first item is incremented by one, and

the pointer (dynamic reference) is moved to the next item. Once again the item

value is incremented by one. This process continues until the pointer moves

outside the scope of the message array (all the items in this array have been

processed) and the LASTMOVE function returns FALSE.

The examples below show further examples.

InputRoot.*[]

-- Declare the dynamic reference

DECLARE myref REFERENCE TO OutputRoot.XML.Invoice.Purchases.Item[1];

-- Continue processing for each item in the array

WHILE LASTMOVE(myref)=TRUE

DO

-- Add 1 to each item in the array

 SET myref = myref + 1;

-- Move the dynamic reference to the next item in the array

 MOVE myref NEXTSIBLING;

END WHILE;

36 ESQL

In the second example, ref2 is set to point to InputBody because the specified field

does not exist.

With the exception of the MOVE statement, which changes the position of the

dynamic reference, you can use a dynamic reference anywhere that you can use a

static reference. The value of the dynamic reference in any expression or statement

is the value of the field or variable to which it currently points. For example, using

the message in “Example message” on page 357, the value of

Invoice.Customer.FirstName is Andrew. If the dynamic reference myref is set to

point at the FirstName field as follows:

the value of myref is Andrew. You can extend this dynamic reference as follows:

This changes the address in the example to Oaklands Hursley Village Hampshire

SO213JR.

The position of a dynamic reference remains fixed even if a tree is modified. To

illustrate this point the steps that follow use the message in “Example message” on

page 357 as their input message and create a modified version of this message as

an output message:

1. Copy the input message to the output message.

2. To modify the output message, first declare a dynamic reference ref1 that

points at the first item, The XML Companion.

 The dynamic reference is now equivalent to the static reference

OutputRoot.XML.Invoice.Purchases.Item[1].

3. Use a create statement to insert a new first item for this purchase.

 The dynamic reference is now equivalent to the static reference

OutputRoot.XML.Invoice.Purchases.Item[2].

Creating new fields

This topic provides example ESQL code for a Compute node that creates a new

output message based on the input message, to which are added a number of

additional fields.

The input message received by the Compute node within the message flow is an

XML message, and has the following content:

DECLARE ref1 REFERENCE TO InputBody.Invoice.Purchases.Item[1];

DECLARE ref2 REFERENCE TO

 InputBody.Invoice.Purchases.NonExistentField;

DECLARE scalar1 CHARACTER;

DECLARE ref3 REFERENCE TO scalar1;

DECLARE myref REFERENCE TO Invoice.Customer;

SET myref.Billing.Address[1] = ’Oaklands’;

DECLARE ref1 REFERENCE TO

 OutputRoot.XML.Invoice.Purchases.Item[1];

CREATE PREVIOUSSIBLING OF ref1 VALUES ’Item’;

Developing ESQL 37

The Compute node is configured and an ESQL module is created that includes the

following ESQL. The code shown below copies the headers from the input message

to the new output message, then creates the entire content of the output message

body.

<TestCase description="This is my TestCase">

 <Identifier>ES03B305_T1</Identifier>

 <Sport>Football</Sport>

 <Date>01/02/2000</Date>

 <Type>LEAGUE</Type>

</TestCase>

38 ESQL

The output message that results from the ESQL shown above has the following

structure and content:

-- copy headers

DECLARE i INTEGER 1;

DECLARE numHeaders INTEGER CARDINALITY(InputRoot.*[]);

WHILE i < numHeaders DO

 SET OutputRoot.*[i] = InputRoot.*[i];

 SET i = i + 1;

END WHILE;

CREATE FIELD OutputRoot.XML.TestCase.description TYPE NameValue VALUE ’This is my TestCase’;

CREATE FIRSTCHILD OF OutputRoot.XML.TestCase Domain(’XML’) NAME ’Identifier’

 VALUE InputRoot.XML.TestCase.Identifier;

CREATE LASTCHILD OF OutputRoot.XML.TestCase Domain(’XML’) NAME ’Sport’

 VALUE InputRoot.XML.TestCase.Sport;

 CREATE LASTCHILD OF OutputRoot.XML.TestCase Domain(’XML’) NAME ’Date’

 VALUE InputRoot.XML.TestCase.Date;

 CREATE LASTCHILD OF OutputRoot.XML.TestCase Domain(’XML’) NAME ’Type’

 VALUE InputRoot.XML.TestCase.Type;

 CREATE FIELD OutputRoot.XML.TestCase.Division[1].Number TYPE NameValue

 VALUE ’Premiership’;

 CREATE FIELD OutputRoot.XML.TestCase.Division[1].Result[1].Number TYPE NameValue VALUE ’1’;

 CREATE FIELD OutputRoot.XML.TestCase.Division[1].Result[1].Home TYPE Name;

 CREATE LASTCHILD OF OutputRoot.XML.TestCase.Division[1].Result[1].Home NAME ’Team’

 VALUE ’Liverpool’ ;

 CREATE LASTCHILD OF OutputRoot.XML.TestCase.Division[1].Result[1].Home NAME ’Score’

 VALUE ’4’;

 CREATE FIELD OutputRoot.XML.TestCase.Division[1].Result[1].Away TYPE Name;

 CREATE LASTCHILD OF OutputRoot.XML.TestCase.Division[1].Result[1].Away NAME ’Team’

 VALUE ’Everton’;

 CREATE LASTCHILD OF OutputRoot.XML.TestCase.Division[1].Result[1].Away NAME ’Score’

 VALUE ’0’;

 CREATE FIELD OutputRoot.XML.TestCase.Division[1].Result[2].Number TYPE NameValue VALUE ’2’;

 CREATE FIELD OutputRoot.XML.TestCase.Division[1].Result[2].Home TYPE Name;

 CREATE LASTCHILD OF OutputRoot.XML.TestCase.Division[1].Result[2].Home NAME ’Team’

 VALUE ’Manchester United’;

 CREATE LASTCHILD OF OutputRoot.XML.TestCase.Division[1].Result[2].Home NAME ’Score’

 VALUE ’2’;

 CREATE FIELD OutputRoot.XML.TestCase.Division[1].Result[2].Away TYPE Name;

 CREATE LASTCHILD OF OutputRoot.XML.TestCase.Division[1].Result[2].Away NAME ’Team’

 VALUE ’Arsenal’;

 CREATE LASTCHILD OF OutputRoot.XML.TestCase.Division[1].Result[2].Away NAME ’Score’

 VALUE ’3’;

 CREATE FIELD OutputRoot.XML.TestCase.Division[2].Number TYPE NameValue

 VALUE ’2’;

 CREATE FIELD OutputRoot.XML.TestCase.Division[2].Result[1].Number TYPE NameValue

 VALUE ’1’;

 CREATE FIELD OutputRoot.XML.TestCase.Division[2].Result[1].Home TYPE Name;

 CREATE LASTCHILD OF OutputRoot.XML.TestCase.Division[2].Result[1].Home NAME ’Team’

 VALUE ’Port Vale’;

 CREATE LASTCHILD OF OutputRoot.XML.TestCase.Division[2].Result[1].Home NAME ’Score’

 VALUE ’9’ ;

 CREATE FIELD OutputRoot.XML.TestCase.Division[2].Result[1].Away TYPE Name;

 CREATE LASTCHILD OF OutputRoot.XML.TestCase.Division[2].Result[1].Away NAME ’Team’

 VALUE ’Brentford’;

 CREATE LASTCHILD OF OutputRoot.XML.TestCase.Division[2].Result[1].Away NAME ’Score’

 VALUE ’5’;

Developing ESQL 39

Generating multiple output messages

You can use the PROPAGATE statement to generate multiple output messages in

the Compute node. The output messages that you generate can have the same or

different content. You can also direct output messages to any of the four alternate

output terminals of the Compute node, or to a Label node.

For example, if you want to create three copies of the input message received by

the Compute node, and send one to the standard ″Out″ terminal of the Compute

node, one to the first alternate ″out1″ terminal of the Compute node, and one to

the Label node ″ThirdCopy″, code the following ESQL:

In the above example, the content of OutputRoot is reset before each PROPAGATE,

because by default the node clears the output message buffer and reclaims the

<TestCase description="This is my TestCase">

 <Identifier>ES03B305_T1</Identifier>

 <Sport>Football</Sport>

 <Date>01/02/2000</Date>

 <Type>LEAGUE</Type>

 <Division Number="Premiership">

 <Result Number="1">

 <Home>

 <Team>Liverpool</Team>

 <Score>4</Score>

 </Home>

 <Away>

 <Team>Everton</Team>

 <Score>0</Score>

 </Away>

 </Result>

 <Result Number="2">

 <Home>

 <Team>Manchester United</Team>

 <Score>2</Score>

 </Home>

 <Away>

 <Team>Arsenal</Team>

 <Score>3</Score>

 </Away>

 </Result>

 </Division>

 <Division Number="2">

 <Result Number="1">

 <Home>

 <Team>Port Vale</Team>

 <Score>9</Score>

 </Home>

 <Away>

 <Team>Brentford</Team>

 <Score>5</Score>

 </Away>

 </Result>

 </Division>

</TestCase>

SET OutputRoot = InputRoot;

PROPAGATE;

SET OutputRoot = InputRoot;

PROPAGATE TO TERMINAL ’out1’;

SET OutputRoot = InputRoot;

PROPAGATE TO LABEL ’ThirdCopy’;

40 ESQL

|
|
|

memory when the PROPAGATE statement completes. An alternative method is to

instruct the node not to clear the output message on the first two PROPAGATE

statements, so that the message is available for routing to the next destination. The

code to do this is:

If you do not initialize the output buffer, an empty message is generated, and the

message flow detects an error and throws an exception.

Also ensure that you copy all required message headers to the output message

buffer for each output message that you propagate.

If you want to modify the output message content before propagating each

message, code the appropriate ESQL to make the changes that you want before

you code the PROPAGATE statement.

If you set up the contents of the last output message that you want to generate,

and propagate it as the final action of the Compute node, you do not have to

include the final PROPAGATE statement. The default action of the Compute node

is to propagate the contents of the output buffer when it terminates. This is

implemented by the RETURN TRUE statement, included as the final statement in

the module skeleton.

For example, if you want to generate three copies of the input message, and not

perform any further action, include this code immediately before the RETURN

TRUE statement:

Alternatively, you can modify the default behavior of the node by changing

RETURN TRUE to RETURN FALSE:

Three output messages are generated by the three PROPAGATE statements. The

final RETURN FALSE statement causes the node to terminate but not propagate a

final output message. Note that the final PROPAGATE statement does not include

the DELETE NONE clause, because the node must release the memory at this

stage.

Using numeric operators with datetime values

This topic provides some examples of the ESQL that you can code to manipulate

datetime values with numeric operators.

Adding an interval to a datetime value

The simplest operation you can perform is to add an interval to, or

SET OutputRoot = InputRoot;

PROPAGATE DELETE NONE;

SET OutputRoot = InputRoot;

PROPAGATE TO TERMINAL ’out1’ DELETE NONE;

SET OutputRoot = InputRoot;

PROPAGATE TO LABEL ’ThirdCopy’;

SET OutputRoot = InputRoot;

PROPAGATE DELETE NONE;

PROPAGATE DELETE NONE;

SET OutputRoot = InputRoot;

PROPAGATE DELETE NONE;

PROPAGATE DELETE NONE;

PROPAGATE;

RETURN FALSE;

Developing ESQL 41

|
|
|
|
|
|
|

subtract an interval from, a datetime value. For example, you could write

the following expressions:

Adding or subtracting two intervals

Two interval values can be combined using addition or subtraction. The

two interval values must be of compatible types. It is not valid to add a

year-month interval to a day-second interval as in the following example:

 The interval qualifier of the resultant interval is sufficient to encompass all

of the fields present in the two operand intervals. For example:

 results in an interval with qualifier DAY TO SECOND, because both day

and second fields are present in at least one of the operand values.

Subtracting two datetime values

Two datetime values can be subtracted to return an interval. In order to do

this an interval qualifier must be given in the expression to indicate what

precision the result should be returned in. For example:

 returns the number of days since the 4th July 1776, whereas:

 returns the age of the day in minutes and seconds.

Scaling intervals

An interval value can be multiplied by or divided by an integer factor:

Calculating a time interval

This ESQL example calculates the time interval between an input WebSphere MQ

message being put on the input queue, and the time that it is processed in the

current Compute node.

(When you make a call to a CURRENT_ datetime function, the value that is

returned is identical to the value returned to another call in the same node. This

ensures that you can use the function consistently within a single node.)

 CALL CopyMessageHeaders();

 Declare PutTime INTERVAL;

 SET PutTime = (CURRENT_GMTTIME - InputRoot.MQMD.PutTime) MINUTE TO SECOND;

 SET OutputRoot.XML.Test.PutTime = PutTime;

The output message has the format (although actual values vary):

<Test>

 <PutTime>INTERVAL '1:21.862' MINUTE TO SECOND</PutTime>

</Test>

DATE ’2000-03-29’ + INTERVAL ’1’ MONTH

TIMESTAMP ’1999-12-31 23:59:59’ + INTERVAL ’1’ SECOND

INTERVAL ’1-06’ YEAR TO MONTH + INTERVAL ’20’ DAY

INTERVAL ’2 01’ DAY TO HOUR + INTERVAL ’123:59’ MINUTE TO SECOND

(CURRENT_DATE - DATE ’1776-07-04’) DAY

(CURRENT_TIME - TIME ’00:00:00’) MINUTE TO SECOND

INTERVAL ’2:30’ MINUTE TO SECOND / 4

42 ESQL

The following code snippet sets a timer, to be triggered after a specified interval

from the start of processing, in order to check that processing has completed. If

processing has not completed within the elapsed time, the firing of the timer

might, for example, trigger some recovery processing.

The StartTime field of the timeout request message is set to the current time plus

the allowed delay period, which is defined by a user-defined property on the flow.

(The user-defined property has been set to a string of the form ″HH:MM:SS″ by the

administrator.)

DECLARE StartDelyIntervalStr EXTERNAL CHARACTER ’01:15:05’;

 CREATE PROCEDURE ValidateTimeoutRequest() BEGIN

 -- Set the timeout period

 DECLARE timeoutStartTimeRef REFERENCE TO

 OutputRoot.XMLNSC.Envelope.Header.TimeoutRequest.StartTime;

 IF LASTMOVE(timeoutStartTimeRef)

 THEN

 -- Already set

 ELSE

 -- Set it from the UDP StartDelyIntervalStr

 DECLARE startAtTime TIME CURRENT_TIME

 + CAST(StartDelyIntervalStr AS INTERVAL HOUR TO SECOND);

 -- Convert "TIME ’hh.mm.ss.fff’" to hh.mm.ss format

 -- needed in StartTime field

 DECLARE startAtTimeStr CHAR;

 SET startAtTimeStr = startAtTime;

 SET startAtTimeStr = SUBSTRING(startAtTimeStr FROM 7 FOR 8);

 SET OutputRoot.XMLNSC.Envelope.Header.TimeoutRequest.StartTime

 = startAtTimeStr;

 END IF;

 END;

Selecting a subfield from a larger field

You might have a message flow that processes a message containing delimited

subfields. You can code ESQL to extract a subfield from the surrounding content if

you know the delimiters of the subfield.

If you create a function that performs this task, or a similar one, you can invoke it

both from ESQL modules (for Compute, Database, and Filter nodes) and from

mapping files (used by DataDelete, DataInsert, DataUpdate, Extract, Mapping, and

Warehouse nodes).

The following function example extracts a particular subfield of a message that is

delimited by a specific character.

CREATE FUNCTION SelectSubField

 (SourceString CHAR, Delimiter CHAR, TargetStringPosition INT)

 RETURNS CHAR

-- This function returns a substring at parameter position TargetStringPosition within the

-- passed parameter SourceString. An example of use might be:

-- SelectSubField(MySourceField,’ ’,2) which will select the second subfield from the

-- field MySourceField delimited by a blank. If MySourceField has the value

-- "First Second Third" the function will return the value "Second"

 BEGIN

 DECLARE DelimiterPosition INT;

 DECLARE CurrentFieldPosition INT 1;

 DECLARE StartNewString INT 1;

 DECLARE WorkingSource CHAR SourceString;

 SET DelimiterPosition = POSITION(Delimiter IN SourceString);

 WHILE CurrentFieldPosition < TargetStringPosition

Developing ESQL 43

DO

 IF DelimiterPosition = 0 THEN

 -- DelimiterPosition will be 0 if the delimiter is not found

 -- exit the loop

 SET CurrentFieldPosition = TargetStringPosition;

 ELSE

 SET StartNewString = DelimiterPosition + 1;

 SET WorkingSource = SUBSTRING(WorkingSource FROM StartNewString);

 SET DelimiterPosition = POSITION(Delimiter IN WorkingSource);

 SET CurrentFieldPosition = CurrentFieldPosition + 1;

 END IF;

 END WHILE;

 IF DelimiterPosition > 0 THEN

 -- Remove anything following the delimiter from the string

 SET WorkingSource = SUBSTRING(WorkingSource FROM 1 FOR DelimiterPosition);

 SET WorkingSource = TRIM(TRAILING Delimiter FROM WorkingSource);

 END IF;

 RETURN WorkingSource;

END;

Copying repeating fields

You can configure a node with ESQL to copy repeating fields in several ways.

Consider an input XML message that contains a repeating structure:

...

 <Field_top>

 <field1></field1>

 <field1></field1>

 <field1></field1>

 <field1></field1>

 <field1></field1>

 </Field_top>

.....

You cannot copy this whole structure field with the following statement:

SET OutputRoot.XML.Output_top.Outfield1 = InputRoot.XML.Field_top.field1;

That statement copies only the first repeat, and therefore produces the same result

as this statement:

SET OutputRoot.XML.Output_top.Outfield1[1] = InputRoot.XML.Field_top.field1[1];

You can copy the fields within a loop, controlling the iterations with the

CARDINALITY of the input field:

SET I = 1;

SET J = CARDINALITY(InputRoot.XML.Field_top.field1[]);

WHILE I <= J DO

 SET OutputRoot.XML.Output_top.Outfield1[I] = InputRoot.XML.Field_top.field1[I];

 SET I = I + 1;

END WHILE;

This might be appropriate if you want to modify each field in the output message

as you copy it from the input field (for example, add a number to it, or fold its

contents to uppercase), or after it has been copied. If the output message already

contained more Field1 fields than existed in the input message, the surplus fields

would not be modified by the loop and would remain in the output message.

The following single statement copies the iterations of the input fields to the

output fields, and deletes any surplus fields in the output message.

SET OutputRoot.XML.Output_top.Outfield1.[] = InputRoot.XML.Field_top.field1[];

44 ESQL

The example below shows how you can rename the elements when you copy them

into the output tree. This statement does not copy across the source element name,

therefore each field1 element becomes a Target element.

SET OutputRoot.XML.Output_top.Outfield1.Target[] =

 (SELECT I FROM InputRoot.XML.Field_top.field1[] AS I);

The next example shows a different way to do the same operation; it produces the

same end result.

SET OutputRoot.XML.Output_top.Outfield2.Target[]

 = InputRoot.XML.Field_top.field1[];

The following example copies across the source element name. Each field1

element is retained as a field1 element under the Target element.

SET OutputRoot.XML.Output_top.Outfield3.Target.[]

 = InputRoot.XML.Field_top.field1[];

This example is an alternative way to achieve the same result, with field1

elements created under the Target element.

SET OutputRoot.XML.Output_top.Outfield4.Target.*[]

 = InputRoot.XML.Field_top.field1[];

These examples show that there are several ways in which you can code ESQL to

copy repeating fields from source to target. Select the most appropriate method to

achieve the results that you require.

The principals shown here apply equally to all areas of the message tree to which

you can write data, not just the output message tree.

A note about copying fields:

Be aware that, when copying an input message element to an output element, not

only the value of the output element but also its type is set to that of the input

element. This means that if, for example, you have an input XML document with

an attribute, and you want to set a Field element (rather than an attribute) in your

output message to the value of the input attribute, you have to include a TYPE

clause cast to change the element-type from attribute to Field.

For example, given an input like:

<Field01 Attrib01=’Attrib01_Value’>Field01_Value</Field01>

To create an output like:

<MyField_A MyAttrib_A=’Attrib01_Value’ MyAttrib_B=’Field01_Value’ >

 <MyField_B>Field01_Value</MyField_BC>

 <MyField_C>Attrib01_Value</MyField_C>

 </MyField_A’>

You would use the following ESQL:

-- Create output attribute from input attribute

SET OutputRoot.XMLNSC.MyField_A.MyAttrib_A = InputRoot.XMLNSC.Field01.Attrib01;

-- Create output field from input field

SET OutputRoot.XMLNSC.MyField_A.MyField_B = InputRoot.XMLNSC.Field01;

-- Create output attribute from input field value, noting we have to

-- "cast" back to an attribute element

SET OutputRoot.XMLNSC.MyField_A.(XMLNSC.Attribute)MyAttrib_B =

 InputRoot.XMLNSC.Field01;

-- Create output field from input attribute value, noting we have to

Developing ESQL 45

-- "cast" back to a field element

SET OutputRoot.XMLNSC.MyField_A.(XMLNSC.Field)MyField_C =

 InputRoot.XMLNSC.Field01.Attrib01;

Manipulating repeating fields in a message tree

This topic describes the use of the SELECT function, and other column functions,

to manipulate repeating fields in a message tree.

Suppose that you want to perform a special action on invoices that have a total

order value greater than a certain amount. To calculate the total order value of an

Invoice field, you must multiply the Price fields by the Quantity fields in all the

Items in the message, and total the result. You can do this using a SELECT

expression as follows:

The example assumes that you need to use CAST expressions to cast the string

values of the fields Price and Quantity into the correct data types. The cast of the

Price field into a decimal produces a decimal value with the natural scale and

precision, that is, whatever scale and precision is necessary to represent the

number. These CASTs would not be necessary if the data were already in an

appropriate data type.

The SELECT expression works in a similar way to the quantified predicate, and in

much the same way that a SELECT works in standard database SQL. The FROM

clause specifies what is being iterated, in this case, all Item fields in Invoice, and

establishes that the current instance of Item can be referred to using I. This form of

SELECT involves a column function, in this case the SUM function, so the SELECT

is evaluated by adding together the results of evaluating the expression inside the

SUM function for each Item field in the Invoice. As with standard SQL, NULL

values are ignored by column functions, with the exception of the COUNT column

function explained below, and a NULL value is returned by the column function

only if there are no non-NULL values to combine.

The other column functions that are provided are MAX, MIN, and COUNT. The

COUNT function has two forms that work in different ways with regard to

NULLs. In the first form you use it much like the SUM function above, for

example:

This expression returns the number of Item fields for which the Quantity field is

non-NULL. That is, the COUNT function counts non-NULL values, in the same

way that the SUM function adds non-NULL values. The alternative way of using

the COUNT function is as follows:

Using COUNT(*) counts the total number of Item fields, regardless of whether any

of the fields is NULL. The above example is in fact equivalent to using the

CARDINALITY function, as in the following:

(

 SELECT SUM(CAST(I.Price AS DECIMAL) * CAST(I.Quantity AS INTEGER))

 FROM Body.Invoice.Purchases."Item"[] AS I

)

SELECT COUNT(I.Quantity)

 FROM Body.Invoice.Purchases."Item"[] AS I

SELECT COUNT(*)

 FROM Body.Invoice.Purchases."Item"[] AS I

46 ESQL

In all the examples of SELECT given here, just as in standard SQL, you could use a

WHERE clause to provide filtering on the fields.

Manipulating other parts of the message tree

The following topics describe how you can access parts of the message tree other

than the message body data. These parts of the logical tree are independent of the

domain in which the message exists, and all these topics apply to messages in the

BLOB domain in addition to all other supported domains.

v “Accessing headers”

v “Accessing the Properties tree” on page 49

v “Accessing the LocalEnvironment tree” on page 50

v “Accessing the Environment tree” on page 53

v “Accessing the ExceptionList tree” on page 54

Accessing headers

If the input message received by an input node includes message headers that are

recognized by the input node, the node invokes the correct parser for each header.

Parsers are supplied for most WebSphere MQ headers. The topics listed below

provide some guidance for accessing the information in the MQMD and MQRFH2

headers, which you can follow as general guidance for accessing other headers also

present in your messages.

Every header has its own correlation name, for example, MQMD, and you must

use this in all ESQL statements that refer to or set the content of this tree:

v “Accessing the MQMD header”

v “Accessing the MQRFH2 header” on page 48

For further details of the contents of these and other WebSphere MQ headers for

which WebSphere Message Broker provides a parser, see Element definitions for

message parsers.

Accessing the MQMD header:

WebSphere MQ, WebSphere MQ Everyplace, and SCADA messages include an

MQMD header. You can refer to the fields within the MQMD, and you can update

them in a Compute node.

For example, you might want to copy the message identifier MSGID in the MQMD

to another field in your output message. To do that, code:

If you send a message to an EBCDIC system from a distributed system, you might

need to convert the message to a compatible CodedCharSetId and Encoding. To do

this, code the following ESQL in the Compute node:

CARDINALITY(Body.Invoice.Purchases."Item"[]

SET OutputRoot.MRM.Identifier = InputRoot.MQMD.MsgId;

SET OutputRoot.MQMD.CodedCharSetId = 500;

SET OutputRoot.MQMD.Encoding = 785;

Developing ESQL 47

The MQMD properties of CodedCharSetId and Encoding define the code page and

encoding of the section of the message that follows (typically this is either the

MQRFH2 header or the message body itself).

Accessing the MQRFH2 header:

When you construct MQRFH2 headers in a Compute node, there are two types of

fields:

v Fields in the MQRFH2 header structure (for example, Format and

NameValueCCSID)

v Fields in the MQRFH2 NameValue buffer (for example mcd and psc)

To differentiate between these two field types, insert a value in front of the

referenced field in the MQRFH2 field to identify its type (a value for the

NameValue buffer is not required because this is the default). The value that you

specify for the header structure is (MQRFH2.Field).

For example:

v To create or change an MQRFH2 Format field, specify the following ESQL:

v To create or change the psc folder with a topic:

v To add an MQRFH2 header to an outgoing message that is to be used to make a

subscription request:

Note the use of a variable, J, initialized to the value of the cardinality of the

existing headers in the message. This is more efficient than calculating the

cardinality on each iteration of the loop, which happens if you code the

following WHILE statement:

Note: The MQRFH2 header can be parsed in either the MQRFH2 parser domain or

the MQRFH2C compact parser domain. Use the MQRFH2C compact parser

by selecting the Use MQRFH2C Compact Parser for MQRFH2 Domain check box

on the input node of the message flow.

SET OutputRoot.MQRFH2.(MQRFH2.Field)Format = ’MQSTR ’;

SET OutputRoot.MQRFH2.psc.Topic = ’department’;

DECLARE I INTEGER 1;

DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I=I+1;

END WHILE;

SET OutputRoot.MQRFH2.(MQRFH2.Field)Version = 2;

SET OutputRoot.MQRFH2.(MQRFH2.Field)Format = ’MQSTR’;

SET OutputRoot.MQRFH2.(MQRFH2.Field)NameValueCCSID = 1208;

SET OutputRoot.MQRFH2.psc.Command = ’RegSub’;

SET OutputRoot.MQRFH2.psc.Topic = "InputRoot"."MRM"."topel";

SET OutputRoot.MQRFH2.psc.QMgrName = ’DebugQM’;

SET OutputRoot.MQRFH2.psc.QName = ’PUBOUT’;

SET OutputRoot.MQRFH2.psc.RegOpt = ’PersAsPub’;

WHILE I < CARDINALITY(InputRoot.*[]) DO

48 ESQL

Accessing the Properties tree

The Properties tree has its own correlation name, Properties, and you must use this

in all ESQL statements that refer to or set the content of this tree.

The fields in the Properties tree contain values that define the characteristics of the

message. For example, the Properties tree contains a field for the message domain,

and fields for the encoding and CCSID in which message data is encoded. For a

full list of fields in this tree, see Data types for elements in the Properties subtree.

You can interrogate and update these fields using the appropriate ESQL

statements. If you create a new output message in the Compute node, you must

set values for the message properties.

Setting output message properties:

If you use the Compute node to generate a new output message, you must set its

properties in the Properties tree. The output message properties do not have to be

the same as the input message properties.

For example, to set the output message properties for an output MRM message, set

the following properties:

 Property Value

Message Domain MRM

Message Set Message set identifier

Message Type Message name¹

Message Format Physical format name²

Notes:

1. If you are using multipart messages, refer to Multipart messages for

details of how MessageType is used.

2. The name that you specify for the physical layer must match the name

that you have defined for it. The default physical layer names are CWF1,

XML1, and TDS1.

This ESQL procedure sets message properties to values passed in by the calling

statement. You might find that you have to perform this task frequently, and you

can use a procedure like this in many different nodes and message flows. If you

prefer, you can code ESQL that sets specific values.

To set the output message domain, you can set the message property, or you can

code ESQL statements that refer to the required domain in the second qualifier of

CREATE PROCEDURE setMessageProperties(IN OutputRoot REFERENCE, IN setName char,

 IN typeName char, IN formatName char) BEGIN

 /**

 * A procedure that sets the message properties

 **/

 set OutputRoot.Properties.MessageSet = setName;

 set OutputRoot.Properties.MessageType = typeName;

 set OutputRoot.Properties.MessageFormat = formatName;

END;

Developing ESQL 49

the SET statement, the parser field. For example, the ESQL statement sets the

domain to MRM:

This ESQL statement sets the domain to XML:

Do not specify more than one domain in the ESQL for any single message.

However, if you use PROPAGATE statements to generate several output messages,

you can set a different domain for each message.

For information about the full list of elements in the Properties tree, see Data types

for elements in the Properties subtree.

Accessing the LocalEnvironment tree

The LocalEnvironment tree has its own correlation name, LocalEnvironment, and

you must use this in all ESQL statements that refer to or set the content of this

tree.

The LocalEnvironment tree is used by the broker, and you can refer to and modify

this information. You can also extend the tree to contain information that you

create yourself. You can create subtrees within this tree that you can use as a

scratchpad or working area.

The message flow sets up information in two subtrees, Destination and

WrittenDestination, below the LocalEnvironment root. You can refer to the content

of both of these, and can write to them to influence the way in which the message

flow processes your message. However, if you write to these areas, ensure that you

follow the defined structure to ensure that the tree remains valid.

If you want the LocalEnvironment tree to be included in the output message that

is propagated by the Compute node, you must set the Compute node property

Compute mode to a value that includes LocalEnvironment (for example, All). If you

do not, the LocalEnvironment tree is not copied to the output message.

The information that you insert into DestinationData or Defaults depends on the

characteristic of the corresponding node property:

v If a node property is represented by a check box (for example, New Message ID),

set the Defaults or DestinationData element to Yes (equivalent to selecting the

check box) or No (equivalent to clearing the check box).

v If a node property is represented by a drop-down list (for example, Transaction

Mode), set the Defaults or DestinationData element to the appropriate character

string (for example Automatic).

v If a node property is represented by a text entry field (for example, Queue

Manager Name), set the Defaults or DestinationData element to the character

string that you would enter in this field.

If necessary, configure the sending node to indicate where the destination

information is. For example, for the output node MQOutput, set Destination Mode:

v If you set Destination Mode to Queue Name, the output message is sent to the

queue identified in the output node properties Queue Name and Queue Manager

Name. Destination is not referenced by the node.

SET OutputRoot.MRM.Field1 = ’field1 data’;

SET OutputRoot.XML.Field1 = ’field1 data’;

50 ESQL

v If you set Destination Mode to Destination List, the node extracts the

destination information from the Destination subtree. This means that you can

send a single message to multiple destinations, if you configure Destination and

a single output node correctly. The node only checks the node properties if a

value is not available in Destination (as described above).

v If you set Destination Mode to Reply To Queue, the message is sent to the reply-to

queue identified in the MQMD in this message (field ReplyToQ). Destination is

not referenced by the node.

“Populating Destination in the LocalEnvironment tree” on page 52 includes ESQL

procedures that perform typical updates to the LocalEnvironment. Review the

ESQL statements in these procedures to see how to modify LocalEnvironment. You

can use these procedures unchanged, or modify them for your own requirements.

“Using scratchpad areas in LocalEnvironment” describes how to extend the

contents of this tree for your own purposes.

For another example of how you can use LocalEnvironment to modify the

behavior of a message flow, refer to the XML_PassengerQuery message flow in the

Airline Reservations sample sample program. The Compute node in this message

flow writes a list of destinations in the RouterList subtree of Destination that are

used as labels by a later RouteToLabel node that propagates the message to the

corresponding Label node.

Using scratchpad areas in LocalEnvironment:

The LocalEnvironment tree includes a subtree called Variables. This is always

created, but is never populated by the message flow. Use this area for your own

purposes, for example to pass information from one node to another. You can

create other subtrees in the LocalEnvironment tree if you choose.

The advantage of creating your own data in a scratchpad in the LocalEnvironment

is that this data can be propagated as part of the logical tree to subsequent nodes

in the message flow. If you create a new output message in a Compute node, you

can also include all or part of the LocalEnvironment tree from the input message in

the new output message.

To ensure that the information in the LocalEnvironment is propagated further

down the flow, the Compute mode property of the Compute node must be set to

include LocalEnvironment as part of the output tree (for example, specify

LocalEnvironment and Message). See Setting the mode for further details about

Compute mode.

However, any data updates or additions that you make in one node are not

retained if the message flows backwards through the message flow (for example, if

an exception is thrown). If you create your own data, and want that data to be

preserved throughout the message flow, you must use the Environment tree.

You can set values in the Variables subtree in a Compute node that are used later

by another node (Compute, Database, or Filter) for some purpose that you

determine when you configure the message flow.

Because LocalEnvironment is not in scope in a Compute node,

InputLocalEnvironment and OutputLocalEnvironment must be used instead.

Developing ESQL 51

|
|
|
|
|

|
|
|
|
|

|
|

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.res

For example, you might use the scratchpad in the LocalEnvironment to propagate

the destination of an output message to subsequent nodes in a message flow. Your

first Compute node determines that the output messages from this message flow

must go to WebSphere MQ queues. Include the following ESQL to insert this

information into the LocalEnvironment by setting the value of OutputLocation in

the OutputLocalEnvironment:

Your second Compute node can access this information from its input message. In

the ESQL in this node, use the correlation name InputLocalEnvironment to identify

the LocalEnvironment tree within the input message that contains this data. The

following ESQL sets queueManagerName and queueName based on the content of

OutputLocation in the LocalEnvironment, using InputLocalEnvironment:

IF InputLocalEnvironment.Variables.OutputLocation = ’MQ’ THEN

 SET OutputLocalEnvironment.Destination.MQ.DestinationData.queueManagerName = ’myQManagerName’;

 SET OutputLocalEnvironment.Destination.MQ.DestinationData.queueName = ’myQueueName’;

END IF;

In the example queueManagerName and queueName are set for the Destination

subtree in the output message. The Compute mode of the second compute node

must be set to include the LocalEnvironment tree in the output message. Configure

the MQOutput node to use the destination list that you have created in the

LocalEnvironment tree by setting property Destination Mode to Destination List.

For information about the full list of elements in the DestinationData subtree, see

Data types for elements in the DestinationData subtree.

Populating Destination in the LocalEnvironment tree:

You can use the Destination subtree to set up target destinations that are used by

output nodes, the HTTPRequest node, and the RouteToLabel node. The examples

below show how you can create and use an ESQL procedure to perform the task of

setting up values for each of these uses.

You can copy and use these procedures as shown, or you can modify or extend

them to perform similar tasks.

Adding a queue name for the MQOutput node.

SET OutputLocalEnvironment.Variables.OutputLocation = ’MQ’;

CREATE PROCEDURE addToMQDestinationList(IN LocalEnvironment REFERENCE, IN newQueue char) BEGIN

 /***

 * A procedure that will add a queue name to the MQ destination list

 * in the local environment.

 * This list is used by a MQOuput node which has its mode set to Destination list.

 *

 * IN LocalEnvironment: LocalEnvironment to be modified.

 * Set this to OutputLocalEnvironment when calling this procedure

 * IN queue: queue to be added to the list

 *

 ***/

 DECLARE I INTEGER CARDINALITY(LocalEnvironment.Destination.MQDestinationList.DestinationData[]);

 IF I = 0 THEN

 SET LocalEnvironment.Destination.MQDestinationList.DestinationData[1].queueName = newQueue;

 ELSE

 SET LocalEnvironment.Destination.MQDestinationList.DestinationData[I+1].queueName = newQueue;

 END IF;

 END;

52 ESQL

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

Changing the default URL for an HTTPRequest node request.

Adding a label for the RouteToLabel node.

Accessing the Environment tree

The Environment tree has its own correlation name, Environment, and you must

use this in all ESQL statements that refer to or set the content of this tree.

The Environment tree is always created when the logical tree is created for an

input message. However the message flow neither populates it nor uses its

contents. You can use this tree for your own purposes, for example to pass

information from one node to another. You can use the whole tree as a scratchpad

or working area.

The advantage of creating your own data in Environment is that this data is

propagated as part of the logical tree to subsequent nodes in the message flow. If

you create a new output message in a Compute node, the Environment tree is also

copied from the input message to the new output message. (This is in contrast to

the LocalEnvironment tree, which is only included in the output message if you

explicitly request that it is).

Only one Environment tree is present for the duration of the message flow. Any

data updates or additions that you make in one node are retained and all nodes in

the message flow have access to the latest copy of this tree. Even if the message

flows back through the message flow (for example, if an exception is thrown, or if

the message is processed through the second terminal of the FlowOrder node), the

latest state is retained.

CREATE PROCEDURE overrideDefaultHTTPRequestURL(IN LocalEnvironment REFERENCE, IN newUrl char) BEGIN

 /***

 * A procedure that will change the URL to which the HTTPRequest node will send the request.

 *

 * IN LocalEnvironment: LocalEnvironment to be modified.

 * Set this to OutputLocalEnvironment when calling this procedure

 * IN queue: URL to send the request to.

 *

 ***/

 set LocalEnvironment.Destination.HTTP.RequestURL = newUrl;

END;

CREATE PROCEDURE addToRouteToLabelList(IN LocalEnvironment REFERENCE, IN newLabel char) BEGIN

 /***

 * A procedure that will add a label name to the RouteToLabel list

 * in the local environment.

 * This list is used by a RoteToLabel node.

 *

 * IN LocalEnvironment: LocalEnvironment to be modified.

 * Set this to OutputLocalEnvironment when calling this procedure

 * IN label: label to be added to the list

 *

 ***/

 if LocalEnvironment.Destination.RouterList.DestinationData is null then

 set LocalEnvironment.Destination.RouterList.DestinationData."label" = newLabel;

 else

 create LASTCHILD OF LocalEnvironment.Destination.RouterList.DestinationData

 NAME ’label’ VALUE newLabel;

 end if;

END;

Developing ESQL 53

This is in contrast to the LocalEnvironment tree, which reverts to its previous state

if the message flows back through the message flow.

You can use this tree for any purpose you choose. For example, you could use the

following ESQL statements to create fields in the tree:

This information is now available to all nodes to which a message is propagated,

regardless of their relative position in the message flow.

For another example of how you can use Environment to store information used

by other nodes in the message flow, refer to the Reservation message flow in the

Airline sample program. The Compute node in this message flow writes

information to the subtree Environment.Variables that it has extracted from a

database according to the value of a field in the input message.

Accessing the ExceptionList tree

The ExceptionList tree has its own correlation name, ExceptionList, and you must

use this in all ESQL statements that refer to or set the content of this tree.

This tree is created with the logical tree when an input message is parsed. It is

initially empty, and is only populated if an exception occurs during message flow

processing. It is possible that more than one exception can occur; if this happens,

the ExceptionList tree contains a subtree for each exception.

You can access the ExceptionList tree in Compute, Database, and Filter nodes, and

you can update it in a Compute node. You must use the appropriate correlation

name; Exception List for a Database or Filter node, and InputExceptionList for a

Compute node.

You might want to access this tree in a node in an error handling procedure. For

example, you might want to route the message to a different path based on the

type of exception, for example one that you have explicitly generated using an

ESQL THROW statement, or one that the broker has generated.

The following ESQL shows how you can access the ExceptionList and process each

child that it contains:

The second example below shows an extract of ESQL that has been coded for a

Compute node to loop through the exception list to the last (nested) exception

SET Environment.Variables =

 ROW(’granary’ AS bread, ’reisling’ AS wine, ’stilton’ AS cheese);

SET Environment.Variables.Colors[] =

 LIST{’yellow’, ’green’, ’blue’, ’red’, ’black’};

SET Environment.Variables.Country[] = LIST{ROW(’UK’ AS name, ’pound’ AS currency),

 ROW(’USA’ AS name, ’dollar’ AS currency)};

-- Declare a reference for the ExceptionList

-- (in a Compute node use InputExceptionList)

DECLARE start REFERENCE TO ExceptionList.*[1];

-- Loop through the exception list children

WHILE start.Number IS NOT NULL DO

 -- more ESQL

 -- Move start to the last child of the field to which it currently points

 MOVE start LASTCHILD;

END WHILE;

54 ESQL

description and extract the error number. This error relates to the original cause of

the problem and normally provides the most precise information. Subsequent

action taken by the message flow can be decided by the error number retrieved in

this way.

For more information about the use of ExceptionList, refer to the subflow in the

Error Handler sample, which includes ESQL that interrogates the ExceptionList

structure and takes specific action according to its content.

Transforming from one data type to another

You can use ESQL to transform messages and data types in many ways. The

following topics provide guidance about the following:

v “Casting data from message fields”

v “Converting code page and message encoding” on page 56

v “Converting EBCDIC NL to ASCII CR LF” on page 58

v “Changing message format” on page 61

Casting data from message fields

When you compare an element with another element, variable or constant, ensure

that the value with which you are comparing the element is consistent (for

example, character with character). If the values are not consistent, the broker

generates a runtime error if it cannot provide an implicit casting to resolve the

inconsistency. For details of what implicit casts are supported, see “Implicit casts”

on page 339.

You can use the CAST function to transform the data type of one value to match

the data type of the other. For example, you can use the CAST function when you

process generic XML messages. All fields in an XML message have character

values, so if you want to perform arithmetic calculations or datetime comparisons,

for example, you must convert the string value of the field into a value of the

appropriate type using CAST.

CREATE PROCEDURE getLastExceptionDetail(IN InputTree reference,OUT messageNumber integer,

OUT messageText char)

 /**

 * A procedure that will get the details of the last exception from a message

 * IN InputTree: The incoming exception list

 * IN messageNumber: The last message numberr.

 * IN messageText: The last message text.

 ***/

 BEGIN

 -- Create a reference to the first child of the exception list

 declare ptrException reference to InputTree.*[1];

 -- keep looping while the moves to the child of exception list work

 WHILE lastmove(ptrException) DO

 -- store the current values for the error number and text

 IF ptrException.Number is not null THEN

 SET messageNumber = ptrException.Number;

 SET messageText = ptrException.Text;

 END IF;

 -- now move to the last child which should be the next exceptionlist

 move ptrException lastchild;

 END WHILE;

 END;

Developing ESQL 55

In the Invoice message, the field InvoiceDate contains the date of the invoice. If

you want to refer to or manipulate this field, you must CAST it to the correct

format first. For example, to refer to this field in a test:

This converts the string value of the InvoiceDate field into a date value, and

compares it to the current date.

Another example is casting from integer to character:

Converting code page and message encoding

You can use ESQL within a Compute node to convert data for code page and

message encoding. If your message flow is processing WebSphere MQ messages,

you can use WebSphere MQ facilities (including get and put options and

WebSphere MQ data conversion exits) to provide these conversions. If you are not

processing WebSphere MQ messages, or you choose not to use WebSphere MQ

facilities, you can use WebSphere Message Broker facilities by coding the

appropriate ESQL in a Compute node in your message flow.

The contents of the MQMD, the MQRFH2, and the message body of a message in

the MRM domain that has been modeled with a CWF physical format can be

subject to code page and encoding conversion. The contents of a message body of

a message in the XML, XMLNS, and JMS domains, and those messages in the

MRM domain that have been modeled with an XML or TDS physical format, are

treated as strings. Only code page conversion applies; no encoding conversion is

required.

For messages in the MRM domain modeled with a CWF physical format, you can

set the MQMD CCSID and Encoding fields of the output message, plus the CCSID

and Encoding of any additional headers, to the required target value.

For messages in the MRM domain modeled with an XML or TDS physical format,

you can set the MQMD CCSID field of the output message, plus the CCSID of any

additional headers. XML and TDS data is handled as strings and is therefore

subject to CCSID conversion only.

An example WebSphere MQ message has an MQMD header, an MQRFH2 header,

and a message body. To convert this message to a mainframe CodedCharSetId and

Encoding, code the following ESQL in the Compute node:

The following example illustrates what you must do to modify a CWF message so

that it can be passed from WebSphere Message Broker to IMS™ on z/OS.

IF CAST(Body.Invoice.InvoiceDate AS DATE) = CURRENT_DATE THEN

DECLARE I INTEGER 1;

DECLARE C CHARACTER;

-- The following statement generates an error

SET C = I;

-- The following statement is valid

SET C = CAST(I AS CHARACTER);

SET OutputRoot.MQMD.CodedCharSetId = 500;

SET OutputRoot.MQMD.Encoding = 785;

SET OutputRoot.MQRFH2.CodedCharSetId = 500;

SET OutputRoot.MQRFH2.Encoding = 785;

56 ESQL

1. You have defined the input message in XML and are using an MQRFH2

header. Remove the header before passing the message to IMS.

2. The message passed to IMS must have MQIIH header, and must be in the

z/OS code page. This message is modeled in the MRM and has the name

IMS1. Define the PIC X fields in this message as logical type string for

conversions between EBCDIC and ASCII to take place. If they are logical type

binary, no data conversion occurs; binary data is ignored when a CWF message

is parsed by the MRM parser.

3. The message received from IMS is also defined in the MRM and has the name

IMS2. Define the PIC X fields in this message as logical type string for

conversions between EBCDIC and ASCII to take place. If they are logical type

binary, no data conversion occurs; binary data is ignored when a CWF message

is parsed by the MRM parser.

4. Convert the reply message to the Windows code page. The MQIIH header is

retained on this message.

5. You have created a message flow that contains the following nodes: :

a. The outbound flow, MQInput1 --> Compute1 --> MQOutput1.

b. The inbound flow, MQInput2 --> Compute2 --> MQOutput2.
6. Code ESQL in Compute1 (outbound) node as follows, specifying the relevant

MessageSet id. This code shows the use of the default CWF physical layer

name. You must use the name that matches your model definitions. If you

specify an incorrect value, the broker fails with message BIP5431.

-- Loop to copy message headers

DECLARE I INTEGER 1;

DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

WHILE I < J - 1 DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I=I+1;

END WHILE;

SET OutputRoot.MQMD.CodedCharSetId = 500;

SET OutputRoot.MQMD.Encoding = 785;

SET OutputRoot.MQMD.Format = ’MQIMS ’;

SET OutputRoot.MQIIH.StrucId = ’IIH ’;

SET OutputRoot.MQIIH.Version = 1;

SET OutputRoot.MQIIH.StrucLength = 84;

SET OutputRoot.MQIIH.Encoding = 785;

SET OutputRoot.MQIIH.CodedCharSetId = 500;

SET OutputRoot.MQIIH.Format = ’MQIMSVS ’;

SET OutputRoot.MQIIH.Flags = 0;

SET OutputRoot.MQIIH.LTermOverride = ’ ’;

SET OutputRoot.MQIIH.MFSMapName = ’ ’;

SET OutputRoot.MQIIH.ReplyToFormat = ’MQIMSVS ’;

SET OutputRoot.MQIIH.Authenticator = ’ ’;

SET OutputRoot.MQIIH.TranInstanceId = X’00000000000000000000000000000000’;

SET OutputRoot.MQIIH.TranState = ’ ’;

SET OutputRoot.MQIIH.CommitMode = ’0’;

SET OutputRoot.MQIIH.SecurityScope = ’C’;

SET OutputRoot.MQIIH.Reserved = ’ ’;

SET OutputRoot.MRM.e_elen08 = 30;

SET OutputRoot.MRM.e_elen09 = 0;

SET OutputRoot.MRM.e_string08 = InputBody.e_string01;

SET OutputRoot.MRM.e_binary02 = X’31323334353637383940’;

SET OutputRoot.Properties.MessageDomain = ’MRM’;

SET OutputRoot.Properties.MessageSet = ’DHCJOEG072001’;

SET OutputRoot.Properties.MessageType = ’IMS1’;

SET OutputRoot.Properties.MessageFormat = ’CWF1’;

Developing ESQL 57

Note the use of a variable, J, that is initialized to the value of the cardinality of

the existing headers in the message. This is more efficient than calculating the

cardinality on each iteration of the loop, which happens if you code the

following WHILE statement:

7. Create ESQL in Compute2 (inbound) node as follows, specifying the relevant

MessageSet id. This code shows the use of the default CWF physical layer

name. You must use the name that matches your model definition. If you

specify an incorrect value, the broker fails with message BIP5431.

You do not have to set any specific values for the MQInput1 node properties,

because the message and message set are identified in the MQRFH2 header, and

no conversion is required.

You must set values for message domain, set, type, and format in the MQInput

node for the inbound message flow (MQInput2). You do not need to set conversion

parameters.

One specific situation in which you might need to convert data in one code page

to another is when messages contain new line indicators and are passing between

EBCDIC and ASCII systems. The required conversion for this situation is described

in “Converting EBCDIC NL to ASCII CR LF.”

Converting EBCDIC NL to ASCII CR LF:

This topic describes an example task that changes new line (NL) characters in a

text message to carriage return (CR) and line feed (LF) character pairs.

This conversion might be useful if messages from an EBCDIC platform (for

example, using CCSID 1047) are sent to an ASCII platform (for example, using

CCSID 437). Problems can arise because the EBCDIC NL character hex ’15’ is

converted to the undefined ASCII character hex ’7F’. There is no corresponding

code point for the NL character in the ASCII code page.

In this example, a message flow is created that interprets the input message as a

message in the BLOB domain. This is passed into a ResetContentDescriptor node

to reset the data to a message in the MRM domain. The message is called msg_nl

WHILE I < CARDINALITY(InputRoot.*[]) DO

-- Loop to copy message headers

DECLARE I INTEGER 1;

DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I=I+1;

END WHILE;

SET OutputRoot.MQMD.CodedCharSetId = 437;

SET OutputRoot.MQMD.Encoding = 546;

SET OutputRoot.MQMD.Format = ’MQIMS ’;

SET OutputRoot.MQIIH.CodedCharSetId = 437;

SET OutputRoot.MQIIH.Encoding = 546;

SET OutputRoot.MQIIH.Format = ’ ’;

SET OutputRoot.MRM = InputBody;

SET OutputRoot.Properties.MessageDomain = ’MRM’;

SET OutputRoot.Properties.MessageSet = ’DHCJOEG072001’;

SET OutputRoot.Properties.MessageType = ’IMS2’;

SET OutputRoot.Properties.MessageFormat = ’CWF1’;

58 ESQL

(a set of repeating string elements delimited by EBCDIC NL characters). A

Compute node is then used to create an output based on another message in the

MRM domain called msg_crlf (a set of repeating string elements delimited by CR

LF pairs). The message domain is then changed back to BLOB in another

ResetContentDescriptor node. This message flow is illustrated below.

The following instructions show how to create the messages and configure the

message flow.

1. Create the message models for the messages in the MRM domain:

a. Create a message set project called myProj.

b. Create a message set called myMessageSet with a TDS physical format (the

default name is TDS1).

c. Create an element string1 of type xsd:string.

d. Create a complex type called t_msg_nl and specify the following complex

type properties:

v Composition = Ordered Set

v Content Validation = Closed

v Data Element Separation = All Elements Delimited

v Delimiter = <U+0085> (hex ’0085’ is the UTF-16 representation of a NL

character)

v Repeat = Yes

v Min Occurs = 1

v Max Occurs = 50 (the text of the message is assumed to consist of no

more than 50 lines)
e. Add Element string1 and set the following property:

v Repeating Element Delimiter = <U+0085>

f. Create a Message msg_nl and set its associated complex type to t_msg_nl

g. Create a complex type called t_msg_crlf and specify the following complex

type properties:

v Composition = Ordered Set

v Content Validation = Closed

v Data Element Separation = All Elements Delimited

v Delimiter <CR><LF> (<CR> and <LF> are the mnemonics for the CR and

LF characters)

v Repeat = Yes

v Min Occurs = 1

v Max Occurs = 50

h. Add Element string1 and set the following property:

v Repeating Element Delimiter = <CR><LF>

i. Create a Message msg_crlf and set complex type to t_msg_crlf.
2. Configure the message flow shown in the figure above:

Developing ESQL 59

a. Start with the MQInput1 node:

v Set Message Domain = BLOB

v Set Queue Name = <Your input message queue name>

b. Add the ResetContentDescriptor1 node, connected to the out terminal of

MQInput1:

v Set Message Domain = MRM

v Select Reset Message Domain

v Set Message Set = <Your Message Set ID> (this has a maximum of 13

characters)

v Select Reset Message Set

v Set Message Type = msg_nl

v Select Reset Message Type

v Set Message Format = TDS1

v Select Reset Message Format

c. Add the Compute1 node, connected to the out terminal of

ResetContentDescriptor1:

v Enter a name for the ESQL Module for this node, or accept the default

(<message flow name>_Compute1).

v Right-click the Compute1 node and select Open ESQL. Code the

following ESQL in the module:

Note the use of a variable, J, initialized to the value of the cardinality of

the existing headers in the message. This is more efficient than calculating

the cardinality on each iteration of the loop, which happens if you code

the following WHILE statement:

d. Add the ResetContentDescriptor2 node, connected to the out terminal of the

Compute1 node:

v Set Message Domain = BLOB

v Select Reset Message Domain.
e. Finally, add the MQOutput1 node, connected to the out terminal of the

ResetContentDescriptor2 node. Configure its properties to direct the output

message to the required queue or queues.

-- Declare local working variables

DECLARE I INTEGER 1;

DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

-- Loop to copy all message headers from input to output message

WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I=I+1;

END WHILE;

-- Set new output message type which uses CRLF delimiter

SET OutputRoot.Properties.MessageType = ’t_msg_crlf’;

-- Loop to copy each instance of string1 child within message body

SET I = 1;

SET J = CARDINALITY("InputBody"."string1"[]);

WHILE I <= J DO

 SET "OutputRoot"."MRM"."string1"[I] = "InputBody"."string1"[I];

 SET I=I+1;

END WHILE;

WHILE I < CARDINALITY(InputRoot.*[]) DO

60 ESQL

Changing message format

Use the Compute node to copy part of an input message to an output message.

The results of such a copy depend on the type of input and output parsers

involved.

Like parsers:

Where both the source and target messages have the same folder structure at root

level, a like-parser-copy is performed. For example:

copies all the children in the MQMD folder of the input message to the MQMD

folder of the output message.

Another example of a tree structure that supports a like-parser-copy is:

If you want to transform an input message in the MRM domain to an output

message also in the MRM domain, you can use either the Compute or the

Mapping node. The Mapping node can interpret the action that is required because

it knows the format of both messages. Content Assist in the ESQL module for the

Compute node can also use the message definitions for those messages. If the

messages are not in the same namespace, you must use the Compute node.

Note: To get Content Assist to work with message references, you must set up a

project reference from the project containing the ESQL to the project

containing the message set. For information about setting up a project

reference, see Project references.

If both input and output messages are not in the MRM domain, you must use the

Compute node and specify the structure of the messages yourself.

Unlike parsers:

Where the source and target messages have different folder structures at root level,

you cannot make an exact copy of the message source. Instead, the

unlike-parser-copy views the source message as a set of nested folders terminated

by a leaf name-value pair. For example, copying the following message from XML

to MRM:

produces a name element Name3, and a name-value element called Name31 with

the value Value31. The second XML pcdata (Value32) cannot be represented and is

discarded.

The unlike-parser-copy scans the source tree, and copies folders, also known as

name elements, and leaf name-value pairs. Everything else, including elements

flagged as special by the source parser, is not copied.

An example of a tree structure resulting in an unlike-parser-copy is:

SET OutputRoot.MQMD = InputRoot.MQMD;

SET OutputRoot.XML.Data.Account = InputRoot.XML.Customer.Bank.Data;

<Name3><Name31>Value31</Name31>Value32</Name3>

SET OutputRoot.MRM.Data.Account = InputRoot.XML.Data.Account;

Developing ESQL 61

If the algorithm used to make an unlike-parser-copy does not suit your tree

structure, you might need to further qualify the source field to restrict the amount

of tree copied.

Be careful when you copy information from input messages to output messages in

different domains. It is possible to code ESQL that creates a message structure or

content that is not completely consistent with the rules of the parser that will

process the output message. This can result in an output message not being

created, or being created with unexpected content. If you believe that the output

message generated by a particular message flow does not contain the correct

content, or have the expected form, check the ESQL that creates the output

message, and look for potential mismatches of structure, field types, field names,

and field values.

When copying trees between unlike parsers, you might also want to set the

message format of the target parser. For example, if a message set has been defined

with XML and CWF formats the following commands are required to copy an

input XML stream to the MRM parser and set the latter to output in CWF format:

-- Copy message to the output, moving from XML to MRM domains

SET OutputRoot.MRM = InputRoot.XML;

-- Set the CWF format for output by the MRM domain

SET OutputRoot.Properties.MessageType = ’<MessageTypeName>’;

SET OutputRoot.Properties.MessageSet = ’<MessageSetName>’;

SET OutputRoot.Properties.MessageFormat = ’CWF’;

Adding keywords to ESQL files

Keywords can be included in ESQL files in three ways:

comment fields

 Add the keyword as a comment in the ESQL file:

-- $MQSI compiled by = John MQSI$

static strings

 Include the keyword as part of a static string in the ESQL file:

Set target = ‘$MQSI_target = production only MQSI$’

variable string

 Include the keyword value as a variable string in the ESQL file:

$MQSI_VERSION=$id$MQSI$

For this example, when the message flow source is extracted from the file

repository, the repository’s plug-in has been configured to substitute the

identifier id with the actual version number. The identifier value that is

required depends on the capability and configuration of the repository, and

is not part of WebSphere Message Brokers.

Accessing databases from ESQL

ESQL has a number of statements and functions for accessing databases:

v The “CALL statement” on page 179 invokes a stored procedure.

v The “DELETE FROM statement” on page 223 removes rows from a database

table.

v The “INSERT statement” on page 230 adds a row to a database table.

62 ESQL

v The “PASSTHRU function” on page 346 can be used to make complex selections.

v The “PASSTHRU statement” on page 238 can be used to invoke administrative

operations (for example, creating a table).

v The “SELECT function” on page 320 retrieves data from a table.

v The “UPDATE statement” on page 251 changes one or more values stored in

zero or more rows.

You can access user databases from Compute, Database, and Filter nodes.

Note: There is no difference between the database access capabilities of these

nodes; their names are partly historical and partly based on typical usage.
You can use the data in the databases to update or create messages; or use the data

in the message to update or create data in the databases.

Note that:

v Any node that uses any of the ESQL database statements or functions must have

its Data Source property set with the name (that is, the ODBC DSN) of a

database. The database must be accessible, operational, and allow the broker to

connect to it.

v All databases accessed from the same node must have the same OBDC

functionality as the database specified on the node’s Data Source property. This

requirement is always satisfied if the databases are of the same type (for

example, DB2 or Oracle), at the same level (for example, release 8.1 CSD3), and

on the same platform. Other database combinations may or may not have the

same OBDC functionality. If a node tries to access a database that does not have

the same OBDC functionality as the database specified on the node’s Data

Source property, the broker issues an error message.

v All tables referred to in a single SELECT FROM clause must be in the same

database.

You must ensure that suitable ODBC data sources have been created on the system

on which the broker is running. If you have used the mqsisetdbparms command to

set a user ID and password for a particular database, the broker uses these values

to connect to the database. If you have not set a user ID and password, the broker

uses the default database user ID and password that you supplied on the

mqsicreatebroker command (as modified by any subsequent mqsichangebroker

commands).

On z/OS systems, use the JCL member BIPSDBP in the customization data set

<hlq>.SBIPPROC to perform the mqsisetdbparms command.

You must also ensure that the database user IDs have sufficient privileges to

perform the operations your flow requires. Otherwise errors will occur at runtime.

Select the Throw exception on database error property check box and the Treat

warnings as errors property check box, and set the Transaction property to

Automatic, to provide maximum flexibility. You can then use the COMMIT and

ROLLBACK statements for transaction control, and create handlers for dealing

with errors.

v “Referencing columns in a database” on page 64

v “Selecting data from database columns” on page 65

v “Accessing multiple database tables” on page 67

v “Changing database content” on page 68

v “Checking returns to SELECT” on page 69

Developing ESQL 63

v “Committing database updates” on page 70

v “Invoking stored procedures” on page 70

Referencing columns in a database

While the standard SQL SELECT syntax is supported for queries to an external

database, there are a number of points to be borne in mind. You must prefix the

name of the table with the keyword Database to indicate that the SELECT is to be

targeted at the external database, rather than at a repeating structure in the

message.

The basic form of database SELECT is:

If necessary, you can specify a schema name:

where SCHEMA is the name of the schema in which the table TABLE1 is defined.

Include the schema if the user ID under which you are running does not match the

schema. For example, if your userID is USER1, the expression Database.TABLE1 is

equivalent to Database.USER1.TABLE1. However, if the schema associated with the

table in the database is db2admin, you must specify Database.db2admin.TABLE1.

If you do not include the schema, and this does not match your current user ID,

the broker generates a runtime error when a message is processed by the message

flow.

If, as in the two previous examples, a data source is not specified, TABLE1 must be

a table in the default database specified by the node’s data source property. To

access data in a database other than the default specified on the node’s data

source property, you must specify the data source explicitly. For example:

Qualify references to column names with either the table name or the correlation

name defined for the table by the FROM clause. So, where you could normally

execute a query such as:

you must write one of the following two forms:

This is necessary in order to distinguish references to database columns from any

references to fields in a message that might also appear in the SELECT:

SELECT ...

 FROM Database.TABLE1

 WHERE ...

SELECT ...

 FROM Database.SCHEMA.TABLE1

 WHERE ...

SELECT ...

 FROM Database.DataSource.SCHEMA.TABLE1

 WHERE ...

SELECT column1, column2 FROM table1

SELECT T.column1, T.column2 FROM Database.table1 AS T

SELECT table1.column1, table1.column2 FROM Database.table1

SELECT T.column1, T.column2 FROM Database.table1

 AS T WHERE T.column3 = Body.Field2

64 ESQL

You can use the AS clause to rename the columns returned. For example:

The standard select all SQL option is supported in the SELECT clause. If you use

this option, you must qualify the column names with either the table name or the

correlation name defined for the table. For example:

When you use ESQL procedure and function names within a database query, the

positioning of these within the call affects how these names are processed. If it is

determined that the procedure or function affects the results returned by the query,

it is not processed as ESQL and is passed as part of the database call.

This applies when attempting to use a function or procedure name with the

column identifiers within the SELECT statement.

For example, if you use a CAST statement on a column identifier specified in the

Select clause, this is used during the database query to determine the data type of

the data being returned for that column. An ESQL CAST is not performed to that

ESQL data type, and the data returned is affected by the database interaction’s

interpretation of that data type.

If you use a function or procedure on a column identifier specified in the WHERE

clause, this is passed directly to the database manager for processing.

The examples in the subsequent topics illustrate how the results sets of external

database queries are represented in WebSphere Message Broker. The results of

database queries are assigned to fields in a message using a Compute node.

A column function is a function that takes the values of a single column in all the

selected rows of a table or message and returns a single scalar result.

Selecting data from database columns

You can configure a Compute, Filter, or Database node to select data from database

columns and include it in an output message. The following example assumes that

you have a database table called USERTABLE with two char(6) data type columns

(or equivalent), called Column1 and Column2. The table contains two rows:

 Column1 Column2

Row 1 value1 value2

Row 2 value3 value4

Configure the Compute, Filter, or Database node to identify the database in which

you have defined the table. For example, if you’re using the default database

(specified on the “data source” property of the node), right-click the node, select

Open ESQL, and code the following ESQL statements in the module for this node:

SELECT T.column1 AS price, T.column2 AS item

 FROM Database.table1 AS T WHERE...

SELECT T.* FROM Database.Table1 AS T

SET OutputRoot = InputRoot;

DELETE FIELD OutputRoot.*[<];

SET OutputRoot.XML.Test.Result[] =

 (SELECT T.Column1, T.Column2 FROM Database.USERTABLE AS T);

Developing ESQL 65

This produces the following output message:

To trigger the SELECT, send a trigger message with an XML body that is of the

following form:

The exact structure of the XML is not important, but the enclosing tag must be

<Test> to match the reference in the ESQL. If it is not, the ESQL statements result

in top-level enclosing tags being formed, which is not valid XML.

If you want to create an output message that includes all the columns of all the

rows that meet a particular condition, use the SELECT statement with a WHERE

clause:

The message fields are created in the same order as the columns appear in the

table.

If you are familiar with SQL in a database environment, you might expect to code

SELECT *. This is not accepted by the broker because you must start all references

to columns with a correlation name. This avoids ambiguities with declared

variables. Also, if you code SELECT I.*, this is accepted by the broker but the * is

interpreted as the first child element, not all elements, as you might expect from

other database SQL.

Selecting data from a table in a case sensitive database system:

If the database system is case sensitive, you must use an alternative approach. This

approach is also necessary if you want to change the name of the generated field

to something different:

<Test>

 <Result>

 <Column1>value1</Column1>

 <Column2>value2</Column2>

 </Result>

 <Result>

 <Column1>value3</Column1>

 <Column2>value4</Column2>

 </Result>

</Test>

<Test>

 <Result>

 <Column1></Column1>

 <Column2></Column2>

 </Result>

 <Result>

 <Column1></Column1>

 <Column2></Column2>

 </Result>

</Test>

-- Declare and initialize a variable to hold the

-- test vaue (in this case the surname Smith)

DECLARE CurrentCustomer STRING ’Smith’;

-- Loop through table records to extract matching information

SET OutputRoot.XML.Invoice[] =

 (SELECT R FROM Database.USERTABLE AS R

 WHERE R.Customer.LastName = CurrentCustomer

);

66 ESQL

This example produces the same message as the example above. Ensure that

references to the database columns (in this example, T.Column1 and T.Column2)

are specified in the correct case to match the database definitions exactly. If you do

not do so, for example if you specify T.COLUMN1, the broker generates a runtime

error. Note the use of Column1 and Column2 in the SELECT statement. You can use

any values here, they do not have to match the names of the columns that you

have defined in the database as they do in this example.

Accessing multiple database tables

You can refer to multiple tables that you have created in the same database. Use

the FROM clause on the SELECT statement to join the data from the two tables.

The following example assumes that you have two database tables called

USERTABLE1 and USERTABLE2. Both tables have two char(6) data type columns

(or equivalent).

USERTABLE1 contains two rows:

 Column1 Column2

Row 1 value1 value2

Row 2 value3 value4

USERTABLE2 contains two rows:

 Column3 Column4

Row 1 value5 value6

Row 2 value7 value8

All tables referenced by a single SELECT function must be in the same database.

The database can be either the default (specified on the “data source” property of

the node) or another database (specified on the FROM clause of the SELECT

function).

Configure the Compute, Filter, or Database node that you’re using to identify the

database in which you have defined the tables. For example, if you’re using the

default database, right-click the node, select Open ESQL, and code the following

ESQL statements in the module for this node:

SET OutputRoot = InputRoot;

SET OutputRoot.XML.Test.Result[] =

 (SELECT T.Column1 AS Column1, T.Column2 AS Column2

 FROM Database.USERTABLE AS T);

SET OutputRoot.XML.Test.Result[] =

 (SELECT A.Column1 AS FirstColumn,

 A.Column2 AS SecondColumn,

 B.Column3 AS ThirdColumn,

 B.Column4 AS FourthColumn

 FROM Database.USERTABLE1 AS A,

 Database.USERTABLE2 AS B

 WHERE A.Column1 = ’value1’ AND

 B.Column4 = ’value8’

);

Developing ESQL 67

This results in the following output message content:

The example above shows how to access data from two database tables. You can

code more complex FROM clauses to access multiple database tables (although all

the tables must be in the same database). You can also refer to one or more

message trees, and can use SELECT to join tables with tables, messages with

messages, or tables with messages. “Joining data from XML messages and database

tables” on page 121 provides an example of how to merge message data with data

in a database table.

(defined by the data source property of the node).

If you specify an ESQL function or procedure on the column identifier in the

WHERE clause, this is processed as part of the database query and not as ESQL.

Consider the following example:

This attempts to return the rows where the value of Column2 converted to upper

case is VALUE2. However, only the database manager can determine the value of

T.Column2 for any given row, and therefore it cannot be processed by ESQL before

the database query is issued, because the WHERE clause determines the rows that

are returned to the message flow.

Therefore, the UPPER is passed to the database manager to be included as part of

its processing. However, if the database manager cannot process the token within

the select statement, an error is returned.

Changing database content

You can code ESQL in the Compute, Database, and Filter nodes to change the

contents of a database in the following ways:

v Update data in a database

v Insert data into a database

v Delete data from a database

The following ESQL code includes statements that show all three operations. This

code is appropriate for a Database and Filter node; if you create this code for a

Compute node, use the correlation name InputRoot in place of Root.

<Test>

 <Result>

 <FirstColumn>value1</FirstColumn>

 <SecondColumn>value2</SecondColumn>

 <ThirdColumn>value7</ThirdColumn>

 <FourthColumn>value8</FourthColumn>

 </Result>

</Test>

 SET OutputRoot.XML.Test.Result =

 THE(SELECT ITEM T.Column1 FROM Database.USERTABLE1 AS T

 WHERE UPPER(T.Column2) = ’VALUE2’);

68 ESQL

Checking returns to SELECT

If a SELECT statement returns no data, or no further data, this is handled as a

normal situation and no error code is set in SQLCODE. This occurs regardless of

the setting of the Throw Exception On Database Error and Treat Warnings As Errors

properties on the current node.

To recognize that a SELECT statement has returned no data, include ESQL that

checks what has been returned. You can do this in a number of ways:

1. EXISTS

This returns a boolean value that indicates if a SELECT function returned one

or more values (TRUE), or none (FALSE).

IF EXISTS(SELECT T.MYCOL FROM Database.MYTABLE) THEN

...

2. CARDINALITY

If you expect an array in response to a SELECT, you can use CARDINALITY to

calculate how many entries have been received.

SET OutputRoot.XML.Testcase.Results[] = (

 SELECT T.MYCOL FROM Database.MYTABLE)

......

IF CARDINALITY (OutputRoot.XML.Testcase.Results[]) > 0 THEN

........

3. IS NULL

If you have used either THE or ITEM keywords in your SELECT statement, a

scalar value is returned. If no rows have been returned, the value set is NULL.

However, it is possible that the value NULL is contained within the column,

and you might want to distinguish between these two cases.

To do this include COALESCE in the SELECT statement, for example:

SET OutputRoot.XML.Testcase.Results VALUE = THE (

 SELECT ITEM COALESCE(T.MYCOL, ’WAS NULL’)

 FROM Database.MYTABLE);

If this returns the character string WAS NULL, this indicates that the column

contained NULL, and not that no rows were returned.

IF Root.XML.TestCase.Action = ’INSERT’ THEN

 INSERT INTO Database.STOCK (STOCK_ID, STOCK_DESC, STOCK_QTY_HELD,

 BROKER_BUY_PRICE, BROKER_SELL_PRICE, STOCK_HIGH_PRICE, STOCK_HIGH_DATE,

 STOCK_HIGH_TIME) VALUES

 (CAST(Root.XML.TestCase.stock_id AS INTEGER),

 Root.XML.TestCase.stock_desc,

 CAST(Root.XML.TestCase.stock_qty_held AS DECIMAL),

 CAST(Root.XML.TestCase.broker_buy_price AS DECIMAL),

 CAST(Root.XML.TestCase.broker_sell_price AS DECIMAL),

 Root.XML.TestCase.stock_high_price,

 CURRENT_DATE,

 CURRENT_TIME);

ELSEIF Root.XML.TestCase.Action = ’DELETE’ THEN

 DELETE FROM Database.STOCK WHERE STOCK.STOCK_ID =

 CAST(Root.XML.TestCase.stock_id AS INTEGER);

 ELSEIF Root.XML.TestCase.Action = ’UPDATE’ THEN

 UPDATE Database.STOCK as A SET STOCK_DESC = Root.XML.TestCase.stock_desc

 WHERE A.STOCK_ID = CAST(Root.XML.TestCase.stock_id AS INTEGER);

END IF;

Developing ESQL 69

In previous releases, an SQLCODE of 100 was set in most cases if no data, or no

further data, was returned. An exception was raised by the broker if you chose to

handle database errors in the message flow.

Committing database updates

When you create a message flow that interacts with databases, you can choose

whether the updates that you make are committed when the current node has

completed processing, or when the current invocation of the message flow has

terminated.

For each node, select the appropriate option for the Transaction property to specify

when its database updates are to be committed:

v Choose Automatic (the default) if you want updates made in this node to be

committed or rolled back as part of the whole message flow. The actions that

you define in the ESQL module are performed on the message and it continues

through the message flow. If the message flow completes successfully, the

updates are committed. If the message flow fails, the message and the database

updates are rolled back.

v Choose Commit if you want to commit the action of the node on the database,

irrespective of the success or failure of the message flow as a whole. The

database update is committed when the node processing is successfully

completed, that is, after all ESQL has been processed, even if the message flow

itself detects an error in a subsequent node that causes the message to be rolled

back.

The value that you choose is implemented for the database tables that you have

updated. You cannot select a different value for each table.

If you have set Transaction to Commit, the behavior of the message flow and the

commitment of database updates can be affected by the use of the PROPAGATE

statement.

If you choose to include a PROPAGATE statement in the node’s ESQL that

generates one or more output message from the node, the processing of the

PROPAGATE statement is not considered complete until the entire path that the

output message takes has completed. This path might include several other nodes,

including one or more output nodes. Only then does the node that issues the

PROPAGATE statement receive control back and its ESQL terminate. At that point,

a database commit is performed, if appropriate.

If one of the nodes on the propagated path detects an error and throws an

exception, the processing of the node in which you have coded the PROPAGATE

statement never completes. If the error processing results in a rollback, the message

flow and the database update in this node are rolled back. This behavior is

consistent with the stated operation of the Commit option, but might not be the

behavior that you expect.

Invoking stored procedures

To invoke a procedure that is stored in a database, use the ESQL CALL statement.

The stored procedure must be defined by a “CREATE PROCEDURE statement” on

page 203 that has:

v A Language clause of DATABASE

v An EXTERNAL NAME clause that identifies the name of the procedure in the

database and, optionally, the database schema to which it belongs.

70 ESQL

When you invoke a stored procedure with the CALL statement, the broker ensures

that the ESQL definition and the database definition match:

v The external name of the procedure must match a procedure in the database.

v The number of parameters must be the same.

v The type of each parameter must be the same.

v The direction of each parameter (IN, OUT, INOUT) must be the same.

The following restrictions apply to the use of stored procedures:

v Overloaded procedures are not supported. (An overloaded procedure is one that

has the same name as another procedure in the same database schema with a

different number of parameters, or parameters with different types.) If the

broker detects that a procedure has been overloaded, it raises an exception.

v In an Oracle stored procedure declaration, you are not permitted to constrain

CHAR and VARCHAR2 parameters with a length, and NUMBER parameters

with a precision or scale, or both. Use %TYPE when you declare CHAR,

VARCHAR and NUMBER parameters to provide constraints on a formal

parameter.

Creating a stored procedure in ESQL:

When you define an ESQL procedure that corresponds to a database stored

procedure, you can specify either a qualified name (where the qualifier is a

database schema) or an unqualified name.

To create a stored procedure:

1. Code a statement similar to this example to create an unqualified procedure:

CREATE PROCEDURE myProc1(IN p1 CHAR) LANGUAGE DATABASE EXTERNAL NAME "myProc";

The EXTERNAL NAME that you specify must match the definition you have

created in the database, but you can specify any name you choose for the

corresponding ESQL procedure.

2. Code a statement similar to this example to create a qualified procedure:

CREATE PROCEDURE myProc2(IN p1 CHAR) LANGUAGE DATABASE EXTERNAL NAME "Schema1.myProc";

3. Code a statement similar to this example to create a qualified procedure in an

Oracle package:

CREATE PROCEDURE myProc3(IN p1 CHAR) LANGUAGE DATABASE EXTERNAL

 NAME "mySchema.myPackage.myProc";

For examples of stored procedure definitions in the database, see the “CREATE

PROCEDURE statement” on page 203.

Calling a stored procedure:

1. Code a statement similar to this example to invoke an unqualified procedure:

CALL myProc1(’HelloWorld’);

Because it is not defined explicitly as belonging to any schema, the myProc1

procedure must exist in the default schema (the name of which is the user

name used to connect to the data source) or the command fails.

2. The following example calls the myProc procedure in schema Schema1.

CALL myProc2(’HelloWorld’);

3. Code a statement similar to this example to invoke an unqualified procedure

with a dynamic schema:

DECLARE Schema2 char ’mySchema2’;

CALL myProc1(’HelloWorld’) IN Database.{’Schema2’};

Developing ESQL 71

This statement calls the myProc1 procedure in database Schema2, overriding the

default “username” schema.

Calling a stored procedure that returns two result sets:

To call a stored procedure that takes one input parameter and returns one output

parameter and two result sets:

1. Define the procedure with a CREATE PROCEDURE statement that specifies

one input parameter, one output parameter, and two result sets:

CREATE PROCEDURE myProc1 (IN P1 INT, OUT P2 INT)

 LANGUAGE DATABASE

 DYNAMIC RESULT SETS 2

 EXTERNAL NAME "myschema.myproc1";

2. To invoke the myProc1 procedure using a field reference, code:

/* using a field reference */

CALL myProc1(InVar1, OutVar2, Environment.ResultSet1[],

 OutputRoot.XML.Test.ResultSet2[]);

3. To invoke the myProc1 procedure using a reference variable, code:

/* using a reference variable*/

DECLARE cursor REFERENCE TO OutputRoot.XML.Test;

CALL myProc1(InVar1, cursor.OutVar2, cursor.ResultSet1[],

 cursor.ResultSet2[]);

Coding ESQL to handle errors

Introduction

When processing messages in message flows, errors can be due to:

1. External causes. For example, the incoming message is syntactically invalid, a

database used by the flow has been shut down, or the power supply to the

machine on which the broker is running fails.

2. Internal causes. For example, an attempt to insert a row into a database table

fails because of a constraint check, or a character string read from a database

cannot be converted to a number because it contains alphabetic characters.

Internal errors can be caused by programs storing invalid data in the database

or by a flaw in the logic of a flow.

The message flow designer must give errors serious consideration and decide how

they are to be handled.

Using default error-handling

The simplest strategy for handling ESQL errors is to do nothing and use the

broker’s default behavior. The default behavior is to cut short the processing of the

failing message and to proceed to the next message. Input and output nodes

provide options to control exactly what happens when processing is cut short.

If the input and output nodes are set to transactional mode, the broker restores the

state prior to the message being processed:

1. The input message that has apparently been taken from the input queue is put

back.

2. Any output messages that the flow has apparently written to output queues are

discarded.

If the input and output nodes are not set to transactional mode:

72 ESQL

1. The input message taken from the input queue is not put back.

2. Any output messages that the flow has written to output queues remain there.

Each of these strategies has its advantages. The transactional model preserves the

consistency of data, while the non-transactional model maximizes the continuity of

message processing. Remember that in the transactional model the failing input

message is put back on to the input queue and the broker will attempt to process it

again. The most likely outcome of this is that the message continues to fail until

the retry limit is reached, at which point it is placed on a dead letter queue. The

reason for the failure to process the message is logged to the system event log

(Windows) or syslog (UNIX). Thus the failing message holds up the processing of

subsequent good messages for a while and is then left unprocessed by the broker.

Most databases operate transactionally, so that all changes made to database tables

are committed if the processing of the message succeeds and rolled back if it fails,

thus maintaining the integrity of data. An exception to this is if the broker itself, or

a database, fails. (For example, the power to the machines they are running on

could be interrupted.) It is possible in these cases for changes in some databases to

be committed and changes in others not; or for the database changes to be

committed but the input and output messages not to be committed. If these

possibilities concern you, the flow should be made coordinated and the databases

involved configured for this way of working.

Using customized error handling

Here are some general tips about creating customized error handlers:

1. If you require something better than default error handling, the first step is to

use a handler (see “DECLARE HANDLER statement” on page 222). Create one

handler per node, to intercept all possible exceptions (or as many exceptions as

can be foreseen).

2. Having intercepted an error, the error handler can use whatever logic is

appropriate to handle it. Alternatively, it can use a THROW statement or node

to create an exception, which could be handled higher in the flow logic or even

reach the input node, causing the transaction to be rolled back. See “Throwing

an exception” on page 76.

3. If a node throws an exception that is not caught by the handler, the flow is

diverted to the failure terminal, if one is attached, or handled by default

error-handling if not.

Use failure terminals to catch unhandled errors. Attach a simple logic flow to

the failure terminal. This logic flow could consist of a database or compute

node that writes a log record to a database (possibly including the message’s

bit-stream) or writes a record to the event log. It could also contain an output

node that writes the message to a special queue.

The full exception tree is passed to any node connected to a failure terminal.

(The exception tree is described in ExceptionList tree structure.)

4. Your error handlers are responsible for logging each error in an appropriate

place, such as the system event log.

For a detailed discussion of the options that you can use to process errors in a

message flow, see Handling errors in message flows. The following topics provide

examples of what you can do:

v “Throwing an exception” on page 76

v “Capturing database state” on page 77

Developing ESQL 73

Coding to detect errors

The following sections assume that it is the broker that detects the error. It is quite

possible, however, for the logic of the flow to detect an error. For example, when

coding the flow logic you could use:

v IF statements inserted specifically to detect situations that should not occur

v The ELSE clause of a case expression or statement to trap routes through the

code that should not be possible

As an example of a flow logic-detected error, consider a field that has a range of

possible integer values indicating the type of message. In such a case it would not

be good practice to leave to chance what would happen if a message were to

arrive in which the field’s value did not correspond to any known type of

message. One way this could happen is if the system is upgraded to support extra

types of message but one part of the system is not upgraded.

Using your own logic to handle input messages that are not valid

Input messages that are syntactically invalid (and input messages that appear to be

not valid because of erroneous message format information) are difficult to deal

with because the broker has no idea what the message contains. Probably the best

way of dealing with them is to configure the input node to fully parse and validate

the message.

Note, however, that this applies only to predefined messages, that is, MRM or

IDOC.

If the input node is configured in this way, the following is guaranteed if the input

message cannot be parsed successfully:

v The input message never emerges from the node’s normal output terminal (it

goes to the failure terminal).

v The input message never enters the main part of the message flow.

v The input message never causes any database updates.

v No messages are written to any output queues.

To deal with a failing message, connect a simple logic flow to the failure terminal.

The only disadvantage to this strategy is that, if the normal flow does not require

access to all the message’s fields, the forcing of complete parsing of the message

affects performance.

Using your own logic to handle database errors

Database errors fall into three categories:

1. The database isn’t working at all (for example, it’s off line).

2. The database is working but refuses your request (for example, a lock

contention occurs).

3. The database is working but what you ask it to do is impossible (for example,

to read from a non-existent table).

If you require something better than default error handling, the first step is to use

a handler (see “DECLARE HANDLER statement” on page 222) to intercept the

exception. The handler can determine the nature of the failure from the SQL state

returned by the database.

74 ESQL

Database not working

If a database isn’t working at all and is essential to the processing of messages,

there is probably not much you can do. In this case the handler, having

determined the cause, might do any of the following:

v Use the RESIGNAL statement to re-throw the original error, thus allowing

the default error handler to take over.

v Use a different database.

v Write the message to a special output queue.

However, take care with this sort of strategy. Because the handler absorbs

the exception, any changes to other databases or writes to queues are

committed.

Database refuses your request

The situation when a lock contention occurs is similar to the “Database not

working” case. This is because the database will have backed out all the

database changes you have made for the current message, not just the failing

request. Therefore, unless you are sure this was the only update, it is unlikely

that there is any better strategy than default error-handling, except possibly

logging the error or passing the message to a special queue.

Impossible requests

The case where the database is working but what you ask it to do is

impossible covers a wide variety of problems.

 If, as in the example, the database simply doesn’t have a table of the name the

flow expects, it is again unlikely that there is any better strategy than default

error-handling, except possibly logging the error or passing the message to a

special queue.
Many other errors may be handled successfully, however. For example, an

attempt to insert a row might fail because there is already such a row and the

new row would be a duplicate. Or an attempt to update a row might fail

because there is no such row (that is, the update updated zero rows). In these

cases, the handler can incorporate whatever logic you think fit. It might insert

the missing row or utilize the existing one (possibly making sure the values in

it are suitable).

Note: For an update of zero rows to be reported as an error the node property

“treat warnings as errors” must be set to true. This is not the default

setting.

Using your own logic to handle errors in output nodes

Errors occurring in MQ output nodes report the nature of the error in the SQL

state and give additional information in the SQL native error variable. Thus, if

something better than default error handling is required, the first step is to use a

handler (see “DECLARE HANDLER statement” on page 222) to intercept the

exception. Such a handler typically surrounds only a single PROPAGATE

statement.

Using your own logic to handle other errors

Besides those covered above, a variety of other errors can occur. For example, an

arithmetic calculation might overflow, a cast might fail because of the unsuitability

of the data, or an access to a message field might fail because of a type constraint.

The broker offers two programming strategies for dealing with these.

Developing ESQL 75

|
|
|
|
|
|

1. The error causes an exception that is either handled or left to roll back the

transaction.

2. The failure is recorded as a special value that is tested for later.

In the absence of a type constraint, an attempt to access a non-existent message

field results in the value null. Null values propagate through expressions, making

the result null. Thus, if an expression, however complex, does not return a null

value, you know that all the values it needed to calculate its result were not null.

Cast expressions can have a default clause. If there is a default clause, casts fail

quietly; instead of throwing an exception, they simply return the default value. The

default value could be an innocuous number (for example, zero for an integer), or

a value that is clearly invalid in the context (for example, -1 for a customer

number). Null might be particularly suitable, because it is a value that is different

from all others and that will propagate through expressions without any possibility

of the error condition being masked.

Handling errors in other nodes

Exceptions occurring in other nodes (that is, downstream of a PROPAGATE

statement) might be caught by handlers in the normal way. Handling such errors

intelligently, however, poses the special problem that, as another node was

involved in the original error, another node, and not necessarily the originator of

the exception, is very likely to be involved in handling it.

To help in these situations the database and compute nodes have four new

terminals called out1, out2, out3, and out4. In addition the syntax of the

“PROPAGATE statement” on page 240 has been extended to include target

expression, message source and control clauses to give more control over these

extra terminals.

Throwing an exception

If you detect an error or other situation in your message flow in which you want

message processing to be terminated, you can throw an exception in a message

flow in two ways:

1. Use the ESQL THROW EXCEPTION statement.

Include the THROW statement anywhere in the ESQL module for a Compute,

Database, or Filter node. Use the options on the statement to code your own

data to be inserted into the exception.

2. Include a THROW node in your message flow.

Set the node properties to identify the source and content of the exception.

Using either statement options or node properties, you can specify a message

identifier and values that are inserted into the message text to give additional

information and identification to users who interpret the exception. You can specify

any message in any catalog that is available to the broker. See Using event logging

from a user-defined extension for more information.

The situations in which you might want to throw an exception are determined by

the behavior of the message flow; decide when you design the message flow

where this action might be appropriate. For example, you might want to examine

the content of the input message to ensure that it meets criteria that cannot be

detected by the input node (which might check that a particular message format is

received).

76 ESQL

The example below uses the example Invoice message to show how you can use

the ESQL THROW statement. If you want to check that the invoice number is

within a particular range, throw an exception for any invoice message received

that does not fall in the valid range.

Capturing database state

If an error occurs when accessing an external database, you have two options:

v Let the broker throw an exception during node processing

v Process the exception within the node itself using ESQL statements

The first option is the default; ESQL processing in the current node is abandoned.

The exception is then propagated backwards through the message flow until an

enclosing catch node, or the input node for this message flow, is reached. If the

exception reaches the input node, any transaction is rolled back.

The second option requires an understanding of database return codes and a

logical course of action to take when an error occurs. To enable this inline database

error processing, you must clear the Filter, Database, or Compute node’s Throw

Exception On Database Error property. If you do this, the node sets the database

state indicators SQLCODE, SQLSTATE, SQLNATIVEERROR, and SQLERRORTEXT,

with appropriate information from the database manager instead of throwing an

exception.

The indicators contain information only when an error (not a warning) occurs,

unless you have selected the Treat Warnings As Errors property. In the case of

successful and success with information database operations, the indicators contain

their default success values.

You can use the values contained in these indicators in ESQL statements to make

decisions about the action to take. You can access these indicators with the

SQLCODE, SQLSTATE, SQLNATIVEERROR, and SQLERRORTEXT functions.

If you are attempting inline error processing, you must check the state indicators

after each database statement is executed to ensure that you catch and assess all

errors. When processing the indicators, if you meet an error that you cannot

handle inline, you can raise a new exception either to deal with it upstream in a

catch node, or to let it through to the input node so that the transaction is rolled

back. You can use the ESQL THROW statement to do this.

You might want to check for the special case in which a SELECT returns no data.

This situation is not considered an error and SQLCODE is not set, so you must test

explicitly for it. This is described in “Checking returns to SELECT” on page 69.

--Check for invoice number lower than permitted range

IF Body.Invoice.InvoiceNo < 100000 THEN

 THROW USER EXCEPTION CATALOG ’MyCatalog’ MESSAGE 1234 VALUES

 (’Invoice number too low’, Body.Invoice.InvoiceNo);

-- Check for invoice number higher than permitted range

ELSEIF Body.InvoiceNo > 500000 THEN

 THROW USER EXCEPTION CATALOG ’MyCatalog’ MESSAGE 1235 VALUES

 (’Invoice number too high’, Body.Invoice.InvoiceNo);

ELSE DO

 -- invoice number is within permitted range

 -- complete normal processing

ENDIF;

Developing ESQL 77

Using ESQL to access database state indicators

The following ESQL example shows how to use the four database state functions,

and how to include the error information that is returned in an exception:

You do not have to throw an exception when you detect a database error; you

might prefer to save the error information returned in the LocalEnvironment tree,

and include a Filter node in your message flow that routes the message to error or

success subflows according to the values saved.

The Airline Reservations sample sample program provides another example of

ESQL that uses these database functions.

Manipulating messages in the MRM domain

The following topics tell you how to deal with messages that have been modeled

in the MRM domain, and that are parsed by the MRM parser. The physical formats

associated with the message models do not affect this information unless

specifically stated. Use this information in conjunction with the information in the

topics in “Manipulating message body content” on page 28.

v “Accessing elements in a message in the MRM domain” on page 79

v “Accessing multiple occurrences of an element in a message in the MRM

domain” on page 80

v “Accessing attributes in a message in the MRM domain” on page 81

v “Accessing elements within groups in a message in the MRM domain” on page

82

v “Accessing mixed content in a message in the MRM domain” on page 84

v “Accessing embedded messages in the MRM domain” on page 85

v “Accessing the content of a message in the MRM domain with namespace

support enabled” on page 86

v “Querying null values in a message in the MRM domain” on page 87

v “Setting null values in a message in the MRM domain” on page 87

v “Working with MRM messages and bit streams” on page 91

v “Handling large MRM messages” on page 93

If you have migrated message sets from WebSphere MQ Integrator Broker Version

2.1 or WebSphere MQ Event Broker Version 2.1, you might also need to refer to the

information in the following section:

v “Accessing objects in migrated message models” on page 88

DECLARE SQLState1 CHARACTER;

DECLARE SQLErrorText1 CHARACTER;

DECLARE SQLCode1 INTEGER;

DECLARE SQLNativeError1 INTEGER;

-- Make a database insert to a table that does not exist --

INSERT INTO Database.DB2ADMIN.NONEXISTENTTABLE (KEY,QMGR,QNAME)

 VALUES (45,’REG356’,’my TESTING 2’);

--Retrieve the database return codes --

SET SQLState1 = SQLSTATE;

SET SQLCode1 = SQLCODE;

SET SQLErrorText1 = SQLERRORTEXT;

SET SQLNativeError1 = SQLNATIVEERROR;

--Use the THROW statement to back out the database and issue a user exception--

THROW USER EXCEPTION MESSAGE 2950 VALUES

(’The SQL State’ , SQLState1 , SQLCode1 , SQLNativeError1 ,

SQLErrorText1);

78 ESQL

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.airline.xml.res

The following diagram shows the structure of the message, Customer, that is used

in the Video Rental sample sample; it is used in the samples in the topics listed

above to show ESQL that manipulates the objects that can be defined in a message

model.

The message includes a variety of structures that demonstrate the ways in which

metadata can be classified to the MRM. Within an MRM message set, you can

define the following objects: messages, types, groups, elements, and attributes.

Folder icons that represent each of these types of objects are displayed for each

message definition file in the Broker Application Development perspective.

Each message definition file can contribute to a namespace; in this sample, each

namespace is completely defined by a single message definition file. You can

combine several message definition files to form a complete message dictionary,

which you can then deploy to a broker.

The video sample has three message definition files:

Customer.mxsd

Resides in the noTarget namespace

Address.mxsd

Resides in the namespace http://www.ibm.com/AddressDetails

Borrowed.mxsd

Resides in the namespace http://www.ibm.com/BorrowedDetails

Refer to the Video Rental message structure for detailed information about the

objects that are defined in this message model.

Accessing elements in a message in the MRM domain

You can use ESQL to manipulate the logical tree that represents a message in the

message flow. This topic describes how to access data for elements in a message in

the MRM domain.

You can populate an element with data with the SET statement:

The field reference on the left hand side of the expression refers to the element

called Name within the MRM message domain. This statement takes the input

value for the Name field, converts it to uppercase, and assigns the result to the

same element in the output message.

Customer

IdGroupAddress ID

FirstName LastNameTitle DrivingLicenceNoPassportNo CreditCardNo

VideoTitle DueDate Cost

Name Borrowed Magazine

HouseNo Street Town

SET OutputRoot.MRM.Name = UPPER(InputRoot.MRM.Name);

Developing ESQL 79

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.res
/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.mft.samples.video.res

The Name element is defined in the noTarget namespace. No namespace prefix is

specified in front of the Name part of the field reference in the example above. If

you have defined an MRM element in a namespace other than the noTarget

namespace, you must also specify a namespace prefix in the statement. For

example:

For more information about using namespaces with messages in the MRM domain,

see “Accessing the content of a message in the MRM domain with namespace

support enabled” on page 86.

Accessing multiple occurrences of an element in a message in

the MRM domain

You can access MRM domain elements following the general guidance given in

“Accessing known multiple occurrences of an element” on page 33 and “Accessing

unknown multiple occurrences of an element” on page 34. Further information

specific to MRM domain messages is provided in this topic.

Consider the following statements:

The above SET statements operate on two occurrences of the element Borrowed.

Each statement sets the value of the child VideoTitle. The array index indicates

which occurrence of the repeating element you are interested in.

When you define child elements of a complex type (which has its Composition

property set to Sequence) in a message set, you can add the same element to the

complex type more than once. These instances do not have to be contiguous, but

you must use the same method (array notation) to refer to them in ESQL.

For example, if you create a complex type with a Composition of Sequence that

contains the following elements:

use the following ESQL to set the value of StringElement1:

You can also use the arrow notation (the greater than (>) and less than (<)

symbols) to indicate the direction of search and the index to be specified:

DECLARE brw NAMESPACE ’http://www.ibm.com/Borrowed’;

SET OutputRoot.MRM.brw:Borrowed.VideoTitle = ’MRM Greatest Hits’;

DECLARE brw NAMESPACE ’http://www.ibm.com/Borrowed’;

SET OutputRoot.MRM.brw:Borrowed[1].VideoTitle = ’MRM Greatest Hits Volume 1’;

SET OutputRoot.MRM.brw:Borrowed[2].VideoTitle = ’MRM Greatest Hits Volume 2’;

StringElement1

IntegerElement1

StringElement1

SET OutputRoot.MRM.StringElement1[1] =

 ’This is the first occurrence of StringElement1’;

SET OutputRoot.MRM.StringElement1[2] =

 ’This is the second occurrence of StringElement1’;

80 ESQL

Refer to “Accessing known multiple occurrences of an element” on page 33 and

“Accessing unknown multiple occurrences of an element” on page 34 for

additional detail.

Accessing attributes in a message in the MRM domain

When an MRM message is parsed into a logical tree, attributes and the data that

they contain are created as name-value pairs in the same way that MRM elements

are. This means that the ESQL that you code to interrogate and update the data

held in attributes refers to the attributes in a similar manner.

Consider the Video sample MRM message. The attribute LastName is defined as a

child of the Name element in the Customer message. Here is an example input

XML message:

When the input message is parsed, values are stored in the logical tree as shown in

the following section of user trace:

SET OutputRoot.MRM.StringElement1[>] =

 ’This is the first occurrence of StringElement1’;

SET OutputRoot.MRM.StringElement1[<2] =

 ’This is the last but one occurrence of

 StringElement1’;

SET OutputRoot.MRM.StringElement1[<1] =

 ’This is the last occurrence of StringElement1’;

<Customer xmlns:addr="http://www.ibm.com/AddressDetails"

xmlns:brw="http://www.ibm.com/BorrowedDetails">

 <Name LastName="Bloggs">

 <Title>Mr</Title>

 <FirstName>Fred</FirstName>

 </Name>

 <addr:Address>

 <HouseNo>13</HouseNo>

 <Street>Oak Street</Street>

 <Town>Southampton</Town>

 </addr:Address>

 <ID>P</ID>

 <PassportNo>J123456TT</PassportNo>

 <brw:Borrowed>

 <VideoTitle>Fast Cars</VideoTitle>

 <DueDate>2003-05-23T01:00:00</DueDate>

 <Cost>3.50</Cost>

 </brw:Borrowed>

 <brw:Borrowed>

 <VideoTitle>Cut To The Chase</VideoTitle>

 <DueDate>2003-05-23T01:00:00</DueDate>

 <Cost>3.00</Cost>

 </brw:Borrowed>

 <Magazine>0</Magazine>

</Customer>

Developing ESQL 81

The following ESQL changes the value of the LastName attribute in the output

message:

Be aware of the ordering of attributes when you code ESQL. When attributes are

parsed, the logical tree inserts the corresponding name-value before the MRM

element’s child elements. In the previous example, the child elements Title and

FirstName appear in the logical message tree after the attribute LastName. In the

Broker Application Development perspective, the Outline view displays attributes

after the elements. When you code ESQL to construct output messages, you must

define name-value pairs for attributes before any child elements.

Accessing elements within groups in a message in the MRM

domain

When an input message is parsed, structures that you have defined as groups in

your message set are not represented in the logical tree, but its children are. If you

want to refer to or update values for elements that are children of a groups, do not

include the group in the ESQL statement. Groups do not have tags that appear in

instance messages, and do not appear in user trace of the logical message tree.

Consider the following Video message:

(0x0100001B):MRM = (

 (0x01000013):Name = (

 (0x0300000B):LastName = ’Bloggs’

 (0x0300000B):Title = ’Mr’

 (0x0300000B):FirstName = ’Fred’

)

 (0x01000013)http://www.ibm.com/AddressDetails:Address = (

 (0x0300000B):HouseNo = 13

 (0x0300000B):Street = ’Oak Street’

 (0x0300000B):Town = ’Southampton’

)

 (0x0300000B):ID = ’P’

 (0x0300000B):PassportNo = ’J123456TT’

 (0x01000013)http://www.ibm.com/BorrowedDetails:Borrowed = (

 (0x0300000B):VideoTitle = ’Fast Cars’

 (0x0300000B):DueDate = TIMESTAMP ’2003-05-23 00:00:00’

 (0x0300000B):Cost = 3.50

)

 (0x01000013)http://www.ibm.com/BorrowedDetails:Borrowed = (

 (0x0300000B):VideoTitle = ’Cut To The Chase ’

 (0x0300000B):DueDate = TIMESTAMP ’2003-05-23 00:00:00’

 (0x0300000B):Cost = 3.00

)

 (0x0300000B):Magazine = FALSE

SET OutputRoot.MRM.Name.LastName = ’Smith’;

82 ESQL

When the input message is parsed, values are stored in the logical tree as shown in

the following section of user trace:

Immediately following the element named ID, the MRM message definition uses a

group which has a Composition of Choice. The group is defined with three children:

PassportNo, DrivingLicenceNo, and CreditCardNo. The choice composition

dictates that instance documents must use only one of these three possible

alternatives. The example shown above uses the PassportNo element.

When you refer to this element in ESQL statements, you do not specify the group

to which the element belongs. For example:

<Customer xmlns:addr="http://www.ibm.com/AddressDetails"

xmlns:brw="http://www.ibm.com/BorrowedDetails">

 <Name LastName="Bloggs">

 <Title>Mr</Title>

 <FirstName>Fred</FirstName>

 </Name>

 <addr:Address>

 <HouseNo>13</HouseNo>

 <Street>Oak Street</Street>

 <Town>Southampton</Town>

 </addr:Address>

 <ID>P</ID>

 <PassportNo>J123456TT</PassportNo>

 <brw:Borrowed>

 <VideoTitle>Fast Cars</VideoTitle>

 <DueDate>2003-05-23T01:00:00</DueDate>

 <Cost>3.50</Cost>

 </brw:Borrowed>

 <brw:Borrowed>

 <VideoTitle>Cut To The Chase</VideoTitle>

 <DueDate>2003-05-23T01:00:00</DueDate>

 <Cost>3.00</Cost>

 </brw:Borrowed>

 <Magazine>0</Magazine>

</Customer>

(0x0100001B):MRM = (

 (0x01000013):Name = (

 (0x0300000B):LastName = ’Bloggs’

 (0x0300000B):Title = ’Mr’

 (0x0300000B):FirstName = ’Fred’

)

 (0x01000013)http://www.ibm.com/AddressDetails:Address = (

 (0x0300000B):HouseNo = 13

 (0x0300000B):Street = ’Oak Street’

 (0x0300000B):Town = ’Southampton’

)

 (0x0300000B):ID = ’P’

 (0x0300000B):PassportNo = ’J123456TT’

 (0x01000013)http://www.ibm.com/BorrowedDetails:Borrowed = (

 (0x0300000B):VideoTitle = ’Fast Cars’

 (0x0300000B):DueDate = TIMESTAMP ’2003-05-23 00:00:00’

 (0x0300000B):Cost = 3.50

)

 (0x01000013)http://www.ibm.com/BorrowedDetails:Borrowed = (

 (0x0300000B):VideoTitle = ’Cut To The Chase ’

 (0x0300000B):DueDate = TIMESTAMP ’2003-05-23 00:00:00’

 (0x0300000B):Cost = 3.00

)

 (0x0300000B):Magazine = FALSE

Developing ESQL 83

If you define messages within message sets that include XML and TDS physical

formats, you can determine from the message data which option of a choice has

been taken, because the tags in the message represent one of the choice’s options.

However, if your messages have CWF physical format, or are non-tagged TDS

messages, it is not clear from the message data, and the application programs

processing the message must determine which option of the choice has been

selected. This is known as unresolved choice handling. For further information, see

the description of the value of Choice in Complex type logical properties.

Accessing mixed content in a message in the MRM domain

When you define a complex type in a message model, you can optionally specify

its content to be mixed. This setting, in support of mixed content in XML schema,

allows you to manipulate data that is included between elements in the message.

Consider the following example:

The strings abc, ghi, and mno do not represent the value of a particular element

(unlike def, for example, which is the value of element Elem1). The presence of

these strings means that you must model Mess1 with mixed content. You can

model this XML message in the MRM using the following objects:

Message

The message Name property is set to Mess1 to match the XML tag.

 The Type property is set to tMess1.

Type The complex type Name property is set to tMess1.

 The Composition property is set to OrderedSet.

 The complex type has mixed content.

 The complex type contains the following objects:

Element

The Name property is set to Elem1 to match the XML tag.

 The Type property is set to simple type xsd:string.

Element

The Name property is set to Elem2 to match the XML tag.

 The Type property is set to simple type xsd:string.

Element

The Name property is set to Elem3 to match the XML tag.

 The Type property is set to simple type xsd:string.

SET OutputRoot.MRM.PassportNo = ’J999999TT’;

<MRM>

 <Mess1>

 abc

 <Elem1>def</Elem1>

 ghi

 <Elem2>jkl</Elem2>

 mno

 <Elem3>pqr</Elem3>

 </Mess1>

</MRM>

84 ESQL

If you code the following ESQL:

the mixed content is successfully mapped to the following output message:

Accessing embedded messages in the MRM domain

If you have defined a multipart message, you have at least one message embedded

within another. Within the overall complex type that represents the outer messages,

you can model the inner message in one of the following ways:

v An element (named E_outer1 in the following example) with its Type property

set to a complex type that has been defined with its Composition property set to

Message

v A complex type with its Composition property set to Message (named

t_Embedded in the following example)

The ESQL that you need to write to manipulate the inner message varies

depending on which of the above models you have used. For example, assume

that you have defined:

v An outer message M_outer that has its Type property set to t_Outer.

v An inner message M_inner1 that has its Type set to t_Inner1

v An inner message M_inner2 that has its Type set to t_Inner2

v Type t_Outer that has its first child element named E_outer1 and its second

child defined as a complex type named t_Embedded

v Type t_Embedded that has its Composition property set to Message

v Type t_Inner1 that has its first child element named E_inner11

v Type t_Inner2 that has its first child element named E_inner21

v Type t_outer1 that has its Composition property set to Message

v Element E_outer1 that has its Type property set to t_outer1

If you want to set the value of E_inner11, code the following ESQL:

If you want to set the value of E_inner21, code the following ESQL:

SET OutputRoot.MRM.*[1] = InputBody.Elem3;

SET OutputRoot.MRM.Elem1 = InputBody.*[5];

SET OutputRoot.MRM.*[3] = InputBody.Elem2;

SET OutputRoot.MRM.Elem2 = InputBody.*[3];

SET OutputRoot.MRM.*[5] = InputBody.Elem1;

SET OutputRoot.MRM.Elem3 = InputBody*[1];

<MRM>

 <Mess1>

 pqr

 <Elem1>mno</Elem1>

 jkl

 <Elem2>ghi</Elem2>

 def

 <Elem3>abc</Elem3>

 </Mess1>

</MRM>

SET OutputRoot.MRM.E_outer1.M_inner1.E_inner11 = ’FRED’;

SET OutputRoot.MRM.M_inner2.E_inner21 = ’FRED’;

Developing ESQL 85

If you copy message headers from the input message to the output message, and

your input message type contains a path, only the outermost name in the path is

copied to the output message type.

When you configure a message flow to handle embedded messages, you can

specify the path of a message type in either an MQRFH2 header (if one is present

in the input message) or in the input node Message Type property in place of a

name (for example, for the message modeled above, the path could be specified as

M_Outer/M_Inner1/M_Inner2 instead of just M_Outer).

If you have specified that the input message has a physical format of either CWF

or XML, any message type prefix is concatenated in front of the message type from

the MQRFH2 or input node, giving a final path to use (for more information refer

to Multipart messages). The MRM uses the first item in the path as the outermost

message type, then progressively works inwards when it finds a complex type

with its Composition property set to Message.

If you have specified that the input message has a physical format of TDS, a

different process that uses message keys is implemented. This is described in TDS

format: Multipart messages.

For more information about path concatenations, see Message set properties.

Accessing the content of a message in the MRM domain with

namespace support enabled

You can exploit namespace support for messages that are parsed by the MRM

parser.

When you want to access elements of a message and namespaces are enabled, you

must include the namespace when you code the ESQL reference to the element. If

you do not do so, the broker searches the notarget namespace. If the element is not

found in the notarget namespace, the broker searches all other known namespaces

in the message dictionary (that is, within the deployed message set). For

performance and integrity reasons, specify namespaces wherever they apply.

The most efficient way to refer to elements when namespaces are enabled is to

define a namespace constant, and use this in the appropriate ESQL statements.

This makes your ESQL code much easier to read and maintain.

Define a constant using the DECLARE NAMESPACE statement:

ns01 is interpreted correctly as a namespace because of the way that it is declared.

You can also use a CHARACTER variable to declare a namespace:

If you use this method, you must surround the declared variable with braces to

ensure that it is interpreted as a namespace.

DECLARE ns01 NAMESPACE ’http://www.ns01.com’

.

.

SET OutputRoot.MRM.Element1 = InputBody.ns01:Element1;

DECLARE ns02 CHARACTER ’http://www.ns02.com’

.

.

SET OutputRoot.MRM.Element2 = InputBody.{ns02}:Element2;

86 ESQL

If you are concerned that a CHARACTER variable might get changed, you can use

a CONSTANT CHARACTER declaration:

You can declare a namespace, constant, and variable within a module or function.

However, you can declare only a namespace or constant in schema scope (that is,

outside a module scope).

The Video sample provides further examples of the use of namespaces.

Namespaces are not supported by Version 2.1, so you cannot deploy a message set

or message flow that uses namespaces to a Version 2.1 broker.

Querying null values in a message in the MRM domain

If you want to compare an element to NULL, code the statement:

If nulls are permitted for this element, this statement tests whether the element

exists in the input message, or whether it exists and contains the MRM-supplied

null value. The behavior of this test depends on the physical format:

v For an XML element, if the XML tag or attribute is not in the bit stream, this test

returns TRUE.

v For an XML element, if the XML tag or attribute is in the bit stream and contains

the MRM null value, this test returns TRUE.

v For an XML element, if the XML tag or attribute is in the bit stream and does

not contain the MRM null value, this test returns FALSE.

v For a delimited TDS element, if the element has no value between the previous

delimiter and its delimiter, this test returns TRUE.

v For a delimited TDS element, if the element has a value between the previous

delimiter and its delimiter that is the same as the MRM-defined null value for

this element, this test returns TRUE.

v For a delimited TDS element, if the element has a value between the previous

delimiter and its delimiter that is not the MRM-defined null value, this test

returns FALSE.

v For a CWF or fixed length TDS element, if the element’s value is the same as the

MRM-defined null value for this element, this test returns TRUE.

v For a CWF or fixed length TDS element, if the element’s value is not the same as

the MRM-defined null value, this test returns FALSE.

If you want to determine if the field is missing, rather than present but with null

value, you can use the ESQL CARDINALITY function.

Setting null values in a message in the MRM domain

To set a value of an element in an output message, you normally code an ESQL

statement similar to the following:

DECLARE ns03 CONSTANT CHARACTER ’http://www.ns03.com’

.

.

SET OutputRoot.MRM.Element3 = InputBody.{ns03}:Element3;

IF InputRoot.MRM.Elem2.Child1 IS NULL THEN

 DO:

 -- more ESQL --

END IF;

Developing ESQL 87

or its equivalent statement:

If you set the element to a non-null value, these two statements give identical

results. However, if you want to set the value to null, these two statements do not

give the same result:

1. If you set the element to NULL using the following statement, the element is

deleted from the message tree:

The content of the output bit stream depends on the physical format:

v For an XML element, neither the XML tag or attribute nor its value are

included in the output bit stream.

v For a Delimited TDS element, neither the tag (if appropriate) nor its value

are included in the output bit stream. The absence of the element is typically

conveyed by two adjacent delimiters.

v For a CWF or Fixed Length TDS element, the content of the output bit

stream depends on whether you have set the Default Value property for the

element. If you have set this property, the default value is included in the bit

stream. If you have not set the property, an exception is raised.

This is called implicit null processing.

2. If you set the value of this element to NULL as follows:

 the element is not deleted from the message tree. Instead, a special value of

NULL is assigned to the element. The content of the output bit stream depends

on the settings of the physical format null-handling properties.

This is called explicit null processing.

Setting a complex element to NULL deletes that element and all its children.

Accessing objects in migrated message models

If you have migrated message models that you created in WebSphere MQ

Integrator Version 2.1 or WebSphere MQ Integrator Broker Version 2.1, the models

created by mqsimigratemsgsets command include objects that you cannot create in

the model in Version 5.

The following topics provide information about how to access these objects when

you configure a message flow to process messages that are parsed according to

those migrated models:

v “Accessing embedded simple types in migrated message models”

v “Accessing base types in migrated message models” on page 90

Accessing embedded simple types in migrated message models:

In previous releases, you could embed a simple type within a compound type in

the message model. This allowed the anonymous text that can occur between the

XML tags to be modeled. These simple types are referred to as embedded simple

types to distinguish them from XML schema simple types. This topic is only

SET OutputRoot.MRM.Elem2.Child1 = ’xyz’;

SET OutputRoot.MRM.Elem2.Child1 VALUE = ’xyz’;

SET OutputRoot.MRM.Elem2.Child1 = NULL;

SET OutputRoot.MRM.Elem2.Child1 VALUE = NULL;

88 ESQL

applicable if you are working with messages that you modeled in a previous

release and have imported using mqsimigratemsgsets command.

When an MRM message is parsed into a logical tree, embedded simple types do

not have identifiers that uniquely define them in ESQL. If you want to interrogate

or update the data held in an embedded simple type, you must refer to it in

relation to other known objects in the message.

For example, if you want to update the embedded simple type with the text Mr.

Smith, include the following ESQL in your Compute node:

This statement sets the third child of the element Person to Mr.Smith. Because this

statement addresses an anonymous element in the tree (an embedded simple type

that has no name), you can set its value only if you know its position in the tree.

Consider the following MRM XML message:

You can model this XML message in the MRM using the following objects.

Message

The message Name property is set to Mess1 to match the XML tag.

 The Type property is set to tMess1.

Type The complex type Name property is set to tMess1.

 The Composition property is set to Ordered Set.

 The complex type contains the following objects:

Element

The Name property is set to Elem1 to match the XML tag.

 The Type property is set to XML Schema simple type xsd:string.

Element

The Name property is set to Elem2 to match the XML tag.

 The Type property is set to complex type tElem2.

Type The complex type Name property is set to tMess2.

 The Composition property is set to Sequence.

 The complex type contains the following objects:

Element

The Name property is set to Child1 to match the XML tag.

 The Type property is set to XML Schema simple type xsd:string.

Embedded Simple Type

ComIbmMRM_BaseValueString

The embedded simple type ComIbmMRM_BaseValueString that is embedded

within tMess2 is used to parse the data def from the input message. If you want to

SET OutputRoot.MRM.Person.*[3] = ’Mr.Smith’;

<Mess1>

 <Elem1>abc</Elem1>

 <Elem2>def<Child1>ghi</Child1></Elem2>

</Mess1>

Developing ESQL 89

change the value of the data associated with the embedded simple type on output,

code the following ESQL:

This generates the following output message:

If you prefer not to model this message in the MRM, you can achieve the same

result with the following ESQL:

An embedded simple type does not have the facilities for null handling that is

provided with elements. If you set an embedded simple type to null, it is deleted

from the message tree.

In ESQL, element names are typically used to refer to and update MRM elements.

The exception is when embedded simple types are present in the message. If you

are using multipart messages, you must specify the message name to further

qualify the embedded simple type references if the message is not the first message

object in the bit stream. “Accessing embedded messages in the MRM domain” on

page 85 provides further information.

Accessing base types in migrated message models:

In previous releases, you could optionally give a compound type an associated

base type in the message model. This concept is provided in Version 5 by mixed

content objects. This topic applies only if you are working with messages that you

modeled in a previous release and have imported using mqsimigratemsgsets

command. The base type becomes the value (data) associated with the element’s

underlying complex type when the message set is imported.

If you have imported a message set that includes a compound type that has a

defined base type, the migration process creates an additional child element as the

first element in the corresponding complex type. The name of the additional

element is automatically generated by the migration process. Although this element

is displayed in the workbench, you do not need to refer to it in ESQL. You can

continue to use the same ESQL statements to refer to the value of the base type,

that is the name of the complex element itself.

For example, assume that you defined a compound type in Version 2.1 called

CompType1 with a base type of STRING, and with two children Elem1 (STRING)

and Elem2 (STRING). You created an element CompElem1 based on compound

type CompType1. In ESQL you used the following statement to assign a value to

the base type:

When this part of the message model is migrated to Version 5, a complex type

CompType1 is created with three elements: the original two from the Version 2.1

definition plus the additional automatically-generated element that represents the

SET OutputRoot.MRM.Elem2.*[1] = ’xyz’;

<Mess1>

 <Elem1>abc</Elem1>

 <Elem2>xyz<Child1>ghi</Child1></Elem2>

</Mess1>

SET OutputRoot.XML.Elem2.*[1] = ’xyz’;

SET OutputRoot.MRM.CompElem1 = ’Some text value’;

90 ESQL

base type. You can continue to use the same statement, shown above, to assign a

value to the new element. The output message generated is also identical.

Working with MRM messages and bit streams:

When you use the ASBITSTREAM function or the CREATE FIELD statement with

a PARSE clause note the following points.

The ASBITSTREAM function

If you code the ASBITSTREAM function with the parser mode option set to

RootBitStream, to parse a message tree to a bit stream, the result is an MRM

document in the format specified by the message format that is built from the

children of the target element in the normal way.

The target element must be a predefined message defined within the message set,

or can be a self-defined message if using an XML physical format. This algorithm

is identical to that used to generate the normal output bit stream. A well formed

bit stream obtained in this way can be used to recreate the original tree using a

CREATE statement with a PARSE clause.

If you code the ASBITSTREAM function with the parser mode option set to

FolderBitStream, to parse a message tree to a bit stream, the generated bit stream is

an MRM element built from the target element and its children. Unlike

RootBitStream mode the target element does not have to represent a message; it can

represent a predefined element within a message or self-defined element within a

message.

So that the MRM parser can correctly parse the message, the path from the

message to the target element within the message must be specified in the Message

Type. The format of the path is the same as that used by message paths except that

the message type prefix is not used.

For example, suppose the following message structure is used:

To serialize the subtree representing element elem12 and its children, specify the

message path ’message/elem1/elem12’ in the Message Type.

If an element in the path is qualified by a namespace, specify the namespace URI

between {} characters in the message path. For example if element elem1 is

qualified by namespace ’http://www.ibm.com/temp’, specify the message path as

’message/{http://www.ibm.com/temp}elem1/elem12’

This mode can be used to obtain a bit stream description of arbitrary sub-trees

owned by an MRM parser. When in this mode, with a physical format of XML, the

XML bit stream generated is not enclosed by the ’Root Tag Name’ specified for the

Message in the Message Set. No XML declaration is created, even if not suppressed

in the message set properties.

Bit streams obtained in this way can be used to recreate the original tree using a

CREATE statement with a PARSE clause (using a mode of FolderBitStream).

 Message

 elem1

 elem11

 elem12

Developing ESQL 91

The CREATE statement with a PARSE clause

If you code a CREATE statement with a PARSE clause, with the parser mode

option set to RootBitStream, to parse a bit stream to a message tree, the expected bit

stream is a normal MRM document. A field in the tree is created for each field in

the document. This algorithm is identical to that used when parsing a bit stream

from an input node

If you code a CREATE statement with a PARSE clause, with the parser mode

option set to FolderBitStream, to parse a bit stream to a message tree, the expected

bit stream is a document in the format specified by the Message Format, which is

either specified directly or inherited. Unlike RootBitStream mode the root of the

document does not have to represent an MRM message; it can represent a

predefined element within a message or self-defined element within a message.

So that the MRM parser can correctly parse the message the path from the message

to the target element within the message must be specified in the Message Type. The

format of the message path is the same as that used for the ASBITSTREAM

function described above.

Example of using the ASBITSTREAM function and CREATE statement with a

PARSE clause in FolderBitStream mode

The following ESQL uses the message definition described above. The ESQL

serializes part of the input tree using the ASBITSTREAM function, and then uses

the CREATE statement with a PARSE clause to recreate the subtree in the output

tree. The Input message and corresponding Output message are shown below the

ESQL.

CREATE COMPUTE MODULE DocSampleFlow_Compute

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 CALL CopyMessageHeaders();

 -- Set the options to be used by ASBITSTREAM and CREATE ... PARSE

 -- to be FolderBitStream and enable validation

 DECLARE parseOptions INTEGER BITOR(FolderBitStream, ValidateContent,

 ValidateValue, ValidateLocalError);

 -- Serialise the elem12 element and its children from the input bitstream

 -- into a variable

 DECLARE subBitStream BLOB

 CAST(ASBITSTREAM(InputRoot.MRM.elem1.elem12

 OPTIONS parseOptions

 SET ’DocSample’

 TYPE ’message/elem1/elem12’

 FORMAT ’XML1’) AS BLOB);

 -- Set the value of the first element in the output tree

 SET OutputRoot.MRM.elem1.elem11 = ’val11’;

 -- Parse the serialized sub-tree into the output tree

 IF subBitStream IS NOT NULL THEN

 CREATE LASTCHILD OF OutputRoot.MRM.elem1

 PARSE (subBitStream

 OPTIONS parseOptions

 SET ’DocSample’

 TYPE ’message/elem1/elem12’

 FORMAT ’XML1’);

 END IF;

 -- Convert the children of elem12 in the output tree to uppercase

92 ESQL

SET OutputRoot.MRM.elem1.elem12.elem121 =

 UCASE(OutputRoot.MRM.elem1.elem12.elem121);

 SET OutputRoot.MRM.elem1.elem12.elem122 =

 UCASE(OutputRoot.MRM.elem1.elem12.elem122);

 -- Set the value of the last element in the output tree

 SET OutputRoot.MRM.elem1.elem13 = ’val13’;

 RETURN TRUE;

 END;

 CREATE PROCEDURE CopyMessageHeaders() BEGIN

 DECLARE I INTEGER 1;

 DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

 WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I = I + 1;

 END WHILE;

 END;

END MODULE;

Input message :

<message>

 <elem1>

 <elem11>value11</elem11>

 <elem12>

 <elem121>value121</elem121>

 <elem122>value122</elem122>

 </elem12>

 <elem13>value13</elem13>

 </elem1>

</message>

Output message :

<message>

 <elem1>

 <elem11>val11</elem11>

 <elem12>

 <elem121>VALUE121</elem121>

 <elem122>VALUE122</elem122>

 </elem12>

 <elem13>val13</elem13>

 </elem1

</message

Handling large MRM messages:

When an input bit stream is parsed, and a logical tree created, the tree

representation of an MRM message is typically larger, and in some cases much

larger, than the corresponding bit stream. The reasons for this include:

v The addition of the pointers that link the objects together.

v Translation of character data into Unicode that can double the original size.

v The inclusion of field names that can be contained implicitly within the bit

stream.

v The presence of control data that is associated with the broker’s operation

Manipulation of a large message tree can, therefore, demand a great deal of

storage. If you design a message flow that handles large messages made up of

repeating structures, you can code specific ESQL statements that help to reduce the

Developing ESQL 93

storage load on the broker. These statements support both random and sequential

access to the message, but assume that you do not need access to the whole

message at one time.

These ESQL statements cause the broker to perform limited parsing of the

message, and to keep only that part of the message tree that reflects a single record

in storage at a time. If your processing requires you to retain information from

record to record (for example, to calculate a total price from a repeating structure

of items in an order), you can either declare, initialize, and maintain ESQL

variables, or you can save values in another part of the message tree, for example

LocalEnvironment.

This technique reduces the memory used by the broker to that needed to hold the

full input and output bit streams, plus that required for one record’s trees. It

provides memory savings when even a small number of repeats is encountered in

the message. The broker makes use of partial parsing, and the ability to parse

specified parts of the message tree, to and from the corresponding part of the bit

stream.

To use these techniques in your Compute node apply these general techniques:

v Copy the body of the input message as a bit stream to a special folder in the

output message. This creates a modifiable copy of the input message that is not

parsed and which therefore uses a minimum amount of memory.

v Avoid any inspection of the input message; this avoids the need to parse the

message.

v Use a loop and a reference variable to step through the message one record at a

time. For each record:

– Use normal transforms to build a corresponding output subtree in a second

special folder.

– Use the ASBITSTREAM function to generate a bit stream for the output

subtree that is stored in a BitStream element, placed in the position in the tree,

that corresponds to its required position in the final bit stream.

– Use the DELETE statement to delete both the current input and the output

record message trees when you complete their manipulation.

– When you complete the processing of all records, detach the special folders so

that they do not appear in the output bit stream.

You can vary these techniques to suit the processing that is required for your

messages. The following ESQL provides an example of one implementation, and is

a rewrite of the ESQL example in “Handling large XML messages” on page 113

that uses a single SET statement with nested SELECT functions to transform a

message containing nested, repeating structures.

The ESQL is dependant on a message set called LargeMessageExanple that has been

created to define messages for both the Invoice input format and the Statement

output format. A message called AllInvoices has been created that contains a

global element called Invoice that can repeat one or more times, and a message

called Data that contains a global element called Statement that can repeat one or

more times.

The definitions of the elements and attributes have been given the correct data

types, therefore, the CAST statements used by the ESQL in the XML example are

94 ESQL

no longer required. An XML physical format with name XML1 has been created in

the message set which allows an XML message corresponding to these messages to

be parsed by the MRM.

When the Statement tree is serialized using the ASBITSTREAM function the

Message Set, Message Type, and Message Format are specified as parameters. The

Message Type parameter contains the path from the message to the element being

serialized which, in this case, is Data/Statement because the Statement element is a

direct child of the Data message.

The input message to the flow is the same Invoice example message used in other

parts of the documentation except that it is contained between the tags:

 <AllInvoices> </AllInvoices>

The output message is the same as that in “Handling large XML messages” on

page 113.

CREATE COMPUTE MODULE LargeMessageExampleFlow_Compute

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 CALL CopyMessageHeaders();

 -- Create a special folder in the output message to hold the input tree

 -- Note : SourceMessageTree is the root element of an MRM parser

 CREATE LASTCHILD OF OutputRoot.MRM DOMAIN ’MRM’ NAME ’SourceMessageTree’;

 -- Copy the input message to a special folder in the output message

 -- Note : This is a root to root copy which will therefore not build trees

 SET OutputRoot.MRM.SourceMessageTree = InputRoot.MRM;

 -- Create a special folder in the output message to hold the output tree

 CREATE FIELD OutputRoot.MRM.TargetMessageTree;

 -- Prepare to loop through the purchased items

 DECLARE sourceCursor REFERENCE TO OutputRoot.MRM.SourceMessageTree.Invoice;

 DECLARE targetCursor REFERENCE TO OutputRoot.MRM.TargetMessageTree;

 DECLARE resultCursor REFERENCE TO OutputRoot.MRM;

 DECLARE grandTotal FLOAT 0.0e0;

 -- Create a block so that it’s easy to abandon processing

 ProcessInvoice: BEGIN

 -- If there are no Invoices in the input message, there is nothing to do

 IF NOT LASTMOVE(sourceCursor) THEN

 LEAVE ProcessInvoice;

 END IF;

 -- Loop through the invoices in the source tree

 InvoiceLoop : LOOP

 -- Inspect the current invoice and create a matching Statement

 SET targetCursor.Statement =

 THE (

 SELECT

 ’Monthly’ AS Type,

 ’Full’ AS Style,

 I.Customer.FirstName AS Customer.Name,

 I.Customer.LastName AS Customer.Surname,

 I.Customer.Title AS Customer.Title,

 (SELECT

 FIELDVALUE(II.Title) AS Title,

 II.UnitPrice * 1.6 AS Cost,

 II.Quantity AS Qty

 FROM I.Purchases.Item[] AS II

 WHERE II.UnitPrice > 0.0) AS Purchases.Article[],

 (SELECT

 SUM(II.UnitPrice *

Developing ESQL 95

II.Quantity *

 1.6)

 FROM I.Purchases.Item[] AS II) AS Amount,

 ’Dollars’ AS Amount.Currency

 FROM sourceCursor AS I

 WHERE I.Customer.LastName <> ’White’

);

 -- Turn the current Statement into a bit stream

 -- The SET parameter is set to the name of the message set

 -- containing the MRM definition

 -- The TYPE parameter contains the path from the from the message

 -- to element being serialized

 -- The FORMAT parameter contains the name of the physical format

 -- name defined in the message

 DECLARE StatementBitStream BLOB

 CAST(ASBITSTREAM(targetCursor.Statement

 OPTIONS FolderBitStream

 SET ’LargeMessageExample’

 TYPE ’Data/Statement’

 FORMAT ’XML1’) AS BLOB);

 -- If the SELECT produced a result (that is, it was not filtered

 -- out by the WHERE clause), process the Statement

 IF StatementBitStream IS NOT NULL THEN

 -- create a field to hold the bit stream in the result tree

 -- The Type of the element is set to MRM.BitStream to indicate

 -- to the MRM Parser that this is a bitstream

 CREATE LASTCHILD OF resultCursor

 Type MRM.BitStream

 NAME ’Statement’

 VALUE StatementBitStream;

 -- Add the current Statement’s Amount to the grand total

 SET grandTotal = grandTotal + targetCursor.Statement.Amount;

 END IF;

 -- Delete the real Statement tree leaving only the bit stream version

 DELETE FIELD targetCursor.Statement;

 -- Step onto the next Invoice, removing the previous invoice and any

 -- text elements that might have been interspersed with the Invoices

 REPEAT

 MOVE sourceCursor NEXTSIBLING;

 DELETE PREVIOUSSIBLING OF sourceCursor;

 UNTIL (FIELDNAME(sourceCursor) = ’Invoice’)

 OR (LASTMOVE(sourceCursor) = FALSE)

 END REPEAT;

 -- If there are no more invoices to process, abandon the loop

 IF NOT LASTMOVE(sourceCursor) THEN

 LEAVE InvoiceLoop;

 END IF;

 END LOOP InvoiceLoop;

 END ProcessInvoice;

 -- Remove the temporary source and target folders

 DELETE FIELD OutputRoot.MRM.SourceMessageTree;

 DELETE FIELD OutputRoot.MRM.TargetMessageTree;

 -- Finally add the grand total

 SET resultCursor.GrandTotal = grandTotal;

 -- Set the output MessageType property to be ’Data’

 SET OutputRoot.Properties.MessageType = ’Data’;

96 ESQL

RETURN TRUE;

 END;

 CREATE PROCEDURE CopyMessageHeaders() BEGIN

 DECLARE I INTEGER 1;

 DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

 WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I = I + 1;

 END WHILE;

 END;

END MODULE;

Manipulating messages in the XML domain

The following topics tell you how to deal with messages that belong to the XML

domain, and that are parsed by the generic XML parser. Use this information in

conjunction with the information in “Manipulating message body content” on page

28. This information is also valid for messages in the XMLNS domain, unless

stated otherwise. For unique information on how to handle XMLNS messages, see

“Manipulating messages in the XMLNS domain” on page 125.

An XML message can represent a complicated message model and contain a large

number of different syntax elements. It is sometimes not enough to identify a field

just by name and array subscript; an optional type can be associated with an

element to represent some components of a message model.

The information contained in the following topics tells you how you can refer to

and manipulate the elements that might occur in an XML message. It also provides

information about creating new messages in a logical tree that can be successfully

converted to an output bit stream. For a more detailed discussion on what each

syntax element is, and how they are parsed into a message tree, see “ESQL field

references” on page 158.

v “Accessing attributes in XML messages”

v “Accessing XmlDecl in an XML message” on page 99

v “Accessing DocTypeDecl in an XML message” on page 100

v “Manipulating paths and types in an XML message” on page 104

v “Ordering fields in an XML message” on page 105

v “Constructing XML output messages” on page 106

v “Transforming a simple XML message” on page 107

v “Transforming a complex XML message” on page 111

v “Handling large XML messages” on page 113

v “Returning a scalar value in an XML message” on page 116

v “Translating data in an XML message” on page 118

v “Joining data in an XML message” on page 119

v “Joining data from XML messages and database tables” on page 121

v “Working with XML messages and bit streams” on page 124

Accessing attributes in XML messages

XML messages consist of a sequence of elements with form and content delimited

by the tags. Many XML tags also include information in the form of associated

Developing ESQL 97

attributes. The element value, and any attributes that the element might have, are

treated in the tree as children of the element.

The following table lists the correlation name that you must use to refer to

attributes.

 Syntax element Correlation name

Attribute (XML.Attribute) - (XML.attr) is also

supported

In the example Invoice message, the element Title within each Item element has

three attributes: Category, Form, and Edition. For example, the first Title element

contains:

The element InputRoot.XML.Invoice.Purchases.Item[1].Title has four children in the

logical tree: Category, Form, Edition, and the element value, which is The XML

Companion.

If you want to access the attributes for this element, you can code the following

ESQL. This extract of code retrieves the attributes from the input message and

creates them as elements in the output message. It does not process the value of

the element itself in this example.

When this ESQL is processed by the Compute node, the following output message

is generated:

You can also use a SELECT statement:

<Title Category="Computer" Form="Paperback" Edition="2">The XML Companion</Title>

-- Set the cursor to the first XML.Attribute of the Title, note the * after

-- (XML.Attribute) meaning any name, because the name might not be known

DECLARE cursor REFERENCE TO InputRoot.XML.Invoice.Purchases.Item[1]

 .Title.(XML.Attribute)*;

WHILE LASTMOVE(cursor) DO

 -- Create a field with the same name as the XML.Attribute and set its value

 -- to the value of the XML.Attribute

 SET OutputRoot.XML.Data.Attributes.{FIELDNAME(cursor)} = FIELDVALUE(cursor);

-- Move to the next sibling of the same TYPE to avoid the Title value

-- which is not an XML.Attribute

 MOVE cursor NEXTSIBLING REPEAT TYPE;

END WHILE;

<Data>

 <Attributes>

 <Category>Computer</Category>

 <Form>Paperback</Form>

 <Edition>2</Edition>

 </Attributes>

</Data>

98 ESQL

This generates the following output message:

You can qualify the SELECT with a WHERE statement to narrow down the results

to obtain the same output message as the one that is generated by the WHILE

statement. This second example shows that you can create the same results with

less, and less complex, ESQL.

This generates the following output message:

Accessing XmlDecl in an XML message

The following table provides the correlation names for each XML syntax element in

XmlDecl. Use these names to refer to the elements in input messages, and to set

elements, attributes, and values in output messages.

 Syntax element Correlation name

XmlDecl (XML.XmlDecl)

Version (XML.Version)

SET OutputRoot.XML.Data.Attributes[] =

 (SELECT FIELDVALUE(I.Title) AS title,

 FIELDVALUE(I.Title.(XML.Attribute)Category) AS category,

 FIELDVALUE(I.Title.(XML.Attribute)Form) AS form,

 FIELDVALUE(I.Title.(XML.Attribute)Edition) AS edition

 FROM InputRoot.XML.Invoice.Purchases.Item[] AS I);

<Data>

 <Attributes>

 <title>The XML Companion</title>

 <category>Computer</category>

 <form>Paperback</form>

 <edition>2</edition>

 </Attributes>

 <Attributes>

 <title>A Complete Guide to DB2 Universal Database</title>

 <category>Computer</category>

 <form>Paperback</form>

 <edition>2</edition>

 </Attributes>

 <Attributes>

 <title>JAVA 2 Developers Handbook</title>

 <category>Computer</category>

 <form>Hardcover</form>

 <edition>0</edition>

 </Attributes>

</Data>

SET OutputRoot.XML.Data.Attributes[] =

 (SELECT FIELDVALUE(I.Title.(XML.Attribute)Category) AS category,

 FIELDVALUE(I.Title.(XML.Attribute)Form) AS form,

 FIELDVALUE(I.Title.(XML.Attribute)Edition) AS edition

 FROM InputRoot.XML.Invoice.Purchases.Item[] AS I

 WHERE I.Title = ’The XML Companion’);

<Data>

 <Attributes>

 <Category>Computer</Category>

 <Form>Paperback</Form>

 <Edition>2</Edition>

 </Attributes>

</Data>

Developing ESQL 99

Syntax element Correlation name

Encoding (XML.″Encoding″)

Standalone (XML.Standalone)

(XML."Encoding") must include quotes, because Encoding is a reserved word.

If you want to refer to the attributes of the XML declaration in an input message,

code the following ESQL. These statements are valid for a Compute node, if you

are coding for a Database or Filter node, substitute Root for InputRoot.

If you want to set the XML declaration in an output message in a Compute node,

code the following ESQL:

This ESQL generates the following XML declaration:

For further information on the syntax elements involved in the XML declaration,

see The XML declaration.

Accessing DocTypeDecl in an XML message

The XML Document Type Declaration includes the DocTypeDecl syntax element

and its descendants. Together they comprise the DOCTYPE construct.

The descendants, some of which have attributes, are listed below, together with the

correlation names for each XML syntax element. For more information about all

these elements, see XML document type declaration.

 Syntax element Correlation name

AttributeDef (XML.AttributeDef)

AttributeDefDefaultType (XML.AttributeDefDefaultType)

AttributeDefType (XML.AttributeDefType)

IF InputRoot.XML.(XML.XmlDecl)* IS NULL THEN

 -- more ESQL --

IF InputRoot.XML.(XML.XmlDecl)*.(XML.Version)* = ’1.0’ THEN

 -- more ESQL --

IF InputRoot.XML.(XML.XmlDecl)*.(XML."Encoding")* = ’UTF-8’ THEN

 -- more ESQL --

IF InputRoot.XML.(XML.XmlDecl)*.(XML.Standalone)* = ’no’ THEN

 -- more ESQL --

-- Create an XML Declaration

SET OutputRoot.XML.(XML.XmlDecl) = ’’;

-- Set the Version within the XML Declaration

SET OutputRoot.XML.(XML.XmlDecl).(XML.Version) = ’1.0’;

-- Set the Encoding within the XML Declaration

SET OutputRoot.XML.(XML.XmlDecl).(XML."Encoding") = ’UTF-8’;

-- Set Standalone within the XML Declaration

SET OutputRoot.XML.(XML.XmlDecl).(XML.Standalone) = ’no’;

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

100 ESQL

Syntax element Correlation name

AttributeDefValue (XML.AttributeDefValue)

AttributeList (XML.AttributeList)

DocTypeComment (XML.DocTypeComment)

DocTypeDecl (XML.DocTypeDecl)

DocTypePI (XML.DocTypePI)

DocTypeWhiteSpace (XML.DocTypeWhiteSpace)

ElementDef (XML.ElementDef)

EntityDecl (XML.EntityDecl)

EntityDeclValue (XML.EntityDeclValue)

ExternalEntityDecl (XML.ExternalEntityDecl)

ExternalParameterEntityDecl (XML.ExternalParameterEntityDecl)

IntSubset (XML.IntSubset)

NotationDecl (XML.NotationDecl)

NotationReference (XML.NotationReference)

ParameterEntityDecl (XML.ParameterEntityDecl)

PublicId (XML.PublicId)

SystemId (XML.SystemId)

UnparsedEntityDecl (XML.UnparsedEntityDecl)

The following sections of ESQL show you how to create DocTypeDecl content in

an output message generated by the Compute node. You can also use the same

correlation names to interrogate all these elements within an input XML message.

The first example shows DocTypeDecl and NotationDecl:

The section below shows how to set up entities:

-- Create a DocType Declaration named ’test’

SET OutputRoot.XML.(XML.DocTypeDecl)test = ’’;

-- Set a public and system ID for the DocType Declaration

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.SystemId)

 = ’test.dtd’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.PublicId)

 = ’//this/is/a/URI/test’;

-- Create an internal subset to hold our DTD definitions

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset) = ’’;

-- Create a Notation Declaration called ’TeX’

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.NotationDecl)TeX = ’’;

-- The Notation Declaration contains a SystemId and a PublicId

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.NotationDecl)TeX.(XML.SystemId) = ’//TexID’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.NotationDecl)TeX.(XML.PublicId)

 = ’//this/is/a/URI/TexID’;

Developing ESQL 101

The section below shows DocTypeWhiteSpace, DocTypeProcessingInstruction, and

DocTypeComment:

The section below shows how to set up elements:

-- Create an Entity Declaration called ’ent1’

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.EntityDecl)ent1 = ’’;

-- This must contain an Entity Declaration Value

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.EntityDecl)ent1.(XML.EntityDeclValue)

 = ’this is an entity’;

-- Similarly for a Parameter Entity Declaration

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.ParameterEntityDecl)ent2 = ’’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.ParameterEntityDecl)ent2.(XML.EntityDeclValue)

 =’#PCDATA | subel2’;

-- Create both types of External Entity, each with a

-- public and system ID

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.ExternalParameterEntityDecl)extent1 = ’’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.ExternalParameterEntityDecl)extent1.(XML.SystemId)

 = ’more.txt’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.ExternalParameterEntityDecl)extent1.(XML.PublicId)

 = ’//this/is/a/URI/extent1’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.ExternalEntityDecl)extent2 = ’’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.ExternalEntityDecl)extent2.(XML.SystemId)

 = ’more.txt’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.ExternalEntityDecl)extent2.(XML.PublicId)

 = ’//this/is/a/URI/extent2’;

-- Create an Unparsed Entity Declaration called ’unpsd’

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.UnparsedEntityDecl)unpsd = ’’;

-- This has a SystemId, PublicId and Notation Reference

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.UnparsedEntityDecl).(XML.SystemId) = ’me.gif’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.UnparsedEntityDecl).(XML.PublicId)

 = ’//this/is/a/URI/me.gif’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.UnparsedEntityDecl).(XML.NotationReference) = ’TeX’;

-- Create some whitespace in the DocType Declaration

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.DocTypeWhiteSpace) = ’ ’;

-- Create a Processing Instruction named ’test’

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.DocTypePI)test = ’Do this’;

-- Add a DocTypeComment

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.DocTypeComment) = ’this is a comment’;

102 ESQL

The section below shows how to set up attribute lists:

This generates the following DocType Declaration (note that carriage returns have

been added for ease of viewing):

-- Create a variety of Elements

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

(XML.ElementDef)subel2 = ’(#PCDATA)’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.ElementDef)subel1 = ’(subel2 | el4)+’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.ElementDef)el1 = ’(#PCDATA)’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.ElementDef)el2 = ’(#PCDATA | subel2)*’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.ElementDef)el3 = ’(#PCDATA | subel2)*’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.ElementDef)el4 = ’(#PCDATA)’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.ElementDef)el5 = ’(#PCDATA | subel1)*’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.ElementDef)el6 = ’(#PCDATA)’;

-- Create an AttributeList for element subel1

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.AttributeList)subel1 = ’’;

-- Create an attribute called ’size’ with enumerated

-- values ’big’ or ’small’

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.AttributeList)subel1.(XML.AttributeDef)size = ’’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.AttributeList)subel1.(XML.AttributeDef)size.

(XML.AttributeDefType) = ’(big | small)’;

-- Set the default value of our attribute to be ’big’

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.AttributeList)subel1.(XML.AttributeDef)size.

(XML.AttributeDefValue) = ’big’;

-- Create another attribute - this time we specify

-- the DefaultType as being #REQUIRED

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.AttributeList)subel1.(XML.AttributeDef)shape = ’’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.AttributeList)subel1.(XML.AttributeDef)shape.

(XML.AttributeDefType) = ’(round | square)’;

-- Create another attribute list for element el5 with

-- one attribute, containing CDATA which is #IMPLIED

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.AttributeList)el5 = ’’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.AttributeList)el5.(XML.AttributeDef)el5satt = ’’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.AttributeList)el5.(XML.AttributeDef)el5satt.

(XML.AttributeDefType)CDATA = ’’;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.IntSubset).

 (XML.AttributeList)el5.(XML.AttributeDef)el5satt.

(XML.AttributeDefDefaultType) = ’IMPLIED’;

Developing ESQL 103

Manipulating paths and types in an XML message

When you refer to or set elements within an XML message body, you must use the

correct correlation names, in ESQL field references, to address them . The following

table lists the correlation names for all valid elements. For correlation names for

attributes XmlDec, and DocTypeDecl, see “Accessing attributes in XML messages”

on page 97, “Accessing XmlDecl in an XML message” on page 99, and “Accessing

DocTypeDecl in an XML message” on page 100. For information about field

references, see “ESQL field references” on page 158.

 Syntax element Correlation name

CDataSection (XML.CDataSection)

Comment (XML.Comment)

Content (XML.Content) - (XML.pcdata) is also

supported

Element (XML.Element) - (XML.tag) is also supported

EntityReferenceEnd (XML.EntityReferenceEnd)

EntityReferenceStart (XML.EntityReferenceStart)

ProcessingInstruction (XML.ProcessingInstruction)

WhiteSpace (XML.WhiteSpace)

When a type is not present in a path element, the type of the syntax element is not

important. That is, a path element of name matches any syntax element with the

name of name, regardless of the element type. In the same way that a path element

can specify a name and not a type, a path element can specify a type and not a

name. This type of path element matches any syntax element that has the specified

type, regardless of name. The following is an example of this:

<!DOCTYPE test PUBLIC "//this/is/a/URI/test" "test.dtd"

[<!NOTATION TeX PUBLIC "//this/is/a/URI/TexID" "//TexID">

<!ENTITY ent1 "this is an entity">

<!ENTITY % ent2 "#PCDATA | subel2">

<!ENTITY % extent1 PUBLIC "//this/is/a/URI/extent1" "more.txt">

<!ENTITY extent2 PUBLIC "//this/is/a/URI/extent2" "more.txt">

<!ENTITY unpsd PUBLIC "//this/is/a/URI/me.gif" "me.gif" NDATA TeX> <?test Do this?>

<!--this is a comment-->

<!ELEMENT subel2 (#PCDATA)>

<!ELEMENT subel1 (subel2 | el4)+>

<!ELEMENT el1 (#PCDATA)>

<!ELEMENT el2 (#PCDATA | subel2)*>

<!ELEMENT el3 (#PCDATA | subel2)*>

<!ELEMENT el4 (#PCDATA)>

<!ELEMENT el5 (#PCDATA | subel1)*>

<!ELEMENT el6 (#PCDATA)>

<!ATTLIST subel1

 size (big | small) "big"

 shape (round | square) #REQUIRED>

<!ATTLIST el5

 el5satt CDATA #IMPLIED>

]>

 FIELDNAME(InputBody.(XML.Element)[1])

104 ESQL

This example returns the name of the first element in the body of the message. The

following example of generic XML shows when it is necessary to use types in

paths:

The path InputBody.tag1.attr1 refers to the attribute called attr1, because

attributes appear before nested elements in a syntax tree generated by an XML

parser. To refer to the element called attr1 you must use a path:

It is always advisable to include types in these cases to be explicit about which

syntax element is being referred to.

The following ESQL:

is essentially shorthand for the following, fully-qualified path :

Consider the following XML:

The path InputBody.Order refers to the (XML.DocTypeDecl) syntax element, because

this appears before the XML Body in the syntax tree and has the same name. To

refer to the element ItemNo you need to use a path

InputBody.(XML.Element)Order.ItemNo. The following example demonstrates the

same idea, using the following XML input message:

To assign 112233 to <i1>, you must use the following ESQL expression:

Ordering fields in an XML message

When you create an XML output message in a Compute node, the order in which

your lines of ESQL appear is important, because the message elements are created

in the order in which you code them.

Consider the following XML message:

<tag1 attr1=’abc’>

 <attr1>123<attr1>

</tag1>

InputBody.tag1.(XML.Element)attr1

SET OutputRoot.XML.Element1.(XML.Element)Attribute1 = ’123’;

SET OutputRoot.XML.(XML.Element)Element1.(XML.Element)Attribute1.

 (XML.Content) = ’123’;

 <?xml version="1.0"?>

<!DOCTYPE Order SYSTEM "Order.dtd">

<Order>

 <ItemNo>1</ItemNo>

 <Quantity>2</Quantity>

</Order>

<doc><i1>100</i1></doc>

SET OutputRoot.XML.(XML.Element)doc.I1=112233;

Developing ESQL 105

If you want to add a DocType Declaration to this, insert the DocType Declaration

before you copy the input message to the output message. For example:

If you put the last statement to copy the input message before the XML-specific

statements, the following XML is generated for the output message. This is not

well-formed and fails when written from the message tree to a bit stream in the

output node:

Constructing XML output messages

Within the Compute node, you can create output XML messages by taking

information from an input message (which might or might not be XML), from a

database, or from other information or calculations. In addition to the general

guidance provided in “Manipulating message body content” on page 28, consider

the following points:

v You might want an empty element in the output message. On input, an empty

element of the form <tag></tag> is interpreted as identical to one of the form

<tag/>. On output, the default behavior of the generic XML parser is to generate

empty elements in the first of these two forms. If you require the second (short)

form of empty element, set the content of the element to NULL. The statement:

generates the following XML:

v It is possible to code ESQL that creates invalid XML or element content:

– If you code ESQL that creates an XML message that is not well formed (that

is, compliant with the XML specification), the generic XML parser invoked by

the output node or nodes in the message flow to create an output bit stream

from the logical message tree cannot do so.

An example of badly-formed XML is shown below, where the ESQL

constructs two top-level tags:

 <Order>

 <ItemNo>1</ItemNo>

 <Quantity>2</Quantity>

</Order>

SET OutputRoot.XML.(XML.XmlDecl) = ’’;

SET OutputRoot.XML.(XML.XmlDecl).(XML.Version) = ’1.0’;

SET OutputRoot.XML.(XML.DocTypeDecl)Order =’’ ;

SET OutputRoot.XML.(XML.DocTypeDecl).(XML.SystemId)

 = ’NewDtdName.dtd’;

SET OutputRoot = InputRoot;

 -- more ESQL --

<Order>

 <ItemNo>1</ItemNo>

 <Quantity>2</Quantity>

</Order>

<?xml version="1.0"?>

<!DOCTYPE Order SYSTEM "Order.dtd">

SET OutputRoot.XML.Invoice.Cashier.(XML.Content) = NULL;

<Invoice><Cashier/></Invoice>

SET OutputRoot.XML.Element1 = ’a’;

SET OutputRoot.XML.Element2 = ’b’;

106 ESQL

It is possible to create a message tree that, when parsed, results in tags that

are written as attributes, attributes that are written as tags, and tags that are

not written at all. This might happen, for example, if you copy elements to

the output message from an input message that is not an XML message.

It is also possible to create a message in which the contents are not in the

expected order; this is further described in “Ordering fields in an XML

message” on page 105.

If your message flow does not create an output message successfully, or the

output message does not have the content that you expect, check the ESQL

code that you have written to create the output message in the Compute

node.

– In addition to ensuring that the structure of the XML message tree is valid,

you must also ensure that the values written into the fields are valid. Because

character-by-character validation is not performed by the parser when it

constructs an XML message bit stream from the message tree, you can write

invalid characters into the output XML message. This might result in an

output message that cannot be parsed, or is parsed incorrectly with respect to

the structure (tags and attributes) and the content.

You might want to include a test on the data values that you insert into the

output message, or use the CAST function.

Transforming a simple XML message

When you code the ESQL for a Compute node, use the SELECT statement to

transform simple messages.

Examples

Review the following examples and modify them for your own use. They are all

based on the Invoice message as input.

Consider the following ESQL:

When the Invoice message is processed by this ESQL, the following output

message is produced:

There are three Output fields, one for each Item field. This is because, by default,

SELECT creates an item in its result list for each item described by its FROM list.

Within each Output field, there is a Field for each field named in the SELECT

clause and these are in the order in which they are specified within the SELECT,

not in the order in which they appear in the incoming message.

 SET OutputRoot.XML.Data.Output[] =

 (SELECT R.Quantity, R.Author FROM InputRoot.XML.Invoice.Purchases.Item[] AS R);

<Data>

 <Output>

 <Quantity>2</Quantity>

 <Autho>Neil Bradley</Autho>

 </Output>

 <Output>

 <Quantity>1</Quantity>

 <Autho>Don Chamberlin</Autho>

 </Output>

 <Output>

 <Quantity>1</Quantity>

 <Autho>Philip Heller, Simon Roberts</Autho>

 </Output>

</Data>

Developing ESQL 107

The R introduced by the final AS keyword is known as a correlation name. It is a

local variable that represents in turn each of the fields addressed by the FROM

clause. There is no significance to the name chosen. In summary, this simple

transform does two things:

1. It discards unwanted fields.

2. It guarantees the order of the fields.

Here is the same transform implemented by a procedural algorithm:

These examples show that the SELECT version of the transform is much more

concise. It also executes faster.

The following example shows a more advanced transformation:

In this transform, there is an AS clause associated with each item in the SELECT

clause. This gives each field in the result an explicit name rather than the field

names being inherited from the input. These names can be paths (that is, a dot

separated list of names), as shown in the example. Thus, the output message’s

structure can be arbitrarily different from the input message’s. Using the same

Invoice message, the result is:

DECLARE i INTEGER 1;

DECLARE count INTEGER CARDINALITY(InputRoot.XML.Invoice.Purchases.Item[]);

WHILE (i <= count)

 SET OutputRoot.XML.Data.Output[i].Quantity = InputRoot.XML.Invoice.Purchases.Item[i].Quantity;

 SET OutputRoot.XML.Data.Output[i].Author = InputRoot.XML.Invoice.Purchases.Item[i].Author;

 SET i = i+1;

END WHILE;

SET OutputRoot.XML.Data.Output[] =

 (SELECT R.Quantity AS Book.Quantity,

 R.Author AS Book.Author

 FROM InputRoot.XML.Invoice.Purchases.Item[] AS R

);

108 ESQL

The expressions in the SELECT clause can be of any complexity and there are no

special restrictions. They can include operators, functions, literals, and they can

refer to variables or to fields not related to the correlation name. The following

example shows more complex expressions:

Using the same Invoice message, the result in this case is:

<Data>

 <Output>

 <Book>

 <Quantity>2</Quantity>

 <Author>Neil Bradley</Author>

 </Book>

 </Output>

</Data>

<Data>

 <Output>

 <Book>

 <Quantity>2</Quantity>

 <Author>Neil Bradley</Author>

 </Book>

 </Output>

 <Output>

 <Book>

 <Quantity>1</Quantity>

 <Author>Don Chamberlin</Author>

 </Book>

 </Output>

 <Output>

 <Book>

 <Quantity>1</Quantity>

 <Author>Philip Heller, Simon Roberts</Author>

 </Book>

 </Output>

</Data>

SET OutputRoot.XML.Data.Output[] =

 (SELECT ’Start’ AS Header,

 ’Number of books:’ || R.Quantity AS Book.Quantity,

 R.Author || ’:Name and Surname’ AS Book.Author,

 ’End’ AS Trailer

 FROM InputRoot.XML.Invoice.Purchases.Item[] AS R

);

Developing ESQL 109

As shown above, the AS clauses of the SELECT clause contain a path that

describes the full name of the field to be created in the result. These paths can also

specify (as is normal for paths) the type of field to be created. The following

example transform specifies the field types. In this case, XML tagged data is

transformed to XML attributes:

Using the same Invoice message, the result is:

Finally, you can use a WHERE clause to eliminate some of the results. In the

following example a WHERE clause is used to remove results in which a specific

criterion is met. An entire result is either included or excluded:

<Data>

 <Output>

 <Header>Start</Header>

 <Book>

 <Quantity>Number of books:2</Quantity>

 <Author>Neil Bradley:Name and Surname</Author>

 </Book>

 <Trailer>End</Trailer>

 </Output>

 <Output>

 <Header>Start</Header>

 <Book>

 <Quantity>Number of books:1</Quantity>

 <Author>Don Chamberlin:Name and Surname</Author>

 </Book>

 <Trailer>End</Trailer>

 </Output>

 <Output>

 <Header>Start</Header>

 <Book>

 <Quantity>Number of books:1</Quantity>

 <Author>Philip Heller, Simon Roberts:Name and Surname</Author>

 </Book>

 <Trailer>End</Trailer>

 </Output>

</Data>

SET OutputRoot.XML.Data.Output[] =

 (SELECT R.Quantity.* AS Book.(XML.Attribute)Quantity,

 R.Author.* AS Book.(XML.Attribute)Author

 FROM InputRoot.XML.Invoice.Purchases.Item[] AS R

);

<Data>

 <Output>

 <Book Quantity="2" Author="Neil Bradley"/>

 </Output>

 <Output>

 <Book Quantity="1" Author="Don Chamberlin"/>

 </Output>

 <Output>

 <Book Quantity="1" Author="Philip Heller, Simon Roberts"/>

 </Output>

</Data>

SET OutputRoot.XML.Data.Output[] =

 (SELECT R.Quantity AS Book.Quantity,

 R.Author AS Book.Author

 FROM InputRoot.XML.Invoice.Purchases.Item[] AS R

 WHERE R.Quantity = 2

);

110 ESQL

Using the same input message, the result is:

Transforming a complex XML message

When you code the ESQL for a Compute node, use the SELECT statement for

complex message transformation.

Examples

Review the following examples and modify them for your own use. They are all

based on the Invoice message as input:

In this example, Invoice contains a variable number of Items. The transform is

shown below:

The output message that is generated is:

<Data>

 <Output>

 <Book>

 <Quantity>2</Quantity>

 <Author>Neil Bradley</Author>

 </Book>

 </Output>

</Data>

SET OutputRoot.XML.Data.Statement[] =

 (SELECT I.Customer.Title AS Customer.Title,

 I.Customer.FirstName || ’ ’ || I.Customer.LastName AS Customer.Name,

 COALESCE(I.Customer.PhoneHome,’’) AS Customer.Phone,

 (SELECT II.Title AS Desc,

 CAST(II.UnitPrice AS FLOAT) * 1.6 AS Cost,

 II.Quantity AS Qty

 FROM I.Purchases.Item[] AS II

 WHERE II.UnitPrice > 0.0) AS Purchases.Article[],

 (SELECT SUM(CAST(II.UnitPrice AS FLOAT) *

 CAST(II.Quantity AS FLOAT) *

 1.6)

 FROM I.Purchases.Item[] AS II) AS Amount,

 ’Dollars’ AS Amount.(XML.Attribute)Currency

 FROM InputRoot.XML.Invoice[] AS I

 WHERE I.Customer.LastName <> ’Brown’

);

Developing ESQL 111

This transform has two SELECTs nested inside each other. The outer one operates

on the list of Invoices. The inner one operates on the list of Items. The AS clause

associated with the inner SELECT expects an array:

This tells the outer select to expect a variable number of Items in each result. Each

SELECT has its own correlation name: I for the outer select and II for the inner

one. Each SELECT typically uses its own correlation name, but the inner SELECT’s

FROM clause refers to the outer SELECT’s correlation name:

This tells the inner SELECT to work with the current Invoice’s Items. Both

SELECTs contain WHERE clauses. The outer one uses one criterion to discard

certain Customers and the inner one uses a different criterion to discard certain

Items. The example also shows the use of COALESCE to prevent missing input

fields causing the corresponding output field to be missing. Finally, it also uses the

column function SUM to add together the value of all Items in each Invoice.

Column functions are discussed in “Referencing columns in a database” on page

64.

<Data>

 <Statement>

 <Customer>

 <Title>Mr</Title>

 <Name>Andrew Smith</Name>

 <Phone>01962818000</Phone>

 </Customer>

 <Purchases>

 <Article>

 <Desc Category="Computer" Form="Paperback" Edition="2">The XML Companion</Desc>

 <Cost>4.472E+1</Cost>

 <Qty>2</Qty>

 </Article>

 <Article>

 <Desc Category="Computer" Form="Paperback" Edition="2">

 A Complete Guide to DB2 Universal Database</Desc>

 <Cost>6.872E+1</Cost>

 <Qty>1</Qty>

 </Article>

 <Article>

 <Desc Category="Computer" Form="Hardcover" Edition="0">JAVA 2 Developers Handbook</Desc>

 <Cost>9.5984E+1</Cost>

 <Qty>1</Qty>

 </Article>

 </Purchases>

 <Amount Currency="Dollars">2.54144E+2</Amount>

 </Statement>

</Data>

 (SELECT II.Title AS Desc,

 CAST(II.UnitPrice AS FLOAT) * 1.6 AS Cost,

 II.Quantity AS Qty

 FROM I.Purchases.Item[] AS II

 WHERE II.UnitPrice > 0.0)

 -- Note the use of [] in the next expression

 AS Purchases.Article[],

 (SELECT II.Title AS Desc,

 CAST(II.UnitPrice AS FLOAT) * 1.6 AS Cost,

 II.Quantity AS Qty

 -- Note the use of I.Purchases.Item in the next expression

 FROM I.Purchases.Item[] AS II

 WHERE II.UnitPrice > 0.0) AS Purchases.Article[],

112 ESQL

When the fields Desc are created, the whole of the input Title field is copied: the

XML attributes and the field value. If you do not want these attributes in the

output message, you can use the FIELDVALUE function to discard them; for

example code the following ESQL:

That generates the following output message:

Handling large XML messages

When an input bit stream is parsed, and a logical tree created, the tree

representation of an XML message is typically bigger, and in some cases much

bigger, than the corresponding bit stream. The reasons for this include:

v The addition of the pointers that link the objects together

v Translation of character data into Unicode; this can double the size

v The inclusion of field names that might have been implicit in the bit stream

SET OutputRoot.XML.Data.Statement[] =

 (SELECT I.Customer.Title AS Customer.Title,

 I.Customer.FirstName || ’ ’ || I.Customer.LastName AS Customer.Name,

 COALESCE(I.Customer.PhoneHome,’’) AS Customer.Phone,

 (SELECT FIELDVALUE(II.Title) AS Desc,

 CAST(II.UnitPrice AS FLOAT) * 1.6 AS Cost,

 II.Quantity AS Qty

 FROM I.Purchases.Item[] AS II

 WHERE II.UnitPrice > 0.0) AS Purchases.Article[],

 (SELECT SUM(CAST(II.UnitPrice AS FLOAT) *

 CAST(II.Quantity AS FLOAT) *

 1.6)

 FROM I.Purchases.Item[] AS II) AS Amount,

 ’Dollars’ AS Amount.(XML.Attribute)Currency

 FROM InputRoot.XML.Invoice[] AS I

 WHERE I.Customer.LastName <> ’Brown’

);

<Data>

 <Statement>

 <Customer>

 <Title>Mr</Title>

 <Name>Andrew Smith</Name>

 <Phone>01962818000</Phone>

 </Customer>

 <Purchases>

 <Article>

 <Desc>The XML Companion</Desc>

 <Cost>4.472E+1</Cost>

 <Qty>2</Qty>

 </Article>

 <Article>

 <Desc>A Complete Guide to DB2 Universal Database</Desc>

 <Cost>6.872E+1</Cost>

 <Qty>1</Qty>

 </Article>

 <Article>

 <Desc>JAVA 2 Developers Handbook</Desc>

 <Cost>9.5984E+1</Cost>

 <Qty>1</Qty>

 </Article>

 </Purchases>

 <Amount Currency="Dollars">2.54144E+2</Amount>

 </Statement>

</Data>

Developing ESQL 113

v The presence of control data that is associated with the broker’s operation

Manipulating a large message tree can demand a lot of storage. If you design a

message flow that handles large messages made up of repeating structures, you

can code ESQL statements that help to reduce the storage load on the broker. These

statements support both random and sequential access to the message, but assume

that you do not need access to the whole message at one time.

These ESQL statements cause the broker to perform limited parsing of the

message, and to keep only that part of the message tree that reflects a single record

in storage at a time. If your processing requires you to retain information from

record to record (for example, to calculate a total price from a repeating structure

of items in an order), you can either declare, initialize, and maintain ESQL

variables, or you can save values in another part of the message tree, for example

LocalEnvironment.

This technique reduces the memory used by the broker to that needed to hold the

full input and output bit streams, plus that needed for just one record’s trees, and

provides memory savings when even a small number of repeats is encountered in

the message. The broker uses partial parsing and the ability to parse specified

parts of the message tree to and from the corresponding part of the bit stream.

To use these techniques in your Compute node, apply these general techniques:

v Copy the body of the input message as a bit stream to a special folder in the

output message. This creates a modifiable copy of the input message that is not

parsed and that therefore uses a minimum amount of memory.

v Avoid any inspection of the input message. This avoids the need to parse the

message.

v Use a loop and a reference variable to step through the message one record at a

time. For each record:

– Use normal transforms to build a corresponding output subtree in a second

special folder.

– Use the ASBITSTREAM function to generate a bit stream for the output

subtree that is stored in a BitStream element placed in the position in the tree

that corresponds to its required position in the final bit stream.

– Use the DELETE statement to delete both the current input and output record

message trees when you have completed their manipulation.

– When you have completed the processing of all records, detach the special

folders so that they do not appear in the output bit stream.

You can vary these techniques to suit the processing required for your messages.

The ESQL below provides an example of one implementation, and is a rewrite of

the ESQL example in “Transforming a complex XML message” on page 111. It uses

a single SET statement with nested SELECT functions to transform a message

containing nested, repeating structures.

114 ESQL

-- Copy the MQMD header

 SET OutputRoot.MQMD = InputRoot.MQMD;

 -- Create a special folder in the output message to hold the input tree

 -- Note : SourceMessageTree is the root element of an XML parser

 CREATE LASTCHILD OF OutputRoot.XML.Data DOMAIN ’XML’ NAME ’SourceMessageTree’;

 -- Copy the input message to a special folder in the output message

 -- Note : This is a root to root copy which will therefore not build trees

 SET OutputRoot.XML.Data.SourceMessageTree = InputRoot.XML;

 -- Create a special folder in the output message to hold the output tree

 CREATE FIELD OutputRoot.XML.Data.TargetMessageTree;

 -- Prepare to loop through the purchased items

 DECLARE sourceCursor REFERENCE TO OutputRoot.XML.Data.SourceMessageTree.Invoice;

 DECLARE targetCursor REFERENCE TO OutputRoot.XML.Data.TargetMessageTree;

 DECLARE resultCursor REFERENCE TO OutputRoot.XML.Data;

 DECLARE grandTotal FLOAT 0.0e0;

 -- Create a block so that it’s easy to abandon processing

 ProcessInvoice: BEGIN

 -- If there are no Invoices in the input message, there is nothing to do

 IF NOT LASTMOVE(sourceCursor) THEN

 LEAVE ProcessInvoice;

 END IF;

 -- Loop through the invoices in the source tree

 InvoiceLoop : LOOP

 -- Inspect the current invoice and create a matching Statement

 SET targetCursor.Statement =

 THE (

 SELECT

 ’Monthly’ AS (XML.Attribute)Type,

 ’Full’ AS (0x03000000)Style[1],

 I.Customer.FirstName AS Customer.Name,

 I.Customer.LastName AS Customer.Surname,

 I.Customer.Title AS Customer.Title,

 (SELECT

 FIELDVALUE(II.Title) AS Title,

 CAST(II.UnitPrice AS FLOAT) * 1.6 AS Cost,

 II.Quantity AS Qty

 FROM I.Purchases.Item[] AS II

 WHERE II.UnitPrice > 0.0) AS Purchases.Article[],

 (SELECT

 SUM(CAST(II.UnitPrice AS FLOAT) *

 CAST(II.Quantity AS FLOAT) *

 1.6)

 FROM I.Purchases.Item[] AS II) AS Amount,

 ’Dollars’ AS Amount.(XML.Attribute)Currency

 FROM sourceCursor AS I

 WHERE I.Customer.LastName <> ’White’

);

 -- Turn the current Statement into a bit stream

 DECLARE StatementBitStream BLOB

 CAST(ASBITSTREAM(targetCursor.Statement OPTIONS FolderBitStream) AS BLOB);

 -- If the SELECT produced a result (that is, it was not filtered out by the WHERE

 -- clause), process the Statement

 IF StatementBitStream IS NOT NULL THEN

 -- create a field to hold the bit stream in the result tree

 CREATE LASTCHILD OF resultCursor

 Type XML.BitStream

 NAME ’StatementBitStream’

 VALUE StatementBitStream;

 -- Add the current Statement’s Amount to the grand total

 -- Note that the cast is necessary because of the behavior of the XML syntax element

 SET grandTotal = grandTotal + CAST(targetCursor.Statement.Amount AS FLOAT);

 END IF;

 -- Delete the real Statement tree leaving only the bit stream version

Developing ESQL 115

This produces the following output message:

Returning a scalar value in an XML message

Use a SELECT statement to return a scalar value by including both the THE and

ITEM keywords, for example:

Use of the ITEM keyword:

The following example shows the use of the ITEM keyword to select one item and

create a single value.

When the Invoice message is received as input, the ESQL shown generates the

following output message:

When the ITEM keyword is specified, the output message includes a list of scalar

values. Compare this message to the one that is produced if the ITEM keyword is

omitted, in which a list of fields (name-value pairs) is generated:

<Data>

 <Statement Type="Monthly" Style="Full">

 <Customer>

 <Name>Andrew</Name>

 <Surname>Smith</Surname>

 <Title>Mr</Title>

 </Customer>

 <Purchases>

 <Article>

 <Title>The XML Companion </Title>

 <Cost>4.472E+1</Cost>

 <Qty>2</Qty>

 </Article>

 <Article>

 <Title>A Complete Guide to DB2 Universal Database</Title>

 <Cost>6.872E+1</Cost>

 <Qty>1</Qty>

 </Article>

 <Article>

 <Title>JAVA 2 Developers Handbook</Title>

 <Cost>9.5984E+1</Cost>

 <Qty>1</Qty>

 </Article>

 </Purchases>

 <Amount Currency="Dollars">2.54144E+2</Amount>

 </Statement>

 <GrandTotal>2.54144E+2</GrandTotal>

</Data>

1 + THE(SELECT ITEM T.a FROM Body.Test.A[] AS T WHERE T.b = ’123’)

SET OutputRoot.MQMD = InputRoot.MQMD;

SET OutputRoot.XML.Test.Result[] =

 (SELECT ITEM T.UnitPrice FROM InputBody.Invoice.Purchases.Item[] AS T);

<Test>

 <Result>27.95</Result>

 <Result>42.95</Result>

 <Result>59.99</Result>

</Test>

116 ESQL

Effects of the THE keyword:

The THE keyword converts a list containing one item to the item itself.

The two previous examples both specified a list as the source of the SELECT in the

FROM clause (the field reference has [] at the end to indicate an array), so typically

the SELECT generates a list of results. Because of this you need to specify a list as

the target of the assignment (thus the ″Result[]″ as the target of the assignment).

However, you often know that the WHERE clause that you specify as part of the

SELECT only returns TRUE for one item in the list. In this case use the THE

keyword.

The following example shows the effect of using the THE keyword:

The THE keyword means that the target of the assignment becomes

OutputRoot.XML.Test.Result (the ″[]″ is not permitted). Its use generates the

following output message:

Selecting from a list of scalars:

Consider the following sample input message:

If you code the following ESQL statements to process this message:

<Test>

 <Result>

 <UnitPrice>27.95</UnitPrice>

 </Result>

 <Result>

 <UnitPrice>42.95</UnitPrice>

 </Result>

 <Result>

 <UnitPrice>59.99</UnitPrice>

 </Result>

</Test>

SET OutputRoot.MQMD = InputRoot.MQMD;

SET OutputRoot.XML.Test.Result =

 THE (SELECT T.Publisher, T.Author FROM InputBody.Invoice.Purchases.Item[]

 AS T WHERE T.UnitPrice = 42.95);

<Test>

 <Result>

 <Publisher>Morgan Kaufmann Publishers</Publisher>

 <Author>Don Chamberlin</Author>

 </Result>

</Test>

<Test>

 <A>1

 <A>2

 <A>3

 <A>4

 <A>5

</Test>

SET OutputRoot.XML.Test.A[] =

 (SELECT ITEM A from InputBody.Test.A[]

 WHERE CAST(A AS INTEGER) BETWEEN 2 AND 4);

Developing ESQL 117

the following output message is generated:

Translating data in an XML message

You often need to translate data from one form to another. For example, in one

message the types of items are known by names and in another message the items

are known by numbers. For example:

Consider the following input message:

This message has two sections: the first is a list of items in which each item has a

catalogue number and a type; the second is a translate table between descriptive

type names and numeric type codes. If you include a Compute node with the

following transform:

 <A>2

 <A>3

 <A>4

Type Name Type Code

Confectionary 2000

Newspapers 3000

Hardware 4000

<Data>

 <Items>

 <Item>

 <Cat>1000</Cat>

 <Description>Milk Chocolate Bar</Description>

 <Type>Confectionary</Type>

 </Item>

 <Item>

 <Cat>1001</Cat>

 <Description>Daily Newspaper</Description>

 <Type>NewsPapers</Type>

 </Item>

 <Item>

 <Cat>1002</Cat>

 <Description>Kitchen Sink</Description>

 <Type>Hardware</Type>

 </Item>

 </Items>

 <TranslateTable>

 <Translate>

 <Name>Confectionary</Name>

 <Number>2000</Number>

 </Translate>

 <Translate>

 <Name>NewsPapers</Name>

 <Number>3000</Number>

 </Translate>

 <Translate>

 <Name>Hardware</Name>

 <Number>4000</Number>

 </Translate>

 </TranslateTable>

</Data>

118 ESQL

the following output message is generated:

In the result, each type name has been converted to its corresponding code. In this

example, both the data and the translate table were in the same message tree,

although this is not a requirement. For example, the translate table could be coded

in a database, or might have been set up in LocalEnvironment by a previous

Compute node.

Joining data in an XML message

The FROM clause is not restricted to having one item. Specifying multiple items in

the FROM clause produces the usual Cartesian product joining effect, in which

there is an item in the result for all combinations of items in the two lists. This is

the same joining effect as standard SQL.

The Invoice message includes a set of customer details, payment details, and

details of the purchases that the customer makes. If you code the following ESQL

to process the input Invoice message:

the following output message is generated:

SET OutputRoot.XML.Result.Items.Item[] =

 (SELECT M.Cat, M.Description, T.Number As Type

 FROM

 InputRoot.XML.Data.Items.Item[] As M,

 InputRoot.XML.Data.TranslateTable.Translate[] As T

 WHERE M.Type = T.Name

);

<Result>

 <Items>

 <Item>

 <Cat>1000</Cat>

 <Description>Milk Chocolate Bar</Description>

 <Type>2000</Type>

 </Item>

 <Item>

 <Cat>1001</Cat>

 <Description>Daily Newspaper</Description>

 <Type>3000</Type>

 </Item>

 <Item>

 <Cat>1002</Cat>

 <Description>Kitchen Sink</Description>

 <Type>4000</Type>

 </Item>

 </Items>

</Result>

SET OutputRoot.XML.Items.Item[] =

 (SELECT D.LastName, D.Billing,

 P.UnitPrice, P.Quantity

 FROM InputBody.Invoice.Customer[] AS D,

 InputBody.Invoice.Purchases.Item[] AS P);

Developing ESQL 119

There are three results, giving the number of descriptions in the first list (one)

multiplied by the number of prices in the second (three). The results systematically

work through all the combinations of the two lists. You can see this by looking at

the LastName and UnitPrice fields selected from each result:

You can join data that occurs in a list and a non-list, or in two non-lists, and so on.

For example:

Note the location of the [] in each case. Any number of items can be specified in

the FROM list, not just one or two. If any of the items specify [] to indicate a list of

items, the SELECT generates a list of results (the list might contain only one item,

but the SELECT can potentially return a list of items). The target of the assignment

must specify a list (so must end in [] or you must use the THE keyword if you

know that the WHERE clause guarantees that only one combination is matched.

<Items>

 <Item>

 <LastName>Smith</LastName>

 <Billing>

 <Address>14 High Street</Address>

 <Address>Hursley Village</Address>

 <Address>Hampshire</Address>

 <PostCode>SO213JR</PostCode>

 </Billing>

 <UnitPrice>27.95</UnitPrice>

 <Quantity>2</Quantity>

 </Item>

 <Item>

 <LastName>Smith</LastName>

 <Billing>

 <Address>14 High Street</Address>

 <Address>Hursley Village</Address>

 <Address>Hampshire</Address>

 <PostCode>SO213JR</PostCode>

 </Billing>

 <UnitPrice>42.95</UnitPrice>

 <Quantity>1</Quantity>

 </Item>

 <Item>

 <LastName>Smith</LastName>

 <Billing>

 <Address>14 High Street</Address>

 <Address>Hursley Village</Address>

 <Address>Hampshire</Address>

 <PostCode>SO213JR</PostCode>

 </Billing>

 <UnitPrice>59.99</UnitPrice>

 <Quantity>1</Quantity>

 </Item>

</Items>

LastName Smith UnitPrice 27.95

LastName Smith UnitPrice 42.95

LastName Smith UnitPrice 59.99

OutputRoot.XML.Test.Result1[] =

 (SELECT ... FROM InputBody.Test.A[], InputBody.Test.b);

OutputRoot.XML.Test.Result1 =

 (SELECT ... FROM InputBody.Test.A, InputBody.Test.b);

120 ESQL

Joining data from XML messages and database tables

You can use SELECT statements that interact with both message data and

databases. You can also nest a SELECT that interacts with one type of data within

a SELECT that interacts with the other type.

Consider the following input message, which contains invoice information for two

customers:

Consider the following database tables Prices and Addresses and their contents:

If you code the following ESQL transform:

<Data>

 <Invoice>

 <CustomerNumber>1234</CustomerNumber>

 <Item>

 <PartNumber>1</PartNumber>

 <Quantity>9876</Quantity>

 </Item>

 <Item>

 <PartNumber>2</PartNumber>

 <Quantity>8765</Quantity>

 </Item>

</Invoice>

 <Invoice>

 <CustomerNumber>2345</CustomerNumber>

 <Item>

 <PartNumber>2</PartNumber>

 <Quantity>7654</Quantity>

 </Item>

 <Item>

 <PartNumber>1</PartNumber>

 <Quantity>6543</Quantity>

 </Item>

</Invoice>

</Data>

PARTNO PRICE

----------- ------------------------

 1 +2.50000E+001

 2 +6.50000E+00

PARTNO STREET CITY COUNTRY

------ ------------------- -------------- -------

1234 22 Railway Cuttings East Cheam England

2345 The Warren Watership Down England

Developing ESQL 121

the following output message is generated. The input message is augmented with

the price and address information from the database table:

-- Create a valid output message

SET OutputRoot.MQMD = InputRoot.MQMD;

-- Select suitable invoices

SET OutputRoot.XML.Data.Statement[] =

 (SELECT I.CustomerNumber AS Customer.Number,

 A.Street AS Customer.Street,

 A.City AS Customer.Town,

 A.Country AS Customer.Country,

 -- Select suitable items

 (SELECT II.PartNumber AS PartNumber,

 II.Quantity AS Quantity,

 PI.Price AS Price

 FROM Database.db2admin.Prices AS PI,

 I.Item[] AS II

 WHERE II.PartNumber = PI.PartNo) AS Purchases.Item[]

 FROM Database.db2admin.Addresses AS A,

 InputRoot.XML.Data.Invoice[] AS I

 WHERE I.CustomerNumber = A.PartNo

);

122 ESQL

You can nest the database SELECT within the message SELECT statement. In most

cases this is not as efficient as the previous example, but you might find that it is

better if the messages are small and the database tables are large.

<Data>

 <Statement>

 <Customer>

 <Number>1234</Number>

 <Street>22 Railway Cuttings</Street>

 <Town>East Cheam</Town>

 <Country>England</Country>

 </Customer>

 <Purchases>

 <Item>

 <PartNumber>1</PartNumber>

 <Quantity>9876</Quantity>

 <Price>2.5E+1</Price>

 </Item>

 <Item>

 <PartNumber>2</PartNumber>

 <Quantity>8765</Quantity>

 <Price>6.5E+1</Price>

 </Item>

 </Purchases>

 </Statement>

 <Statement>

 <Customer>

 <Number>2345</Number>

 <Street>The Warren</Street>

 <Town>Watership Down</Town>

 <Country>England</Country>

 </Customer>

 <Purchases>

 <Item>

 <PartNumber>1</PartNumber>

 <Quantity>6543</Quantity>

 <Price>2.5E+1</Price></Item>

 <Item>

 <PartNumber>2</PartNumber>

 <Quantity>7654</Quantity>

 <Price>6.5E+1</Price>

 </Item>

 </Purchases>

 </Statement>

</Data>

Developing ESQL 123

Working with XML messages and bit streams

This topic helps you to use the following ESQL code:

v “The ASBITSTREAM function”

v “The CREATE statement with a PARSE clause” on page 125

The ASBITSTREAM function:

If you code the ASBITSTREAM function with the parser mode option set to

RootBitStream to parse a message tree to a bit stream, the result is an XML

document that is built from the children of the target element in the normal way.

This algorithm is identical to that used to generate the normal output bit stream.

Because the target element is not included in the output bit stream, you must

ensure that the children of the element follow the constraints for an XML

document. One constraint is that there must be only one body element in the

message. You can use a well-formed bit stream obtained in this way to recreate the

original tree using a CREATE statement with a PARSE clause.

If you code the ASBITSTREAM function with the parser mode option set to

FolderBitStream to parse a message tree to a bit stream, the generated bit stream is

an XML document built from the target element and its children. Any

DocTypeDecl or XmlDecl elements are ignored, and the target element itself is

included in the generated bit stream. The advantage of this mode is that the target

element becomes the body element of the document, and that body element can

have multiple elements nested within it. Use this mode to obtain a bit stream

description of arbitrary sub-trees owned by an XML parser. You can use bit

-- Create a valid output message

SET OutputRoot.MQMD = InputRoot.MQMD;

-- Select suitable invoices

SET OutputRoot.XML.Data.Statement[] =

 (SELECT I.CustomerNumber AS Customer.Number,

 -- Look up the address

 THE (SELECT

 A.Street,

 A.City AS Town,

 A.Country

 FROM Database.db2admin.Addresses AS A

 WHERE A.PartNo = I.CustomerNumber

) AS Customer,

 -- Select suitable items

 (SELECT

 II.PartNumber AS PartNumber,

 II.Quantity AS Quantity,

 -- Look up the price

 THE (SELECT ITEM P.Price

 FROM Database.db2admin.Prices AS P

 WHERE P.PartNo = II.PartNumber

) AS Price

 FROM I.Item[] AS II) AS Purchases.Item[]

 FROM InputRoot.XML.Data.Invoice[] AS I

);

124 ESQL

streams obtained in this way to recreate the original tree using a CREATE

statement with a PARSE clause, and a mode of FolderBitStream.

For further information about ASBITSTREAM and examples of its use, see

“ASBITSTREAM function” on page 291.

The CREATE statement with a PARSE clause:

If you code a CREATE statement with a PARSE clause with the parser mode

option set to RootBitStream to parse a bit stream to a message tree, the expected

bit stream is a normal XML document. A field in the tree is created for each field

in the document. This algorithm is identical to that used when parsing a bit stream

from an input node. In particular, an element named XML is created as the root

element of the tree, and all the content in the message is created as children of that

root.

If you code a CREATE statement with a PARSE clause with the parser mode

option set to FolderBitStream to parse a bit stream to a message tree, the expected

bit stream is a normal XML document. Any content outside the body element

(such as an XML declaration or doctype) is discarded. The first element created

during the parse corresponds to the body of the XML document, and from there

the parse proceeds as normal.

For further information about CREATE and examples of its use, see “CREATE

statement” on page 184.

Manipulating messages in the XMLNS domain

This topic provides information specific to dealing with messages that belong to

the XMLNS domain, and that are parsed by the generic XML parser. The XMLNS

domain is an extension of the XML domain and provides namespace support.

Follow the guidance provided for XML messages in “Manipulating messages in the

XML domain” on page 97, in conjunction with the information in the topic

“Manipulating message body content” on page 28.

The following example shows how to use ESQL to work with namespaces. The

example declares namespace constants at the start of the main module so that you

can use prefixes in the ESQL statements instead of the full namespace URIs.

The namespace constants affect only the ESQL; they do not control the prefixes

generated in the output message. The prefixes in the generated output message are

controlled by namespace declarations. You can include namespace declarations in

the tree using the XML.NamespaceDecl correlation name. These elements are then

used to generate namespace declarations in the output message.

If, when the output message is generated, the namespace with which an element

or attribute is qualified has no corresponding namespace declaration, one is

automatically generated using prefixes of the form NSn where n is a positive

integer.

Developing ESQL 125

When this ESQL is processed, the following output message is generated:

You can also specify that a named XML element (and its descendents, if it is a

complex element) is parsed opaquely. That is, a single named element is created in

the message tree with a value (encoded in UTF-16) that contains the actual XML

bit stream that is contained between the start and end tags of the opaque element.

This option can provide performance benefits if the contents of an element are not

significant within your message flow.

To specify that an XML element is to be parsed opaquely, use an ESQL CREATE

statement with a PARSE clause to parse the XML document. Set the FORMAT

qualifier of the PARSE clause to the constant, case-sensitive string

’XMLNS_OPAQUE’ and set the TYPE qualifier of the PARSE clause to the name of

the XML element which is to be parsed in an opaque manner. The TYPE clause can

specify the element name with no namespace (to match any namespace), or with a

namespace prefix or full namespace URI (to match a specific namespace).

CREATE COMPUTE MODULE xmlns_doc_flow_Compute

CREATE FUNCTION Main() RETURNS BOOLEAN

BEGIN

CALL CopyMessageHeaders();

-- Declaration of namespace constants

DECLARE sp1 NAMESPACE ’http://www.ibm.com/space1’;

DECLARE sp2 NAMESPACE ’http://www.ibm.com/space2’;

DECLARE sp3 NAMESPACE ’http://www.ibm.com/space3’;

-- Namespace declaration to associate prefix ’space1’ with the namespace

SET OutputRoot.XMLNS.message.(XML.NamespaceDecl)xmlns:space1 = ’http://www.ibm.com/space1’;

SET OutputRoot.XMLNS.message.sp1:data1 = ’Hello!’;

-- Default Namespace declaration

SET OutputRoot.XMLNS.message.sp2:data2.(XML.NamespaceDecl)xmlns = ’http://www.ibm.com/space2’;

SET OutputRoot.XMLNS.message.sp2:data2.sp2:subData1 = ’Hola!’;

SET OutputRoot.XMLNS.message.sp2:data2.sp2:subData2 = ’Guten Tag!’;

SET OutputRoot.XMLNS.message.sp3:data3 = ’Bonjour!’;

SET OutputRoot.Properties.MessageDomain = ’XMLNS’;

RETURN TRUE;

END;

CREATE PROCEDURE CopyMessageHeaders() BEGIN

DECLARE I INTEGER 1;

DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

WHILE I < J DO

SET OutputRoot.*[I] = InputRoot.*[I];

SET I = I + 1;

END WHILE;

END;

END MODULE;

<message xmlns:space1="http://www.ibm.com/space1">

 <space1:data1>Hello!</space1:data1>

 <data2 xmlns="http://www.ibm.com/space2">

 <subData1>Hola!</subData1>

 <subData2>Guten Tag!</subData2>

 </data2>

 <NS1:data3 xmlns:NS1="http://www.ibm.com/space3">Bonjour!</NS1:data3>

</message>

126 ESQL

Consider the following example:

DECLARE soap NAMESPACE ’http://schemas.xmlsoap.org/soap/envelope/’;

DECLARE BitStream BLOB ASBITSTREAM(InputRoot.XMLNS

 ENCODING InputRoot.Properties.Encoding

 CCSID InputRoot.Properties.CodedCharSetId);

--No Namespace

 CREATE LASTCHILD OF OutputRoot

 DOMAIN(’XMLNS’)

 PARSE (BitStream

 ENCODING InputRoot.Properties.Encoding

 CCSID InputRoot.Properties.CodedCharSetId

 FORMAT ’XMLNS_OPAQUE’

 TYPE ’Body’);

--Namespace Prefix

 CREATE LASTCHILD OF OutputRoot

 DOMAIN(’XMLNS’)

 PARSE (BitStream

 ENCODING InputRoot.Properties.Encoding

 CCSID InputRoot.Properties.CodedCharSetId

 FORMAT ’XMLNS_OPAQUE’

 TYPE ’soap:Body’);

--Namespace URI

 CREATE LASTCHILD OF OutputRoot

 DOMAIN(’XMLNS’)

 PARSE (BitStream

 ENCODING InputRoot.Properties.Encoding

 CCSID InputRoot.Properties.CodedCharSetId

 FORMAT ’XMLNS_OPAQUE’

 TYPE ’{http://schemas.xmlsoap.org/soap/envelope/}Body’);

Opaque parsing of XML elements is only available in the XMLNS domain; and the

control over how this is specified is subject to change in later releases.

For further information about CREATE and examples of its use, see the “CREATE

statement” on page 184.

Manipulating messages using the XMLNSC parser

The XMLNSC domain is an extension of the XMLNS domain, which in turn, is an

extension of the original XML domain.

The XMLNS domain adds namespace support. The new XMLNSC domain builds a

more compact tree and, therefore, use less memory when handling large messages.

A new domain has been added so that existing applications are not affected.

Message tree structure

The XMLNSC parser obtains its more compact tree by using a single name-value

element to represent tagged text, rather than the separate name and value elements

used by the XML and XMLNS parsers. Consider the following message:

 <Folder1>

 <Folder2 Attribute1=’AttributeValue1’>

 <Field1><Value1></Field1>

 <Field2 Attribute2=’AttributeValue2’><Value2></Field2>

 </Folder2>

 </Folder1>

Developing ESQL 127

In the XMLNSC domain, this is represented by two name elements (Folder1 and

Folder2) and four name-value elements, which are Attribute1, Field1, Field2, and

Attribute2.

The XML and XMLNS domains differ in that the two fields (Field1 and Field2) are

each represented by a name element with a child value element. This might seem

to be a small difference, but messages often have many such leaf fields; for

example:

 <Folder1>

 <Folder2>

 <Field1><Value1></Field1>

 <Field2><Value2></Field2>

 <Field100><Value100></Field100>

 </Folder2>

 </Folder1>

In this case, the XMLNSC parser represents the message by two name and 100

name-value elements, whereas the XML and XMLNS parsers would use 102 name

elements and 100 value elements, plus a further 103 value elements to represent

the white-space implicit in formatted messages.

The XML and XMLNS domains create name-value elements for the white-space

formatting characters between the close and open of each folder or field. These

white-space elements have an empty name and a value for the space, tab, line feed

or other characters used in the formatting of the XML document. These elements

have no useful value and can therefore be discarded to improve the compaction.

For the same reason, the default behavior is to discard any XML processing

instructions and comments in the input stream and to create no elements in the

compact domain tree.

Attributes and tagged text

As both attributes and tagged text are represented by name-value elements, they

are distinguished by the use of the element types. If you do not specify a type,

tagged text is assumed. Therefore, the first example message above might be

produced by the SQL statements:

 SET Origin.Folder1.Folder2.(XMLNSC.Attribute)Attribute1 =

 ’AttributeValue1’;

 SET Origin.Folder1.Folder2.Field1 = ‘Value1’;

 SET Origin.Folder1.Folder2.(XMLNSC.Attribute)Attribute2 =

 ’AttributeValue2’;

 SET Origin.Folder1.Folder2.Field2 = ‘Value2’;

Although the preceding ESQL looks almost identical to that used with the XML

parser, note particularly that the type constants belong to the XMLNSC parser. The

use of constants that belong to other parsers, for example XML, leads to unexpected

results because similarly named constants, for example XML.Attribute, have

different values.

The following constants are defined in the XMLNSC domain for creating attributes:

 XMLNSC.SingleAttribute

 XMLNSC.DoubleAttribute

The following constant is defined in the XMLNSC domain for selection of attributes:

 XMLNSC.Attribute

128 ESQL

|
|

|
|
|
|
|
|
|
|

|

|
|

|

|

Consider the following XML input message:

 <Folder1 Item=’ValueA’>

 <Item>Value1</Item>

 </Folder1>

To remove the ambiguity of the name Item used as both an attribute name and as

a field name in Folder01, the following ESQL can be used:

 SET ItemAttributeValueHolder = InputRoot.XMLNSC.Folder1.(XMLNSC.Attribute)Item;

 SET ItemFieldValueHolder = InputRoot.XMLNSC.Folder1.(XMLNSC.Field)Item;

This method has an advantage over using an array index selection with Folder1 as

it is unaffected if the attribute is not present in the input stream.

Handling mixed text

By default, mixed text is simply discarded on the grounds that, if present, it is

generally simply formatting white-space and has no business meaning.

However, a mode is provided in which, when parsing, any text that occurs other

than between an opening tag and a closing tag (that is, open->open, close->close,

and close->open) is represented by a single unnamed Value element. The value

element types support PCDATA, CDATA, and hybrid which is a mixture of the

preceding two.

There is still no special syntax element behavior regarding the getting and setting

of values. Value elements can only be accessed from the SQL by explicitly

addressing them. The following extra constants are provided for this purpose:

 XMLNSC.Value

 XMLNSC.PCDataValue

 XMLNSC.CDataValue

 XMLNSC.HybridValue

The mode is controlled by the setting of the Mixed Content Retain Mode in the

XMLNSC Parser Options properties dialog navigator on all message parsing nodes,

for example, the MQInput node. For programmatic control using message options,

the following constants are provided:

 XMLNSC.MixedContentRetainNone = 0x0000000000000000

 XMLNSC.MixedContentRetainAll = 0x0001000000000000

These constants can be used in the Option clauses of both the SQL “CREATE

statement” on page 184 (PARSE section) and the “ASBITSTREAM function” on

page 291. For example:

 DECLARE X BLOB ASBITSTREAM(InputRoot.XMLNSC.Data OPTIONS

 XMLNSC.MixedContentRetainAll);

 ...

 CREATE LASTCHILD OF outputRoot PARSE(X OPTIONS

 XMLNSC.MixedContentRetainNone);

Handling comments

By default, comments are also simply discarded on the grounds that, if present,

they are simply auxiliary information with no meaning.

However, a mode is provided in which, when parsing, any comments that occur in

the document (other than in the document description itself) are represented by a

name-value element with the name Comment. The following extra constant is

provided for this purpose.

Developing ESQL 129

|

|
|
|

|
|

|
|

|

|
|

|

|
|
|
|

|
|
|
|

XMLNSC.Comment

The mode is controlled by the setting of the Comments Retain Mode in the

XMLNSC Parser Options properties dialog navigator on all message parsing nodes,

for example, the MQInput node. For programmatic control using message options

the following constants are provided:

 XMLNSC.CommentsRetainNone = 0x0000000000000000

 XMLNSC.CommentsRetainAll = 0x0002000000000000

For example:

 DECLARE X BLOB ASBITSTREAM(InputRoot.XMLNSC.Data OPTIONS

 XMLNSC.CommentsRetainAll);

 ...

 CREATE LASTCHILD OF outputRoot PARSE(X OPTIONS XMLNSC.CommentsRetainNone);

Handling processing instructions

By default, processing instructions are also simply discarded on the grounds that,

if present, they are simply auxiliary information with no meaning.

However, a mode is provided in which, when parsing, any processing instructions

that occur in the document (other than in the document description itself) are

represented by a name-value element with the appropriate name and value. The

following extra constant is provided for this purpose:

 XMLNSC.ProcessingInstruction

The mode is controlled by the setting of Processing Instructions Retain Mode in

the XMLNSC Parser Options properties dialog navigator on all message parsing

nodes, for example, the MQInput node. For programmatic control using message

options the following constants are provided:

 XMLNSC.ProcessingInstructionsRetainNone = 0x0000000000000000

 XMLNSC.ProcessingInstructionsRetainAll = 0x0004000000000000

For example:

 DECLARE X BLOB ASBITSTREAM(InputRoot.XMLNSC.Data

 OPTIONS XMLNSC.ProcessingInstructionsRetainAll);

 ...

 CREATE LASTCHILD OF outputRoot PARSE(X OPTIONS

 XMLNSC.ProcessingInstructionsRetainNone);

Migrating an existing flow

In order to use the new XMLNSC domain and parser you must re-code your ESQL to

use XMLNSC in your paths. Consider the following ESQL statements:

SET OutputRoot.XML.Person.Salary =

 CAST(InputRoot.XML.Person.Salary AS INTEGER) * 3;

SET OutputRoot.XMLNS.Person.Salary =

 CAST(InputRoot.XMLNS.Person.Salary AS INTEGER) * 3;

SET OutputRoot.XMLNSC.Person.Salary =

 CAST(InputRoot.XMLNSC.Person.Salary AS INTEGER) * 3;

In each case the XML bit-stream expected at the input queue and written to the

output queue is of the form:

 <Person><Salary>42</Salary></Person>

The three ESQL examples differ because they use different parsers to own these

elements. The owning parser can be set either by the incoming message, with an

130 ESQL

|

|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|

|

|
|

MQRFH2 header with a <mcd> folder specifying the message set domain, or by the

message set domain defined in the Default properties of the flow input node. If

both of these domain definitions are present the value for the message set domain

in the MQRFH2 header <mcd> folder takes precedence.

If you want to migrate to the XMLNSC domain, when using MQRFH2 headers, the new

domain name is required in the <Msd> field of the <mcd> folder. Note that the new

domain name appears in the MQRFH2 header of the outgoing message. To protect

external applications from these changes, the Use XMLNSC Compact Parser for

XMLNS Domain property can be specified on the flow’s input node and Compute

or Mapping node. With these properties set, the input and output messages are

unchanged, allowing the <Msd> field value to remain as XMLNS. The flow now uses

the compact parser and the ESQL paths are coded using XMLNSC.

If the incoming messages do not contain MQRFH2 headers and the input node’s

message domain property is used to specify the domain, you can migrate to the

XMLNSC domain by setting the flow’s input node domain property directly to

XMLNSC, or leave it as XMLNS and set the Use XMLNSC Compact Parser for XMLNS

Domain property. The Compact parser is used in the flow and the ESQL paths

must be coded using XMLNSC with either of these settings.

If outgoing messages do not contain MQRFH2 headers, the domain does not appear

anywhere in the output messages and the setting of the Compute node’s Use

XMLNSC Compact Parser for XMLNS Domain property has no effect.

Constructing XML headers

The following ESQL is valid in the XML domain:

SET OutputRoot.XML.(XML.XmlDecl)*.(XML.Version)* = ’1.0’;

To migrate to XMLNS, simply changing the root is enough to make this work:

SET OutputRoot.XMLNS.(XML.XmlDecl)*.(XML.Version)* = ’1.0’;

Note that although the XMLNS parser is being used, the element type constants are

those belonging to the XML parser. This works because the type values used by the

XML and XMLNS parsers are the same. For the XMLNSC parser, however, the type

values are different and, therefore, you must always use its own type constants.

In the XMLNSC domain there is no special type for the XML version; it is simply

treated as an attribute of the XML declaration. The equivalent syntax for the above

example is:

SET OutputRoot.XMLNSC.(XMLNSC.XmlDeclaration)*.(XMLNSC.Attribute)Version = ’1.0’;

In a similar way in the XMLNSC domain the XML encoding type and XML

standalone mode are also processed simply as attributes of the XML declaration

and can be set up in ESQL as follows:

SET OutputRoot.XMLNSC.(XMLNSC.XmlDeclaration)*.(XMLNSC.Attribute)Encoding = ’UTF-8’;

SET OutputRoot.XMLNSC.(XMLNSC.XmlDeclaration)*.(XMLNSC.Attribute)StandAlone = ’Yes’;

Copying message trees

When copying trees, the broker regards XML and XMLNSC as unlike parsers, which

means that all attributes in the source tree get mapped to elements in the target

Developing ESQL 131

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|

|
|

|

tree. This situation arises only if you are using both parsers in the same flow - one

for input and one for output; in this situation use the compact parser for both

flows.

If different parsers must be used for the input flow and output flow, you might

need to explicitly specify the types of elements in the paths or use the

“FIELDVALUE function” on page 299 to ensure a copy of scalar values rather than

of sub-trees.

Follow the guidance provided for XML messages in “Manipulating messages in the

XML domain” on page 97, in conjunction with the information in the topic

“Manipulating message body content” on page 28.

Accessing syntax elements in the XMLNSC domain using correlation names

The following table provides the correlation names for each XML syntax element.

When working in the XMLNSC domain, use these names to refer to the elements

in input messages, and to set elements, attributes, and values in output messages.

 Table 1. Correlation names for XML syntax elements

Syntax element Correlation name Constant value

Folder XMLNSC.Folder 0x01000000

Document type

1 XMLNSC.DocumentType 0x01000300

XML declaration

2 XMLNSC.XmlDeclaration 0x01000400

Field or Attr Value XMLNSC.Value 0x02000000

PCData value XMLNSC.PCDataValue 0x02000000

CData value XMLNSC.CDataValue 0x02000001

Hybrid value XMLNSC.HybridValue 0x02000002

Entity Reference XMLNSC.EntityReference 0x02000100

Field XMLNSC.Field 0x03000000

PCData XMLNSC.PCDataField 0x03000000

CData XMLNSC.CDataField 0x03000001

Hybrid XMLNSC.HybridField 0x03000002

Attribute XMLNSC.Attribute 0x03000100

Single quote XMLNSC.SingleAttribute 0x03000101

Double quote XMLNSC.DoubleAttribute 0x03000100

Namespace declaration XMLNSC.NamespaceDecl 0x03000102

Single quote XMLNSC.SingleNamespaceDecl 0x03000103

Double quote XMLNSC.DoubleNamespaceDecl 0x03000102

Bitstream data XMLNSC.BitStream 0x03000200

132 ESQL

Table 1. Correlation names for XML syntax elements (continued)

Syntax element Correlation name Constant value

Entity definition

1 XMLNSC.EntityDefinition 0x03000300

Single quote XMLNSC.SingleEntityDefinition 0x03000301

Double quote XMLNSC.DoubleEntityDefinition 0x03000300

Comment XMLNSC.Comment 0x03000400

Processing instruction XMLNSC.ProcessingInstruction 0x03000401

Notes:

1. Document Type is only used for entity definitions. For example:

SET OutputRoot.XMLNSC.(XMLNSC.DocumentType)BodyDocument

 .(XMLNSC.EntityDefinition)TestDef =

 ’Compact Tree Parser XML Test Module Version 1.0’;

2. The XML declaration is a special folder type that contains child elements for

version, and so on. For example:

-- Create the XML declaration

SET OutputRoot.XMLNSC.(XMLNSC.XmlDeclaration)*.Version = 1.0;

SET OutputRoot.XMLNSC.(XMLNSC.XmlDeclaration)*.Encoding = ’UTF8’;

SET OutputRoot.XMLNSC.(XMLNSC.XmlDeclaration)*.Standalone = ’yes’;

How to use EntityDefintion and EntityReference with the XMLNSC parser

Two examples are provided to demonstrate how to use EntityDefintion and

EntityReference with the XMLNSC parser using ESQL. Both of the examples use the

same input message:

<BookInfo dtn="BookInfo" edn="author" edv="A.N.Other">

<Identifier>ES39B103T6</Identifier>

</BookInfo>

The first example shows a way to use EntityDefintion and EntityReference with

the XMLNSC parser. This is the output message generated by the example:

<!DOCTYPE BookInfo [<!ENTITY author "A.N.Other">]>

<BookInfo><Identifier>ES39B103T7</Identifier><entref>&author;</entref></BookInfo>

In the following ESQL XMLNSC.EntityDefinition is used to define the hard coded

entity author with a value of A.N.Other derived from edv from the input message.

XMLNSC.EntityReference is used to create a reference to the entity author in the

XML message body.

SET OutputRoot.MQMD = InputRoot.MQMD;

DECLARE cursor REFERENCE TO InputRoot.XMLNSC.BookInfo;

SET OutputRoot.XMLNSC.BookInfo.Identifier = cursor.Identifier;

SET OutputRoot.XMLNSC.(XMLNSC.DocumentType)* NAME = cursor.dtn;

SET OutputRoot.XMLNSC.(XMLNSC.DocumentType)*.(XMLNSC.EntityDefinition)* NAME = ’author’;

SET OutputRoot.XMLNSC.(XMLNSC.DocumentType)*.(XMLNSC.EntityDefinition)author VALUE = cursor.edv;

SET OutputRoot.XMLNSC.(XMLNSC.BookInfo).entref.(XMLNSC.EntityReference)* = ’author’;

The variable cursor is used to point to the following variables: dtn, the document

type name; edv, the entity definition value; and the value for Identifier. The values

for these variables are derived from the input message.

This second example demonstrates how to create an output message containing an

entity definition and a reference to that entity based on the content of the same

Developing ESQL 133

|

|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

input message. This is the output message generated by the example showing an

entity definition called author and a reference to the entity in the XML message

body:

<!DOCTYPE BookInfo [<!ENTITY author "Book 1">]>

<BookInfo Identifier="ES39B103T6">&author;</BookInfo>

The following ESQL uses EntityDefintion and EntityReference with the XMLNSC

parser to generate the preceding output message:

SET OutputRoot.MQMD = InputRoot.MQMD;

DECLARE cursor REFERENCE TO InputRoot.XMLNSC.BookInfo;

CREATE FIELD OutputRoot.XMLNSC.BookInfo;

SET OutputRoot.XMLNSC.(XMLNSC.DocumentType)* NAME = cursor.dtn;

SET OutputRoot.XMLNSC.(XMLNSC.DocumentType)*.(XMLNSC.EntityDefinition)* NAME = cursor.edn;

SET OutputRoot.XMLNSC.(XMLNSC.DocumentType)*.(XMLNSC.EntityDefinition)* VALUE = ’Book 1’;

SET OutputRoot.XMLNSC.(XMLNSC.Folder)*[<].(XMLNSC.EntityReference)* = cursor.edn;

SET OutputRoot.XMLNSC.Identifier.(XMLNSC.DoubleAttribute)Identifier = cursor.Identifier;

XMLNSC.EntityDefinition is used to define the entity author with a value of Book 1.

A reference to the author entity is then created in the message using

XMLNSC.EntityReference. The variable cursor is used to point to the variables: dtn,

the document type name; edn, the entity definition name; and the value for

Identifier. These variables are all derived from the input message. The

XMLNSC.DoubleAttribute code is used to add double quotes to the Identifier. To add

only single quotes to the Identifier then XMLNSC.SingleAttribute can be used.

XMLNSC parser modes

By default, the XMLNSC parser discards document elements that typically carry no

business meaning. However, parser modes are available to force retention of these

elements. You can configure these modes on the properties of the node that

specifies the message is to be parsed in the XMLNSC domain.

The valid parser modes for the XMLNSC parser are:

XMLNSC.MixedContentRetainNone

XMLNSC.MixedContentRetainAll

XMLNSC.CommentsRetainNone

XMLNSC.CommentsRetainAll

XMLNSC.ProcessingInstructionsRetainNone

XMLNSC.ProcessingInstructionsRetainAll

The following example uses the XMLNSC.ProcessingInstructionsRetainAll and

XMLNSC.ProcessingInstructionsRetainNone modes to retain document processing

instructions while parsing:

DECLARE X BLOB ASBITSTREAM(InputRoot.XMLNSC.Data OPTIONS XMLNSC

 .ProcessingInstructionsRetainAll);

...

CREATE LASTCHILD OF outputRoot PARSE(X OPTIONS XMLNSC

 .ProcessingInstructionsRetainNone);

Manipulating messages in the JMS domains

This topic provides information specific to dealing with messages that belong to

the JMS domains, and that are parsed by the generic XML parser. Because they are

processed by the same parser, you can follow the guidance provided for XML

messages in “Manipulating messages in the XML domain” on page 97, in

conjunction with the information in “Manipulating message body content” on page

28.

134 ESQL

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

You can create messages with JMS types jms_map and jms_stream messages: no

other categories of JMS messages are supported. For further information about

using JMS messages with WebSphere Message Broker, see the WebSphere MQ Using

Java book.

Manipulating messages in the IDoc domain

A valid IDoc message flows out of SAP and is sent to the MQSeries link for R/3.

When this IDoc has been successfully committed to the outbound WebSphere MQ

queue, the input node of the message flow reads it from that queue and generates

the syntax element tree.

The Compute node manipulates this syntax element tree and, when it has finished,

passes the output message to subsequent nodes in the message flow. When the

message reaches the output node, the IDoc parser is called to rebuild the bit stream

from the tree.

The message flow must create an output message in a similar format to the input

message.

See Field names of the IDoc parser structures for the field names in the DC and

DD recognized by the IDoc parser

Use the following ESQL as an example from a Compute node:

The first line copies the incoming IDoc to the outgoing IDoc.

The second line sets the tabname of the first DC.

The third line uses the second DD segment, which in this example is of type

E2MAKTM001, and sets the maktx field.

Manipulating messages in the MIME domain

This topic explains how to deal with messages that belong to the MIME domain,

and that are parsed by the MIME parser. Use this information in conjunction with

the information in “Manipulating message body content” on page 28.

A MIME message does not have to be received over a particular transport. For

example a message can be received over HTTP using an HTTPInput node, or over

WebSphere MQ using an MQInput node. The MIME parser is used to process a

message if one of the following conditions applies:

v The message domain is set to MIME in the input node properties.

v You are using WebSphere MQ and the MQRFH2 header has a message domain

of MIME.

The logical tree can be manipulated using ESQL before the message is passed on to

other nodes in the message flow. A message flow can also create a MIME domain

tree using ESQL. When a MIME domain message reaches an output node, the

MIME parser is called to rebuild the bit stream from the logical tree.

SET OutputRoot = InputRoot;

SET OutputRoot.IDOC.DC[1].tabnam = ’EDI_DC40 ’;

SET OutputRoot.IDOC.DD[2].sdatatag.MRM.maktx = ’Buzzing all day’;

Developing ESQL 135

The following examples show how to manipulate MIME messages:

v “Creating a new MIME tree”

v “Modifying an existing MIME tree” on page 137

v “Managing Content-Type” on page 137

Creating a new MIME tree

A message flow often receives, modifies and returns a MIME message. In this case

you can work with the valid MIME tree created when the input message is parsed.

If a message flow receives input from another domain, such as XML, and returns a

MIME message you need to create a valid MIME tree. Use the following ESQL in a

Compute node to create the top-level structure for a single-part MIME tree:

CREATE FIELD OutputRoot.MIME TYPE Name;

DECLARE M REFERENCE TO OutputRoot.MIME;

CREATE LASTCHILD OF M TYPE Name NAME ’Data’;

The message flow also needs to ensure that the MIME Content-Type is set

correctly, as explained in “Managing Content-Type” on page 137. The flow then

needs to add the message data into the MIME tree. The following ESQL gives

examples of how this can be done. Note that in each case Data is created with the

domain BLOB.

v A bit stream from another part of the tree is used. The following example shows

how a bit stream could be created from an XML message that the message flow

received. The flow then invokes the BLOB parser to store the data under the

Data element.

 DECLARE partData BLOB ASBITSTREAM(InputRoot.XML);

 CREATE LASTCHILD OF M.Data DOMAIN(’BLOB’) PARSE(partData);

v Instead of parsing the bit stream, create the new structure then attach the data to

it. The following ESQL is an example of how to do this:

DECLARE partData BLOB ASBITSTREAM(InputRoot.XML);

CREATE LASTCHILD OF M.Data DOMAIN(’BLOB’) NAME ’BLOB’;

CREATE LASTCHILD OF M.Data.BLOB NAME ’BLOB’ VALUE partData;

Both of these approaches create the same tree structure. The first approach is

recommended because explicit knowledge of the tree structure that the BLOB

parser requires is not built into the flow.

More commonly, the Compute node needs to build a tree for a multipart MIME

document. The following ESQL is an example of how you can do this, including

setting the top-level Content-Type via the ContentType property:

136 ESQL

Modifying an existing MIME tree

This example ESQL adds a new MIME part to an existing multipart MIME

message. If the message is not multipart it is not modified:

Managing Content-Type

When you create a new MIME message tree, or when you modify the value of the

MIME boundary string, you must make sure that the MIME Content-Type header

is set correctly. Set the ContentType value in the broker Properties subtree to do

this. The following example shows the ContentType value being set for a MIME

part with simple content:

SET OutputRoot.Properties.ContentType = ’text/plain’;

Do not set the Content-Type value directly in the MIME tree or HTTP trees. This

can lead to the value being ignored or used inconsistently.

Manipulating messages in the BLOB domain

This topic provides information specific to dealing with messages that belong to

the BLOB domain, and that are parsed by the BLOB parser.

DECLARE part1Data BLOB ASBITSTREAM(InputRoot.XML.part1);

DECLARE part2Data BLOB ASBITSTREAM(InputRoot.XML.part2);

SET OutputRoot.Properties.ContentType = ’multipart/related; boundary=myBoundary’;

CREATE FIELD OutputRoot.MIME TYPE Name;

DECLARE M REFERENCE TO OutputRoot.MIME;

CREATE LASTCHILD OF M TYPE Name NAME ’Parts’;

CREATE LASTCHILD OF M.Parts TYPE Name NAME ’Part’;

DECLARE P1 REFERENCE TO M.Parts.Part[1];

CREATE FIELD P1."Content-Type" TYPE NameValue VALUE ’text/plain’;

CREATE FIELD P1."Content-Id" TYPE NameValue VALUE ’part one’;

CREATE LASTCHILD OF P1 TYPE Name NAME ’Data’;

CREATE LASTCHILD OF P1.Data DOMAIN(’BLOB’) PARSE(part1Data);

CREATE LASTCHILD OF M.Parts TYPE Name NAME ’Part’;

DECLARE P2 REFERENCE TO M.Parts.Part[2];

CREATE FIELD P2."Content-Type" TYPE NameValue VALUE ’text/plain’;

CREATE FIELD P2."Content-Id" TYPE NameValue VALUE ’part two’;

CREATE LASTCHILD OF P2 TYPE Name NAME ’Data’;

CREATE LASTCHILD OF P2.Data DOMAIN(’BLOB’) PARSE(part2Data);

SET OutputRoot = InputRoot;

-- Check to see if the MIME message is multipart or not.

IF LOWER(InputProperties.ContentType) LIKE ’multipart/%’

THEN

 CREATE LASTCHILD OF OutputRoot.MIME.Parts NAME ’Part’;

 DECLARE P REFERENCE TO OutputRoot.MIME.Parts.[<];

 CREATE FIELD P."Content-Type" TYPE NameValue VALUE ’text/xml’;

 CREATE FIELD P."Content-ID" TYPE NameValue VALUE ’new part’;

 CREATE LASTCHILD OF P TYPE Name NAME ’Data’;

 -- This is an artificial way of creating some BLOB data.

 DECLARE newBlob BLOB ’4f6e652074776f2074687265650d0a’;

 CREATE LASTCHILD OF P.Data DOMAIN(’BLOB’) PARSE(newBlob);

END IF;

Developing ESQL 137

You cannot manipulate the contents of a BLOB message, because it has no

predefined structure. However, you can refer to its contents using its known

position within the bit stream, and process the message with a minimum of

knowledge about its contents.

The BLOB message body parser does not create a tree structure in the same way

that other message body parsers do. It has a root element BLOB, that has a child

element, also called BLOB, that contains the data.

You can refer to message content using substrings if you know the location of a

particular piece of information within the BLOB data. For example, the following

expression identifies the tenth byte of the message body:

The following expression references 10 bytes of the message data starting at offset

10:

Simple example to write a string in the output message

The following simple example allows you to write some character data in your

ESQL (for example, if you have read some character fields from a database) out as

a BLOB:

CALL CopyMessageHeaders();

 -- CALL CopyEntireMessage();

 DECLARE mystring CHARACTER;

 SET mystring=’hello’;

 SET OutputRoot.BLOB.BLOB=CAST (mystring AS BLOB CCSID 1208);

Using the CALL statement to invoke a user-written routine

The ESQL CALL statement invokes a routine. A routine is a user-defined function

or procedure that has been defined by one of the following:

v A CREATE FUNCTION statement

v A CREATE PROCEDURE statement

Note: As well as standard user-defined functions and procedures, you can also use

CALL to invoke built-in (broker-provided) functions and user-defined SQL

functions. However, the usual way of invoking these types of function is

simply to use their names in expressions.

You can use the CALL statement to invoke a routine that has been implemented in

any of the following ways:

v ESQL.

v Java.

v As a stored procedure in a database.

v As a built-in (broker-provided) function. (But see the note above about calling

built-in functions.)

For details of the syntax and parameters of the CALL statement, see “CALL

statement” on page 179. For an example of the use of CALL, see the examples in

“CREATE PROCEDURE statement” on page 203.

InputBody.BLOB.BLOB[10]

SUBSTRING(InputBody.BLOB.BLOB from 10 for 10)

138 ESQL

|

|
|
|

|
|
|
|
|

|

Calling an EQSL routine

A routine is invoked as an ESQL method if the routine’s definition specifies a

LANGUAGE clause of ESQL or if the routine is a built-in function.

There must be an exact one-to-one matching, between the definition and the CALL,

of the data types and directions of each parameter.

An ESQL routine is allowed to return any ESQL data type, excluding List and

Row.

Calling a Java routine

A routine is invoked as a Java method if the routine’s definition specifies a

LANGUAGE clause of JAVA.

There must be an exact one-to-one matching, between the definition and the CALL,

of the data types and directions of each parameter.

If the Java method has a void return type, the INTO clause cannot be used because

there is no value to return.

A Java routine can return any data type in the “ESQL-to-Java data-type mapping

table” on page 156. Note that this excludes List and Row.

Calling a database stored procedure

A routine is invoked as a database stored procedure if the routine’s definition has a

LANGUAGE clause of DATABASE.

When a call is made to a database stored procedure, the broker searches for a

definition (created by a CREATE PROCEDURE statement) that matches the

procedure’s local name. The broker then uses the following sequence to resolve the

name by which the procedure is known in the database and the database schema

to which it belongs:

1. If the CALL statement specifies an IN clause, the name of the data source, the

database schema, or both, is taken from the IN clause.

2. If the name of the data source is not provided by an IN clause on the CALL

statement, it is taken from the DATASOURCE attribute of the node.

3. If the database schema is not provided by an IN clause on the CALL statement,

but is specified on the EXTERNAL NAME clause of the CREATE PROCEDURE

statement, it is taken from the EXTERNAL NAME clause.

4. If no database schema is specified on the EXTERNAL NAME clause of the

CREATE PROCEDURE statement, the database’s user name is used as the

schema name. If a matching procedure is found, the routine is invoked.

The chief use of the CALL statement’s IN clause is that it allows the data source,

the database schema, or both to be chosen dynamically at run time.

Note: As well as the IN clause of the CALL statement, the EXTERNAL SCHEMA

clause too, allows the database schema which contains the stored procedure

to be chosen dynamically, but it is not as flexible as the IN clause and is

retained only for backward compatibility. Its use in new applications is

deprecated.

Developing ESQL 139

If the called routine has any DYNAMIC RESULT SETS specified in its definition,

the number of expressions in the CALL statement’s ParameterList must match the

number of actual parameters to the routine, plus the number of DYNAMIC

RESULT SETS. For example, if the routine has three parameters and two

DYNAMIC RESULT SETS, the CALL statement must pass five parameters to the

called routine. The parameters passed for the two DYNAMIC RESULT SETS must

be list parameters; that is, they must be field references qualified with array

brackets []; for example, Environment.ResultSet1[].

A database stored procedure is allowed to return any ESQL data type, excluding

Interval, List, and Row.

Accessing broker properties from ESQL

It can be useful, during the runtime of your code, to have real-time access to

details of a specific node, flow, or broker. For an overview of broker properties, see

“Broker properties” on page 8.

You can use broker properties on the right side of regular SET statements. For

example:

DECLARE mybroker CHARACTER;

SET mybroker = BrokerName;

where BrokerName is the broker property that contains the broker’s name. However,

you cannot use broker properties on the left-hand side of SET statements. This is

because, at runtime, broker properties are constants: they cannot be assigned to,

and so their values cannot be changed by SET statements. If a program tries to

change the value of a broker property, the error message Cannot assign to a

symbolic constant is issued.

Broker properties:

v Are grouped by broker, execution group, flow, and node.

v Are case sensitive. Their names always start with an uppercase letter.

v Return NULL if they do not contain a value.

If your ESQL code already contains a variable with the same name as one of the

broker properties, your variable takes precedence; that is, your variable masks the

broker property. To access the broker property, use the form

SQL.<broker_property_name>. For example: SQL.BrokerName.

“Broker properties accessible from ESQL and Java” on page 349 shows the broker,

flow, and node properties that are accessible from ESQL and indicates which

properties are also accessible from Java.

Configuring a message flow at deployment time using UDPs

User-defined properties (UDPs) give you the opportunity to configure message

flows at deployment time, without modifying program code.

A UDP is a user-defined constant that you can use in your ESQL or Java programs.

You can give the UDP an initial value when you declare it in your program, or

when you use the Message Flow editor to create or modify a message flow.

In ESQL, you can define UDPs at the module or schema level.

140 ESQL

For an overview of user-defined properties, see User-defined properties.

After a UDP has been defined by the Message Flow editor, you can modify its

value before you deploy:

1. From the workbench, switch to the Broker Administration perspective.

2. Double click your bar file in the Broker Administration Navigator view. The

contents of the bar file are shown in the Content editor.

3. Select the Configure tab at the bottom of the Content editor pane. This shows

the names of your message flows; these can be expanded to show the

individual nodes that are contained in the flow.

4. Click on a message flow name. The UDPs that are defined in that message flow

are displayed with their values.

5. If the value of the UDP is unsuitable for your current environment or task,

change it to the value that you want. The value of the UDP is set at the flow

level and is the same for all eligible nodes that are contained in the flow. If a

subflow includes a UDP that has the same name as a UDP in the main flow,

the value of the UDP in the subflow is not changed.

Now you are ready to deploy the message flow. See Deploying a broker archive

file.

Developing ESQL 141

142 ESQL

Part 2. Reference

ESQL reference 145

Syntax diagrams: available types 146

ESQL data types in message flows 146

ESQL BOOLEAN data type 146

ESQL datetime data types 146

ESQL NULL data type 152

ESQL numeric data types 152

ESQL REFERENCE data type 155

ESQL string data types 155

ESQL-to-Java data-type mapping table 156

ESQL variables 157

ESQL field references 158

Namespaces 160

Indexes 160

Types 161

Summary 162

Target field references 163

The effect of setting a field to NULL 164

ESQL operators 164

ESQL simple comparison operators 164

ESQL complex comparison operators 166

ESQL logical operators 168

ESQL numeric operators 169

ESQL string operator 170

Rules for ESQL operator precedence 170

ESQL statements 171

ATTACH statement 172

BEGIN ... END statement 174

BROKER SCHEMA statement 176

CALL statement 179

CASE statement 182

CREATE statement 184

CREATE FUNCTION statement 192

CREATE MODULE statement 201

CREATE PROCEDURE statement 203

DECLARE statement 217

DECLARE HANDLER statement 222

DELETE FROM statement 223

DELETE statement 226

DETACH statement 226

EVAL statement 227

FOR statement 228

IF statement 229

INSERT statement 230

ITERATE statement 232

LEAVE statement 232

LOG statement 233

LOOP statement 235

MOVE statement 236

PASSTHRU statement 238

PROPAGATE statement 240

REPEAT statement 243

RESIGNAL statement 244

RETURN statement 244

SET statement 246

THROW statement 250

UPDATE statement 251

WHILE statement 254

ESQL functions: reference material, organized by

function type 255

Calling ESQL functions 258

ESQL database state functions 258

ESQL datetime functions 263

ESQL numeric functions 268

ESQL string manipulation functions 281

ESQL field functions 291

ESQL list functions 302

Complex ESQL functions 304

Miscellaneous ESQL functions 345

Broker properties accessible from ESQL and Java 349

Special characters, case sensitivity, and comments

in ESQL 352

ESQL reserved keywords 354

ESQL non-reserved keywords 354

Example message 357

© Copyright IBM Corp. 2000, 2006 143

144 ESQL

ESQL reference

SQL is the industry standard language for accessing and updating database data

and ESQL is a language derived from SQL Version 3, particularly suited to

manipulating both database and message data.

This section covers the following topics:

“Syntax diagrams: available types” on page 146

This describes the formats that are available for viewing ESQL syntax

diagrams.

“ESQL data types in message flows” on page 146

This describes the valid data types for ESQL.

“ESQL field references” on page 158

This topic describes the syntax of field references.

“Special characters, case sensitivity, and comments in ESQL” on page 352

This describes the special characters you use when writing ESQL

statements.

“ESQL operators” on page 164

This describes the operators that are available.

“ESQL reserved keywords” on page 354

This lists the reserved keywords which you cannot use for variable names.

“ESQL non-reserved keywords” on page 354

This lists the keywords that are not reserved, as well as those reserved for

future releases, which you can use if you choose.

“ESQL functions: reference material, organized by function type” on page 255

This topic lists the functions available in ESQL, and what they do.

“ESQL statements” on page 171

This topic lists the different statement types available in ESQL, and what

they do.

“Calling ESQL functions” on page 258

This topic describes all the ESQL functions in detail.

“ESQL variables” on page 157

This topic describes the types of ESQL variable and their lifetimes.

“Broker properties accessible from ESQL and Java” on page 349

This topic lists the broker attributes that can be accessed from ESQL code.

An XML format message that is used in many of the ESQL examples in these

topics is shown in “Example message” on page 357.

For information about how you can use ESQL statements and functions to

configure Compute, Database, and Filter nodes, see “Writing ESQL” on page 25.

© Copyright IBM Corp. 2000, 2006 145

Syntax diagrams: available types

The syntax for commands and ESQL statements and functions is presented in the

form of a diagram. The diagram tells you what you can do with the command,

statement, or function and indicates relationships between different options and,

sometimes, different values of an option. There are two types of syntax diagrams:

railroad diagrams and dotted decimal diagrams. Railroad diagrams are a visual

format suitable for sighted users. Dotted decimal diagrams are text-based diagrams

that are more helpful for blind or partially-sighted users.

To select which type of syntax diagram you use, click the appropriate button above

the syntax diagram in the topic that you are viewing.

The following topics describe how to interpret each type of diagram:

v How to read railroad diagrams

v How to read dotted decimal diagrams

ESQL data types in message flows

All data that is referred to in message flows must be one of the defined types:

v “ESQL BOOLEAN data type”

v “ESQL datetime data types”

v “ESQL NULL data type” on page 152

v “ESQL numeric data types” on page 152

v “ESQL REFERENCE data type” on page 155

v “ESQL ROW data type” on page 147

v “ESQL string data types” on page 155

ESQL BOOLEAN data type

The BOOLEAN data type holds a boolean value which can have the values:

v TRUE

v FALSE

v UNKNOWN

Boolean literals consist of the keywords TRUE, FALSE, and UNKNOWN. The

literals can appear in uppercase or lowercase. For further information about

UNKNOWN, see the “IF statement” on page 229.

ESQL datetime data types

ESQL supports several data types that handle datetime values. The following data

types are collectively known as datetime data types:

v “ESQL DATE data type” on page 147

v “ESQL TIME data type” on page 148

v “ESQL GMTTIME data type” on page 148

v “ESQL TIMESTAMP data type” on page 148

v “ESQL GMTTIMESTAMP data type” on page 148

v “ESQL INTERVAL data type” on page 149

For information about datetime functions see “ESQL datetime functions” on page

263.

146 ESQL

ESQL DATE data type

The DATE data type holds a Gregorian calendar date (year, month, and day). The

format of a DATE literal is the word DATE followed by a space, followed by a date in

single quotation marks in the form ’yyyy-mm-dd’. For example:

DECLARE MyDate DATE;

SET MyDate = DATE ’2000-02-29’;

Do not omit leading zeroes from the year, month, and day.

ESQL ROW data type

The ROW data type holds a tree structure. A row in a database is a particular type

of tree structure, but the ROW data type is not restricted to holding data from

database rows.

In a database, a row is a fixed, ordered, set of scalar values.

Note: A scalar is a single entity value or a string.

A database table is an unordered set of rows and is thus a two dimensional ″array″

of scalar values, in which one dimension is fixed and the other is variable. In

ESQL, a row is an open-ended, ordered, set of named values in which each value

can be scalar or another row. That is, a row is an open-ended tree structure with

no restrictions on dimensions or regularity. Consider the following diagram:

Root

 Row

 PartNumber = 1

 Description = ’Chocolate bar’

 Price = 0.30

 Row

 PartNumber = 2

 Description = ’Biscuit’

 Price = 0.35

 Row

 PartNumber = 3

 Description = ’Fruit’

 Price = 0.42

In the example, Root contains three elements all named “Row”. Each of these in

turn contains three elements with different names and values. This diagram

equally describes an instance of an ESQL row data type (that is, a tree structure) or

the contents of a database table.

ROW and LIST

The ROW data type is a normal data type. You can use the DECLARE statement to

create ROW variables in the same way as you create INTEGER or CHARACTER

variables. There is also a more general concept of a ROW data type. In the

previous example, Root is the root element of a ROW variable. Each of the

elements called “Row”, while not the root element of ROW variables, are the root

elements of sub-structures. Many ESQL operations (and particularly the SELECT

function) work with the general concept of ROW and will operate equally on

whole trees or parts of them.

There is also a general concept of a LIST data type. The set of elements called

“Row” can be regarded as a list. Some ESQL operations (particularly SELECT)

work with the general concept of list.

ESQL reference 147

InputRoot, OutputRoot (and so on) are examples of ROW variables that are

automatically declared and connected into the broker’s structure, ready for use.

ESQL TIME data type

The TIME data type holds a time of day in hours, minutes, seconds, and fractions of

a second. The format of a TIME literal is the word TIME followed by a space,

followed by a time in single quotation marks in the form ’hh:mm:ss.ffffff’. For

example:

DECLARE MyTime TIME;

SET MyTime = TIME ’11:49:23.656’;

Each of the hour, minute, and second fields in a TIME literal must always be two

digits; the optional fractional seconds field can be up to 6 digits in length.

The PutTime reported by WebSphere MQ on z/OS and other times or timestamps

can be inconsistent if the CVT field is not set correctly. For details about when this

problem can occur, and how to solve it, see The PutTime that is reported by

WebSphere MQ on z/OS, and other times or timestamps are inconsistent.

ESQL GMTTIME data type

The GMTTIME data type is similar to the TIME data type, except that its values are

interpreted as values in Greenwich Mean Time. GMTTIME literals are defined in a

similar way to TIME values. For example:

DECLARE MyGetGmttime GMTTIME;

SET MyGetGmttime = GMTTIME ’12:00:00’;

The PutTime reported by WebSphere MQ on z/OS and other times or timestamps

can be inconsistent if the CVT field is not set correctly. For details about when this

problem can occur, and how to solve it, see The PutTime that is reported by

WebSphere MQ on z/OS, and other times or timestamps are inconsistent.

ESQL TIMESTAMP data type

The TIMESTAMP data type holds a DATE and a TIME in years, months, days, hours,

minutes, seconds, and fractions of a second. The format of a TIMESTAMP literal is the

word TIMESTAMP followed by a space, followed by a timestamp in single quotation

marks in the form ’yyyy-mm-dd hh:mm:ss.ffffff’. For example:

DECLARE MyTimeStamp TIMESTAMP;

SET MyTimeStamp = TIMESTAMP ’1999-12-31 23:59:59’;

The year field must always be four digits in length. The month, day, hour, and

minute fields must always be two digits. (Do not omit leading zeroes.) The

optional fractional seconds field can be 0 - 6 digits long.

The PutTime reported by WebSphere MQ on z/OS and other times or timestamps

can be inconsistent if the CVT field is not set correctly. For details about when this

problem can occur, and how to solve it, see The PutTime that is reported by

WebSphere MQ on z/OS, and other times or timestamps are inconsistent.

ESQL GMTTIMESTAMP data type

The GMTTIMESTAMP data type is similar to the TIMESTAMP data type, except that the

values are interpreted as values in Greenwich Mean Time. GMTTIMESTAMP values are

defined in a similar way to TIMESTAMP values, for example:

148 ESQL

DECLARE MyGetGMTTimeStamp GMTTIMESTAMP;

SET MyGetGMTTimeStamp = GMTTIMESTAMP ’1999-12-31 23:59:59.999999’;

The PutTime reported by WebSphere MQ on z/OS and other times or timestamps

can be inconsistent if the CVT field is not set correctly. For details about when this

problem can occur, and how to solve it, see The PutTime that is reported by

WebSphere MQ on z/OS, and other times or timestamps are inconsistent.

ESQL INTERVAL data type

The INTERVAL data type holds an interval of time. It has a number of subtypes:

v YEAR

v YEAR TO MONTH

v MONTH

v DAY

v DAY TO HOUR

v DAY TO MINUTE

v DAY TO SECOND

v HOUR

v HOUR TO MINUTE

v HOUR TO SECOND

v MINUTE

v MINUTE TO SECOND

v SECOND

All these subtypes describe intervals of time and all can take part in the full range

of operations of the INTERVAL type; for example, addition and subtraction

operations with values of type DATE, TIME, or TIMESTAMP.

Use the CAST function to convert from one subtype to another, except for intervals

described in years and months, or months, which cannot be converted to those

described in days, hours, minutes, and seconds.

The split between months and days arises because the number of days in each

month varies. An interval of one month and a day is not meaningful, and cannot

be sensibly converted into an equivalent interval in numbers of days only.

An interval literal is defined by the syntax:

INTERVAL <interval string> <interval qualifier>

The format of interval string and interval qualifier are defined by the table below.

 Interval qualifier Interval string format Example

YEAR ’<year>’ or ’<sign> <year>’ ’10’ or ’-10’

YEAR TO MONTH ’<year>-<month>’ or ’<sign> <year>-<month>’ ’2-06’ or ’- 2-06’

MONTH ’<month>’ or ’<sign> <month>’ ’18’ or ’-18’

DAY ’<day>’ or ’<sign> <day>’ ’30’ or ’-30’

DAY TO HOUR ’<day> <hour>’ or ’<sign> <day> <hour>’ ’1 02’ or ’-1 02’

DAY TO MINUTE ’<day> <hour>:<minute>’ or ’<sign> <day>

<hour>:<minute>’

’1 02:30’ or ’-1 02:30’

DAY TO SECOND ’<day> <hour>:<minute>:<second>’ or ’<sign>

<day> <hour>:<minute>:<second>’

’1 02:30:15’ or ’-1 02:30:15.333’

HOUR ’<hour>’ or ’<sign> <hour>’ ’24’ or ’-24’

ESQL reference 149

Interval qualifier Interval string format Example

HOUR TO MINUTE ’<hour>:<minute>’ or ’<sign>

<hour>:<minute>’

’1:30’ or ’-1:30’

HOUR TO SECOND ’<hour>:<minute>:<second>’ or ’<sign>

<hour>:<minute>:<second>’

’1:29:59’ or ’-1:29:59.333’

MINUTE ’<minute>’ or ’<sign> <minute>’ ’90’ or ’-90’

MINUTE TO SECOND ’<minute>:<second>’ or ’<sign>

<minute>:<second>’

’89:59’ or ’-89:59’

SECOND ’<second>’ or ’<sign> <second>’ ’15’ or ’-15.7’

Where an interval contains both a year and a month value, a hyphen is used

between the two values. In this instance, the month value must be within the

range [0, 11]. If an interval contains a month value and no year value, the month

value is unconstrained.

A space is used to separate days from the rest of the interval.

If an interval contains more than one of HOUR, MINUTE, and SECOND, a colon is

needed to separate the values and all except the leftmost are constrained as

follows:

HOUR

0-23

MINUTE

0-59

SECOND

0-59.999...

The largest value of the left-most value in an interval is +/- 2147483647.

Some examples of valid interval values are:

v 72 hours

v 3 days: 23 hours

v 3600 seconds

v 90 minutes: 5 seconds

Some examples of invalid interval values are:

v 3 days: 36 hours

A day field is specified, so the hours field is constrained to [0,23].

v 1 hour: 90 minutes

An hour field is specified, so minutes are constrained to [0,59].

Here are some examples of interval literals:

INTERVAL ’1’ HOUR

INTERVAL ’90’ MINUTE

INTERVAL ’1-06’ YEAR TO MONTH

Representation of ESQL datetime data types

When your application sends a message to a broker, the way in which the message

data is interpreted depends on the content of the message itself and the

configuration of the message flow. If your application sends a message to be

interpreted either by the generic XML parser, or the MRM parser, that is tailored

by an XML physical format, the application can include date or time data that is

represented by any of the XML schema primitive datetime data types.

150 ESQL

The XML schema data type of each piece of data is converted to an ESQL data

type, and the element that is created in the logical message tree is of the converted

type. If the datetime data in an input message does not match the rules of the

chosen schema data type, the values that the parser writes to the logical message

tree are modified even if the message is in the MRM domain and you have

configured the message flow to validate the input message. (Validation is not

available for generic XML messages.)

This has the following effect on the subfields of the input datetime data:

v If any of the subfields of the input message are missing, a default value is

written to the logical message tree. This default is substituted from the full

timestamp that refers to the beginning of the current epoch: 1970-01-01 00:00:00.

v If the input message contains information for subfields that are not present in

the schema, the additional data is discarded. If this occurs, no exception is

raised, even if a message in the MRM domain is validated.

v After the data is parsed, it is cast to one of three ESQL datetime data types.

These are DATE, TIME, and TIMESTAMP.

– If a datetime value contains only date subfields, it is cast to an ESQL DATE.

– If a datetime value contains only time subfields, it is cast to an ESQL TIME.

– If a datetime value contains both date and time subfields, it is cast to an

ESQL TIMESTAMP.

The following examples illustrate these points.

 Input data XML schema

data type

Schema rules Input value in the bit

stream

Value written to the logical

tree (ESQL data type in

brackets)

xsd:dateTime CCYY-MM-DDThh:mm:ss 2002-12-31T23:59:59 2002-12-31 23:59:59

(TIMESTAMP)

--24 1970-01-24 (DATE)

23:59:59 23:59:59 (TIME)

xsd:date CCYY-MM-DD 2002-12-31 2002-12-31 (DATE)

2002-12-31T23:59:59 2002-12-31 (DATE)

-06-24 1970-06-24 (DATE)

xsd:time hh:mm:ss 14:15:16 14:15:16 (TIME)

xsd:gDay ---DD ---24 1970-01-24 (DATE)

xsd:gMonth --MM --12 1970-12-01 (DATE)

xsd:gMonthDay --MM-DD --12-31 1970-12-31 (DATE)

xsd:gYear CCYY 2002 2002-01-01 (DATE)

xsd:gYearMonth CCYY-MM 2002-12 2002-12-01 (DATE)

Validation with missing subfields: When you consider which schema datetime

data type to use, bear in mind that, if the message is in the MRM domain, and you

configure the message flow to validate messages, missing subfields can cause

validation exceptions.

The schema data types Gday, gMonth, gMonthDay, gYear, and gYearMonth are

used to record particular recurring periods of time. There is potential confusion

when validation is turned on, because the recurring periods of time that are used

in these schema data types are stored by ESQL as specific points in time.

ESQL reference 151

For example, when the 24th of the month, which is a gDay (a monthly day) type,

is written to the logical tree, the missing month and year subfields are supplied

from the epoch (January 1970) to provide the specific date 1970-01-24. If you code

ESQL to manipulate this date, for example by adding an interval of 10 days, and

then generate an output message that is validated, an exception is raised. This is

because the result of the calculation is 1970-02-03 which is invalid because the

month subfield of the date no longer matches the epoch date.

ESQL NULL data type

All ESQL data types (except REFERENCE) support the concept of the null value. A

value of null means that the value is unknown, undefined, or uninitialized. Null

values can arise when you refer to message fields that do not exist, access database

columns for which no data has been supplied, or use the keyword NULL, which

supplies a null literal value.

Null is a distinct state and is not the same as any other value. In particular, for

integers it is not the same thing as the value 0 and for character variables it is not

the same thing as a string of zero characters. The rules of ESQL arithmetic take

null values into account, and you are typically unaware of their existence.

Generally, but not always, these rules mean that, if any operand is null, the result

is null.

If an expression returns a null value its data type is not, in general, known. All

null values, whatever their origin, are therefore treated equally.

This can be regarded as their belonging to the data type NULL , which is a data

type that can have just one value, null.

An expression always returns NULL if any of its elements are NULL.

Testing for null values

To test whether a field contains a null value, use the IS operator described in

Operator=.

The effect of setting a field to NULL

Take care when assigning a null value to a field. For example, the following

command deletes the Name field:

 SET OutputRoot.XML.Msg.Data.Name = NULL; -- this deletes the field

The correct way to assign a null value to a field is as follows:

SET OutputRoot.XML.Msg.Data.Name VALUE = NULL;

-- this assigns a NULL value to a field without deleting it

ESQL numeric data types

ESQL supports several data types that handle numeric values.

The following data types are collectively known as numeric data types:

v “ESQL DECIMAL data type” on page 153

v “ESQL FLOAT data type” on page 154

v “ESQL INTEGER data type” on page 154

152 ESQL

Notes:

1. INTEGER and DECIMAL types are represented exactly inside the

broker; FLOAT types are inherently subject to rounding error without

warning. Do not use FLOAT if you need absolute accuracy, for example,

to represent money.

2. Various casts are possible between different numeric types. These can

result in loss of precision, if exact types are cast into FLOAT.

For information about numeric functions see “ESQL numeric functions” on page

268.

ESQL DECIMAL data type

The DECIMAL data type holds an exact representation of a decimal number.

Decimals have precision, scale, and rounding. Precision is the total number of

digits of a number:

v The minimum precision is 1

v The maximum precision is 34

Scale is the number of digits to the right of the decimal point:

v The minimum scale (-exponent) is -999,999,999

v The maximum scale (-exponent) is +999,999,999

You cannot define precision and scale when declaring a DECIMAL, because they

are assigned automatically. It is only possible to specify precision and scale when

casting to a DECIMAL.

Scale, precision, and rounding:

The following scale, precision, and rounding rules apply:

v Unless rounding is required to keep within the maximum precision, the scale of

the result of an addition or subtraction is the greater of the scales of the two

operands.

v Unless rounding is required to keep within the maximum precision, the scale of

the result of a multiplication is the sum of the scales of the two operands.

v The precision of the result of a division is the smaller of the number of digits

needed to represent the result exactly and the maximum precision.

v All addition, subtraction, multiplication, and division calculations round the

least significant digits, as necessary, to stay within the maximum precision

v All automatic rounding is banker’s or half even symmetric rounding. The rules of

this are:

– When the first dropped digit is 4 or less, the first retained digit is unchanged

– When the first dropped digit is 6 or more, the first retained digit is

incremented

– When the first dropped digit is 5, the first retained digit is incremented if it is

odd, and unchanged if it is even. Therefore, both 1.5 and 2.5 round to 2 while

3.5 and 4.5 both round to 4

– Negative numbers are rounded according to the same rule

Decimal literals:

ESQL reference 153

Decimal literals that consist of an unquoted string of digits only, that is, that

contain neither a decimal point nor an exponent (for example 12345) are of type

INTEGER if they are small enough to be represented as integers. Otherwise they

are of type DECIMAL.

Decimal literals that consist of an unquoted string of digits, optionally a decimal

point, and an exponent (for example 123e1), are of type FLOAT if they are small

enough to be represented as floats. Otherwise they are of type DECIMAL.

Decimal literals that consist of the keyword DECIMAL and a quoted string of

digits, with or without a decimal point and with or without an exponent, are of

type DECIMAL, for example, DECIMAL ’42’, DECIMAL ’1.2346789e+203’.

The strings in this type of literal can also have the values:

v ’NAN’, not a number

v ’INF’, ’INFINITY’

v ’+INF’, ’+INFINITY’

v ’-INF’, ’-INFINITY’

v ’MAX’

v ’MIN’

(in any mixture of case) to denote the corresponding values.

Note, if you do not specify sufficient precision digits, that INF is returned, as

shown in the following example:

 SET VAL [equals char] CAST(’123456’ AS DECIMAL(3,0))

ESQL FLOAT data type

The FLOAT data type holds a 64-bit, base 2, fraction and exponent approximation

to a real number. This gives a range of values between +-1.7E–308 and +- 1.7E+308.

Float literals consist of an unquoted string of digits and either a decimal point (for

example 123.4) or an exponent (for example 123e4) or both (for example 123.4e5) .

They are of type FLOAT if they are small enough to be represented as floats.

Otherwise they are of type DECIMAL

Rounding:

When you CAST a FLOAT to an INTEGER, either implicitly or explicitly, the

FLOAT is truncated; that is, the numbers after the decimal point are removed and

no rounding occurs.

ESQL INTEGER data type

The INTEGER data type holds an integer number in 64-bit two’s complement

form. This gives a range of values between -9223372036854775808 and

+9223372036854775807.

Integer literals consist of an unquoted string of digits only; that is, they contain

neither a decimal point nor an exponent; for example, 12345. They are of type

INTEGER if they are small enough to be represented as integers. Otherwise they

are of type DECIMAL.

154 ESQL

|
|

|

|

In addition to this format, you can write integer literals in hexadecimal notation;

for example, 0x1234abcd. You can write the hexadecimal letters A to F, and the “x”

after the initial zero, in uppercase or lowercase. If you use hexadecimal format, the

number must be small enough to fit into an integer. (That is, it cannot be a

decimal.)

ESQL REFERENCE data type

The REFERENCE data type holds the location of a field in a message. It cannot

hold the location of a constant, a database table, a database column, or another

reference.

Note: For backward compatibility, reference variables can also point at scalar

variables

A reference literal is an hierarchic path name, consisting of a list of path elements

separated by periods. The first element in the list is known as the correlation

name, and identifies a reference, row, or scalar variable. Any subsequent elements

apply to references to message trees only, and identify field types, names, and

indexes within the message tree relative to the field pointed to by the correlation

name.

For example:

InputRoot.MQMD.Priority

is a field reference literal that refers to the Priority field contained within an

MQMD structure within an input message.

ESQL string data types

ESQL supports several data types that handle string values. The following data

types are collectively known as string data types:

v “ESQL BIT data type”

v “ESQL BLOB data type” on page 156

v “ESQL CHARACTER data type” on page 156

For information about string functions, see “ESQL string manipulation functions”

on page 281.

ESQL BIT data type

The BIT data type holds a variable length string of binary digits. It is commonly

used to represent arbitrary binary data that does not contain an exact number of

bytes. A bit string literal consists of the letter B, followed by a string of binary

digits enclosed in single quotation marks, as in the following example:

B’0100101001’

Any number of digits, which must be either 0 or 1, can be specified. The initial B

can be specified in uppercase or lowercase.

ESQL reference 155

ESQL BLOB data type

The BLOB data type holds a variable length string of 8-bit bytes. It is commonly

used to represent arbitrary binary data. A BLOB literal consists of the letter X,

followed by a string of hexadecimal digits enclosed in single quotation marks, as

in the following example:

X’0123456789ABCDEF’

There must be an even number of digits in the string, because two digits are

required to define each byte. Each digit can be one of the hexadecimal digits 0-9

and A-F. Both the initial X and the hexadecimal letters can be specified in

uppercase or lowercase.

ESQL CHARACTER data type

The character data type holds a variable length string of Unicode characters. A

character string literal consists of any number of characters in single quotation

marks. If you want to include a single quotation mark within a character string

literal, use another single quotation mark as an escape character.

For example, the assignment SET X=’he’’was’’’ puts the value he’was’ into X.

ESQL-to-Java data-type mapping table

The following table summarizes the mappings from ESQL to Java.

Notes:

v Only the Java scalar wrappers are passed to Java.

v The ESQL scalar types are mapped to Java data types as object wrappers,

or object wrapper arrays, depending upon the direction of the procedure

parameter. Each wrapper array contains exactly one element.

v Scalar object wrappers are used to allow NULL values to be passed to

and from Java methods.

 ESQL data types

1 Java IN data types Java INOUT and OUT data types

INTEGER, INT java.lang.Long java.lang.Long []

FLOAT java.lang.Double java.lang.Double[]

DECIMAL java.math.BigDecimal java.math.BigDecimal[]

CHARACTER, CHAR java.lang.String java.lang.String[]

BLOB byte[] byte[][]

BIT java.util.BitSet java.util.BitSet[]

DATE com.ibm.broker.plugin.MbDate com.ibm.broker.plugin.MbDate[]

TIME

2 com.ibm.broker.plugin.MbTime com.ibm.broker.plugin.MbTime[]

GMTTIME

2 com.ibm.broker.plugin.MbTime com.ibm.broker.plugin.MbTime[]

TIMESTAMP

2 com.ibm.broker.plugin.MbTimestamp com.ibm.broker.plugin.MbTimestamp[]

GMTTIMESTAMP

2 com.ibm.broker.plugin.MbTimestamp com.ibm.broker.plugin.MbTimestamp[]

INTERVAL Not supported Not supported

BOOLEAN java.lang.Boolean java.lang.Boolean[]

156 ESQL

REFERENCE (to a message tree)

3 4

5 6

com.ibm.broker.plugin.MbElement com.ibm.broker.plugin.MbElement[]

(Supported for INOUT. Not

supported for OUT)

ROW Not supported Not supported

LIST Not supported Not supported

1. Variables that are declared to be CONSTANT (or references to variables

declared to be CONSTANT) are not allowed to have the direction INOUT or

OUT.

2. The time zone set in the Java variable is not important; you obtain the required

time zone in the output ESQL.

3. The reference parameter cannot be NULL when passed into a Java method.

4. The reference cannot have the direction OUT when passed into a Java method.

5. If an MbElement is passed back from Java to ESQL as an INOUT parameter, it

must point to a location in the same message tree as that pointed to by the

MbElement that was passed into the called Java method.

For example, if an ESQL reference to OutputRoot.XML.Test is passed into a Java

method as an INOUT MbElement, but a different MbElement is passed back to

ESQL when the call returns, the different element must also point to

somewhere in the OutputRoot tree.

6. An MbElement cannot be returned from a Java method with the RETURNS

clause, because no ESQL routine can return a reference. However, an MbElement

can be returned as an INOUT direction parameter, subject to the conditions

described in point 5 above.

A REFERENCE to a scalar variable can be used in the CALL of a Java method,

provided that the data type of the variable the reference refers to matches the

corresponding data type in the Java program signature.

ESQL variables

Types of variable

You can use the “DECLARE statement” on page 217 to define three types of

variable:

External

External variables (defined with the EXTERNAL keyword) are also known as

user-defined properties (UDPs): see “User-defined properties in ESQL” on page 6.

They exist for the entire lifetime of a message flow and are visible to all

messages passing through the flow. Their initial values (optionally set by the

DECLARE statement) can be modified, at design time, by the Message Flow

editor, or, at deployment time, by the BAR editor. Their values cannot be

modified by ESQL.

Normal

“Normal” variables have a lifetime of just one message passing through a

node. They are visible to that message only. To define a “normal” variable,

omit both the EXTERNAL and SHARED keywords.

Shared

Shared variables can be used to implement an in-memory cache in the message

flow, see Optimizing message flow response times. Shared variables have a

long lifetime and are visible to multiple messages passing through a flow, see

“Long-lived variables” on page 7. They exist for the lifetime of the execution

ESQL reference 157

group process, the lifetime of the flow or node, or the lifetime of the node’s

SQL that declares the variable (whichever is the shortest). They are initialized

when the first message passes through the flow or node after each broker start

up.

 See also the ATOMIC option of the “BEGIN ... END statement” on page 174.

The BEGIN ATOMIC construct is useful when a number of changes need to be

made to a shared variable and it is important to prevent other instances seeing

the intermediate states of the data.

ESQL field references

This topic describes how to use ESQL field references to form paths to message

body elements.

The full syntax for field references is as shown below:

�� CorrelationName

�

.

PathElement

 ��

PathElement:

(

TypeExpression

)
 �

� - NameIdentifier

:

{

NameExpression

}

SpaceIdentifier

*

{

SpaceExpression

}

*

 �

�
[

]

IndexExpression

<

IndexExpression

>

IndexExpression

LAST

A field reference consists of a correlation name, followed by zero or more path

Fields separated by periods (.). The correlation name identifies a well-known

starting point and must be the name of a constant, a declared variable (scalar, row

or reference), or one of the predefined start points; for example, InputRoot. The

path Fields define a path from the start point to the desired field.

For example:

InputRoot.XML.Data.Invoice

starts the broker at the location InputRoot (that is, the root of the input message to

a Compute node) and then performs a sequence of navigations. First, it navigates

158 ESQL

from root to the first child field called XML, then to the first child field of the XML

field called Data. Finally, the broker navigates to the first child field of the Data

field called Invoice. Whenever this field reference occurs in an ESQL program, the

invoice field is accessed.

This form of field reference is simple, convenient, and is the most commonly used.

However, it does have two limitations:

v Because the names used must be valid ESQL identifiers, you can use only names

that conform to the rules of ESQL. That is, the names can contain only

alphanumeric characters including underscore, the first character cannot be

numeric, and names must be at least one character long. You can avoid these

limitations by enclosing names not conforming to these rules in double

quotation marks. For example:

InputRoot.XML."Customer Data".Invoice

If you need to refer to fields that contain quotation marks, use two pairs of

quotation marks around the reference. For example:

Body.Message."""hello"""

Some identifiers are reserved as keywords but, with the exception of the

correlation name, you can use them in field references without the use of double

quotation marks

v Because the names of the fields appear in the ESQL program, they must be

known when the program is written. This limitation can be avoided by using the

alternative syntax that uses braces ({ ... }). This syntax allows you to use any

expression that returns a non-null value of type character.

For example:

InputRoot.XML."Customer Data".{’Customer-’ ||

 CurrentCustomer}.Invoice

in which the invoices are contained in a folder with a name is formed by

concatenating the character literal Customer- with the value in CurrentCustomer

(which in this example must be a declared variable of type character).

You can use the asterisk (*) wildcard character in a path element to match any

name. You can also use “*” to specify a partial name. For example, Prefix*

matches any name that begins with “Prefix”.

Note that enclosing anything in double quotation marks in ESQL makes it an

identifier; enclosing anything in single quotation marks makes it a character literal.

You must enclose all character strings in single quotation marks.

See:

v “Namespaces” on page 160 for the meaning of the different combinations of

namespace and name

v “Target field references” on page 163 for the meaning of the different

combinations of field references

v “Indexes” on page 160 for the meaning of the different combinations of index

clauses

v “Types” on page 161 for the meaning of the different combinations of types

ESQL reference 159

Namespaces

Field names can belong to namespaces. Field references provide support for

namespaces as follows:

v Each field of each field reference that contains a name clause can also contain a

namespace clause defining the namespace to which the specified name belongs.

v Each namespace name can be defined by either a simple identifier or by an

expression (enclosed in curly braces). If an identifier is the name of a declared

namespace constant, the value of the constant is used. If an expression is used, it

must return a non-null value of type character.

v A namespace clause of * explicitly states that namespace information is to be

ignored when locating Fields in a tree.

v A namespace clause with no identifier, expression, or *, that is, only the :

present, explicitly targets the notarget namespace

Indexes

Each field of a field reference can contain an index clause. This clause is denoted

by brackets ([...]) and accepts any expression that returns a non-null value of

type integer. This clause identifies which of several fields with the same name is to

be selected. Fields are numbered from the first, starting at one. If this clause is not

present, it is assumed that the first field is required. Thus, the two examples below

have exactly the same meaning:

InputRoot.XML.Data[1].Invoice

InputRoot.XML.Data.Invoice[1]

This construct is most commonly used with an index variable, so that a loop steps

though all such fields in sequence. For example:

WHILE count < 32 DO

 SET TOTAL = TOTAL + InputRoot.XML.Data.Invoice[count].Amount;

 SET COUNT = COUNT + 1

END WHILE;

Use this kind of construct with care, because it implies that the broker must count

the fields from the beginning each time round the loop. If the repeat count is large,

performance will be poor. In such cases, a better alternative is to use a field

reference variable.

Index expressions can optionally be preceded by a less-than sign (<), indicating

that the required field is to be indexed from the last field, not the first. In this case,

the index 1 refers to the last field and the index 2 refers to the penultimate field.

For completeness, you can use a greater-than sign to indicate counting from the

first field. The example below shows ESQL code that handles indexes where there

are four fields called Invoice.

InputRoot.XML.Data.Invoice -- Selects the first

InputRoot.XML.Data.Invoice[1] -- Selects the first

InputRoot.XML.Data.Invoice[>] -- Selects the first

InputRoot.XML.Data.Invoice[>1] -- Selects the first

InputRoot.XML.Data.Invoice[>2] -- Selects the second

InputRoot.XML.Data.Invoice[<] -- Selects the fourth

InputRoot.XML.Data.Invoice[<1] -- Selects the fourth

InputRoot.XML.Data.Invoice[<2] -- Selects the third

InputRoot.XML.Data.Invoice[<3] -- Selects the second

160 ESQL

An index clause can also consist of an empty pair of brackets ([]). This selects all

fields with matching names. Use this construct with functions and statements that

expect lists (for example, the SELECT, CARDINALITY, SINGULAR, and EXISTS

functions, or the SET statement) .

Types

Each field of a field reference can contain a type clause. These are denoted by

parentheses (()), and accept any expression that returns a non-null value of type

integer. The presence of a type expression restricts the fields that are selected to

those of the matching type. This construct is most commonly used with generic

XML, where there are many field types and it is possible for one XML field to

contain both attributes and further XML Fields with the same name.

For example:

<Item Value = ’1234’ >

 <Value>5678</Value>

</Item>

Here, the XML field Item has two child Fields, both called “Value”. The child

Fields can be distinguished by using type clauses:

Item.(<Domain>.Attribute)Value to select the attribute, and

Item.(XML.Element)Value to select the field, where <Domain> is one of XML,

XMLNS, or XMLNSC, as determined by the message domain of the source.

Type constraints

A type constraint checks the data type returned by a field reference.

��
 (1)

(

FieldReference

)

ScalarDataTypeName

��

Notes:

1 ScalarDataTypeName can be any one of BOOLEAN, INTEGER, INT, FLOAT,

DECIMAL, DEC, DATE, TIME, TIMESTAMP, GMTTIME,

GMTTIMESTAMP, INTERVAL, CHARACTER, CHAR, BLOB, BIT.

Typically, a type constraint causes the scalar value of the reference to be extracted

(in a similar way to the FIELDVALUE function) and an exception to be thrown if

the reference is not of the correct type. By definition, an exception will be thrown

for all nonexistent fields, because these evaluate to NULL. This provides a

convenient and fast way of causing exceptions if essential fields are missing from

messages.

However, when type constraints occur in expressions that are candidates for being

passed to a database (for example, they are in a WHERE clause), the information is

used to determine whether the expression can be given to the database. This can

be important if a WHERE clause contains a CAST operating on a database table

column. In the absence of a type constraint, such expressions cannot be given to

the database because the broker cannot tell whether the database is capable of

performing the required conversion. Note, however, that you should always

exercise caution when using casts operating on column values, because some

ESQL reference 161

databases have exceedingly limited data conversion capabilities.

Summary

*, *[..], (..)*, (..)*[..]

None of these forms specifies a name or namespace. The target field can

have any name, in any namespace or in no namespace. It is located solely

by its type, its index, or its type and index, as appropriate.

NameId, NameId[..], (..)NameId, (..)NameId[..]

All these forms specify a name but no namespace. The target field is

located by namespace and name, and also by type and index where

appropriate.

 The namespace is taken to be the only namespace in the namespace path

containing this name. The only namespace that can be in the path is the

notarget namespace.

 These forms all existed before namespaces were introduced. Although their

behavior has changed in that they now compare both name and

namespace, existing transforms should see no change in their behavior

because all existing transforms create their Fields in the notarget

namespace.

: *, :*[..], (..):*, (..):*[..]

All these forms specify the notarget namespace but no name. The target

field is located by its namespace and also by type and index where

appropriate.

: NameId, :NameId[..], (..):NameId, (..):NameId[..]

All these forms specify a name and the notarget namespace. The target

field is located by namespace and name and also by type and index where

appropriate.

* :*, *:*[..], (..)*:*, (..)*:*[..]

None of these forms specifies a name or a namespace. Note that “*:*” is

equivalent to “*”, and matches no namespace as well as any namespace.

The target field can have any name, in any namespace or in no namespace.

It is located solely by its type, its index, or its type and index, as

appropriate.

* :NameId, *:NameId[..], (..)*:NameId, (..)*:NameId[..]

All these forms specify a name but no namespace. The target field is

located by name and also by type and index where appropriate.

SpaceId :*, SpaceId:*[..], (..)SpaceId:*, (..)SpaceId:*[..]

All these forms specify a namespace but no name. The target field is

located by namespace and also by type and index where appropriate.

SpaceId :NameId, SpaceId:NameId[..], (..)SpaceId:NameId, (..)SpaceId:NameId[..]

All these forms specify a namespace and name. The target field is located

by namespace and name and also by type and index where appropriate.

In all the preceding cases a name, or namespace, provided by an expression

contained in braces ({}) is equivalent to a name provided as an identifier.

By definition, the name of the notarget namespace is the empty string. The empty

string can be selected by expressions which evaluate to the empty string, the

empty identifier ″″, or by reference to a namespace constant defined as the empty

string.

162 ESQL

Target field references

The use of field references usually implies searching for an existing field. However,

if the required field does not exist, as is usually the case for field references that

are the targets of SET statements and those in the AS clauses of SELECT functions,

it is created.

In these situations, there are a variety of circumstances in which the broker cannot

tell what the required name or namespace is, and in these situations the following

general principles apply :

v If the name clause is absent or does not specify a name, and the namespace

clause is absent or does not specify or imply a namespace (that is, there is no

name or namespace available), one of the following conditions applies:

– If the assignment algorithm does not copy the name from some existing field,

the new field has both its name and namespace set to the empty string and

its name flag is not set automatically.

In the absence of a type specification, the field’s type is not Name or

NameValue, which effectively indicates that the new field is nameless.

– Otherwise, if the assignment algorithm chooses to copy the name from some

existing field, the new field has both its name and namespace copied from the

existing field and its Name flag is set automatically
v If the name clause is present and specifies a name, but the namespace clause is

absent or does not specify or imply a namespace (that is, a name is available but

a namespace is not), the new field has its:

– Name set to the given value

– Namespace set to the empty string

– Name flag set automatically
v If the name clause is absent or does not specify a name, but the namespace

clause is present and specifies or implies a namespace (that is, a namespace is

available but a name is not), the new field has its:

– Namespace set to the given value

– Name set to the empty string

– Name flag set automatically
v If the name clause is present and specifies a name, and the namespace clause is

present and specifies or implies a namespace, the new field has its:

– Name set to the given value

– Namespace set to the given value

– Name flag set automatically

There are also cases where the broker creates Fields in addition to those referenced

by field references:

v Tree copy: new Fields are created by an algorithm that uses a source tree as a

template. If the algorithm copies the name of a source field to a new field, its

namespace is copied as well.

v Anonymous select expressions: SELECT clauses are not obliged to have AS

clauses; those that do not have them, set the names of the newly created Fields

to default values (see “SELECT function” on page 320).

These defaults can be derived from field names, column names or can simply be

manufactured sequence names. If the name is an field name, this is effectively a

tree copy, and the namespace name is copied as above.

ESQL reference 163

Otherwise, the namespace of the newly-created field is derived by searching the

path, that is, the name is be treated as the NameId syntax of a field reference.

The effect of setting a field to NULL

Take care when assigning a null value to a field. For example, the following

command deletes the Name field:

 SET OutputRoot.XML.Msg.Data.Name = NULL; -- this deletes the field

The correct way to assign a null value to a field is as follows:

SET OutputRoot.XML.Msg.Data.Name VALUE = NULL;

-- this assigns a NULL value to a field without deleting it

Note: to users on backward compatibility

For backward compatibility the LAST keyword is still supported, but its use

is deprecated. LAST cannot be used as part of an index expression: [LAST] is

valid, and is equivalent to [<], but [LAST3] is not valid.

The LAST keyword has been replaced by the following arrow syntax, which

allows both a direction of search and index to be specified:

 Field [>] -- The first field, equivalent to [1]

 Field [> (a + b) * 2]

 Field [<] -- The last field, equivalent to [LAST]

 Field [< 1] -- The last field, equivalent to [LAST]

 Field [< 2] -- The last but one field

 Field [< (a + b) / 3]

ESQL operators

This section provides reference information for the following groups of operators,

and for the rules for precedence:

v Simple comparison operators

v Complex comparison operators

v Logical operators

v Numeric operators

v String operator

v Rules for operator precedence

ESQL simple comparison operators

This topic describes ESQL’s simple comparison operators. For information about

ESQL’s complex comparison operators, see “ESQL complex comparison operators”

on page 166.

ESQL provides a full set of comparison operators (predicates). Each compares two

scalar values and returns a Boolean. If either operand is null the result is null.

Otherwise the result is true if the condition is satisfied and false if it is not.

Comparison operators can be applied to all scalar data types. However, if the two

operands are of different types, special rules apply. These are described in “Implicit

casts” on page 339.

Some comparison operators also support the comparison of rows and lists. These

are noted below.

164 ESQL

Operator >

The first operand is greater than the second.

Operator <

The first operand is less than the second.

Operator >=

The first operand is greater than or equal to the second.

Operator <=

The first operand is less than or equal to the second.

Operator =

The first operand is equal to that of the second.

 This operator can also compare rows and lists. See “ROW and LIST

comparisons” on page 329 for a description of list and row comparison.

Operator <>

The first operand is not equal to the second.

 This operator can also compare rows and lists. See “ROW and LIST

comparisons” on page 329 for a description of list and row comparison.

The meanings of “equal”, “less”, and “greater” in this context are as follows:

v For the numeric types (INTEGER, FLOAT, DECIMAL) the numeric values are

compared. Thus 4.2 is greater than 2.4 and -2.4 is greater than -4.2.

v For the date/time types (DATE, TIME, TIMESTAMP, GMTTIME,

GMTTIMESTAMP but not INTERVAL) a later point in time is regarded as being

greater than an earlier point in time. Thus the date 2004-03-31 is greater than the

date 1947-10-24.

v For the INTERVAL type, a larger interval of time is regarded as being greater

than a smaller interval of time.

For the string types (CHARACTER, BLOB, BIT) the comparison is lexicographic.

Starting from the left, the individual elements (each character, byte or bit) are

compared. If no difference is found, the strings are equal. If a difference is found,

the values are greater if the first different element in the first operand is greater

than the corresponding element in the second and less if they are less. In the

special case where two strings are of unequal length but equal as far as they go,

the longer string is regarded as being greater than the shorter. Thus:

’ABD’ is greater than ’ABC’

’ABC’ is greater than ’AB’

Trailing blanks are regarded as insignificant in character comparisons. Thus if you

want to ensure that two strings are truly equal you need to compare both the

strings themselves and their lengths. For example:

’ABC ’ is equal to ’ABC’

Note that comparing strings with a length of one is equivalent to comparing

individual characters, bytes, or bits. Because ESQL has no single character, byte, or

bit data types, it is standard practice to use strings of length one to compare single

characters, bytes, or bits.

ESQL reference 165

ESQL complex comparison operators

This topic describes ESQL’s complex comparison operators (predicates). For

information about ESQL’s simple comparison operators, see “ESQL simple

comparison operators” on page 164.

Operator BETWEEN

The operator BETWEEN allows you to test whether a value lies between

two boundary values.

BETWEEN operator

��

expression

NOT

BETWEEN
 ASYMMETRIC

SYMMETRIC

�

� endpoint_1 AND endpoint_2 ��

This operator exists in two forms, SYMMETRIC and ASYMMETRIC (which

is the default if neither is specified). The SYMMETRIC form is equivalent

to:

(source >= boundary1 AND source <= boundary2) OR

(source >= boundary2 AND source <= boundary1)

The ASYMMETRIC form is equivalent to:

source >= boundary1 AND source <= boundary2

The ASYMMETRIC form is simpler but returns only the result that you

expect when the first boundary value has a smaller value than the second

boundary. It is only useful when the boundary condition expressions are

literals.

If the operands are of different types, special rules apply. These are described in

“Implicit casts” on page 339.

Operator EXISTS

EXISTS operator

�� Operand (ListExpression) ��

The operator EXISTS returns a boolean value indicating whether a SELECT

function returned one or more values (TRUE) or none (FALSE).

EXISTS(SELECT * FROM something WHERE predicate)

Operator IN

The operator IN allows you to test whether a value is equal to one of a list

of values.

166 ESQL

IN operator

��

operand_1

NOT

IN

(

�

 ,

operand_2

)

��

The result is TRUE if the left operand is not NULL and is equal to one of

the right operands. The result is FALSE if the left operand is not NULL

and is not equal to any of the right operands, none of which have NULL

values. Otherwise the result is UNKNOWN. If the operands are of

different types, special rules apply. These are described in “Implicit casts”

on page 339.

Operator IS

The operator IS allows you to test whether an expression has returned a

special value.

IS operator

��

Operand

IS

NOT

 TRUE

FALSE

INF

+INF

-INF

INFINITY

+INFINITY

-INFINITY

NAN

NULL

NUM

NUMBER

UNKNOWN

��

The primary purpose of the operator IS is to test whether a value is NULL.

The comparison operator (=) does not allow this because the result of

comparing anything with NULL is NULL.

 IS also allows you to test for the Boolean values TRUE and FALSE, and the

testing of decimal values for special values. These are denoted by INF,

+INF, -INF, NAN (not a number), and NUM (a valid number) in any

mixture of case. The alternative forms +INFINITY, -INFINITY, and

NUMBER are also accepted.

 If applied to non-numeric types, the result is FALSE.

Operator LIKE

The operator LIKE searches for strings that match a certain pattern.

ESQL reference 167

LIKE operator

�� source

NOT
 LIKE pattern

ESCAPE

EscapeChar
 ��

The result is TRUE if none of the operands is NULL and the source

operand matches the pattern operand. The result is FALSE if none of the

operands is NULL and the source operand does not match the pattern

operand. Otherwise the result is UNKNOWN.

 The pattern is specified by a string in which the percent (%) and

underscore (_) characters have a special meaning:

v The underscore character _ matches any single character.

For example, the following finds matches for IBM and for IGI, but not

for International Business Machines or IBM Corp:

Body.Trade.Company LIKE ’I__’

v The percent character % matches a string of zero or more characters.

For example, the following finds matches for IBM, IGI, International

Business Machines, and IBM Corp:

Body.Trade.Company LIKE ’I%’

To use the percent and underscore characters within the expressions that

are to be matched, precede the characters with an ESCAPE character,

which defaults to the backslash (\) character.

 For example, the following predicate finds a match for IBM_Corp.

Body.Trade.Company LIKE ’IBM_Corp’

You can specify a different escape character by using the ESCAPE clause.

For example, you could also specify the previous example like this:

Body.Trade.Company LIKE ’IBM$_Corp’ ESCAPE ’$’

Operator SINGULAR

SINGULAR operator

�� Operand (ListExpression) ��

The operator SINGULAR returns a boolean value of TRUE if the list has

exactly one element, otherwise it returns FALSE.

ESQL logical operators

ESQL provides the following logical operators:

Operator AND

The result is the logical AND of the two operands. Both operands must be

boolean values.

Operator OR

The result is the logical OR of the two operands. Both operands must be

boolean values.

168 ESQL

Operator NOT

The result is the logical NOT of the operand, which must be a boolean

value.

NULL and UNKNOWN values are treated as special values by these operators.

The principles are:

v NULL and UNKNOWN are treated the same.

v If an operand is NULL the result is NULL unless the operation result is already

dictated by the other parameter.

The result of AND and OR operations is defined by the following table.

 Value of P Value of Q Result of P AND Q Result of P OR Q

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE UNKNOWN UNKNOWN TRUE

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE

FALSE UNKNOWN FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN TRUE

UNKNOWN FALSE FALSE UNKNOWN

UNKNOWN UNKNOWN UNKNOWN UNKNOWN

The result of NOT operations is defined by the following table.

 Operand Result of NOT

TRUE FALSE

FALSE TRUE

UNKNOWN UNKNOWN

ESQL numeric operators

ESQL provides the following numeric operators:

Unary Operator -

The result is the negation of the operand (that is, it has the same

magnitude as the operand but the opposite sign). You can negate numeric

values (INTEGER, DECIMAL and FLOAT) and intervals (INTERVAL).

Operator +

The result is the sum of the two operands. You can add two numeric

values, two intervals, and an interval to a datetime value (DATE, TIME,

TIMESTAMP, GMTTIME, and GMTTIMESTAMP).

Operator -

The result is the difference between the two operands. It is possible to:

v Subtract one numeric value from another.

v Subtract one date-time from another. The result is an interval.

v Subtract one interval from another. The result is an interval.

v Subtract an interval from a datetime value. The result is a date-time.

ESQL reference 169

When subtracting one date-time from another, you must indicate the type

of interval required. You do this by using a qualifier consisting of

parentheses enclosing the expression, followed by an interval qualifier. For

example:

SET OutputRoot.XML.Data.Age =

 (DATE ’2005-03-31’ - DATE ’1947-10-24’) YEAR TO MONTH;

Operator *

The result is the product of the two operands. You can multiply numeric

values and multiply an interval by a numeric value.

Operator /

The result is the dividend of the two operands. You can divide numeric

values and divide an interval by a numeric value.

Operator ||

The result is the concatenation of the two operands. You can concatenate

string values (CHARACTER, BIT, and BLOB).

In all cases, if either operand is NULL, the result is NULL. If the operands are of

different types, special rules apply. These are described in “Implicit casts” on page

339.

For examples of how you can use these operators to manipulate datetime values,

see “Using numeric operators with datetime values” on page 41.

ESQL string operator

ESQL provides the following string operator:

Operator ||

The result is the concatenation of the two operands. You can concatenate

string values (CHARACTER, BIT, and BLOB).

If either operand is NULL, the result is NULL.

Rules for ESQL operator precedence

When an expression involves more than one operator, the order in which the

expression is evaluated might affect the result. Consider the following example:

Under ESQL’s precedence rules, c is multiplied by d and the result is added to b.

This rule states that multiplication takes precedence over addition, so reordering

the expression as follows:

makes no difference. ESQL’s precedence rules are set out below but it is generally

considered good practice to use parentheses to make the meaning clear. The order

of precedence is:

1. Parentheses

2. Unary operators including unary - and NOT

3. Multiplication and division

4. Concatenation

5. Addition and subtraction

SET a = b + c * d;

SET a = c * d + b;

170 ESQL

Operations at the same level are evaluated from left to right.

ESQL statements

The following table summarizes the ESQL statements and what they do.

 Statement type Description

Basic statements:

“BEGIN ... END statement” on page 174 Gives the statements defined within the

BEGIN and END keywords the status of a

single statement.

“CALL statement” on page 179 Invokes a user-written routine that has been

defined using a CREATE FUNCTION or

CREATE PROCEDURE statement.

“CASE statement” on page 182 Uses rules defined in WHEN clauses to

select a block of statements to execute.

“CREATE FUNCTION statement” on page

192

Like CREATE PROCEDURE, CREATE

FUNCTION defines a user-written routine.

(The few differences between CREATE

FUNCTION and CREATE ROUTINE are

described in the reference material.)

“CREATE MODULE statement” on page 201 Creates a module (a named container

associated with a node).

“CREATE PROCEDURE statement” on page

203

Like CREATE FUNCTION, CREATE

PROCEDURE defines a user-written routine.

(The few differences between CREATE

FUNCTION and CREATE ROUTINE are

described in the reference material.)

“DECLARE statement” on page 217 Declares one or more variables that can be

used to store temporary values.

“IF statement” on page 229 Processes a set of statements based on the

result of evaluating condition expressions.

“ITERATE statement” on page 232 Abandons processing the current iteration of

the containing WHILE, REPEAT, LOOP, or

BEGIN statement, and might start the next

iteration.

“LEAVE statement” on page 232 Abandons processing the current iteration of

the containing WHILE, REPEAT, LOOP or

BEGIN statement, and stops looping.

“LOOP statement” on page 235 Processes a sequence of statements

repeatedly and unconditionally.

“REPEAT statement” on page 243 Processes a sequence of statements and then

evaluates a condition expression. If the

expression evaluates to TRUE, executes the

statements again.

“RETURN statement” on page 244 Stops processing the current function or

procedure and passes control back to the

caller.

“SET statement” on page 246 Evaluates a source expression, and assigns

the result to the target entity.

“THROW statement” on page 250 Generates a user exception.

ESQL reference 171

Statement type Description

“WHILE statement” on page 254 Evaluates a condition expression, and if it is

TRUE executes a sequence of statements.

Message tree manipulation statements:

“ATTACH statement” Attaches a portion of a message tree into a

new position in the message hierarchy.

“CREATE statement” on page 184 Creates a new message field.

“DELETE statement” on page 226 Detaches and destroys a portion of a

message tree, allowing its memory to be

reused.

“DETACH statement” on page 226 Detaches a portion of a message tree

without deleting it.

“FOR statement” on page 228 Iterates through a list (for example, a

message array).

“MOVE statement” on page 236 Changes the field pointed to by a target

reference variable.

Database update statements:

“DELETE FROM statement” on page 223 Deletes rows from a table in an external

database based on a search condition.

“INSERT statement” on page 230 Adds a new row to an external database.

“PASSTHRU statement” on page 238 Takes a character value and passes it as an

SQL statement to an external database.

“UPDATE statement” on page 251 Updates the values of specified rows and

columns in a table in an external database.

Node interaction statements:

“PROPAGATE statement” on page 240 Propagates a message to the downstream

nodes within the message flow.

Other statements:

“BROKER SCHEMA statement” on page 176 This statement is optional and is used in an

ESQL file to explicitly identify the schema

that contains the file.

“DECLARE HANDLER statement” on page

222

Declares an error handler.

“EVAL statement” on page 227 Takes a character value, interprets it as an

SQL statement, and executes it.

“LOG statement” on page 233 Writes a record to the event or user trace

log.

“RESIGNAL statement” on page 244 Re-throws the current exception (if any).

This is used by an error handler, when it

cannot handle an exception, to give an error

handler in higher scope the opportunity of

handling the exception.

ATTACH statement

The ATTACH statement attaches a portion of a message tree into a new position in

the message hierarchy.

172 ESQL

Syntax

�� ATTACH dynamic reference TO field reference AS FIRSTCHILD

LASTCHILD

PREVIOUSSIBLING

NEXTSIBLING

 ��

The following example illustrates how to use the ATTACH statement, together

with the DETACH statement described in “DETACH statement” on page 226, to

modify a message structure. The dynamic reference supplied to the DETACH

statement must point to a modifiable message tree such as Environment,

LocalEnvironment, OutputRoot, OutputExceptionList, or InputLocalEnvironment.

There are some limitations on the use of ATTACH. In general, elements detached

from the output trees of a Compute node are not attached to the environment or to

input trees.

For example, if you take the following message:

<Data>

 <Order>

 <Item>cheese

 <Type>stilton</Type>

 </Item>

 <Item>bread</Item>

 </Order>

 <Order>

 <Item>garlic</Item>

 <Item>wine</Item>

 </Order>

 </Data>

the following ESQL statements:

SET OutputRoot = InputRoot;

DECLARE ref1 REFERENCE TO OutputRoot.XML.Data.Order[1].Item[1];

DETACH ref1;

ATTACH ref1 TO OutputRoot.XML.Data.Order[2] AS LASTCHILD;

result in the following new message structure:

<Data>

 <Order>

 <Item>bread</Item>

 </Order>

 <Order>

 <Item>garlic</Item>

 <Item>wine</Item>

 <Item>cheese

 <Type>stilton</Type>

 </Item>

 </Order>

 </Data>

For information about dynamic references see “Creating dynamic field references”

on page 36.

ESQL reference 173

BEGIN ... END statement

The BEGIN ... END statement gives the statements defined within the BEGIN and

END keywords the status of a single statement.

This allows the contained statements to:

v Be the body of a function or a procedure

v Have their exceptions handled by a handler

v Have their execution discontinued by a LEAVE statement

Syntax

�� BEGIN Statements END

Label

:

ATOMIC

Label

NOT

 ��

The second Label can be present only if the first Label is present. If both labels are

present, they must be identical. Two or more labeled statements at the same level

can have the same label, but this partly negates the advantage of the second label.

The advantage is that the labels unambiguously and accurately match each END

with its BEGIN. However, a labeled statement nested within Statements cannot

have the same label, because this makes the behavior of the ITERATE and LEAVE

statements ambiguous.

Scope of variables

A new local variable scope is opened immediately after the opening BEGIN and,

therefore, any variables declared within this statement go out of scope when the

terminating END is reached. If a local variable has the same name as an existing

variable, any references to that name that occur after the declaration access the

local variable. For example:

DECLARE Variable1 CHAR ’Existing variable’;

-- A reference to Variable1 here returns ’Existing variable’

BEGIN

 -- A reference to Variable1 here returns ’Existing variable’

 DECLARE Variable1 CHAR ’Local variable’; -- Perfectly legal even though

the name is the same

 -- A reference to Variable1 here returns ’Local variable’

END;

ATOMIC

If ATOMIC is specified, only one instance of a message flow (that is, one thread) is

allowed to execute the statements of a specific BEGIN ATOMIC... END statement

(identified by its schema and label), at any one time. If no label is present, the

behavior is as if a zero length label had been specified.

The BEGIN ATOMIC construct is useful when a number of changes need to be

made to a shared variable and it is important to prevent other instances seeing the

intermediate states of the data. Consider the following code example:

174 ESQL

CREATE PROCEDURE WtiteSharedVariable1(IN NewValue CHARACTER)

SharedVariableMutex1 : BEGIN ATOMIC

 -- Set new value into shared variable

END;

CREATE FUNCTION ReadSharedVariable1() RETURNS CHARACTER

SharedVariableMutex1 : BEGIN ATOMIC

 DECLARE Value CHARACTER;

 -- Get value from shared variable

 RETURN Value;

END;

The last example assumes that the procedure WriteSharedVariable1 and the

function ReadSharedVariable1 are in the same schema and are used by nodes

within the same flow. However, it does not matter whether or not the procedure

and function are contained within modules, or whether they are used within the

same or different nodes. The broker ensures that, at any particular time, only one

thread is executing any of the statements within the atomic sections. This ensures

that, for example, two simultaneous writes or a simultaneous read and write are

executed serially. Note that:

v The serialization is limited to the flow. Two flows which use BEGIN ATOMIC...

END statements with the same schema and label can be executed

simultaneously. In this respect, multiple instances within a flow and multiple

copies of a flow are not equivalent.

v The serialization is limited by the schema and label. Atomic BEGIN ... END

statements specified in different schemas or with different labels do not interact

with each other.

Note: You can look at this in a different way, if you prefer. For each combination

of message flow, schema, and label, the broker has a mutex that prevents

simultaneous access to the statements associated with that mutex.

Do not nest BEGIN ATOMIC... END statements, either directly or indirectly, because

this could lead to “deadly embraces”. For this reason, do not use a PROPAGATE

statement from within an atomic block.

It is not necessary to use the BEGIN ATOMIC construct in flows that will never be

deployed with more than one instance (but it might be unwise to leave this to

chance). It is also unnecessary to use the BEGIN ATOMIC construct on reads and

writes to shared variables. The broker always safely writes a new value to, and

safely reads the latest value from, a shared variable. ATOMIC is only required

when the application is sensitive to seeing intermediate results.

Consider the following example:

DECLARE LastOrderDate SHARED DATE;

...

SET LastOrderDate = CURRENT_DATE;

...

SET OutputRoot.XMLNSC.Data.Orders.Order[1].Date = LastOrderDate;

Here we assume that one thread is periodically updating LastOrderDate and

another is periodically reading it. There is no need to use ATOMIC, because the

second SET statement always reads a valid value. If the updating and reading

occur very closely in time, whether the old or new value is read is indeterminate,

but it is always one or the other. The result will never be garbage.

But now consider the following example:

ESQL reference 175

DECLARE Count SHARED INT;

...

SET Count = Count + 1;

Here we assume that several threads are periodically executing the SET statement.

In this case you do need to use ATOMIC, because two threads might read Count in

almost the same instant, and get the same value. Both threads perform the

addition and both store the same value back. The end result is thus N+1 and not

N+2.

The broker does not automatically provide higher-level locking than this (for

example, locking covering the whole SET statement), because such locking is liable

to cause “deadly embraces”.

Hint

You can consider the BEGIN ... END statement to be a looping construct, which

always loops just once. The effect of an ITERATE or LEAVE statement nested

within a BEGIN ... END statement is then as you would expect: control is

transferred to the statement following the END. Using ITERATE or LEAVE within

a BEGIN ... END statement is useful in cases where there is a long series of

computations that needs to be abandoned, either because a definite result has been

achieved or because an error has occurred.

BROKER SCHEMA statement

The BROKER SCHEMA statement is optional; use it in an ESQL file to explicitly

identify the schema that contains the file.

176 ESQL

Syntax

�� esqlContents

BROKER SCHEMA

schemaName

PATH

schemaPathList
 ��

schemaName:

�

 < . <

identifier

schemaPathList:

�

 < , <

SchemaName

esqlContents:

�

 <<

createFunctionStatement

createModuleStatement

createProcedureStatement

DeclareStatement

An ESQL schema is a named container for functions, procedures, modules, and

variables. It is similar to the namespace concept of C++ and XML, and to the

package concept of Java.

In the absence of a BROKER SCHEMA statement, all functions, procedures,

modules, and constants belong to the default schema. This is similar to the default

namespace in C++, the no-target namespace in XML schema, and the default

package in Java.

Note: The BROKER SCHEMA feature is used in the Eclipse tooling set and is a

language feature, as is package. It does not appear in the broker ESQL.

PATH clause

The PATH clause specifies a list of additional schemas to be searched when

matching function and procedure calls to their implementations. The schema in

which the call lies is implicitly included in the PATH.

The PATH feature is used to resolve unqualified function and procedure names in

the tools according to the following algorithm.

There must be a single function or procedure that matches the unqualified name,

or the tools report an error. You can correct the error by qualifying the function or

procedure name with a schemaId:

ESQL reference 177

1. The current MODULE (if any) is searched for a matching function or

procedure. MODULE-scope functions and procedures are visible only within

their containing MODULE. MODULE-scope functions and procedures hide

schema-scope functions and procedures.

2. The <node schema> (but none of its contained MODULEs) and the

<SQL-broker schema> or schemas identified by the PATH statement are

searched for a matching function procedure

Note: The schemaId must be a fully qualified schema name.

The <node schema> is the schema containing the node’s message flow. The name

of this schema is given by the last segment of the message processing node uuid in

the broker XML message.

When a routine is invoked, the name used can be qualified by the schema name.

The behavior depends on the circumstances as follows:

v If the schema is specified, the named schema routine is invoked. The scalar

built-in functions, excluding CAST, EXTRACT and the special registers, are

considered to be defined within an implicitly declared schema called SQL. They

can be invoked in this way, for example, SQL.SUBSTRING(...).

Whatever happens next depends on whether the caller is in a module routine or

is a schema routine.

For a module routine:

– If the schema is not specified, the calling statement is in a module routine,

and a routine of the given name exists in the local module, that local routine

is invoked.

– If the schema is not specified, the calling statement is in a module routine,

and a routine of the given name does not exist in the local module, all

schemas in the schema path are searched for a routine of the same name.

If a matching function exists in one schema, it is used. If a matching function

exists in more than one schema a compile time error occurs. If there is no

matching function, the schema SQL is searched.

Note: This rule and the preceding rule imply that a local module routine

takes priority over a built-in routine of the same name.
For a schema routine:

– If the schema is not specified, the caller is a schema routine, and a routine of

the given name exists in the local schema, that local routine is invoked.

– If the schema is not specified, the calling statement is in a schema routine,

and a routine of the given name does not exist in the local schema, all

schemas in the schema path are searched for a routine of the same name

If a matching function exists in one schema, it is used. If a matching function

exists in more than one schema a compile time error occurs. If there is no

matching function, the schema SQL is searched.

Note: This rule and the preceding rule imply that a local schema routine

takes priority over a built-in routine of the same name.

The <node schema> is defined as the schema containing the node’s message flow.

The name of this schema is given by the last segment of the message processing

node uuid in the broker XML message.

178 ESQL

The <node schema> is specified in this manner to provide backward compatibility

with previous versions of WebSphere Message Broker

When the <node schema> is the only schema referenced, the broker XML message

does not include the extra features contained in WebSphere Message Broker V5.0.

Brokers in previous versions of WebSphere Message Broker do not support

multiple schemas, for example, subroutine libraries for reuse. To deploy to a broker

in a previous version of the product, put all ESQL subroutines in the same schema

as the message flow and node that is invoking them.

Eclipse tooling uses WebSphere Message Broker V5.0 ESQL syntax in content assist

and source code validation. When generating broker ESQL code, the Eclipse

tooling can generate V2.1 style code for backward compatibility.

The broker schema of the message flow must contain, at the schema level, any of

the following in its ESQL files:

v A schema level function

v A schema level procedure

v A schema level constant

v A module level constant

v A module level variable

Without the presence of any of the preceding items, the Eclipse tooling generates

broker ESQL without MODULE and FUNCTION Main wrappers. This style is

accepted by both V2.1 and V5.0 brokers. However, if you use a V2.1 broker, you

cannot use any V5.0 syntax in the code, for example, namespace

Functions and procedure names must be unique within their SCHEMA or

MODULE.

Examples

The following example adds a path to a schema called CommonUtils:

BROKER SCHEMA CommonUtils

PATH SpecialUtils;

MODULE

The next example adds a path to the default schema:

PATH CommonUtils, SpecialUtils;

MODULE

CALL statement

The CALL statement calls (invokes) a routine.

ESQL reference 179

Syntax

�� CALL RoutineName (ParameterList)

BrokerSchemaName

.
 �

�
Qualifiers

INTO

target
 ��

BrokerSchemaName:

�

 .

Identifier

ParameterList:

�

 ,

Expression

Qualifiers:

 IN DatabaseSchemaReference

EXTERNAL

SCHEMA

DatabaseSchemaName

DatabaseSchemaReference:

 Database . SchemaClause

.

DatabaseSourceClause

DatabaseSourceClause:

 DatabaseSourceName

{

DatabaseSourceExpr

}

SchemaClause:

 SchemaName

{

SchemaExpr

}

Using the CALL statement

The CALL statement invokes a routine. A routine is a user-defined function or

procedure that has been defined by one of the following:

v A CREATE FUNCTION statement

v A CREATE PROCEDURE statement

180 ESQL

Note: As well as standard user-defined functions and procedures, you can also use

CALL to invoke built-in (broker-provided) functions and user-defined SQL

functions. However, the usual way of invoking these types of function is

simply to include their names in expressions.

The called routine must be invoked in a way that matches its definition. For

example, if a routine has been defined with three parameters, the first two of type

integer and the third of type character, the CALL statement must pass three

variables to the routine, each of a data-type that matches the definition. This is

called exact signature matching, which means that the signature provided by the

CALL statement must match the signature provided by the routine’s definition.

Exact signature matching applies to a routine’s return value as well. If the

RETURNS clause is specified on the CREATE FUNCTION statement, or the routine

is a built-in function, the INTO clause must be specified on the CALL statement. A

return value from a routine cannot be ignored. Conversely, if the RETURNS clause

is not specified on the CREATE FUNCTION statement, the INTO clause must not

be specified, because there is no return value from the routine.

You can use the CALL statement to invoke a routine that has been implemented in

any of the following ways:

v ESQL.

v Java.

v As a stored procedure in a database.

v As a built-in (broker-provided) function. (But see the note above about calling

built-in functions.)

This variety of implementation means that some of the clauses in the CALL syntax

diagram are not applicable (or allowed) for all types of routine. It also allows the

CALL statement to invoke any type of routine, irrespective of how the routine has

been defined.

When the optional BrokerSchemaName parameter is not specified, the broker SQL

parser searches for the named procedure using the algorithm described in the

PATH statement (see the “PATH clause” on page 177 of the BROKER SCHEMA

statement).

When the BrokerSchemaName parameter is specified, the broker SQL parser invokes

the named procedure in the specified schema without first searching the path.

However, if a procedure reference is ambiguous (that is, there are two procedures

with the same name in different broker schemas) and the reference is not qualified

by the optional BrokerSchemaName, the Eclipse toolset generates a “Tasks view

error” that you must correct to deploy the ambiguous code.

The broker-provided built-in functions are automatically placed in a predefined

broker schema called SQL. The SQL schema is always searched last for a routine

that has not been matched to a user-defined routine. Therefore, a user-defined

module takes precedence over a built-in routine of the same name.

Each broker schema provides a unique symbol or namespace for a routine, so a

routine name is unique when it is qualified by the name of the schema to which it

belongs.

The INTO clause is used to store the return value from a routine that has been

defined with a RETURNS clause, or from a built-in function. The target can be an

ESQL reference 181

ESQL variable of a data type that matches the data type on the RETURNS clause,

or a dot-separated message reference. For example, both of the following ESQL

statements are valid:

 CALL myProc1() INTO cursor;

 CALL myProc1() INTO OutputRoot.XML.TestValue1;

The CALL statement passes the parameters into the procedure in the order given

to it. Parameters that have been defined as IN or INOUT on the routine’s

definition are evaluated before the CALL is made, but parameters defined as OUT

are always passed in as NULL parameters of the correct type. When the procedure

has completed, any parameters declared as OUT or INOUT are updated to reflect

any changes made to them during the procedure’s execution. Parameters defined

as IN are never changed during the cause of a procedure’s execution.

Routine overloading is not supported. This means that you cannot create two

routines of the same name in the same broker schema. If the broker detects that a

routine has been overloaded, it raises an exception. Similarly, you cannot invoke a

database stored procedure that has been overloaded. A database stored procedure

is overloaded if another procedure of the same name exists in the same database

schema. However, you can invoke an overloaded Java method, as long as you

create a separate ESQL definition for each overloaded method you want to call,

and give each ESQL definition a unique routine name.

CASE statement

The CASE statement uses rules defined in WHEN clauses to select a block of

statements to process.

There are two forms of the CASE statement: the simple form and the searched

form.

Syntax

Simple CASE statement

��

CASE

MainExpression

�

 <

WHEN

Expression

THEN

Statements

�

�
ELSE

statements
 END CASE ��

182 ESQL

Searched CASE statement

��

CASE

�

 <

WHEN

Expression

THEN

Statements

ELSE

statements

�

� END CASE ��

In the simple form, the main expression is evaluated first. Each WHEN clause

expression is evaluated in turn until the result is equal to the main expression’s

result. That WHEN clause’s statements are then executed. If no match is found and

the optional ELSE clause is present, the ELSE clause’s statements are executed

instead. The test values do not have to be literals. The only requirement is that the

main expression and the WHEN clause expressions evaluate to types that can be

compared.

In the searched form, each WHEN clause expression is evaluated in turn until one

evaluates to TRUE. That WHEN clause’s statements are then executed. If none of

the expressions evaluates to TRUE and the optional ELSE clause is present, the

ELSE clause’s statements are executed. There does not have to be any similarity

between the expressions in each CASE clause. The only requirement is that they all

evaluate to a boolean value.

The ESQL language has both a CASE statement and a CASE function (see “CASE

function” on page 305 for details of the CASE function). The CASE statement

chooses one of a set of statements to execute. The CASE function chooses one of a

set of expressions to evaluate and returns as its value the return value of the

chosen expression.

Examples

Simple CASE statement:

CASE size

 WHEN minimum + 0 THEN

 SET description = ’small’;

 WHEN minimum + 1 THEN

 SET description = ’medium’;

 WHEN minimum + 2 THEN

 SET description = ’large’;

 CALL handleLargeObject();

 ELSE

 SET description = ’unknown’;

 CALL handleError();

END CASE;

Searched CASE statement:

CASE

 WHEN i <> 0 THEN

 CALL handleI(i);

 WHEN j > 1 THEN

 CALL handleIZeroAndPositiveJ(j);

 ELSE

 CALL handleAllOtherCases(j);

END CASE;

ESQL reference 183

CREATE statement

The CREATE statement creates a new message field.

184 ESQL

Syntax

�� CREATE Qualifier Target

AsClause

(1)

DomainClause

(2)

RepeatClauses

ValuesClauses

FromClause

(3)

ParseClause

 ��

Qualifier:

 FIELD

PREVIOUSSIBLING

OF

NEXTSIBLING

FIRSTCHILD

LASTCHILD

AsClause:

 AS AliasFieldReferenceVariable

DomainClause:

 DOMAIN expression

RepeatClauses:

 REPEAT

VALUE

-expression

Values clauses:

NamesClauses

VALUE

expression

NamesClauses:

TYPE

Expression

NAMESPACE

Expression

NAME

Expression

IDENTITY

PathElement

FromClause:

 FROM SourceFieldReference

Parse clause:

�

 PARSE (BitStreamExpression)

<<

OPTIONS

expression

ENCODING

expression

CCSID

expression

SET

expression

TYPE

expression

FORMAT

expression

ESQL reference 185

Notes:

1 Do not use the DomainClause and ParseClause with the FIELD qualifier.

2 Use the RepeatClause only with the PREVIOUSSIBLING and

NEXTSIBLING qualifiers

3 Each subclause within the ParseClause can occur once only.

The new message field is positioned either at a given location (CREATE FIELD) or

relative to a currently-existing location (CREATE ... OF...). New fields can be

created only when the target field reference points to a modifiable message, for

example Environment, InputLocalEnvironment, OutputLocalEnvironment,

OutputRoot, or OutputExceptionList.

If you include a FIELD clause, the field specified by target is navigated to (creating

the fields if necessary) and any values clause or from clause is executed. This form

of CREATE statement does not necessarily create any fields at all; it ensures only

that the given fields do exist.

If you use array indices in the target field reference, only one instance of a

particular field can be created. Thus, if you write a SET statement starting:

 SET OutputRoot.XML.Message.Structure[2].Field = ...

at least one instance of Structure must already exist in the message. That is, the

only fields in the tree that are created are ones on a direct path from the root to the

field identified by the field reference.

If you include a PREVIOUSSIBLING, NEXTSIBLING, FIRSTCHILD, or

LASTCHILD clause, the field specified by target is navigated to (creating the fields

if necessary) in exactly the same way as for the FIELD clause. A new field is then

created and attached in the specified position (for example as PREVIOUSSIBLING

or FIRSTCHILD). This form of CREATE statement always creates a new field and

places it in the specified position.

If you use two CREATE FIRSTCHILD OF target statements that specify the same

target, the second statement creates a new field as the first child of the target, and

displaces the previously-created first child to the right in the message tree (so it is

no longer the first child). Similarly, CREATE LASTCHILD OF target navigates to

the target field and adds a new field as its rightmost child, displacing the previous

last child to the left.

CREATE PREVIOUSSIBLING OF target creates a field to the immediate left of the

field specified by target (so the depth of the tree is not changed); similarly,

CREATE NEXTSIBLING OF target creates a field to the immediate right of the

field specified by target. When creating PREVIOUSSIBLING or NEXTSIBLING, you

can use the REPEAT keyword to copy the type and name of the new field from the

current field.

AS clause:

If present, the AS clause moves the named reference variable to point at the

newly-created field. This is useful because you probably want to involve the new

field in some further processing.

186 ESQL

DOMAIN clause:

If present, the DOMAIN clause associates the new field with a new parser of the

specified type. This clause expects a root field name (for example, XML or

MQRFH2). If the DOMAIN clause is present, but the value supplied is a

zero-length character string, a new parser of the same type as the parser that owns

the field specified by target is created. An exception is thrown if the supplied

domain name is not CHARACTER data type or its value is NULL. Do not specify

the DOMAIN clause with the FIELD clause; it is not certain that a new field is

created.

REPEAT clause:

Use the REPEAT clause to copy the new field’s type and name from the target

field. Alternatively, the new field’s type, name, and value can be:

v Copied from any existing field (using the FROM clause)

v Specified explicitly (using the VALUES clause)

v Defined by parsing a bit stream (using the PARSE clause)

In the case of the FROM and PARSE clauses, you can also create children of the

new field.

VALUES clause:

For the VALUES clause, the type, name, and value (or any subset of these) can be

specified by any expression that returns a suitable data type (INTEGER for type,

CHARACTER for name, and any scalar type for value). An exception is thrown if

the value supplied for a type or name is NULL.

NAMES clause:

The NAMES clause takes any expression that returns a non-null value of type

character. The meaning depends on the presence of NAME and NAMESPACE

clauses as follows:

 NAMESPACE NAME Element named as follows

No No The element is nameless (name flag not

automatically set)

No Yes The element is given the name in the default

namespace

Yes No The element is given the empty name in the

given namespace

Yes Yes The element is given the given name in the

given namespace

The IDENTITY operand takes a single path element in place of the TYPE and

NAME clauses, where a path element contains (at most) a type, a namespace, a

name, and an index. These specify the type, namespace, name, and index of the

element to be created and follow all the rules described in the topic for field

references (see “ESQL field references” on page 158). For example:

 IDENTITY (XML.attribute)Space1:Name1[42]

See the Examples section below for how to use the IDENTITY operand.

ESQL reference 187

FROM clause:

For the FROM clause, the new field’s type, name, and value are taken from the

field pointed to by SourceFieldReference. Any existing child fields of the target are

detached (the field could already exist in the case of a FIELD clause), and the new

field is given copies of the source field’s children, grandchildren, and so on.

PARSE clause:

If a PARSE clause is present, a subtree is built under the newly-created field from

the supplied bit stream. The algorithm for doing this varies from parser to parser

and according to the options specified. All parsers support the mode

RootBitStream, in which the tree creation algorithm is the same as that used by an

input node.

Some parsers also support a second mode, FolderBitStream, which generates a

sub-tree from a bit stream created by the ASBITSTREAM function (see

“ASBITSTREAM function” on page 291) using that mode.

When the statement is processed, any PARSE clause expressions are evaluated. An

exception is thrown if any of the following expressions do not result in a non-null

value of the appropriate type:

 Clause Type Default value

Options integer RootBitStream & ValidateNone

Encoding integer 0

Ccsid integer 0

Message set character Zero length string

Message type character Zero length string

Message format character Zero length string

Although the OPTIONS clause accepts any expression that returns a value of type

integer, it is only meaningful to generate option values from the list of supplied

constants, using the BITOR function if more than one option is required.

Once generated, the value becomes an integer and you can save it in a variable or

pass it as a parameter to a function, as well as using it directly with a CREATE

statement. The list of globally defined constants is:

 Validate master options...

 ValidateContentAndValue

 ValidateValue -- Can be used with ValidateContent

 ValidateContent -- Can be used with ValidateValue

 ValidateNone

 Validate failure action options...

 ValidateException

 ValidateExceptionList

 ValidateLocalError

 ValidateUserTrace

 Validate value constraints options...

 ValidateFullConstraints

 ValidateBasicConstraints

 Validate fix up options...

 ValidateFullFixUp

188 ESQL

ValidateNoFixUp

 Parse timing options...

 ParseComplete

 ParseImmediate

 ParseOnDemand

Notes:

1. The validateFullFixUp option is reserved for future use. Selecting

validateFullFixUp gives identical behavior to validateNoFixUp.

2. The validateFullConstraints option is reserved for future use. Selecting

validateFullConstraints gives identical behavior to

validateBasicConstraints.

3. For full details of the validation options, refer to Validation properties

for messages in the MRM domain.

4. The Validate timing options correspond to Parse Timing options and, in

particular, Validate Deferred is called On Demand.

You can specify only one option from each group, with the exception of

ValidateValue and ValidateContent, which you can use together to obtain the

content and value validation. If you do not specify an option within a group, the

option in bold is used.

The ENCODING clause accepts any expression that returns a value of type integer.

However, it is only meaningful to generate option values from the list of supplied

constants:

 MQENC_INTEGER_NORMAL

 MQENC_INTEGER_REVERSED

 MQENC_DECIMAL_NORMAL

 MQENC_DECIMAL_REVERSED

 MQENC_FLOAT_IEEE_NORMAL

 MQENC_FLOAT_IEEE_REVERSED

 MQENC_FLOAT_S390

The values used for the CCSID clause follow the normal numbering system. For

example, 1200 = UCS-2, 1208 = UTF-8.

For absent clauses, the given default values are used. Use the CCSID and encoding

default values because these take their values from the queue manager’s encoding

and CCSID settings.

Similarly, using the default values for each of the message set, type, and format

options is useful, because many parsers do not require message set, type, or format

information, so any valid value is sufficient.

When any expressions have been evaluated, a bit stream is parsed using the results

of the expressions.

Note: Because this function has a large number of clauses, an alternative syntax is

supported in which the parameters are supplied as a comma-separated list

rather than by named clauses. In this case the expressions must be in the

order:

ENCODING -> CCSID -> SET -> TYPE -> FORMAT -> OPTIONS

The list can be truncated at any point and an entirely empty expression can

be used for any clauses where you do not supply a value.

ESQL reference 189

Examples of using the CREATE statement

1. The following example creates the specified field:

CREATE FIELD OutputRoot.XML.Data;

2. The following example creates a field with no name, type, or value as the first

child of ref1:

CREATE FIRSTCHILD OF ref1;

3. The following example creates a field using the specified type, name, and

value:

CREATE NEXTSIBLING OF ref1 TYPE NameValue NAME ’Price’ VALUE 92.3;

4. The following example creates a field with a type and name, but no value; the

field is added before the sibling indicated by the dynamic reference (ref1):

CREATE PREVIOUSSIBLING OF ref1 TYPE Name NAME ’Quantity’;

5. The following example creates a field named Component, and moves the

reference variable targetCursor to point at it:

CREATE FIRSTCHILD OF targetCursor AS targetCursor NAME ’Component’;

The following example creates a new field as the right sibling of the field

pointed to by the reference variable targetCursor having the same type and

name as that field. The statement then moves targetCursor to point at the new

field:

CREATE NEXTSIBLING OF targetCursor AS targetCursor REPEAT;

6. The following example shows how to use the PARSE clause:

DECLARE bodyBlob BLOB ASBITSTREAM(InputRoot.XML, InputProperties.Encoding,

 InputProperties.CodedCharSetId);

DECLARE creationPtr REFERENCE TO OutputRoot;

CREATE LASTCHILD OF creationPtr DOMAIN(’XML’) PARSE(bodyBlob,

 InputProperties.Encoding,

 InputProperties.CodedCharSetId);

This example can be extended to show the serializing and parsing of a field or

folder:

DECLARE bodyBlob BLOB ASBITSTREAM(InputRoot.XML.TestCase.myFolder,

 InputProperties.Encoding,

InputProperties.CodedCharSetId,",",",FolderBitStream);

DECLARE creationPtr REFERENCE TO OutputRoot;

CREATE LASTCHILD OF creationPtr DOMAIN(’XML’) PARSE(bodyBlob,

 InputProperties.Encoding,

InputProperties.CodedCharSetId,",",",FolderBitStream);

7. The following example shows how to use the IDENTITY operand:

CREATE FIELD OutputRoot.XMLNS.TestCase.Root IDENTITY (XML.ParserRoot)Root;

CREATE FIELD OutputRoot.XMLNS.TestCase.Root.Attribute

 IDENTITY (XML.Attribute)NSpace1:Attribute VALUE ’Attrib Value’;

CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Root

 IDENTITY (XML.Element)NSpace1:Element1[1] VALUE ’Element 1 Value’;

CREATE LASTCHILD OF OutputRoot.XMLNS.TestCase.Root

 IDENTITY (XML.Element)NSpace1:Element1[2] VALUE ’Element 2 Value’;

This sequence of statements produces the following output message:

<TestCase>

 <Root xmlns:NS1="NSpace1" NS1:Attribute="Attrib Value">

 <NS1:Element1>Element 1 Value</NS1:Element1>

 <NS1:Element1>Element 2 Value</NS1:Element1>

 </Root>

</TestCase>

8. The following example shows how you can use the DOMAIN clause to avoid

losing information unique to the XML parser when an unlike parser copy

occurs:

190 ESQL

DECLARE bodyBlob BLOB ASBITSTREAM(InputRoot.XML, InputProperties.Encoding,

InputProperties.CodedCharSetId);

CREATE FIELD Environment.Variables.myXMLTree;

DECLARE creationPtr REFERENCE TO Environment.Variables.myXMLTree;

CREATE FIRSTCHILD OF creationPtr DOMAIN(’XML’) PARSE(bodyBlob,

 InputProperties.Encoding,

InputProperties.CodedCharSetId);

Example of CREATE statement

This example provides sample ESQL and an input message, which produce the

output message at the end of the example.

CREATE COMPUTE MODULE CreateStatement_Compute

 CREATE FUNCTION Main() RETURNS BOOLEAN

 BEGIN

 CALL CopyMessageHeaders();

 CREATE FIELD OutputRoot.XML.TestCase.description TYPE NameValue VALUE ’This is my TestCase’ ;

 DECLARE cursor REFERENCE TO OutputRoot.XML.TestCase;

 CREATE FIRSTCHILD OF cursor Domain(’XML’)

 NAME ’Identifier’ VALUE InputRoot.XML.TestCase.Identifier;

 CREATE LASTCHILD OF cursor Domain(’XML’) NAME ’Sport’ VALUE InputRoot.XML.TestCase.Sport;

 CREATE LASTCHILD OF cursor Domain(’XML’) NAME ’Date’ VALUE InputRoot.XML.TestCase.Date;

 CREATE LASTCHILD OF cursor Domain(’XML’) NAME ’Type’ VALUE InputRoot.XML.TestCase.Type;

 CREATE FIELD cursor.Division[1].Number TYPE NameValue VALUE ’Premiership’;

 CREATE FIELD cursor.Division[1].Result[1].Number TYPE NameValue VALUE ’1’ ;

 CREATE FIELD cursor.Division[1].Result[1].Home TYPE Name;

 CREATE LASTCHILD OF cursor.Division[1].Result[1].Home NAME ’Team’ VALUE ’Liverpool’ ;

 CREATE LASTCHILD OF cursor.Division[1].Result[1].Home NAME ’Score’ VALUE ’4’;

 CREATE FIELD cursor.Division[1].Result[1].Away TYPE Name;

 CREATE LASTCHILD OF cursor.Division[1].Result[1].Away NAME ’Team’ VALUE ’Everton’;

 CREATE LASTCHILD OF cursor.Division[1].Result[1].Away NAME ’Score’ VALUE ’0’;

 CREATE FIELD cursor.Division[1].Result[2].Number TYPE NameValue VALUE ’2’;

 CREATE FIELD cursor.Division[1].Result[2].Home TYPE Name;

 CREATE LASTCHILD OF cursor.Division[1].Result[2].Home NAME ’Team’ VALUE ’Manchester United’;

 CREATE LASTCHILD OF cursor.Division[1].Result[2].Home NAME ’Score’ VALUE ’2’;

 CREATE FIELD cursor.Division[1].Result[2].Away TYPE Name;

 CREATE LASTCHILD OF cursor.Division[1].Result[2].Away NAME ’Team’ VALUE ’Arsenal’;

 CREATE LASTCHILD OF cursor.Division[1].Result[2].Away NAME ’Score’ VALUE ’3’;

 CREATE FIELD cursor.Division[2].Number TYPE NameValue VALUE ’2’;

 CREATE FIELD cursor.Division[2].Result[1].Number TYPE NameValue VALUE ’1’;

 CREATE FIELD cursor.Division[2].Result[1].Home TYPE Name;

 CREATE LASTCHILD OF cursor.Division[2].Result[1].Home NAME ’Team’ VALUE ’Port Vale’;

 CREATE LASTCHILD OF cursor.Division[2].Result[1].Home NAME ’Score’ VALUE ’9’ ;

 CREATE FIELD cursor.Division[2].Result[1].Away TYPE Name;

 CREATE LASTCHILD OF cursor.Division[2].Result[1].Away NAME ’Team’ VALUE ’Brentford’;

 CREATE LASTCHILD OF cursor.Division[2].Result[1].Away NAME ’Score’ VALUE ’5’;

 END;

 CREATE PROCEDURE CopyMessageHeaders() BEGIN

 DECLARE I INTEGER 1;

 DECLARE J INTEGER CARDINALITY(InputRoot.*[]);

 WHILE I < J DO

 SET OutputRoot.*[I] = InputRoot.*[I];

 SET I = I + 1;

 END WHILE;

 END;

END MODULE;

ESQL reference 191

CREATE FUNCTION statement

The CREATE FUNCTION and CREATE PROCEDURE statements define a callable

function or procedure, usually called a routine.

192 ESQL

Syntax

�� CREATE RoutineType RoutineName (ParameterList) �

�
ReturnType

Language

ResultSet
 RoutineBody ��

RoutineType:

 FUNCTION

PROCEDURE

ParameterList:

�

 ,

Parameter

Parameter:

 IN

(1)

OUT

INOUT

 ParameterName DataType

CONSTANT

(2)

NAMESPACE

NAME

ReturnType:

 RETURNS DataType

Language:

 LANGUAGE ESQL

(3)

DATABASE

JAVA

ResultSet:

 DYNAMIC RESULT SETS integer

RoutineBody:

 Statement

EXTERNAL

NAME

ExternalRoutineName

Notes:

1 If the routine type is FUNCTION, the direction indicator (IN, OUT,

INOUT) is optional for each parameter. However, it is good programming

ESQL reference 193

practice to specify a direction indicator for all new routines of any type for

documentation purposes.

2 When the NAMESPACE or NAME clause is used, its value is implicitly

constant and of type CHARACTER. For information on the use of

CONSTANT variables, see the “DECLARE statement” on page 217.

3 If the routine type is FUNCTION, you cannot specify a LANGUAGE of

DATABASE.

Overview

The CREATE FUNCTION and CREATE PROCEDURE statements define a callable

function or procedure, usually called a routine.

Note: In previous versions of the product, CREATE FUNCTION and CREATE

PROCEDURE had different uses and different capabilities. However, they

have since been enhanced to the point where only a few differences remain.

The only ways in which functions differ from procedures are listed in notes

1 and 3 below the syntax diagram.

Routines are useful for creating reusable blocks of code that can be executed

independently many times. They can be implemented as a series of ESQL

statements, a Java method, or a database stored procedure. This flexibility means

that some of the clauses in the syntax diagram are not applicable (or allowed) for

all types of routine.

Each routine has a name, which must be unique within the schema to which it

belongs. This means that routine names cannot be overloaded; if the broker detects

that a routine has been overloaded, it raises an exception.

The LANGUAGE clause specifies the language in which the routine’s body is

written. The options are:

DATABASE

The procedure is called as a database stored procedure.

ESQL

The procedure is called as an ESQL routine.

JAVA

The procedure is called as a static method in a Java class.

Unspecified

If you do not specify the LANGUAGE clause the default language is ESQL,

unless you specify the EXTERNAL NAME clause, in which case the default

language is DATABASE.

There are restrictions on the use of the LANGUAGE clause. Do not use:

v The ESQL option with an EXTERNAL NAME clause

v The DATABASE or JAVA options without an EXTERNAL NAME clause

v The DATABASE option with a routine type of FUNCTION

Specify the routine’s name using the RoutineName clause and the routine’s

parameters using the ParameterList clause. If the LANGUAGE clause specifies

ESQL, the routine must be implemented using a single ESQL statement. This

194 ESQL

statement is most useful if it is a compound statement (BEGIN ... END) as it can

then contain as many ESQL statements as necessary to fulfil its function.

Alternatively, instead of providing an ESQL body for the routine, you can specify a

LANGUAGE clause other than ESQL. This allows you to use the EXTERNAL

NAME clause to provide a reference to the actual body of the routine, wherever it

is located externally to the broker. For more details about using the EXTERNAL

NAME clause, see “Invoking stored procedures” on page 70 and Calling a Java

routine.

Routines of any LANGUAGE type can have IN, OUT, and INOUT parameters.

This allows the caller to pass several values into the routine, and to receive several

updated values back. This is in addition to any RETURNS clause the routine may

have. The RETURNS clause allows the routine to pass back a value to the caller.

Routines implemented in different languages have their own restrictions on which

data-types can be passed in or returned, and these are documented below. The

data-type of the returned value must match the data-type of the value defined to

be returned from the routine. Also, if a routine is defined to have a return value,

the caller of the routine cannot ignore it. For more details see the “CALL

statement” on page 179.

Routines can be defined in either a module or a schema. Routines defined in a

module are local in scope to the current node, which means that only code

belonging to that same module (or node) can invoke them. Routines defined in

schema scope, however, can be invoked by either of the following:

v Code in the same schema.

v Code in any other schema, if either of the following applies:

1. The other schema’s PATH clause contains the path to the called routine, or

2. The called routine is invoked using its fully-qualified name (which is its

name, prefixed by its schema name, separated by a period).

Thus, if you need to invoke the same routine in more than one node, define it in a

schema.

For any language or routine type, the method of invocation of the routine must

match the manner of declaration of the routine. If the routine has a RETURNS

clause, use either the FUNCTION invocation syntax or a CALL statement with an

INTO clause. Conversely, if a routine has no RETURNS clause you must use a

CALL statement without an INTO clause.

Parameter directions

Parameters passed to routines always have a direction associated with them. This

can be any one of:

IN The value of the parameter cannot be changed by the routine. A NULL value

for the parameter is allowed and can be passed to the routine.

OUT

When it is received by the called routine, the parameter passed into the routine

always has a NULL value of the correct data type. This happens irrespective of

its value before the routine is called. The routine is allowed to change the

value of the parameter.

INOUT

INOUT is both an IN and an OUT parameter. It passes a value into the

ESQL reference 195

routine, and the value passed in can be changed by the routine. A NULL value

for the parameter is allowed and can be passed both into and out from the

routine.

If the routine type is FUNCTION, the direction indicator (IN, OUT, INOUT) is

optional for each parameter. However, it is good programming practice to specify a

direction indicator for all new routines of any type for documentation purposes.

ESQL variables that are declared to be CONSTANT (or references to variables

declared to be CONSTANT) are not allowed to have the direction OUT or INOUT.

ESQL routines

ESQL routines are written in ESQL, and have a LANGUAGE clause of ESQL. The

body of an ESQL routine is usually a compound statement of the form BEGIN ...

END, containing multiple statements for processing the parameters passed to the

routine.

ESQL example 1

The following example shows the same procedure as in “Database routine example

1” on page 213, but implemented as an ESQL routine rather than as a stored

procedure. The CALL syntax and results of this routine are the same as those in

“Restrictions on Java routines” on page 200.

CREATE PROCEDURE swapParms (

 IN parm1 CHARACTER,

 OUT parm2 CHARACTER,

 INOUT parm3 CHARACTER)

BEGIN

 SET parm2 = parm3;

 SET parm3 = parm1;

 END;

ESQL example 2

This example procedure shows the recursive use of an ESQL routine. It parses a

tree, visiting all places at and below the specified starting point, and reports what

it has found:

SET OutputRoot.MQMD = InputRoot.MQMD;

 DECLARE answer CHARACTER;

 SET answer = ’’;

 CALL navigate(InputRoot.XML, answer);

 SET OutputRoot.XML.Data.FieldNames = answer;

 CREATE PROCEDURE navigate (IN root REFERENCE, INOUT answer CHARACTER)

 BEGIN

 SET answer = answer || ’Reached Field... Type:’

 || CAST(FIELDTYPE(root) AS CHAR)||

 ’: Name:’ || FIELDNAME(root) || ’: Value :’ || root || ’: ’;

 DECLARE cursor REFERENCE TO root;

 MOVE cursor FIRSTCHILD;

 IF LASTMOVE(cursor) THEN

 SET answer = answer || ’Field has children... drilling down ’;

 ELSE

 SET answer = answer || ’Listing siblings... ’;

 END IF;

196 ESQL

WHILE LASTMOVE(cursor) DO

 CALL navigate(cursor, answer);

 MOVE cursor NEXTSIBLING;

 END WHILE;

 SET answer = answer || ’Finished siblings... Popping up ’;

 END;

When given the following input message:

<Person>

 <Name>John Smith</Name>

 <Salary period=’monthly’ taxable=’yes’>-1200</Salary>

</Person>

the procedure produces the following output, which has been manually formatted:

 Reached Field... Type:16777232: Name:XML: Value :: Field has children...

 drilling down

 Reached Field... Type:16777216: Name:Person: Value :: Field has children...

 drilling down

 Reached Field... Type:16777216: Name:Name:

 Value :John Smith: Field has children... drilling down

 Reached Field... Type:33554432: Name::

 Value :John Smith: Listing siblings... Finished siblings... Popping up

 Finished siblings... Popping up

 Reached Field... Type:16777216: Name:Salary:

 Value :-1200: Field has children... drilling down

 Reached Field... Type:50331648: Name:period:

 Value :monthly: Listing siblings... Finished siblings... Popping up

 Reached Field... Type:50331648: Name:taxable:

 Value :yes: Listing siblings... Finished siblings... Popping up

 Reached Field... Type:33554432: Name::

 Value :-1200: Listing siblings... Finished siblings... Popping up

 Finished siblings... Popping up

 Finished siblings... Popping up

 Finished siblings... Popping up

Java routines

A Java routine is implemented as a Java method and has a LANGUAGE clause of

JAVA. For Java routines, the ExternalRoutineName must contain the class name and

method name of the Java method to be called. Specify the ExternalRoutineName like

this:

 >>--"-- className---.---methodName--"--------------><

where className identifies the class that contains the method and methodName

identifies the method to be invoked. If the class is part of a package, the class

identifier part must include the complete package prefix; for example,

“com.ibm.broker.test.MyClass.myMethod”.

To find the Java class, the broker searches as described in “Deploying Java classes”

on page 200.

Any Java method you want to invoke must have the following basic signature:

public static <return-type> <method-name> (< 0 - N parameters>)

where <return-type> must be in the list of Java IN data types in the table in

“ESQL to Java data type mapping” on page 199 (excluding the REFERENCE type,

which is not permitted as a return value), or the Java void data type. The

ESQL reference 197

parameter data types must also be in the “ESQL to Java data type mapping” on

page 199 table. In addition, the Java method is not allowed to have an exception

throws clause in its signature.

The Java method’s signature must match the ESQL routine’s declaration of the

method. Also, you must observe the following rules:

v Ensure that the Java method name, including the class name and any package

qualifiers, matches the procedure’s EXTERNAL NAME.

v If the Java return type is void, do not put a RETURNS clause on the ESQL

routine’s definition. Conversely, if the Java return type is not void, you must put

a RETURNS clause on the ESQL routine’s definition.

v Ensure that every parameter’s type and direction matches the ESQL declaration,

according to the rules listed in the table in “ESQL to Java data type mapping”

on page 199.

v Ensure that the method’s return type matches the data type of the RETURNS

clause.

v Enclose EXTERNAL NAME in quotation marks because it must contain at least

“class.method”.

v If you want to invoke an overloaded Java method, you must create a separate

ESQL definition for each overloaded method and give each ESQL definition a

unique routine name.

You can use the Java User defined Node (UDN) API in your Java method,

provided that you observe the restrictions documented in “Restrictions on Java

routines” on page 200. For more information about using the UDN API, see

Compiling a Java user-defined node .

Java routine example 1

This routine contains three parameters of varying directions, and returns an

integer, which maps to a Java return type of java.lang.Long.

CREATE FUNCTION myProc1(IN P1 INTEGER, OUT P2 INTEGER, INOUT P3 INTEGER)

 RETURNS INTEGER

 LANGUAGE JAVA

 EXTERNAL NAME "com.ibm.broker.test.MyClass.myMethod1";

You can use the following ESQL to invoke myProc1:

CALL myProc1(intVar1, intVar2, intVar3) INTO intReturnVar3;

-- or

SET intReturnVar3 = myProc1(intVar1, intVar2, intVar3);

Java routine example 2

This routine contains three parameters of varying directions and has a Java return

type of void.

CREATE PROCEDURE myProc2(IN P1 INTEGER, OUT P2 INTEGER, INOUT P3 INTEGER)

 LANGUAGE JAVA

 EXTERNAL NAME "com.ibm.broker.test.MyClass.myMethod2";

You must use the following ESQL to invoke myProc2:

CALL myProc2(intVar1, intVar2, intVar3);

The following Java class provides a method for each of the preceding Java

examples:

198 ESQL

package com.ibm.broker.test;

class MyClass {

public static Long myMethod1(Long P1, Long[] P2 Long[] P3) { ... }

public static void myMethod2(Long P2, Long[] P2 Long[] P3) { ... }

 /* When either of these methods is called:

 P1 may or may not be NULL (depending on the value of intVar1).

 P2[0] is always NULL (whatever the value of intVar2).

 P3[0] may or may not be NULL (depending on the value of intVar3).

 This is the same as with LANGUAGE ESQL routines.

 When these methods return:

 intVar1 is unchanged

 intVar2 may still be NULL or may have been changed

 intVar3 may contain the same value or may have been changed.

 This is the same as with LANGUAGE ESQL routines.

 When myMethod1 returns: intReturnVar3 is either NULL (if the

 method returns NULL) or it contains the value returned by the

 method.

 */

}

ESQL to Java data type mapping

The following table summarizes the mappings from ESQL to Java.

Notes:

v Only the Java scalar wrappers are passed to Java.

v The ESQL scalar types are mapped to Java data types as object wrappers,

or object wrapper arrays, depending upon the direction of the procedure

parameter. Each wrapper array contains exactly one element.

v Scalar object wrappers are used to allow NULL values to be passed to

and from Java methods.

 ESQL data types

1 Java IN data types Java INOUT and OUT data types

INTEGER, INT java.lang.Long java.lang.Long []

FLOAT java.lang.Double java.lang.Double[]

DECIMAL java.math.BigDecimal java.math.BigDecimal[]

CHARACTER, CHAR java.lang.String java.lang.String[]

BLOB byte[] byte[][]

BIT java.util.BitSet java.util.BitSet[]

DATE com.ibm.broker.plugin.MbDate com.ibm.broker.plugin.MbDate[]

TIME

2 com.ibm.broker.plugin.MbTime com.ibm.broker.plugin.MbTime[]

GMTTIME

2 com.ibm.broker.plugin.MbTime com.ibm.broker.plugin.MbTime[]

TIMESTAMP

2 com.ibm.broker.plugin.MbTimestamp com.ibm.broker.plugin.MbTimestamp[]

GMTTIMESTAMP

2 com.ibm.broker.plugin.MbTimestamp com.ibm.broker.plugin.MbTimestamp[]

INTERVAL Not supported Not supported

BOOLEAN java.lang.Boolean java.lang.Boolean[]

REFERENCE (to a message tree)

3 4

5 6

com.ibm.broker.plugin.MbElement com.ibm.broker.plugin.MbElement[]

(Supported for INOUT. Not

supported for OUT)

ROW Not supported Not supported

ESQL reference 199

LIST Not supported Not supported

1. Variables that are declared to be CONSTANT (or references to variables

declared to be CONSTANT) are not allowed to have the direction INOUT or

OUT.

2. The time zone set in the Java variable is not important; you obtain the required

time zone in the output ESQL.

3. The reference parameter cannot be NULL when passed into a Java method.

4. The reference cannot have the direction OUT when passed into a Java method.

5. If an MbElement is passed back from Java to ESQL as an INOUT parameter, it

must point to a location in the same message tree as that pointed to by the

MbElement that was passed into the called Java method.

For example, if an ESQL reference to OutputRoot.XML.Test is passed into a Java

method as an INOUT MbElement, but a different MbElement is passed back to

ESQL when the call returns, the different element must also point to

somewhere in the OutputRoot tree.

6. An MbElement cannot be returned from a Java method with the RETURNS

clause, because no ESQL routine can return a reference. However, an MbElement

can be returned as an INOUT direction parameter, subject to the conditions

described in point 5 above.

A REFERENCE to a scalar variable can be used in the CALL of a Java method,

provided that the data type of the variable the reference refers to matches the

corresponding data type in the Java program signature.

Restrictions on Java routines

The following restrictions apply to Java routines called from ESQL:

v You must ensure that the Java method is threadsafe (reentrant).

v The only database connections permitted are JDBC type 4 connections.

Furthermore, database operations are not part of a broker transaction; this means

that they cannot be controlled by an external resource coordinator (such as

would be the case in an XA environment).

v The Java User defined Node (UDN) API should be used only by the same

thread that invoked the Java method.

You are allowed to spawn threads inside your method. However, spawned

threads must not use the Java plug-in APIs and you must return control back to

the broker.

Note that all restrictions that apply to the usage of the UDN API also apply to

Java methods called from ESQL.

v Java methods called from ESQL must not use the MbNode class. This means that

they cannot create objects of type MbNode, or call any of the methods on an

existing MbNode object.

v If you want to perform MQ or JMS work inside a Java method called from

ESQL, you must follow the User Defined Node (UDN) guidelines for performing

MQ and JMS work in a UDN.

Deploying Java classes

You can deploy your Java classes inside a Java Archive (JAR) file. There are two

ways to deploy a JAR file to the broker:

1. By adding it to the Broker Archive (BAR) file

200 ESQL

Adding your JAR file to the BAR file is the most efficient and flexible method

of deploying to the broker.

You can add a JAR file to the BAR file manually, by hand, or automatically,

using the tooling. The tooling is the simplest way to add a JAR file to a BAR

file.

If the tooling finds the correct Java class inside a referenced Java project open

in the workspace, it automatically compiles the Java class into a JAR file and

adds it to the BAR file. This is the same procedure that you follow to deploy a

Java Compute node inside a JAR, as described in User-defined node

classloading.

When deploying a JAR file from the tooling, a redeploy of the BAR file

containing the JAR file causes the referenced Java classes to be reloaded by the

flow that has been redeployed; as does stopping and restarting a message flow

that references a Java class. Ensure that you stop and restart (or redeploy) all

flows that reference the JAR file that you want to update. This avoids the

problem of some flows running with the old version of the JAR file and other

flows running with the new version.

Note that the tooling will only deploy a JAR file; it will not deploy a

standalone Java class file.

2. By placing it in either of the following:

a. The <Workpath>/shared-classes/ folder on the machine running the broker

b. The CLASSPATH environment variable on the machine running the broker
This procedure must be done manually; you cannot use the tooling.

In this method, redeploying the message flow does not reload the referenced

Java classes; neither does stopping and restarting the message flow. The only

way to reload the classes in this case is to stop and restart the broker itself.

To enable the broker to find a Java class, ensure that it is in one of the above

locations. If the broker cannot find the specified class, it throws an exception.

Although you have the choices shown above when deploying the JAR file,

allowing the tooling to deploy the BAR file provides the greatest flexibility when

redeploying the JAR file.

Database routines

CREATE FUNCTION does not support database routines. Use CREATE

PROCEDURE to define a database routine.

CREATE MODULE statement

The CREATE MODULE statement creates a module, which is a named container

associated with a node.

ESQL reference 201

Syntax

��

CREATE

COMPUTE

DATABASE

FILTER

MODULE
 (1)

ModuleName

�

�

�

<<---;---<<

ModuleStatement

 END MODULE ��

Notes:

1 ModuleName must be a valid identifier

A module in the Eclipse tools is referred to from a message processing node by

name. The module must be in the <node schema>.

Module names occupy the same symbol space as functions and procedures defined

in the schema. That is, modules, functions, and procedures contained by a schema

must all have unique names.

Note: You are warned if there is no module associated with an ESQL node. You

cannot deploy a flow containing a node in which a module is missing.

The modules for the Compute node, Database node, and Filter node must all

contain exactly one function called Main. This function should return a Boolean. It

is the entry point used by a message flow node when processing a message.

 Correlation name Compute module Filter module Database module

Database × × ×

Environment × × ×

Root × ×

Body × ×

Properties × ×

ExceptionList × ×

LocalEnvironment × ×

InputRoot ×

InputBody ×

InputProperties ×

InputExceptionList ×

InputLocalEnvironment ×

OutputRoot ×

OutputExceptionList ×

OutputLocalEnvironment ×

DestinationList Deprecated synonym for LocalEnvironment

202 ESQL

Correlation name Compute module Filter module Database module

InputDestinationList Deprecated synonym for InputLocalEnvironment

OutputDestinationList Deprecated synonym for OutputLocalEnvironment

CREATE PROCEDURE statement

The CREATE FUNCTION and CREATE PROCEDURE statements define a callable

function or procedure, usually called a routine.

ESQL reference 203

Syntax

�� CREATE RoutineType RoutineName (ParameterList) �

�
ReturnType

Language

ResultSet
 RoutineBody ��

RoutineType:

 FUNCTION

PROCEDURE

ParameterList:

�

 ,

Parameter

Parameter:

 IN

(1)

OUT

INOUT

 ParameterName DataType

CONSTANT

(2)

NAMESPACE

NAME

ReturnType:

 RETURNS DataType

Language:

 LANGUAGE ESQL

(3)

DATABASE

JAVA

ResultSet:

 DYNAMIC RESULT SETS integer

RoutineBody:

 Statement

EXTERNAL

NAME

ExternalRoutineName

Notes:

1 If the routine type is FUNCTION, the direction indicator (IN, OUT,

INOUT) is optional for each parameter. However, it is good programming

204 ESQL

practice to specify a direction indicator for all new routines of any type for

documentation purposes.

2 When the NAMESPACE or NAME clause is used, its value is implicitly

constant and of type CHARACTER. For information on the use of

CONSTANT variables, see the “DECLARE statement” on page 217.

3 If the routine type is FUNCTION, you cannot specify a LANGUAGE of

DATABASE.

Overview

The CREATE FUNCTION and CREATE PROCEDURE statements define a callable

function or procedure, usually called a routine.

Note: In previous versions of the product, CREATE FUNCTION and CREATE

PROCEDURE had different uses and different capabilities. However, they

have since been enhanced to the point where only a few differences remain.

The only ways in which functions differ from procedures are listed in notes

1 and 3 below the syntax diagram.

Routines are useful for creating reusable blocks of code that can be executed

independently many times. They can be implemented as a series of ESQL

statements, a Java method, or a database stored procedure. This flexibility means

that some of the clauses in the syntax diagram are not applicable (or allowed) for

all types of routine.

Each routine has a name, which must be unique within the schema to which it

belongs. This means that routine names cannot be overloaded; if the broker detects

that a routine has been overloaded, it raises an exception.

The LANGUAGE clause specifies the language in which the routine’s body is

written. The options are:

DATABASE

The procedure is called as a database stored procedure.

ESQL

The procedure is called as an ESQL routine.

JAVA

The procedure is called as a static method in a Java class.

Unspecified

If you do not specify the LANGUAGE clause the default language is ESQL,

unless you specify the EXTERNAL NAME clause, in which case the default

language is DATABASE.

There are restrictions on the use of the LANGUAGE clause. Do not use:

v The ESQL option with an EXTERNAL NAME clause

v The DATABASE or JAVA options without an EXTERNAL NAME clause

v The DATABASE option with a routine type of FUNCTION

Specify the routine’s name using the RoutineName clause and the routine’s

parameters using the ParameterList clause. If the LANGUAGE clause specifies

ESQL, the routine must be implemented using a single ESQL statement. This

ESQL reference 205

statement is most useful if it is a compound statement (BEGIN ... END) as it can

then contain as many ESQL statements as necessary to fulfil its function.

Alternatively, instead of providing an ESQL body for the routine, you can specify a

LANGUAGE clause other than ESQL. This allows you to use the EXTERNAL

NAME clause to provide a reference to the actual body of the routine, wherever it

is located externally to the broker. For more details about using the EXTERNAL

NAME clause, see “Invoking stored procedures” on page 70 and Calling a Java

routine.

Routines of any LANGUAGE type can have IN, OUT, and INOUT parameters.

This allows the caller to pass several values into the routine, and to receive several

updated values back. This is in addition to any RETURNS clause the routine may

have. The RETURNS clause allows the routine to pass back a value to the caller.

Routines implemented in different languages have their own restrictions on which

data-types can be passed in or returned, and these are documented below. The

data-type of the returned value must match the data-type of the value defined to

be returned from the routine. Also, if a routine is defined to have a return value,

the caller of the routine cannot ignore it. For more details see the “CALL

statement” on page 179.

Routines can be defined in either a module or a schema. Routines defined in a

module are local in scope to the current node, which means that only code

belonging to that same module (or node) can invoke them. Routines defined in

schema scope, however, can be invoked by either of the following:

v Code in the same schema.

v Code in any other schema, if either of the following applies:

1. The other schema’s PATH clause contains the path to the called routine, or

2. The called routine is invoked using its fully-qualified name (which is its

name, prefixed by its schema name, separated by a period).

Thus, if you need to invoke the same routine in more than one node, define it in a

schema.

For any language or routine type, the method of invocation of the routine must

match the manner of declaration of the routine. If the routine has a RETURNS

clause, use either the FUNCTION invocation syntax or a CALL statement with an

INTO clause. Conversely, if a routine has no RETURNS clause you must use a

CALL statement without an INTO clause.

Parameter directions

Parameters passed to routines always have a direction associated with them. This

can be any one of:

IN The value of the parameter cannot be changed by the routine. A NULL value

for the parameter is allowed and can be passed to the routine.

OUT

When it is received by the called routine, the parameter passed into the routine

always has a NULL value of the correct data type. This happens irrespective of

its value before the routine is called. The routine is allowed to change the

value of the parameter.

INOUT

INOUT is both an IN and an OUT parameter. It passes a value into the

206 ESQL

routine, and the value passed in can be changed by the routine. A NULL value

for the parameter is allowed and can be passed both into and out from the

routine.

If the routine type is FUNCTION, the direction indicator (IN, OUT, INOUT) is

optional for each parameter. However, it is good programming practice to specify a

direction indicator for all new routines of any type for documentation purposes.

ESQL variables that are declared to be CONSTANT (or references to variables

declared to be CONSTANT) are not allowed to have the direction OUT or INOUT.

ESQL routines

ESQL routines are written in ESQL, and have a LANGUAGE clause of ESQL. The

body of an ESQL routine is usually a compound statement of the form BEGIN ...

END, containing multiple statements for processing the parameters passed to the

routine.

ESQL example 1

The following example shows the same procedure as in “Database routine example

1” on page 213, but implemented as an ESQL routine rather than as a stored

procedure. The CALL syntax and results of this routine are the same as those in

“Restrictions on Java routines” on page 200.

CREATE PROCEDURE swapParms (

 IN parm1 CHARACTER,

 OUT parm2 CHARACTER,

 INOUT parm3 CHARACTER)

BEGIN

 SET parm2 = parm3;

 SET parm3 = parm1;

 END;

ESQL example 2

This example procedure shows the recursive use of an ESQL routine. It parses a

tree, visiting all places at and below the specified starting point, and reports what

it has found:

SET OutputRoot.MQMD = InputRoot.MQMD;

 DECLARE answer CHARACTER;

 SET answer = ’’;

 CALL navigate(InputRoot.XML, answer);

 SET OutputRoot.XML.Data.FieldNames = answer;

 CREATE PROCEDURE navigate (IN root REFERENCE, INOUT answer CHARACTER)

 BEGIN

 SET answer = answer || ’Reached Field... Type:’

 || CAST(FIELDTYPE(root) AS CHAR)||

 ’: Name:’ || FIELDNAME(root) || ’: Value :’ || root || ’: ’;

 DECLARE cursor REFERENCE TO root;

 MOVE cursor FIRSTCHILD;

 IF LASTMOVE(cursor) THEN

 SET answer = answer || ’Field has children... drilling down ’;

 ELSE

 SET answer = answer || ’Listing siblings... ’;

 END IF;

ESQL reference 207

WHILE LASTMOVE(cursor) DO

 CALL navigate(cursor, answer);

 MOVE cursor NEXTSIBLING;

 END WHILE;

 SET answer = answer || ’Finished siblings... Popping up ’;

 END;

When given the following input message:

<Person>

 <Name>John Smith</Name>

 <Salary period=’monthly’ taxable=’yes’>-1200</Salary>

</Person>

the procedure produces the following output, which has been manually formatted:

 Reached Field... Type:16777232: Name:XML: Value :: Field has children...

 drilling down

 Reached Field... Type:16777216: Name:Person: Value :: Field has children...

 drilling down

 Reached Field... Type:16777216: Name:Name:

 Value :John Smith: Field has children... drilling down

 Reached Field... Type:33554432: Name::

 Value :John Smith: Listing siblings... Finished siblings... Popping up

 Finished siblings... Popping up

 Reached Field... Type:16777216: Name:Salary:

 Value :-1200: Field has children... drilling down

 Reached Field... Type:50331648: Name:period:

 Value :monthly: Listing siblings... Finished siblings... Popping up

 Reached Field... Type:50331648: Name:taxable:

 Value :yes: Listing siblings... Finished siblings... Popping up

 Reached Field... Type:33554432: Name::

 Value :-1200: Listing siblings... Finished siblings... Popping up

 Finished siblings... Popping up

 Finished siblings... Popping up

 Finished siblings... Popping up

Java routines

A Java routine is implemented as a Java method and has a LANGUAGE clause of

JAVA. For Java routines, the ExternalRoutineName must contain the class name and

method name of the Java method to be called. Specify the ExternalRoutineName like

this:

 >>--"-- className---.---methodName--"--------------><

where className identifies the class that contains the method and methodName

identifies the method to be invoked. If the class is part of a package, the class

identifier part must include the complete package prefix; for example,

“com.ibm.broker.test.MyClass.myMethod”.

To find the Java class, the broker searches as described in “Deploying Java classes”

on page 200.

Any Java method you want to invoke must have the following basic signature:

public static <return-type> <method-name> (< 0 - N parameters>)

where <return-type> must be in the list of Java IN data types in the table in

“ESQL to Java data type mapping” on page 199 (excluding the REFERENCE type,

which is not permitted as a return value), or the Java void data type. The

208 ESQL

parameter data types must also be in the “ESQL to Java data type mapping” on

page 199 table. In addition, the Java method is not allowed to have an exception

throws clause in its signature.

The Java method’s signature must match the ESQL routine’s declaration of the

method. Also, you must observe the following rules:

v Ensure that the Java method name, including the class name and any package

qualifiers, matches the procedure’s EXTERNAL NAME.

v If the Java return type is void, do not put a RETURNS clause on the ESQL

routine’s definition. Conversely, if the Java return type is not void, you must put

a RETURNS clause on the ESQL routine’s definition.

v Ensure that every parameter’s type and direction matches the ESQL declaration,

according to the rules listed in the table in “ESQL to Java data type mapping”

on page 199.

v Ensure that the method’s return type matches the data type of the RETURNS

clause.

v Enclose EXTERNAL NAME in quotation marks because it must contain at least

“class.method”.

v If you want to invoke an overloaded Java method, you must create a separate

ESQL definition for each overloaded method and give each ESQL definition a

unique routine name.

You can use the Java User defined Node (UDN) API in your Java method,

provided that you observe the restrictions documented in “Restrictions on Java

routines” on page 200. For more information about using the UDN API, see

Compiling a Java user-defined node .

Java routine example 1

This routine contains three parameters of varying directions, and returns an

integer, which maps to a Java return type of java.lang.Long.

CREATE FUNCTION myProc1(IN P1 INTEGER, OUT P2 INTEGER, INOUT P3 INTEGER)

 RETURNS INTEGER

 LANGUAGE JAVA

 EXTERNAL NAME "com.ibm.broker.test.MyClass.myMethod1";

You can use the following ESQL to invoke myProc1:

CALL myProc1(intVar1, intVar2, intVar3) INTO intReturnVar3;

-- or

SET intReturnVar3 = myProc1(intVar1, intVar2, intVar3);

Java routine example 2

This routine contains three parameters of varying directions and has a Java return

type of void.

CREATE PROCEDURE myProc2(IN P1 INTEGER, OUT P2 INTEGER, INOUT P3 INTEGER)

 LANGUAGE JAVA

 EXTERNAL NAME "com.ibm.broker.test.MyClass.myMethod2";

You must use the following ESQL to invoke myProc2:

CALL myProc2(intVar1, intVar2, intVar3);

The following Java class provides a method for each of the preceding Java

examples:

ESQL reference 209

package com.ibm.broker.test;

class MyClass {

public static Long myMethod1(Long P1, Long[] P2 Long[] P3) { ... }

public static void myMethod2(Long P2, Long[] P2 Long[] P3) { ... }

 /* When either of these methods is called:

 P1 may or may not be NULL (depending on the value of intVar1).

 P2[0] is always NULL (whatever the value of intVar2).

 P3[0] may or may not be NULL (depending on the value of intVar3).

 This is the same as with LANGUAGE ESQL routines.

 When these methods return:

 intVar1 is unchanged

 intVar2 may still be NULL or may have been changed

 intVar3 may contain the same value or may have been changed.

 This is the same as with LANGUAGE ESQL routines.

 When myMethod1 returns: intReturnVar3 is either NULL (if the

 method returns NULL) or it contains the value returned by the

 method.

 */

}

ESQL to Java data type mapping

The following table summarizes the mappings from ESQL to Java.

Notes:

v Only the Java scalar wrappers are passed to Java.

v The ESQL scalar types are mapped to Java data types as object wrappers,

or object wrapper arrays, depending upon the direction of the procedure

parameter. Each wrapper array contains exactly one element.

v Scalar object wrappers are used to allow NULL values to be passed to

and from Java methods.

 ESQL data types

1 Java IN data types Java INOUT and OUT data types

INTEGER, INT java.lang.Long java.lang.Long []

FLOAT java.lang.Double java.lang.Double[]

DECIMAL java.math.BigDecimal java.math.BigDecimal[]

CHARACTER, CHAR java.lang.String java.lang.String[]

BLOB byte[] byte[][]

BIT java.util.BitSet java.util.BitSet[]

DATE com.ibm.broker.plugin.MbDate com.ibm.broker.plugin.MbDate[]

TIME

2 com.ibm.broker.plugin.MbTime com.ibm.broker.plugin.MbTime[]

GMTTIME

2 com.ibm.broker.plugin.MbTime com.ibm.broker.plugin.MbTime[]

TIMESTAMP

2 com.ibm.broker.plugin.MbTimestamp com.ibm.broker.plugin.MbTimestamp[]

GMTTIMESTAMP

2 com.ibm.broker.plugin.MbTimestamp com.ibm.broker.plugin.MbTimestamp[]

INTERVAL Not supported Not supported

BOOLEAN java.lang.Boolean java.lang.Boolean[]

REFERENCE (to a message tree)

3 4

5 6

com.ibm.broker.plugin.MbElement com.ibm.broker.plugin.MbElement[]

(Supported for INOUT. Not

supported for OUT)

ROW Not supported Not supported

210 ESQL

LIST Not supported Not supported

1. Variables that are declared to be CONSTANT (or references to variables

declared to be CONSTANT) are not allowed to have the direction INOUT or

OUT.

2. The time zone set in the Java variable is not important; you obtain the required

time zone in the output ESQL.

3. The reference parameter cannot be NULL when passed into a Java method.

4. The reference cannot have the direction OUT when passed into a Java method.

5. If an MbElement is passed back from Java to ESQL as an INOUT parameter, it

must point to a location in the same message tree as that pointed to by the

MbElement that was passed into the called Java method.

For example, if an ESQL reference to OutputRoot.XML.Test is passed into a Java

method as an INOUT MbElement, but a different MbElement is passed back to

ESQL when the call returns, the different element must also point to

somewhere in the OutputRoot tree.

6. An MbElement cannot be returned from a Java method with the RETURNS

clause, because no ESQL routine can return a reference. However, an MbElement

can be returned as an INOUT direction parameter, subject to the conditions

described in point 5 above.

A REFERENCE to a scalar variable can be used in the CALL of a Java method,

provided that the data type of the variable the reference refers to matches the

corresponding data type in the Java program signature.

Restrictions on Java routines

The following restrictions apply to Java routines called from ESQL:

v You must ensure that the Java method is threadsafe (reentrant).

v The only database connections permitted are JDBC type 4 connections.

Furthermore, database operations are not part of a broker transaction; this means

that they cannot be controlled by an external resource coordinator (such as

would be the case in an XA environment).

v The Java User defined Node (UDN) API should be used only by the same

thread that invoked the Java method.

You are allowed to spawn threads inside your method. However, spawned

threads must not use the Java plug-in APIs and you must return control back to

the broker.

Note that all restrictions that apply to the usage of the UDN API also apply to

Java methods called from ESQL.

v Java methods called from ESQL must not use the MbNode class. This means that

they cannot create objects of type MbNode, or call any of the methods on an

existing MbNode object.

v If you want to perform MQ or JMS work inside a Java method called from

ESQL, you must follow the User Defined Node (UDN) guidelines for performing

MQ and JMS work in a UDN.

Deploying Java classes

You can deploy your Java classes inside a Java Archive (JAR) file. There are two

ways to deploy a JAR file to the broker:

1. By adding it to the Broker Archive (BAR) file

ESQL reference 211

Adding your JAR file to the BAR file is the most efficient and flexible method

of deploying to the broker.

You can add a JAR file to the BAR file manually, by hand, or automatically,

using the tooling. The tooling is the simplest way to add a JAR file to a BAR

file.

If the tooling finds the correct Java class inside a referenced Java project open

in the workspace, it automatically compiles the Java class into a JAR file and

adds it to the BAR file. This is the same procedure that you follow to deploy a

Java Compute node inside a JAR, as described in User-defined node

classloading.

When deploying a JAR file from the tooling, a redeploy of the BAR file

containing the JAR file causes the referenced Java classes to be reloaded by the

flow that has been redeployed; as does stopping and restarting a message flow

that references a Java class. Ensure that you stop and restart (or redeploy) all

flows that reference the JAR file that you want to update. This avoids the

problem of some flows running with the old version of the JAR file and other

flows running with the new version.

Note that the tooling will only deploy a JAR file; it will not deploy a

standalone Java class file.

2. By placing it in either of the following:

a. The <Workpath>/shared-classes/ folder on the machine running the broker

b. The CLASSPATH environment variable on the machine running the broker
This procedure must be done manually; you cannot use the tooling.

In this method, redeploying the message flow does not reload the referenced

Java classes; neither does stopping and restarting the message flow. The only

way to reload the classes in this case is to stop and restart the broker itself.

To enable the broker to find a Java class, ensure that it is in one of the above

locations. If the broker cannot find the specified class, it throws an exception.

Although you have the choices shown above when deploying the JAR file,

allowing the tooling to deploy the BAR file provides the greatest flexibility when

redeploying the JAR file.

Database routines

Database Routines are routines implemented as database stored procedures.

Database routines have a LANGUAGE clause of DATABASE, and must have a

routine type of PROCEDURE.

When writing stored procedures in languages like C, you must use NULL

indicators to ensure that your procedure can process the data correctly.

Although the database definitions of a stored procedure will vary between the

databases, the ESQL used to invoke them does not. The names given to parameters

in the ESQL do not have to match the names they are given on the database side.

However, the external name of the routine, including any package or container

specifications, must match its defined name in the database.

The DYNAMIC RESULT SET clause is allowed only for database routines. It is

required only if a stored procedure returns one or more result sets. The integer

parameter to this clause must be 0 (zero) or more and specifies the number of

result sets to be returned.

212 ESQL

The optional RETURNS clause is required if a stored procedure returns a single

scalar value.

The EXTERNAL NAME clause specifies the name by which the database knows

the routine. This can be either a qualified or an unqualified name, where the

qualifier is the name of the database schema in which the procedure is defined. If

you do not provide a schema name, the database connection user name is used as

the schema in which to locate the procedure. If the required procedure does not

exist in this schema, you must provide an explicit schema name, either on the

routine definition or on the CALL to the routine at runtime. For more information

about dynamically choosing the schema which contains the routine, see the “CALL

statement” on page 179. When a qualified name is used, the name must be in

quotation marks.

A fully qualified routine normally takes the form:

 EXTERNAL NAME "mySchema.myProc";

However, if the procedure belongs to an Oracle package, the package is treated as

part of the procedure’s name. Therefore you must provide a schema name as well

as the package name, in the form:

EXTERNAL NAME "mySchema.myPackage.myProc";

This allows the schema, but not the package name, to be chosen dynamically in the

CALL statement.

If the name of the procedure contains SQL wildcards (which are the percent (%)

character and the underscore (_) character), the procedure name is modified by the

broker to include the database escape character immediately before each wildcard

character. This ensures that the database receives the wildcards as literal characters.

For example, assuming that the database escape character is a backslash, the clause

below is modified by the broker so that “mySchema.Proc_” is passed to the

database. ;

EXTERNAL NAME "mySchema.Proc_";

All external procedures have the following restrictions:

v A stored procedure cannot be overloaded on the database side. A stored

procedure is considered overloaded if there is more than one procedure of the

same name in the same database schema. If the broker detects that a procedure

has been overloaded, it raises an exception.

v Parameters cannot be of the ESQL REFERENCE, ROW, LIST, or INTERVAL

data-types.

v User-defined types cannot be used as parameters or as return values.

Database routine example 1

The following is a simple ESQL definition of a stored procedure that returns a

single scalar value and an OUT parameter:

CREATE PROCEDURE myProc1(IN P1 INT, OUT P2 INT)

 LANGUAGE DATABASE

 RETURNS INTEGER

 EXTERNAL NAME "myschema.myproc";

Use this ESQL to invoke the myProc1 routine:

ESQL reference 213

/*using CALL statement invocation syntax*/

CALL myProc1(intVar1, intVar2) INTO intReturnVar3;

/*or using function invocation syntax*/

SET intReturnVar3 = myProc1(intVar1, intVar2);

Database routine example 2

The following ESQL code demonstrates how to define and call DB2 stored

procedures:

ESQL Definition:

DECLARE inputParm CHARACTER;

DECLARE outputParm CHARACTER;

DECLARE inputOutputParm CHARACTER;

SET inputParm = ’Hello’;

SET inputOutputParm = ’World’;

CALL swapParms(inputParm, outputParm, inputOutputParm);

CREATE PROCEDURE swapParms (

 IN parm1 CHARACTER,

 OUT parm2 CHARACTER,

 INOUT parm3 CHARACTER

) EXTERNAL NAME dbSwapParms;

To register this stored procedure with DB2, copy the following script to a file (for

example, test1.sql)

-- DB2 Example Stored Procedure

DROP PROCEDURE dbSwapParms @

CREATE PROCEDURE dbSwapParms

(IN in_param CHAR(32),

 OUT out_param CHAR(32),

 INOUT inout_param CHAR(32))

LANGUAGE SQL

BEGIN

SET out_param = inout_param;

 SET inout_param = in_param;

END @

and execute:

db2 -td@ -vf test1.sql

from the DB2 command prompt.

Expect the following results from running this code:

v The value of the IN parameter does not (and cannot, by definition) change.

v The value of the OUT parameter becomes “World”.

v The value of the INOUT parameter changes to “Hello”.

Database routine example 3

The following ESQL code demonstrates how to define and call Oracle stored

procedures:

ESQL Definition:

DECLARE inputParm CHARACTER;

DECLARE outputParm CHARACTER;

DECLARE inputOutputParm CHARACTER;

SET inputParm = ’Hello’;

SET inputOutputParm = ’World’;

214 ESQL

CALL swapParms(inputParm, outputParm, inputOutputParm);

CREATE PROCEDURE swapParms (

 IN parm1 CHARACTER,

 OUT parm2 CHARACTER,

 INOUT parm3 CHARACTER

) EXTERNAL NAME dbSwapParms;

To register this stored procedure with Oracle, copy the following script to a file (for

example, test1.sql)

CREATE OR REPLACE PROCEDURE dbSwapParms

(in_param IN VARCHAR2,

 out_param OUT VARCHAR2,

 inout_param IN OUT VARCHAR2)

AS

BEGIN

 out_param := inout_param;

 inout_param := in_param;

END;

/

and execute:

sqlplus <userid>/<password> @test1.sql

Expect the following results from running this code:

v The value of the IN parameter does not (and cannot, by definition) change.

v The value of the OUT parameter becomes “World”.

v The value of the INOUT parameter changes to “Hello”.

Database routine example 4

The following ESQL code demonstrates how to define and call SQL Server stored

procedures:

ESQL Definition:

DECLARE inputParm CHARACTER;

DECLARE outputParm CHARACTER;

DECLARE inputOutputParm CHARACTER;

SET inputParm = ’Hello’;

SET inputOutputParm = ’World’;

CALL swapParms(inputParm, outputParm, inputOutputParm);

CREATE PROCEDURE swapParms (

 IN parm1 CHARACTER,

 INOUT parm2 CHARACTER,

 INOUT parm3 CHARACTER

) EXTERNAL NAME dbSwapParms;

To register this stored procedure with SQLServer, copy the following script to a file

(for example, test1.sql)

-- SQLServer Example Stored Procedure

DROP PROCEDURE dbSwapParms

go

CREATE PROCEDURE dbSwapParms

 @in_param CHAR(32),

 @out_param CHAR(32) OUT,

 @inout_param CHAR(32) OUT

AS

 SET NOCOUNT ON

 SET @out_param = @inout_param

 SET @inout_param = @in_param

go

ESQL reference 215

and execute:

isql -U<userid> -P<password> -S<server> -d<datasource> -itest1.sql

Note:

1. SQL Server considers OUTPUT parameters from stored procedures as

INPUT/OUTPUT parameters.

If you declare these as OUT parameters in your ESQL you encounter a

type mismatch error at run time. To avoid that mismatch you must

declare SQL Server OUTPUT parameters as INOUT in your ESQL.

2. You should use the SET NOCOUNT ON option, as shown in the preceding

example, with SQL Stored Procedures for the following reasons:

a. To limit the amount of data returned from SQLServer to the broker.

b. To allow result-sets to be returned correctly.

Expect the following results from running this code:

v The value of the IN parameter does not (and cannot, by definition) change.

v The value of the OUT parameter becomes “World”.

v The value of the INOUT parameter changes to “Hello”.

Database routine example 5

The following ESQL code demonstrates how to define and call SYBASE stored

procedures:

ESQL Definition:

DECLARE inputParm CHARACTER;

DECLARE outputParm CHARACTER;

DECLARE inputOutputParm CHARACTER;

SET inputParm = ’Hello’;

SET inputOutputParm = ’World’;

CALL swapParms(inputParm, outputParm, inputOutputParm);

CREATE PROCEDURE swapParms (

 IN parm1 CHARACTER,

 INOUT parm2 CHARACTER,

 INOUT parm3 CHARACTER

) EXTERNAL NAME dbSwapParms;

To register this stored procedure with SYBASE, copy the following script to a file

(for example, test1.sql)

-- SYBASE Example Stored Procedure

DROP PROCEDURE dbSwapParms

go

CREATE PROCEDURE dbSwapParms

 @in_param CHAR(32),

 @out_param CHAR(32) OUT,

 @inout_param CHAR(32) OUT

AS

 SET @out_param = @inout_param

 SET @inout_param = @in_param

go

and execute:

isql -U<userid> -P<password> -S<server> -d<datasource> -itest1.sql

Note: SYBASE considers OUTPUT parameters from stored procedures as

INPUT/OUTPUT parameters.

216 ESQL

If you declare these as OUT parameters in your ESQL you encounter a type

mismatch error at run time. To avoid that mismatch you must declare

SYBASE OUTPUT parameters as INOUT in your ESQL.

Expect the following results from running this code:

v The value of the IN parameter does not (and cannot, by definition) change.

v The value of the OUT parameter becomes “World”.

v The value of the INOUT parameter changes to “Hello”.

Database routine example 6

This example shows how to call a stored procedure that returns two result sets, as

well as an out parameter:

CREATE PROCEDURE myProc1 (IN P1 INT, OUT P2 INT)

 LANGUAGE DATABASE

 DYNAMIC RESULT SETS 2

 EXTERNAL NAME "myschema.myproc";

Use the following ESQL to invoke myProc1:

/* using a field reference */

CALL myProc1(intVar1, intVar2, Environment.RetVal[], OutputRoot.XML.A[])

/* using a reference variable*/

CALL myProc1(intVar1, intVar2, myReferenceVariable.RetVal[], myRef2.B[])

DECLARE statement

The DECLARE statement defines a variable, the data type of the variable and,

optionally, its initial value.

Syntax

��

�

 <<-,-<<

DECLARE

-Name

SHARED (1) (2)

EXTERNAL (3) (4)

�

� DataType (5)

CONSTANT

InitialValueExpression

NAMESPACE (6)

NAME

 ��

1. The SHARED keyword is not allowed within a function or procedure.

2. You cannot specify SHARED with a DataType of REFERENCE. (To store a

message tree in a shared variable, use the ROW data type.)

3. EXTERNAL variables are implicitly constant.

4. It is good programming practice to give an EXTERNAL variable an initial

value.

5. If you specify a DataType of REFERENCE, you must specify an initial value (of

either a variable or a tree) in InitialValueExpression.

ESQL reference 217

6. When the NAMESPACE and NAME clauses are used the values are implicitly

constant and of type CHARACTER.

Types of variable

You can use the “DECLARE statement” on page 217 to define three types of

variable:

External

External variables (defined with the EXTERNAL keyword) are also known as

user-defined properties (UDPs): see “User-defined properties in ESQL” on page 6.

They exist for the entire lifetime of a message flow and are visible to all

messages passing through the flow. Their initial values (optionally set by the

DECLARE statement) can be modified, at design time, by the Message Flow

editor, or, at deployment time, by the BAR editor. Their values cannot be

modified by ESQL.

Normal

“Normal” variables have a lifetime of just one message passing through a

node. They are visible to that message only. To define a “normal” variable,

omit both the EXTERNAL and SHARED keywords.

Shared

Shared variables can be used to implement an in-memory cache in the message

flow, see Optimizing message flow response times. Shared variables have a

long lifetime and are visible to multiple messages passing through a flow, see

“Long-lived variables” on page 7. They exist for the lifetime of the execution

group process, the lifetime of the flow or node, or the lifetime of the node’s

SQL that declares the variable (whichever is the shortest). They are initialized

when the first message passes through the flow or node after each broker start

up.

 See also the ATOMIC option of the “BEGIN ... END statement” on page 174.

The BEGIN ATOMIC construct is useful when a number of changes need to be

made to a shared variable and it is important to prevent other instances seeing

the intermediate states of the data.

CONSTANT

Use CONSTANT to define a constant. You can declare constants within schemas,

modules, routines, or compound statements (both implicit and explicit). The

behavior of these cases is as follows:

v Within a compound statement, constants and variables occupy the same

namespace.

v Within expressions, a constant or variable declared within a compound

statement overlays all constants and variables of the same name declared in

containing compound statements, module and schema.

v Within field reference namespace fields, a namespace constant declared within a

compound statement overlays all namespace constants of the same name

declared in containing compound statements, and similarly for name constants.

A constant or variable declared within a routine overlays any parameters of the

same name, and all constants and variables of the same name declared in a

containing module or schema.

218 ESQL

DataType

The possible values that you can specify for DataType are:

v BOOL

v BOOLEAN

v INT

v INTEGER

v FLOAT

v DEC

v DECIMAL

v DATE

v TIME

v TIMESTAMP

v GMTTIME

v GMTTIMESTAMP

v INTERVAL: does not apply to external variables (EXTERNAL option specified)

v CHAR

v CHARACTER

v BLOB

v BIT

v ROW: does not apply to external variables (EXTERNAL option specified)

v REF: does not apply to external or shared variables (EXTERNAL or SHARED

option specified)

v REFERENCE-TO: does not apply to external or shared variables (EXTERNAL or

SHARED option specified)

Note: If you specify a DataType of REFERENCE, you must also specify

InitialValueExpression.

EXTERNAL

Use EXTERNAL to denote a user-defined property (UDP). A UDP is a user-defined

constant whose initial value (optionally set by the DECLARE statement) can be

modified, at design time, by the Message Flow editor, or overridden, at

deployment time, by the Broker Archive editor. Its value cannot be modified by

ESQL.

For an overview of UDPs, see “User-defined properties in ESQL” on page 6.

When a UDP is given an initial value on the DECLARE statement this becomes its

default. However, any value specified by the Message Flow editor at design time,

or by the BAR editor at deployment time (even a zero length string) overrides any

initial value coded on the DECLARE statement.

All UDPs in a message flow must have a value, given either on the DECLARE

statement or by the Message Flow or BAR editor; otherwise a deployment-time

error occurs. At run time, after the UDP has been declared its value can be queried

by subsequent ESQL statements but not modified.

The advantage of UDPs is that their values can be changed by operational staff at

deployment time. If, for example, you use the UDPs to hold configuration data, it

means that you can configure a message flow for a particular machine, task, or

environment at deployment time, without having to change the code at the node

level.

You can declare UDPs only in modules or schemas.

ESQL reference 219

The following types of broker node are capable of accessing UDPs:

v Compute

v Database

v Filter

v Nodes derived from these node-types

Take care when specifying the data type of a UDP, because a CAST occurs to cast

to the requested DataType.

Example 1

DECLARE mycolour EXTERNAL CHARACTER ‘blue’;

Example 2

DECLARE TODAYSCOLOR EXTERNAL CHARACTER;

SET COLOR = TODAYSCOLOR;

where TODAYSCOLOR is a user-defined property that has a TYPE of CHARACTER and a

VALUE set by the Message Flow Editor.

NAME

Use NAME to define an alias (another name) by which a variable can be known.

Example 1

-- The following statement gives Schema1 an alias of ’Joe’.

DECLARE Schema1 NAME ’Joe’;

-- The following statement produces a field called ’Joe’.

SET OutputRoot.XML.Data.Schema1 = 42;

-- The following statement inserts a value into a table called Table1

-- in the schema called ’Joe’.

INSERT INTO Database.Schema1.Table1 (Answer) VALUES 42;

Example 2

DECLARE Schema1 EXTERNAL NAME;

CREATE FIRSTCHILD OF OutputRoot.XML.TestCase.Schema1 Domain(’XML’)

 NAME ’Node1’ VALUE ’1’;

-- If Schema1 has been given the value ’red’, the result would be:

<xml version="1.0"?>

<TestCase>

 <red>

 <Node1>1</Node1>

 </red>

NAMESPACE

Use NAMESPACE to define an alias (another name) by which a namespace can be

known.

Example

This example illustrates a namespace declaration, its use as a SpaceId in a path, and

its use as a character constant in a namespace expression:

 DECLARE prefixOne NAMESPACE ’http://www.example.com/PO1’;

 -- On the right hand side of the assignment a namespace constant

 -- is being used as such while, on the left hand side, one is

220 ESQL

-- being used as an ordinary constant (that is, in an expression).

 SET OutputRoot.XML.{prefixOne}:{’PurchaseOrder’} =

 InputRoot.XML.prefixOne:PurchaseOrder;

SHARED

Use SHARED to define a shared variable. Shared variables are private to the flow

(if declared within a schema) or node (if declared within a module) but are shared

between instances of the flow (threads). There is no type of variable that is visible

more widely than at the flow level. For example, you cannot share variables across

execution groups.

Shared variables can be used to implement an in-memory cache in the message

flow, see Optimizing message flow response times. Shared variables have a long

lifetime and are visible to multiple messages passing through a flow, see

“Long-lived variables” on page 7. They exist for the lifetime of the execution group

process, the lifetime of the flow or node, or the lifetime of the node’s SQL that

declares the variable (whichever is the shortest). They are initialized when the first

message passes through the flow or node after each broker start up.

You cannot define a shared variable within a function or procedure.

The advantages of shared variables, relative to a databases, are that:

v Write access is very much faster.

v Read access to small data structures is faster.

v Access is direct. That is, there is no need to use a special function (SELECT) to

get data, or special statements (INSERT, UPDATE, or DELETE) to modify data.

Instead, you can refer to the data directly in expressions.

The advantages of databases, relative to shared variables, are that:

v The data is persistent.

v The data is changed transactionally.

These read-write variables, with a life greater than that of one message but which

perform better than a database, are ideal for users prepared to sacrifice the

persistence and transactional advantages of databases in order to obtain better

performance.

With flow-shared variables (that is, those defined at the schema level), take care

when multiple flows can update the variables, especially if the variable is being

used as a counter. Likewise, with node-shared variables (that is, those defined at

the module level), take care when multiple instances can update the variables.

Shared row variables allow a user program to make an efficient read/write copy of

an input node’s message. This is generally useful and, in particular, simplifies the

technique for handling large messages.

″There is a restriction that subtrees cannot be directly copied from one shared row

variable to another shared row variable. Subtrees can be indirectly copied by using

a non-shared row variable. Scalar values extracted from one shared row variable

(using the FIELDVALUE function) can be copied to another shared row variable.

ESQL reference 221

Example

For an example of the use of shared variables, see the “Message routing” sample

program, which shows how to use both shared and external variables. The

“Message routing” sample is in the Samples Gallery in the Message Brokers

Toolkit.

DECLARE HANDLER statement

The DECLARE HANDLER statement creates an error handler for handling

exceptions.

Syntax

�� DECLARE CONTINUE

EXIT
 HANDLER FOR State Stmt ��

State:

�

 <<-- , --<<

SQLSTATE

’ Text ’

VALUE

LIKE

’ Text ’

ESCAPE

’ Text ’

You can declare handlers in both explicitly declared (BEGIN...END) scopes and

implicitly declared scopes (for example, the ELSE clause of an IF statement).

However, all handler declarations must be together at the top of the scope, before

any other statements.

If there are no exceptions, the presence of handlers has no effect on the behavior or

performance of an SQL program. If an exception occurs, WebSphere Message

Broker compares the SQL state of the exception with the SQL states associated with

any relevant handlers, until either the exception leaves the node (just as it would if

there were no handlers) or a matching handler is found. Within any one scope,

handlers are searched in the order they are declared; that is, first to last. Scopes are

searched from the innermost to outermost.

The SQL state values provided in DECLARE... HANDLER... statements can be

compared directly with the SQL state of the exception or can be compared using

wild card characters. To compare the state values directly, specify either VALUE or

no condition operator. To make a wild card comparison, use the underscore and

percent characters to represent single and multiple character wild cards,

respectively, and specify the LIKE operator. The wild card method allows all

exceptions of a general type to be handled without having to list them

exhaustively.

If a matching handler is found, the SQLSTATE and other special registers are

updated (according to the rules described below) and the handler’s statement is

processed.

222 ESQL

/help/livehelp/?pluginID=com.ibm.samplegallery&class=com.ibm.samplegallery.SampleGalleryAction&arg=com.ibm.etools.msgbroker.samplesgallery

As the handler’s statement must be a single statement, it is typically a compound

statement (such as BEGIN...END) that contains multiple other statements. There is

no special behavior associated with these inner statements and there are no special

restrictions. They can, for example, include RETURN, ITERATE, or LEAVE; these

affect their containing routines and looping constructs in the same way as if they

were contained in the scope itself.

Handlers can contain handlers for exceptions occurring within the handler itself

If processing of the handler’s code completes without throwing further unhandled

exceptions, execution of the normal code is resumed as follows:

v For EXIT handlers, the next statement processed is the first statement after the

handler’s scope.

v For CONTINUE handlers, it is the first directly-contained statement after the one

that produced the exception.

Each handler has its own SQLCODE, SQLSTATE, SQLNATIVEERROR, and

SQLERRORTEXT special registers. These come into scope and their values are set

just before the handler’s first statement is executed. They remain valid until the

handler’s last statement has been executed. Because there is no carry over of

SQLSTATE values from one handler to another, handlers can be written

independently.

Handlers absorb exceptions, preventing their reaching the input node and thus

causing the transaction to be committed rather than rolled back. A handler can use

a RESIGNAL or THROW statement to prevent this.

Example

-- Drop the tables so that they can be recreated with the latest definition.

-- If the program has never been run before, errors will occur because you

-- can’t drop tables that don’t exist. We ignore these.

 BEGIN

 DECLARE CONTINUE HANDLER FOR SQLSTATE LIKE’%’ BEGIN END;

 PASSTHRU ’DROP TABLE Shop.Customers’ TO Database.DSN1;

 PASSTHRU ’DROP TABLE Shop.Invoices’ TO Database.DSN1;

 PASSTHRU ’DROP TABLE Shop.Sales’ TO Database.DSN1;

 PASSTHRU ’DROP TABLE Shop.Parts’ TO Database.DSN1;

 END;

DELETE FROM statement

The DELETE FROM statement deletes rows from a table in an external database,

based on a search condition.

ESQL reference 223

Syntax

�� DELETE FROM TableReference

AS

CorrelationName
 �

�
WHERE

Expression
 ��

WHERE:

 TableReference = Database �

�
.

SchemaClause

.

DataSourceClause

 . TableClause

 DataSourceClause = DataSourceName

{

DataSourceExpression

}

 SchemaClause = SchemaName

{

SchemaExpression

}

 TableClause = TableName

{

TableExpression

}

All rows for which the WHERE clause expression evaluates to TRUE are deleted

from the table identified by TableReference.

Each row is examined in turn and a variable is set to point to the current row.

Typically, the WHERE clause expression uses this variable to access column values

and thus cause rows to be retained or deleted according to their contents. The

variable is referred to by CorrelationName or, in the absence of an AS clause, by

TableName.

Table reference

A table reference is a special case of the field references used to refer to message

trees. It always starts with the word “Database” and may contain any of the

following:

v A table name only

v A schema name and a table name

v A data source name (that is, the name of a database instance), a schema name,

and a table name

In each case, the name may be specified directly or by an expression enclosed in

braces ({...}). A directly-specified data source, schema, or table name is subject to

name substitution. That is, if the name used has been declared to be a known

name, the value of the declared name is used rather than the name itself (see

“DECLARE statement” on page 217).

224 ESQL

If a schema name is not specified, the default schema for the broker’s database

user is used.

If a data source name is not specified, the database pointed to by the node’s data

source attribute is used.

The WHERE clause

The WHERE clause expression can use any of the broker’s operators and functions

in any combination. It can refer to table columns, message fields, and any declared

variables or constants.

However, be aware that the broker treats the WHERE clause expression by

examining the expression and deciding whether the whole expression can be

evaluated by the database. If it can, it is given to the database. In order to be

evaluated by the database, it must use only those functions and operators

supported by the database.

The WHERE clause can, however, refer to message fields, correlation names

declared by containing SELECTs, and to any other declared variables or constants

within scope.

If the whole expression cannot be evaluated by the database, the broker looks for

top-level AND operators and examines each sub-expression separately. It then

attempts to give the database those sub-expressions that it can evaluate, leaving

the broker to evaluate the rest. You need to be aware of this situation for two

reasons:

1. Apparently trivial changes to WHERE clause expressions can have large effects

on performance. You can determine how much of the expression was given to

the database by examining a user trace.

2. Some databases’ functions exhibit subtle differences of behavior from those of

the broker.

Handling errors

It is possible for errors to occur during delete operations. For example, the

database may not be operational. In these cases, an exception is thrown (unless the

node has its throw exception on database error property set to FALSE). These

exceptions set appropriate SQL code, state, native error, and error text values and

can be dealt with by error handlers (see the DECLARE HANDLER statement).

For further information about handling database errors, see “Capturing database

state” on page 77.

Examples

The following example assumes that the dataSource property has been configured

and that the database it identifies has a table called SHAREHOLDINGS, with a

column called ACCOUNTNO.

DELETE FROM Database.SHAREHOLDINGS AS S

 WHERE S.ACCOUNTNO = InputBody.AccountNumber;

This removes all the rows from the SHAREHOLDINGS table where the value in

the ACCOUNTNO column (in the table) is equal to that in the AccountNumber field

in the message. This may delete zero, one, or more rows from the table.

ESQL reference 225

The next example shows the use of calculated data source, schema, and table

names:

-- Declare variables to hold the data source, schema, and table names and

-- set their default values

DECLARE Source CHARACTER ’Production’;

DECLARE Schema CHARACTER ’db2admin’;

DECLARE Table CHARACTER ’DynamicTable1’;

-- Code which calculates their actual values comes here

-- Delete rows from the table

DELETE FROM Database.{Source}.{Schema}.{Table} As R WHERE R.Name = ’Joe’;

DELETE statement

The DELETE statement detaches and destroys a portion of a message tree,

allowing its memory to be reused. This statement is particularly useful when

handling very large messages.

Syntax

�� DELETE FIELD

FIRSTCHILD

OF

LASTCHILD

PREVIOUSSIBLING

NEXTSIBLING

 FieldReference ��

If the target field does not exist, the statement does nothing and normal processing

continues. If any reference variables point into the deleted portion, they are

disconnected from the tree so that no action involving them has any effect, and the

LASTMOVE function returns FALSE. Disconnected reference variables can be

reconnected by using a MOVE... TO... statement.

Example

DELETE FIELD OutputRoot.XML.Data.Folder1.Folder12;

DELETE LASTCHILD OF Cursor;

DETACH statement

The DETACH statement detaches a portion of a message tree without deleting it. This

portion can be reattached using the ATTACH statement.

Syntax

�� DETACH dynamic_reference ��

For information about dynamic references, see “Creating dynamic field references”

on page 36.

226 ESQL

For an example of DETACH, see the example in “ATTACH statement” on page

172.

EVAL statement

The EVAL statement takes a character value, interprets it as an SQL statement, and

processes it.

The EVAL function (also described here) takes a character value, but interprets it as

an ESQL expression that returns a value.

Note: User defined functions and procedures cannot be defined within an EVAL

statement or EVAL function.

Syntax

�� EVAL (SQL_character_value) ��

EVAL takes one parameter in the form of an expression, evaluates this expression,

and casts the resulting value to a character string if it is not one already. The

expression that is passed to EVAL must therefore be able to be represented as a

character string.

After this first stage evaluation is complete, the behavior of EVAL depends on

whether it is being used as a complete ESQL statement, or in place of an

expression that forms part of an ESQL statement:

v If it is a complete ESQL statement, the character string derived from the first

stage evaluation is executed as if it were an ESQL statement.

v If it is an expression that forms part of an ESQL statement, the character string is

evaluated as if it were an ESQL expression and EVAL returns the result.

In the following examples, A and B are integer scalar variables, and scalarVar1 and

OperatorAsString are character string scalar variables.

The following examples are valid uses of EVAL:

v SET OutputRoot.XML.Data.Result = EVAL(A+B);

The expression A+B is acceptable because, although it returns an integer value,

integer values are representable as character strings, and the necessary cast is

performed before EVAL continues with its second stage of evaluation.

v SET OutputRoot.XML.Data.Result = EVAL(’A’ || operatorAsString || ’B’);

v EVAL(’SET ’ || scalarVar1 || ’ = 2;’);

The semicolon included at the end of the final string literal is necessary, because

if EVAL is being used in place of an ESQL statement, its first stage evaluation

must return a string that represents a valid ESQL statement, including the

terminating semicolon.

Variables declared within an EVAL statement do not exist outside that EVAL

statement. In this way EVAL is similar to a function, in which locally-declared

variables are local only, and go out of scope when the function is exited.

ESQL reference 227

The real power of EVAL is that it allows you to dynamically construct ESQL

statements or expressions. In the second and third examples above, the value of

scalarVar1 or operatorAsString can be set according to the value of an incoming

message field, or other dynamic value, allowing you to effectively control what

ESQL is executed without requiring a potentially lengthy IF THEN ladder.

However, consider the performance implications in using EVAL. Dynamic

construction and execution of statements or expressions is necessarily more

time-consuming than simply executing pre-constructed ones. If performance is

vital, you might prefer to write more specific, but faster, ESQL.

The following are not valid uses of EVAL:

v SET EVAL(scalarVar1) = 2;

In this example, EVAL is being used to replace a field reference, not an

expression.

v SET OutputRoot.XML.Data.Result[] = EVAL((SELECT T.x FROM Database.y AS

T));

In this example, the (SELECT T.x FROM Database.y) passed to EVAL returns a

list, which is not representable as a character string.

The following example is acceptable because (SELECT T.x FROM Database.y AS T)

is a character string literal, not an expression in itself, and therefore is

representable as a character string.

SET OutputRoot.XML.Data.Result[]

 = EVAL(’(SELECT T.x FROM Database.y AS T)’);

FOR statement

The FOR statement iterates through a list (for example, a message array).

Syntax

�� FOR correlation_name AS field_reference DO statements END FOR ��

For each iteration, the FOR statement makes the correlation variable

(correlation_name in the syntax diagram) equal to the current member of the list

(field_reference) and then executes the block of statements. The advantage of the

FOR statement is that it iterates through a list without your having to write any

sort of loop construct (and eliminates the possibility of infinite loops).

For example the following ESQL:

SET OutputRoot.MQMD=InputRoot.MQMD;

SET Environment.SourceData.Folder[1].Field1 = ’Field11Value’;

SET Environment.SourceData.Folder[1].Field2 = ’Field12Value’;

SET Environment.SourceData.Folder[2].Field1 = ’Field21Value’;

SET Environment.SourceData.Folder[2].Field2 = ’Field22Value’;

DECLARE i INTEGER 1;

FOR source AS Environment.SourceData.Folder[] DO

 CREATE LASTCHILD OF OutputRoot.XML.Data.ResultData.MessageArrayTest.Folder[i]

 NAME ’FieldA’ VALUE ’\’ || source.Field1 || ’\’ || CAST(i AS CHAR);

228 ESQL

CREATE LASTCHILD OF OutputRoot.XML.Data.ResultData.MessageArrayTest.Folder[i]

 NAME ’FieldB’ VALUE ’\’ || source.Field2 || ’\’ || CAST(i AS CHAR);

 SET i = i + 1;

END FOR;

generates the output message:

<Data>

 <ResultData>

 <MessageArrayTest>

 <Folder>

 <FieldA>Field11Value1</FieldA>

 <FieldB>Field12Value1</FieldB>

 </Folder>

 <Folder>

 <FieldA>Field21Value2</FieldA>

 <FieldB>Field22Value2</FieldB>

 </Folder>

 </MessageArrayTest>

 </ResultData>

</Data>

IF statement

The IF statement executes one set of statements based on the result of evaluating

condition expressions.

Syntax

��

IF

�

 ELSEIF

expression

THEN

statements

ELSE

statements

END IF

��

Each expression is evaluated in turn until one results in TRUE; the corresponding

set of statements is then executed. If none of the expressions returns TRUE, and

the optional ELSE clause is present, the ELSE clause’s statements are executed.

UNKNOWN and FALSE are treated the same: the next condition expression is

evaluated. ELSEIF is one word with no space between the ELSE and the IF.

However, you can nest an IF statement within an ELSE clause: if you do, you can

terminate both statements with END IF.

Example

IF i = 0 THEN

 SET size = ’small’;

ELSEIF i = 1 THEN

 SET size = ’medium’;

ELSEIF j = 4 THEN

 SET size = ’large’;

ELSE

 SET size = ’unknown’;

END IF;

ESQL reference 229

IF J > MAX THEN

 SET J = MAX;

 SET Limit = TRUE;

END IF;

INSERT statement

The INSERT statement inserts a row into a database table.

Syntax

�� INSERT INTO TableReference

�

,

(

ColumnName

)

 �

�

�

 ,

VALUES

(

Expression

)

��

WHERE:

 TableReference = Database �

�
.

SchemaClause

.

DataSourceClause

 . TableClause

 DataSourceClause = DataSourceName

{

DataSourceExpression

}

 SchemaClause = SchemaName

{

SchemaExpression

}

 TableClause = TableName

{

TableExpression

}

A single row is inserted into the table identified by TableReference. The ColumnName

list identifies those columns in the target table that are to be given specific values.

These values are determined by the expressions within the VALUES clause (the

first expression gives the value of the first named column, and so on). The number

of expressions in the VALUES clause must be the same as the number of named

columns. Any columns present in the table but not mentioned in the list are given

their default values.

230 ESQL

Table reference

A table reference is a special case of the field references used to refer to message

trees. It always starts with the word “Database” and may contain any of the

following:

v A table name only

v A schema name and a table name

v A data source name (that is, the name of a database instance), a schema name,

and a table name

In each case, the name may be specified directly or by an expression enclosed in

braces ({...}). A directly-specified data source, schema, or table name is subject to

name substitution. That is, if the name used has been declared to be a known

name, the value of the declared name is used rather than the name itself (see

“DECLARE statement” on page 217).

If a schema name is not specified, the default schema for the broker’s database

user is used.

If a data source name is not specified, the database pointed to by the node’s data

source attribute is used.

Handling errors

It is possible for errors to occur during insert operations. For example, the database

may not be operational, or the table may have constraints defined which the new

row would violate. In these cases, an exception is thrown (unless the node has its

throw exception on database error property set to FALSE). These exceptions set

appropriate SQL code, state, native error, and error text values and can be dealt

with by error handlers (see the DECLARE HANDLER statement).

For further information about handling database errors, see “Capturing database

state” on page 77.

Examples

The following example assumes that the dataSource property of the Database node

has been configured, and that the database it identifies has a table called TABLE1

with columns A, B, and C.

Given a message with the following generic XML body:

<A>

 1

 <C>2</C>

 <D>3</D>

The following INSERT statement inserts a new row into the table with the values

1, 2, and 3 for the columns A, B, and C:

INSERT INTO Database.TABLE1(A, B, C) VALUES (Body.A.B, Body.A.C, Body.A.D);

The next example shows the use of calculated data source, schema, and table

names:

-- Declare variables to hold the data source, schema, and table names

-- and set their default values

DECLARE Source CHARACTER ’Production’;

DECLARE Schema CHARACTER ’db2admin’;

ESQL reference 231

DECLARE Table CHARACTER ’DynamicTable1’;

-- Code which calculates their actual values comes here

-- Insert the data into the tabl

INSERT INTO Database.{Source}.{Schema}.{Table} (Name, Value) values (’Joe’, 12.34);

ITERATE statement

The ITERATE statement stops the current iteration of the containing WHILE,

REPEAT, LOOP, or BEGIN statement identified by Label.

The containing statement evaluates its loop condition (if any), and either starts the

next iteration or stops looping, as the condition dictates.

Syntax

�� ITERATE Label ��

Example

In the following example, the loop iterates four times; that is the line identified by

the comment Some statements 1 is passed through four times. However, the line

identified by the comment Some statements 2 is passed through twice only because

of the action of the IF and ITERATE statements. The ITERATE statement does not

bypass testing the loop condition. Take particular care that the action of the

ITERATE does not bypass the logic that makes the loop advance and eventually

terminate. The loop count is incremented at the start of the loop in this example:

DECLARE i INTEGER;

SET i = 0;

X : REPEAT

 SET i = i + 1;

 -- Some statements 1

 IF i IN(2, 3) THEN

 ITERATE X;

 END IF;

 -- Some statements 2

UNTIL

 i >= 4

END REPEAT X;

ITERATE statements do not have to be directly contained by their labelled

statement, making ITERATE statements particularly powerful.

LEAVE statement

The LEAVE statement stops the current iteration of the containing WHILE,

REPEAT, LOOP, or BEGIN statement identified by Label.

The containing statement’s evaluation of its loop condition (if any) is bypassed and

looping stops.

232 ESQL

Syntax

�� LEAVE Label ��

Examples

In the following example, the loop iterates four times:

DECLARE i INTEGER;

SET i = 1;

X : REPEAT

 ...

 IF i >= 4 THEN

 LEAVE X;

 END IF;

 SET i = i + 1;

UNTIL

 FALSE

END REPEAT;

LEAVE statements do not have to be directly contained by their labelled statement,

making LEAVE statements particularly powerful.

DECLARE i INTEGER;

SET i = 0;

X : REPEAT -- Outer loop

 ...

 DECLARE j INTEGER;

 SET j = 0;

 REPEAT -- Inner loop

 ...

 IF i >= 2 AND j = 1 THEN

 LEAVE X; -- Outer loop left from within inner loop

 END IF;

 ...

 SET j = j + 1;

 UNTIL

 j >= 3

 END REPEAT;

 SET i = i + 1;

UNTIL

 i >= 3

END REPEAT X;

 -- Execution resumes here after the leave

LOG statement

The LOG statement writes a record to the event or user trace logs.

ESQL reference 233

Syntax

��

�

 LOG EVENT

USER

TRACE

EXCEPTION

Options

,

FULL

VALUES

(

Expression

)

 ��

WHERE:

 Options =

SEVERITY

Expression

CATALOG

Expression

MESSAGE

Expression

CATALOG

CATALOG is an optional clause; if you omit it, it defaults to the WebSphere

Message Broker current version catalog. To use the current WebSphere Message

Broker version message catalog explicitly, use BIPV600 on all operating

systems.

EVENT

A record is written to the event log (and also to user trace if user tracing is

enabled).

EXCEPTION

The current exception (if any) is logged.

FULL

The complete nested exception report is logged (just as if the exception had

reached the input node). If FULL is not specified, any wrapping exceptions are

ignored and only the original exception is logged. Thus you can have a full

report or simply the actual error report without the extra information

concerning what was going on at the time. Note that a current exception only

exists within handler blocks (see Handling errors in message flows).

MESSAGE

The number of the message to be used. If specified, the MESSAGE clause can

contain any expression that returns a non-NULL, integer, value.

 If you omit MESSAGE, its value defaults to the first message number (2951) in

a block of messages provided for use by the LOG and THROW statements in

the WebSphere Business Integration Message Broker catalog. If you enter a

message number, you can use message numbers 2951 to 2999. Alternatively,

you can generate your own catalog.

SEVERITY

The severity associated with the message. If specified, the SEVERITY clause

can contain any expression that returns a non-NULL, integer, value. If you

omit the clause, its value defaults to 1.

USER TRACE

A record is written to the user trace, whether user trace is enabled or not.

VALUES

Use the optional VALUES clause to provide values for the data inserts in your

message. You can insert any number of pieces of information, but the messages

supplied (2951 - 2999) cater for ten inserts only.

Note the general similarity of the LOG statement to the THROW statement.

234 ESQL

-- Write a message to the event log specifying the severity, catalogue and message

 -- number. Four inserts are provided

 LOG EVENT SEVERITY 1 CATALOG ’BIPv600’ MESSAGE 2951 VALUES(1,2,3,4);

 -- Write to the trace log whenever a divide by zero occurs

 BEGIN

 DECLARE a INT 42;

 DECLARE b INT 0;

 DECLARE r INT;

 BEGIN

 DECLARE EXIT HANDLER FOR SQLSTATE LIKE ’S22012’ BEGIN

 LOG USER TRACE EXCEPTION VALUES(SQLSTATE, ’DivideByZero’);

 SET r = 0x7FFFFFFFFFFFFFFFF;

 END;

 SET r = a / b;

 END;

 SET OutputRoot.XML.Data.Result = r;

 END;

LOOP statement

The LOOP statement executes the sequence of statements repeatedly and

unconditionally.

Ensure that the logic of the program provides some means of terminating the loop.

You can use either LEAVE or RETURN statements.

Syntax

�� LOOP statements END LOOP

Label

:

LOOP

statements

END

LOOP

Label
 ��

If present, Label gives the statement a name. This has no effect on the behavior of

the LOOP statement, but allows statements to include ITERATE and LEAVE

statements or other labelled statements, which in turn include ITERATE and

LEAVE. The second Label can be present only if the first Label is present and, if it

is, the labels must be identical.

Two or more labelled statements at the same level can have the same Label but this

partly negates the advantage of the second Label. The advantage is that it

unambiguously and accurately matches each END with its LOOP. However, a

labelled statement within statements cannot have the same label, because this

makes the behavior of the ITERATE and LEAVE statements ambiguous.

The LOOP statement is useful in cases where the required logic dictates that a loop

is always exited part way through. This is because, in these cases, the testing of a

loop condition that occurs in REPEAT or WHILE statements is both unnecessary

and wasteful.

ESQL reference 235

Example

DECLARE i INTEGER;

SET i = 1;

X : LOOP

 ...

 IF i >= 4 THEN

 LEAVE X;

 END IF;

 SET i = i + 1;

END LOOP X;

MOVE statement

The MOVE statement changes the field to which a reference variable identified by

target points.

Syntax

�� MOVE Target TO SourceFieldReference

PARENT

FIRSTCHILD

NAME

clauses

LASTCHILD

PREVIOUSSIBLING

NEXTSIBLING

 ��

NAME clauses:

TYPE

Expression

NAMESPACE

Expression

NAME

Expression

*

IDENTITY

PathElement

(1)

REPEAT

TYPE

NAME

TYPE-NAME

Notes:

1 The RepeatClause can be used only with the PREVIOUSSIBLING and

NEXTSIBLING qualifiers.

If you include a TO clause, it changes the target reference to point to the same

entity as that pointed to by source. This can either be a message field or a declared

variable.

If you include a PARENT, PREVIOUSSIBLING, NEXTSIBLING, FIRSTCHILD, or

LASTCHILD clause, the MOVE statement attempts to move the target reference

variable in the direction specified relative to its current position. If any field exists

in the given direction, the move succeeds. If there is no such field, the move fails;

that is the reference variable continues to point to the same field or variable as

before, and the LASTMOVE function returns false. You can use the LASTMOVE

function to determine the success or failure of a move.

If a TYPE clause, NAME clause, or both are present, the target is again moved in

the direction specified (PREVIOUSSIBLING or NEXTSIBLING, or FIRSTCHILD or

LASTCHILD) but to a field with the given type, name, or both. This is particularly

236 ESQL

useful when the name or type (or both) of the target field is known, because this

reduces the number of MOVE statements required to navigate to a field. This is

because fields that do not match the criteria are skipped over; this can also include

unexpected message tree fields, for example, those representing whitespace.

If the specified move cannot be made (that is, a field with the given type or name

does not exist), the target remains unchanged and the LASTMOVE function returns

false. The TYPE clause, NAME clause, or both clauses can contain any expression

that returns a value of a suitable data type (INTEGER for type and CHARACTER

for name). An exception is thrown if the value supplied is NULL.

Two further clauses, NAMESPACE and IDENTITY enhance the functionality of the

NAME clause.

The NAMESPACE clause takes any expression that returns a non-null value of

type character. It also takes an * indicating any namespace. Note that this cannot

be confused with an expression because * is not a unary operator in ESQL.

The meaning depends on the presence of NAME and NAMESPACE clauses as

follows:

 NAMESPACE NAME Element located by...

No No Type, index, or both

No Yes Name in the default namespace

* Yes Name

Yes No Namespace

Yes Yes Name and namespace

The IDENTITY clause takes a single path element in place of the TYPE,

NAMESPACE, and NAME clauses and follows all the rules described in the topic

for field references (see “ESQL field references” on page 158).

When using MOVE with PREVIOUSSIBLING or NEXTSIBLING, you can specify

REPEAT, TYPE, and NAME keywords that move the target to the previous or next

field with the same type and name as the current field. The REPEAT keyword is

particularly useful when moving to a sibling of the same kind, because you do not

have to write expressions to define the type and name.

Example

MOVE cursor FIRSTCHILD TYPE 0x01000000 NAME ’Field1’;

This example moves the reference variable cursor to the first child field of the field

to which cursor is currently pointing and that has the type 0x01000000 and the

name Field1.

The MOVE statement never creates new fields.

A common usage of the MOVE statement is to step from one instance of a

repeating structure to the next. The fields within the structure can then be accessed

by using a relative field reference. For example:

WHILE LASTMOVE(sourceCursor) DO

 SET targetCursor.ItemNumber = sourceCursor.item;

 SET targetCursor.Description = sourceCursor.name;

 SET targetCursor.Price = sourceCursor.prc;

ESQL reference 237

SET targetCursor.Tax = sourceCursor.prc * 0.175;

 SET targetCursor.quantity = 1;

 CREATE NEXTSIBLING OF targetCursor AS targetCursor REPEAT;

 MOVE sourceCursor NEXTSIBLING REPEAT TYPE NAME;

END WHILE;

For more information about reference variables, and an example of moving a

reference variable, see “Creating dynamic field references” on page 36.

PASSTHRU statement

The PASSTHRU statement evaluates an expression and executes the resulting

character string as a database statement.

�� PASSTHRU �

�

�

�

 Expression

TO

DatabaseReference

,

VALUES

(

Expression

)

(1)

(

Expression

)

,

,

Expression

 ��

WHERE:

 DatabaseReference = Database . DataSourceClause

Notes:

1 The lower half of the main syntax diagram (the second of the two ways of

coding the Expression to be passed to PASSTHRU) describes syntax

retained for backward compatability.

Usage

The main use of the PASSTHRU statement is to issue administrative commands to

databases (to, for example, create a table).

Note: Do not use PASSTHRU to call stored procedures, instead use the CALL

statement. This is because PASSTHRU imposes limitations (you cannot use

output parameters, for example).

The first expression is evaluated and the resulting character string is passed to the

database pointed to by DatabaseReference (in the TO clause) for execution. If the TO

clause is not specified, the database pointed to by the node’s data source attribute

is used.

Use question marks (?) in the database string to denote parameters. The parameter

values are supplied by the VALUES clause.

If the VALUES clause is specified, its expressions are evaluated and passed to the

database as parameters; (that is, their values are substituted for the question marks

in the database statement).

238 ESQL

If there is only one VALUE expression, the result may or may not be a list. If it is a

list, the list’s scalar values are substituted for the question marks, sequentially. If it

is not a list, the single scalar value is substituted for the (single) question mark in

the database statement. If there is more than one VALUE expression, none of the

expressions should evaluate to a list. Their scalar values are substituted for the

question marks, sequentially.

Because the database statement is constructed by the user program, there is no

absolute need to use parameter markers (that is, the question marks) or the

VALUES clause, because the whole of the database statement could be supplied, as

a literal string, by the program. However, use parameter markers whenever

possible, because this reduces the number of different statements that need to be

prepared and stored in the database and the broker.

Database reference

A database reference is a special case of the field references used to refer to

message trees. It consists of the word “Database” followed by a data source name

(that is, the name of a database instance).

You can specify the data source name directly or by an expression enclosed in

braces ({...}). A directly-specified data source name is subject to name substitution.

That is, if the name used has been declared to be a known name, the value of the

declared name is used rather than the name itself (see “DECLARE statement” on

page 217).

Handling errors

It is possible for errors to occur during PASSTHRU operations. For example, the

database may not be operational or the statement may be invalid. In these cases,

an exception is thrown (unless the node has its throw exception on database

error property set to FALSE). These exceptions set appropriate SQL code, state,

native error, and error text values and can be dealt with by error handlers (see the

DECLARE HANDLER statement).

For further information about handling database errors, see “Capturing database

state” on page 77.

Examples

The following example creates the “Customers” table in schema “Shop” in

database DSN1:

PASSTHRU ’CREATE TABLE Shop.Customers (

 CustomerNumber INTEGER,

 FirstName VARCHAR(256),

 LastName VARCHAR(256),

 Street VARCHAR(256),

 City VARCHAR(256),

 Country VARCHAR(256)

)’ TO Database.DSN1;

If, as in the last example, the ESQL statement is specified as a string literal, you

must put single quotes around it. If, however, it is specified as a variable, omit the

quotes. For example:

SET myVar = ’SELECT * FROM user1.stocktable’;

SET OutputRoot.XML.Data[] = PASSTHRU(myVar);

ESQL reference 239

The following example “drops” (that is, deletes) the “Customers” table in schema

“Shop” in database DSN1:

PASSTHRU ’DROP TABLE Shop.Customers’ TO Database.DSN1;

PROPAGATE statement

The PROPAGATE statement propagates a message to the downstream nodes.

Syntax

�� PROPAGATE

TO

TERMINAL

TerminalExpression

MessageSources

Controls

LABEL

LabelExpression

 ��

WHERE:

 MessageSources =

ENVIRONMENT

Expression

MESSAGE

Expression

EXCEPTION

Expression

 Controls =

FINALIZE

DEFAULT

DELETE

DEFAULT

NONE

NONE

You can use the PROPAGATE statement in Compute and Database nodes, but not

in Filter nodes. The additions to this statement assist in error handling - see

“Coding ESQL to handle errors” on page 72.

TO TERMINAL clause

If the TO TERMINAL clause is present, TerminalExpression is evaluated. If the

result is of type CHARACTER, a message is propagated to a terminal

according to the rule:

‘nowhere’ : no propagation

‘failure’ : Failure

 ‘out’ : Out

 ‘out1’ : Out1

 ‘out2’ : Out2

 ‘out3’ : Out3

 ‘out4’ : Out4

Tip: Terminal names are case sensitive so, for example, “Out1” does not match

any terminal.

If the result of TerminalExpression is of type INTEGER, a message is propagated

to a terminal according to the rule:

-2 : no propagation

-1 : failure

 0 : out

 1 : out1

 2 : out2

 3 : out3

 4 : out4

If the result of TerminalExpression is neither a CHARACTER nor an INTEGER,

the broker throws an exception.

240 ESQL

|
|
|
|
|
|
|

If there is neither a TO TERMINAL nor a TO LABEL clause, the broker

propagates a message to the “out” terminal.

Tip: Using character values in terminal expressions leads to the most natural

and readable code. Integer values, however, are easier to manipulate in

loops and marginally faster.

TO LABEL clause

If the TO LABEL clause is present, LabelExpression is evaluated. If the result is

of type CHARACTER and there is a Label node with a label attribute that

matches LabelExpression, in the same flow, the broker propagates a message to

that node.

Tip: Labels, like terminals, are case sensitive. Also, note that, as with route to

Label nodes, it is the labelName attribute of the Label node that defines the

target, not the node’s label itself.

If the result of LabelExpression is NULL or not of type CHARACTER, or there is

no matching Label node in the flow, the broker throws an exception.

 If there is neither a TO TERMINAL nor a TO LABEL clause, the broker

propagates a message to the “out” terminal.

MessageSources clauses

 The MessageSources clauses select the message trees to be propagated. This

clause is only applicable to the Compute node (it has no effect in the Database

node).

 The values that you can specify in MessageSources clauses are:

ENVIRONMENT :

 InputLocalEnvironment

 OutputLocalEnvironment

Message :

 InputRoot

 OutputRoot

ExceptionList :

 InputExceptionList

 OutputExceptionList

If there is no MessageSources clause, the node’s “compute mode” attribute is

used to determine which messages are propagated.

FINALIZE clause

Finalization is a process that fixes header chains and makes the Properties

folder match the headers. If present, the FINALIZE clause allows finalization to

be controlled.

 This clause is only applicable to the Compute node (it has no effect in a

Database node).

 The Compute node allows its output message to be changed by other nodes

(by the other nodes changing their input message). However, a message

created by a Compute node cannot be changed by another node after:

v It has been finalized

v It has reached any output or other node which generates a bit-stream

ESQL reference 241

If FINALIZE is set to DEFAULT, or the FINALIZE clause is absent, the output

message (but not the Environment, Local Environment or Exception List) is

finalized before propagation.

 If FINALIZE is set to NONE, no finalization takes place. This option is

required if you want to preserve and allow updates of the entire output

message tree by the nodes downstream in the message flow and is used with

DELETE NONE as described in the next section.

DELETE clause

The DELETE clause allows the clearing of the output local environment,

message, and exception list to be controlled.

 The DELETE clause is only applicable to the Compute node (it has no effect in

a Database node).

 If DELETE is set to DEFAULT, or the DELETE clause is absent, the output local

environment, message, and exception list are all cleared and their memory

recovered immediately after propagation.

 If DELETE is set to NONE, nothing is cleared. Use DELETE NONE if you

want the downstream nodes to be able to see a single instance of output local

environment message, and exception list trees. Each propagate starts with the

content of these trees as created by the previous propagate rather than starting

with empty trees. If you also want these nodes to update the output tree,

DELETE NONE must be used with the FINALIZE NONE option described in

the previous section.

 Note that the output trees that are finalized are cleared, regardless of which

ones are propagated.

Propagation is a synchronous process. That is, the next statement is not executed

until all the processing of the message in downstream nodes has completed. Be

aware that this processing might throw exceptions and that, if these exceptions are

not caught, they will prevent the statement following the PROPAGATE call being

reached. This may be what the logic of your flow requires but, if it is not, you can

use a handler to catch the exception and perform the necessary actions. Note that

exceptions thrown downstream of a propagate, if not caught, will also prevent the

final automatic actions of a Compute or Database node (for example, issuing a

COMMIT Transaction set to Commit) from taking place.

DECLARE i INTEGER 1;

DECLARE count INTEGER;

SET count = CARDINALITY(InputRoot.XML.Invoice.Purchases."Item"[])

WHILE i <= count DO

 --use the default tooling-generated procedure for copying message headers

 CALL CopyMessageHeaders();

 SET OutputRoot.XML.BookSold.Item = InputRoot.XML.Invoice.Purchases.Item[i];

 PROPAGATE;

 SET i = i+1;

END WHILE;

RETURN FALSE;

Here are the messages produced on the OUT terminal by the PROPAGATE

statement:

<BookSold>

 <Item>

 <Title Category="Computer" Form="Paperback" Edition="2">The XML Companion </Title>

 <ISBN>0201674866</ISBN>

 <Author>Neil Bradley</Author>

 <Publisher>Addison-Wesley</Publisher>

242 ESQL

|
|
|
|

|
|
|
|
|
|
|

<PublishDate>October 1999</PublishDate>

 <UnitPrice>27.95</UnitPrice>

 <Quantity>2</Quantity>

 </Item>

</BookSold>

<BookSold>

 <Item>

 <Title Category="Computer" Form="Paperback" Edition="2">A Complete Guide to

 DB2 Universal Database</Title>

 <ISBN>1558604820</ISBN>

 <Author>Don Chamberlin</Author>

 <Publisher>Morgan Kaufmann Publishers</Publisher>

 <PublishDate>April 1998</PublishDate>

 <UnitPrice>42.95</UnitPrice>

 <Quantity>1</Quantity>

 </Item>

</BookSold>

<BookSold>

 <Item>

 <Title Category="Computer" Form="Hardcover" Edition="0">JAVA 2 Developers

 Handbook</Title>

 <ISBN>0782121799</ISBN>

 <Author>Phillip Heller, Simon Roberts </Author>

 <Publisher>Sybex, Inc.</Publisher>

 <PublishDate>September 1998</PublishDate> <UnitPrice>59.99</UnitPrice>

 <Quantity>1</Quantity>

 </Item>

</BookSold>

REPEAT statement

The REPEAT statement processes a sequence of statements and then evaluates the

condition expression.

Syntax

�� RepeatUntil

Label

:

RepeatUntil

Label
 ��

RepeatUntil:

 REPEAT statements UNTIL condition END REPEAT

The REPEAT statement repeats the steps until condition is TRUE. Ensure that the

logic of the program is such that the loop terminates. If the condition evaluates to

UNKNOWN, the loop does not terminate.

If present, the Label gives the statement a name. This has no effect on the behavior

of the REPEAT statement, but allows statements to include ITERATE and LEAVE

statements or other labelled statements, which in turn include ITERATE and

LEAVE. The second Label can be present only if the first Label is present and, if it

is, the labels must be identical. Two or more labelled statements at the same level

can have the same label, but this partly negates the advantage of the second Label.

The advantage is that it unambiguously and accurately matches each END with its

ESQL reference 243

REPEAT. However, a labelled statement within statements cannot have the same

label because this makes the behavior of the ITERATE and LEAVE statements

ambiguous.

Example

DECLARE i INTEGER;

SET i = 1;

X : REPEAT

 ...

 SET i = i + 1;

UNTIL

 i >= 3

END REPEAT X;

RESIGNAL statement

The RESIGNAL statement re-throws the current exception (if there is one).

Syntax

�� RESIGNAL ��

RESIGNAL re-throws the current exception (if there is one). You can use it only in

error handlers..

Typically, RESIGNAL is used when an error handler catches an exception that it

can’t handle. The handler uses RESIGNAL to re-throw the original exception so

that a handler in higher-level scope has the opportunity to handle it.

Because the handler throws the original exception, rather than a new (and

therefore different) one:

1. The higher-level handler is not affected by the presence of the lower-level

handler.

2. If there is no higher-level handler, you get a full error report in the event log.

Example

RESIGNAL;

RETURN statement

The RETURN statement ends processing. What happens next depends on the

programming context in which the RETURN statement is issued.

244 ESQL

Syntax

�� RETURN

expression
 ��

When used in a function, the RETURN statement stops processing of that function

and returns control to the calling expression. The expression (which must be

present) is evaluated and acts as the return value of the function. It is an error for

a function to return by running off the list of statements. The data type of the

returned value must be the same as that in the function’s declaration.

When used in a procedure, the RETURN statement stops processing of that

procedure and returns control to the calling CALL statement. A RETURN

statement used within a procedure must not have an expression.

When used in a Filter, Compute, or Database node’s mainline code, the RETURN

statement stops processing of the node’s ESQL and passes control to the next node.

In these cases, if expression is present, it must evaluate to a BOOLEAN value. If

expression is not present, a Filter node assumes a value of UNKNOWN and

propagates to its unknown terminal; Compute and Database nodes propagate to

their out terminals.

The following table describes the differences between the RETURN statement

when used in the Compute, Filter, and Database nodes.

 Return value Result

Compute node:

RETURN TRUE Propagate message to out

terminal.

FALSE Do not propagate.

UNKNOWN Do not propagate.

RETURN; Propagate message to out

terminal.

Filter node:

RETURN TRUE Propagate message to true

terminal.

FALSE Propagate message to false

terminal.

UNKNOWN Propagate message to

unknown terminal.

RETURN; Propagate message to

unknown terminal.

Database node:

RETURN TRUE Propagate message to out

terminal.

FALSE Do not propagate.

UNKNOWN Do not propagate.

ESQL reference 245

RETURN; Propagate message to out

terminal.

Example

The following example, which is based on “Example message” on page 357,

illustrates how this statement can be used:

-- Declare variables --

DECLARE a INT;

DECLARE PriceTotal FLOAT;

DECLARE NumItems INT;

-- Initialize values --

SET a = 1;

SET NumItems = 0;

SET PriceTotal = 0.0;

-- Calculate value of order, however if this is a bulk purchase, the --

-- order will need to be handled differently (discount given) so return TRUE --

-- or FALSE depending on the size of the order --

WHILE a <= CARDINALITY(Invoice.Purchases.Item[a] DO

 SET NumItems = NumItems + Invoice.Purchases.Item[a].Quantity;

 SET PriceTotal = PriceTotal + Invoice.Purchases.Item[a].UnitPrice;

 SET a = a + 1;

END;

RETURN PriceTotal/NumItems > 42;

If the average price of items is greater than 42, TRUE is returned; otherwise FALSE

is returned. Thus, a Filter node could route messages describing expensive items

down a different path from messages describing inexpensive items.

See “PROPAGATE statement” on page 240 for an example of RETURN FALSE to

prevent the implicit propagate at the end of processing in a Compute node.

SET statement

The SET statement assigns a value to a variable.

Syntax

�� SET TargetFieldReference = SourceExpression

TYPE

NAMESPACE

NAME

VALUE

 ��

Introduction

TargetFieldReference identifies the target of the assignment. The target can be any of

the following:

v A declared scalar variable

v A declared row variable

v One of the predefined row variables (for example, InputRoot)

v A field within any kind of row variable (that is, a sub tree or conceptual row)

246 ESQL

v A list of fields within any kind of row variable (that is, a conceptual list)

v A declared reference variable that points to any of the above

The target cannot be any kind of database entity.

SourceExpression is an expression which supplies the value to be assigned. It may

be any kind of expression and may return a scalar, row or list value.

Assignment to scalar variables

If the target is a declared scalar variable, SourceExpression is evaluated and assigned

to the variable. If need be, its value is converted to the data type of the variable. If

this conversion is not possible, there will be either an error at deploy time or an

exception at run time.

Null values are handled in exactly the same way as any other value. That is, if the

expression evaluates to null, the value “null” is assigned to the variable.

For scalar variables the TYPE, NAME, NAMESPACE, and VALUE clauses are

meaningless and are not allowed.

Assignment to rows, lists, and fields

If the target is a declared row variable, one of the predefined row variables, a field

within any kind of row variable, a list of fields within any kind of row variable, or

a declared reference variable that points to any of these things, the ultimate target

is a field. In these cases, the target field is navigated to (creating the fields if

necessary).

If array indices are used in TargetFieldReference, the navigation to the target field

can only create fields on the direct path from the root to the target field. For

example, the following SET statement requires that at least one instance of

Structure already exists in the message:

SET OutputRoot.XML.Message.Structure[2].Field = ...

The target field’s value is set according to a set of rules, based on:

1. The presence or absence of the TYPE, NAME, NAMESPACE, or VALUE clauses

2. The data type returned by the source expression
1. If no TYPE, NAME, NAMESPACE, or VALUE clause is present (which is the

most common case) the outcome depends on whether SourceExpression

evaluates to a scalar, a row, or a list:

v If SourceExpression evaluates to a scalar, the value of the target field is set to

the value returned by SourceExpression, except that, if the result is null, the

target field is discarded. Note that the new value of the field may not be of

the same data type as its previous value.

v If SourceExpression evaluates to a row:

a. The target field is identified.

b. The target field’s value is set.

c. The target field’s child fields are replaced by a new set, dictated by the

structure and content of the list.
v If SourceExpression evaluates to a list:

a. The set of target fields in the target tree are identified.

b. If there are too few target fields, more are created; if there are too many,

the extra ones are removed.

c. The target fields’ values are set.

ESQL reference 247

d. The target fields’ child fields are replaced by a new set, dictated by the

structure and content of the list.

For further information on working with elements of type list see “Working

with elements of type xsd:: list”
2. If a TYPE clause is present, the type of the target field is set to the value

returned by SourceExpression. An exception is thrown if the returned value is

not scalar, is not of type INTEGER, or is NULL.

3. If a NAMESPACE clause is present, the namespace of the target field is set to

the value returned by SourceExpression. An exception is thrown if the returned

value is not scalar, is not of type CHARACTER, or is NULL.

4. If a NAME clause is present, the name of the target field is set to the value

returned by SourceExpression. An exception is thrown if the returned value is

not scalar, is not of type CHARACTER, or is NULL.

5. If a VALUE clause is present, the value of the target field is changed to that

returned by SourceExpression. An exception is thrown if the returned value is

not scalar.

Notes

SET statements are particularly useful in Compute nodes that modify a message,

either changing a field or adding a new field to the original message. SET

statements are also useful in Filter and Database nodes, to set declared variables or

the fields in the Environment tree or Local Environment trees. You can use

statements such as the following in a Compute node that modifies a message:

SET OutputRoot = InputRoot;

SET OutputRoot.XML.Order.Name = UPPER(InputRoot.XML.Order.Name);

This example puts one field in the message into uppercase. The first statement

constructs an output message that is a complete copy of the input message. The

second statement sets the value of the Order.Name field to a new value, as defined

by the expression on the right.

If the Order.Name field does not exist in the original input message, it does not

exist in the output message generated by the first statement. The expression on the

right of the second statement returns NULL (because the field referenced inside the

UPPER function call does not exist). Assigning the NULL value to a field has the

effect of deleting it if it already exists, and so the effect is that the second statement

has no effect.

If you want to assign a NULL value to a field without deleting the field, use a

statement like this:

 SET OutputRoot.XML.Order.Name VALUE = NULL;

Working with elements of type xsd:: list

The XML Schema specification permits an element or attribute to contain a list of

values based on a simple type with the individual values separated by white

space.

Consider the following XML input message:

 <message1>

 <listE1 listAttr="one two three"> four five six</listE1>

 </message1>

248 ESQL

In the resulting message tree, an xsd::list type is represented as a name node

with an anonymous value child for each list item. This allows repeating lists to be

handled without any loss of information.

Repeating lists appear as sibling name elements, each of which has its own

anonymous value child nodes for its respective list items. The preceding example

message produces the following logical tree:

 MRM

 listEl (Name)

 listAttr (Name)

 "one" (Value)

 "two" (Value)

 "three" (Value)

 "four" (Value)

 "five" (Value)

 "six" (Value)

Individual list items can be accessed as ElementName.*[n]. For example:

 SET OutputRoot.MRM.listEl.listAttr.*[3] = ...

modifies the third item of listAttr.

Mapping between a list and a repeating element

Consider the form of the following XML input message:

 <MRM>

 <inner>abcde fghij 12345</inner>

 </MRM>

where the element inner is of type xsd::list, so it has three associated string

values, rather than a single value.

If you want to copy the three values into an output message, where each value is

associated with an instance of repeating elements as follows:

 <MRM>

 <str1>abcde</str1>

 <str1>fghij</str1>

 <str1>12345</str1>

 </MRM>

it is reasonable to assume that the following ESQL syntax works:

 DECLARE D INTEGER;

 SET D = CARDINALITY(InputBody.str1.*[]);

 DECLARE M INTEGER 1;

 WHILE M <= D DO

 SET OutputRoot.MRM.str1[M] = InputBody.inner.*[M];

 SET M = M + 1;

 END WHILE;

However, the statement:

 SET OutputRoot.MRM.str1[M] = InputBody.inner.*[M];

requests a tree copy from source to target. Since the target element does not yet

exist, it is created and its value and type are set from the source.

This is consistent with ESQL’s behavior elsewhere, but in the case of elements

having values of type list, this code can produce spurious validation errors.

ESQL reference 249

To avoid this problem, you are recommended to use the “FIELDVALUE function”

on page 299 to explicitly retrieve only the value of the source element, as follows:

 SET OutputRoot.MRM.str1[M] = FIELDVALUE(InputBody.inner.*[M]);

THROW statement

The THROW statement generates a user exception.

Syntax

�� THROW

USER
 EXCEPTION

SEVERITY

expression
 �

�
CATALOG

catalog name

MESSAGE

message number
 �

�

�

,

VALUES

(

expression

)

 ��

The USER keyword indicates the type of exception being thrown. (Currently, only

USER exceptions are supported, and if you omit the USER keyword the exception

defaults to a USER exception anyway.) Specify the USER keyword, even though it

currently has no effect, for the following reasons:

v If future broker releases support other types of exception, and the default type

changes, your code will not need to be changed.

v It makes it clear that this is a user exception.

SEVERITY is an optional clause that determines the severity associated with the

exception. The clause can contain any expression that returns a non-NULL, integer

value. If you omit the clause, it defaults to 1.

CATALOG is an optional clause; if you omit it, it defaults to the WebSphere

Message Broker current version catalog. To use the current WebSphere Message

Broker version message catalog explicitly, use BIPV600 on all operating systems.

MESSAGE is an optional clause; if you omit it, it defaults to the first message

number of the block of messages provided for using THROW statements in

WebSphere Message Broker catalog (2951). If you enter a message number in the

THROW statement, you can use message numbers 2951 to 2999. Alternatively, you

can generate your own catalog by following the instructions in Using event

logging from a user-defined extension.

Use the optional VALUES field to insert data into your message. You can insert

any number of pieces of information, but the messages supplied (2951 - 2999) cater

for eight inserts only.

Examples

Here are some examples of how you might use a THROW statement:

v

250 ESQL

THROW USER EXCEPTION;

v

THROW USER EXCEPTION CATALOG ’BIPv600’ MESSAGE 2951 VALUES(1,2,3,4,5,6,7,8) ;

v

THROW USER EXCEPTION CATALOG ’BIPv600’ MESSAGE 2951 VALUES(’The SQL State: ’,

 SQLSTATE, ’The SQL Code: ’, SQLCODE, ’The SQLNATIVEERROR: ’, SQLNATIVEERROR,

 ’The SQL Error Text: ’, SQLERRORTEXT) ;

v

THROW USER EXCEPTION CATALOG ’BIPv600’ MESSAGE 2951 ;

v

THROW USER EXCEPTION CATALOG ’MyCatalog’ MESSAGE 2951 VALUES(’Hello World’) ;

v THROW USER EXCEPTION MESSAGE 2951 VALUES(’Insert text 1’, ’Insert text 2’) ;

For more information about how to throw an exception, and details of SQLSTATE,

SQLCODE, SQLNATIVEERROR, and SQLERRORTEXT, see “ESQL database state functions”

on page 258.

UPDATE statement

The UPDATE statement changes the values of specified columns, in selected rows,

in a table in an external database.

ESQL reference 251

Syntax

�� UPDATE TableReference

AS

CorrelationName
 �

�

�

 ,

SET

Column = Expression

WHERE

Expression

��

WHERE:

 TableReference = Database �

�
.

SchemaClause

.

DataSourceClause

 . TableClause

 DataSourceClause = DataSourceName

{

DataSourceExpression

}

 SchemaClause = SchemaName

{

SchemaExpression

}

 TableClause = TableName

{

TableExpression

}

All rows for which the WHERE clause expression evaluates to TRUE are updated

in the table identified by TableReference. Each row is examined in turn and a

variable is set to point to the current row. Typically, the WHERE clause expression

uses this variable to access column values and thus cause rows to be updated, or

retained unchanged, according to their contents. The variable is referred to by

CorrelationName or, in the absence of an AS clause, by TableName. When a row has

been selected for updating, each column named in the SET clause is given a new

value as determined by the corresponding expression. These expressions can, if

you wish, refer to the current row variable.

Table reference

A table reference is a special case of the field references used to refer to message

trees. It always starts with the word “Database” and may contain any of the

following:

v A table name only

v A schema name and a table name

v A data source name (that is, the name of a database instance), a schema name,

and a table name

252 ESQL

In each case, the name may be specified directly or by an expression enclosed in

braces ({...}). A directly-specified data source, schema, or table name is subject to

name substitution. That is, if the name used has been declared to be a known

name, the value of the declared name is used rather than the name itself (see

“DECLARE statement” on page 217).

If a schema name is not specified, the default schema for the broker’s database

user is used.

If a data source name is not specified, the database pointed to by the node’s data

source attribute is used.

The WHERE clause

The WHERE clause expression can use any of the broker’s operators and functions

in any combination. It can refer to table columns, message fields, and any declared

variables or constants.

However, be aware that the broker treats the WHERE clause expression by

examining the expression and deciding whether the whole expression can be

evaluated by the database. If it can, it is given to the database. In order to be

evaluated by the database, it must use only those functions and operators

supported by the database.

The WHERE clause can, however, refer to message fields, correlation names

declared by containing SELECTs, and to any other declared variables or constants

within scope.

If the whole expression cannot be evaluated by the database, the broker looks for

top-level AND operators and examines each sub-expression separately. It then

attempts to give the database those sub-expressions that it can evaluate, leaving

the broker to evaluate the rest. You need to be aware of this situation for two

reasons:

1. Apparently trivial changes to WHERE clause expressions can have large effects

on performance. You can determine how much of the expression was given to

the database by examining a user trace.

2. Some databases’ functions exhibit subtle differences of behavior from those of

the broker.

Handling errors

It is possible for errors to occur during update operations. For example, the

database may not be operational, or the table may have constraints defined that

the new values would violate. In these cases, an exception is thrown (unless the

node has its throw exception on database error property set to FALSE). These

exceptions set appropriate SQL code, state, native error, and error text values and

can be dealt with by error handlers (see the DECLARE HANDLER statement).

For further information about handling database errors, see “Capturing database

state” on page 77.

Examples

The following example assumes that the dataSource property of the Database node

has been configured, and that the database it identifies has a table called

ESQL reference 253

STOCKPRICES, with columns called COMPANY and PRICES. It updates the

PRICE column of the rows in the STOCKPRICES table whose COMPANY column

matches the value given in the Company field in the message.

UPDATE Database.StockPrices AS SP

 SET PRICE = InputBody.Message.StockPrice

 WHERE SP.COMPANY = InputBody.Message.Company

In the following example (which make similar assumptions), the SET clause

expression refers to the existing value of a column and thus decrements the value

by an amount in the message:

UPDATE Database.INVENTORY AS INV

 SET QUANTITY = INV.QUANTITY - InputBody.Message.QuantitySold

 WHERE INV.ITEMNUMBER = InputBody.Message.ItemNumber

The following example updates multiple columns:

UPDATE Database.table AS T

 SET column1 = T.column1+1,

 column2 = T.column2+2;

Note that the column names (on the left of the ″=″) are single identifiers. They

must not be qualified with a table name or correlation name. In contrast, the

references to database columns in the expressions (to the right of the ″=″) must be

qualified with the correlation name.

The next example shows the use of calculated data source, schema, and table

names:

-- Declare variables to hold the data source, schema and table names

-- and set their default values

DECLARE Source CHARACTER ’Production’;

DECLARE Schema CHARACTER ’db2admin’;

DECLARE Table CHARACTER ’DynamicTable1’;

-- Code which calculates their actual values comes here

-- Update rows in the table

UPDATE Database.{Source}.{Schema}.{Table} AS R SET Value = 0;

WHILE statement

The WHILE statement evaluates a condition expression, and if it is TRUE executes

a sequence of statements.

254 ESQL

Syntax

�� While

Label

:

While

Label

 ��

While:

 WHILE condition DO statements END WHILE

The WHILE statement repeats the steps specified in DO as long as condition is

TRUE. It is your responsibility to ensure that the logic of the program is such that

the loop terminates. If condition evaluates to UNKNOWN, the loop terminates

immediately.

If present, Label gives the statement a name. This has no effect on the behavior of

the WHILE statement itself, but allows statements to include ITERATE and LEAVE

statements or other labelled statements, which in turn include them. The second

Label can be present only if the first Label is present and if it is, the labels must be

identical. It is not an error for two or more labelled statements at the same level to

have the same Label, but this partly negates the advantage of the second Label. The

advantage is that it unambiguously and accurately matches each END with its

WHILE. However, it is an error for a labelled statement within statements to have

the same label, because this makes the behavior of the ITERATE and LEAVE

statements ambiguous.

Example

For example:

DECLARE i INTEGER;

SET i = 1;

X : WHILE i <= 3 DO

 ...

 SET i = i + 1;

 END WHILE X;

ESQL functions: reference material, organized by function type

The following table summarizes the functions available in ESQL, and what they

do.

 CATEGORY FUNCTIONS RELATED KEYWORDS

Variable manipulation

Manipulation of all sources of variables

Basic manipulation of all

types of variable

v “CAST function” on page 306 v ENCODING, CCSID, AS

Selective assignment to

any variable

v “CASE function” on page 305

v “COALESCE function” on page 345

v ELSE, WHEN, THEN, END

Creation of values v “UUIDASBLOB function” on page 348

v “UUIDASCHAR function” on page 349

-

ESQL reference 255

Manipulation of message trees

Assignment to and

deletion from a message

tree

v “SELECT function” on page 320 (used with

SET statement)

v “ROW constructor function” on page 326

v “LIST constructor function” on page 327

v FROM, AS, ITEM, THE, SUM,

COUNT, MAX, MIN

Information relating to

message trees or subtrees

v “ASBITSTREAM function” on page 291

v “BITSTREAM function (deprecated)” on

page 295

v “FIELDNAME function” on page 295

v “FIELDNAMESPACE function” on page

296

v “FIELDTYPE function” on page 296

-

Processing Lists v CARDINALITY, see “CARDINALITY

function” on page 302 for details.

v EXISTS, see “EXISTS function” on page 303

for details.

v SINGULAR, see “SINGULAR function” on

page 303 for details.

v THE, see “THE function” on page 304 for

details.

Processing repeating

fields

v FOR

v “SELECT function” on page 320

v ALL, ANY, SOME

v FROM, AS, ITEM, THE, SUM,

COUNT, MAX, MIN

Processing based on data type

String processing

Numeric information

about strings

v “LENGTH function” on page 282

v “POSITION function” on page 285

IN

String conversion v “UPPER and UCASE functions” on page

291

v “LOWER and LCASE functions” on page

283

-

String manipulation v “LEFT function” on page 282

v “LTRIM function” on page 283

v “OVERLAY function” on page 284

v “REPLACE function” on page 286

v “REPLICATE function” on page 286

v “RIGHT function” on page 287

v “RTRIM function” on page 287

v “SPACE function” on page 288

v “SUBSTRING function” on page 288

v “TRANSLATE function” on page 289

v “TRIM function” on page 290

v LEADING, TRAILING, BOTH, FROM

v PLACING, FROM, FOR

v FROM FOR

Numeric processing

256 ESQL

Bitwise operations v “BITAND function” on page 271

v “BITNOT function” on page 271

v “BITOR function” on page 272

v “BITXOR function” on page 272

-

General v “ABS and ABSVAL functions” on page 269

v “ACOS function” on page 270

v “ASIN function” on page 270

v “ATAN function” on page 270

v “ATAN2 function” on page 270

v “COS function” on page 273

v “COSH function” on page 274

v “COT function” on page 274

v “DEGREES function” on page 274

v “EXP function” on page 274

v “FLOOR function” on page 275

v “LN and LOG functions” on page 275

v “LOG10 function” on page 276

v “MOD function” on page 276

v “POWER function” on page 277

v “RADIANS function” on page 277

v “RAND function” on page 277

v “ROUND function” on page 278

v “SIGN function” on page 278

v “SIN function” on page 279

v “SINH function” on page 279

v “SQRT function” on page 279

v “TAN function” on page 280

v “TANH function” on page 280

v “TRUNCATE function” on page 281

-

Date time processing

 v “CURRENT_DATE function” on page 266

v “CURRENT_GMTDATE function” on page

267

v “CURRENT_GMTTIME function” on page

267

v “CURRENT_TIME function” on page 266

v “CURRENT_TIMESTAMP function” on

page 266

v “CURRENT_GMTTIMESTAMP function”

on page 267

v “LOCAL_TIMEZONE function” on page

268

v “EXTRACT function” on page 264

YEAR, MONTH, DAY, HOUR, MINUTE,

SECOND

Boolean evaluation for conditional statements

ESQL reference 257

Functions that return a

boolean value

v BETWEEN, see “ESQL simple comparison

operators” on page 164 for details.

v EXISTS, see “EXISTS function” on page 303

for details.

v IN, see “ESQL simple comparison

operators” on page 164 for details.

v LIKE, see “ESQL simple comparison

operators” on page 164 for details.

v “NULLIF function” on page 346

v “LASTMOVE function” on page 301

v “SAMEFIELD function” on page 301

v SINGULAR, see “SINGULAR function” on

page 303 for details.

SYMMETRIC, ASYMMETRIC, AND

Broker database interaction

Actions on tables v “PASSTHRU function” on page 346

v “SELECT function” on page 320

v FROM, AS, ITEM, THE, SUM,

COUNT, MAX, MIN

Results of actions v “SQLCODE function” on page 259

v “SQLERRORTEXT function” on page 259

v “SQLNATIVEERROR function” on page

260

v “SQLSTATE function” on page 260

-

Calling ESQL functions

Most ESQL functions belong to a schema called SQL and this is particularly useful

if you have functions with the same name. For example, if you have created a

function called SQRT, you can code:

 /* call my SQRT function */

 SET Variable1=SQRT (4);

 /* call the SQL supplied function */

 SET Variable2=SQL.SQRT (144);

Most of the functions described in this section impose restrictions on the data

types of the arguments that can be passed to the function. If the values passed to

the functions do not match the required data types, errors are generated at node

configuration time whenever possible. Otherwise runtime errors are generated

when the function is evaluated.

ESQL database state functions

ESQL provides four functions to return database state. These are:

v “SQLCODE function” on page 259

v “SQLERRORTEXT function” on page 259

v “SQLNATIVEERROR function” on page 260

v “SQLSTATE function” on page 260

258 ESQL

SQLCODE function

SQLCODE is a database state function that returns an INTEGER data type with a

default value of 0 (zero).

Syntax

�� SQLCODE ��

Within a message flow, you can access and update an external database resource

using the available ESQL database functions in the Filter, Database, and Compute

nodes. When making calls to an external database, you might get errors, such as a

table does not exist, a database is not available, or an insert for a key that already

exists.

When these errors occur, the default action of the broker is to generate an

exception. This behavior is determined by how you have set the property Throw

exception on database error. If this check box is selected, the broker stops processing

the node, propagates the message to the node’s failure terminal, and writes the

details of the error to the ExceptionList. If you want to override the default

behavior and handle a database error in the ESQL in the node, clear the Throw

exception on database error check box. The broker does not throw an exception and

you must include the THROW statement to throw an exception if a certain SQL

state code is not expected. See “THROW statement” on page 250 for a description

of THROW.

If you choose to handle database errors in a node, you can use the database state

function SQLCODE to receive information about the status of the DBMS call made

in ESQL. You can include it in conditional statements in current node’s ESQL to

recognize and handle possible errors.

SQLERRORTEXT function

SQLERRORTEXT is a database state function that returns a CHARACTER data

type with a default value of ’’ (empty string).

Syntax

�� SQLERRORTEXT ��

Within a message flow, you can access and update an external database resource

using the available ESQL database functions in the Filter, Database, and Compute

nodes. When making calls to an external database, you might get errors, such as a

table does not exist, a database is not available, or an insert for a key that already

exists.

When these errors occur, the default action of the broker is to generate an

exception. This behavior is determined by how you have set the property Throw

exception on database error. If you have selected this check box, the broker stops

processing the node, propagates the message to the node’s failure terminal, and

writes the details of the error to the ExceptionList. If you want to override the

ESQL reference 259

default behavior and handle a database error in the ESQL in the node, clear the

Throw exception on database error check box. The broker does not throw an exception

and you must include the THROW statement to throw an exception if a certain

SQL state code is not expected. See “THROW statement” on page 250 for a

description of THROW.

If you choose to handle database errors in a node, you can use the database state

function SQLERRORTEXT to receive information about the status of the DBMS call

made in ESQL. You can include it in conditional statements in current node’s ESQL

to recognize and handle possible errors.

SQLNATIVEERROR function

SQLNATIVEERROR is a database state function that returns an INTEGER data

type with a default value of 0 (zero).

Syntax

�� SQLNATIVEERROR ��

Within a message flow, you can access and update an external database resource

using the available ESQL database functions in the Filter, Database, and Compute

nodes. When making calls to an external database, you might get errors, such as a

table does not exist, a database is not available, or an insert for a key that already

exists.

When these errors occur, the default action of the broker is to generate an

exception. This behavior is determined by how you have set the property Throw

exception on database error. If you have selected this check box, the broker stops

processing the node, propagates the message to the node’s failure terminal, and

writes the details of the error to the ExceptionList. If you want to override the

default behavior and handle a database error in the ESQL in the node, clear the

Throw exception on database error check box. The broker does not throw an exception

and you must include the THROW statement to throw an exception if a certain

SQL state code is not expected. See “THROW statement” on page 250 for a

description of THROW.

If you choose to handle database errors in a node, you can use the database state

function SQLNATIVEERROR to receive information about the status of the DBMS

call made in ESQL. You can include it in conditional statements in current node’s

ESQL to recognize and handle possible errors.

SQLSTATE function

SQLSTATE is a database state function that returns a 5 character data type of

CHARACTER with a default value of ’00000’ (five zeros as a string).

260 ESQL

Syntax

�� SQLSTATE ��

Within a message flow, you can access and update an external database resource

using the available ESQL database functions in the Filter, Database, and Compute

nodes. When making calls to an external database, you might get errors, such as a

table does not exist, a database is not available, or an insert for a key that already

exists.

When these errors occur, the default action of the broker is to generate an

exception. This behavior is determined by how you have set the property Throw

exception on database error. If you select this check box, the broker stops processing

the node, propagates the message to the node’s failure terminal, and writes the

details of the error to the ExceptionList. If you want to override the default

behavior and handle a database error in the ESQL in the node, clear the Throw

exception on database error check box. The broker does not throw an exception and

you must include the THROW statement to throw an exception if a certain SQL

state code is not expected. See “THROW statement” on page 250 for a description

of THROW.

If you choose to handle database errors in a node, you can use the database state

function SQLSTATE to receive information about the status of the DBMS call made

in ESQL. You can include it in conditional statements in current node’s ESQL to

recognize and handle possible errors.

SQL states

In ESQL, SQL states are variable length character strings. By convention, they are

six characters long and contain only the characters 0-9, A-Z . The significance of

the six characters is:

Char 1

The origin of the exception

Chars 2 - 3

The class of the exception

Chars 4 - 6

The subclass of the exception

The SQL state of an exception is determined by a two stage process. In the first

stage, the exception information is examined and any wrapping exceptions (that is,

information saying what the broker was doing at the time the exception occurred)

is stepped over until the exception describing the original error is located.

The second stage is as follows:

1. If the selected exception is a database exception, the SQL state is that supplied

by the database, but prefixed by the letter “D” to avoid any confusion with

exceptions arising in the broker. The SQL code, native error, and error text are

those supplied by the database.

2. If the selected exception is a user exception (that is, it originated in a THROW

statement), the SQL code, state, native error, and error text are taken from the

first four inserts of the exception, in order. The resulting state value is taken as

is (not prefixed by a letter such as “U”). In fact, the letter “U” is not used by

ESQL reference 261

the broker as an origin indicator. If you want to define a unique SQL state

rather than to imitate an existing one, use SQL states starting with the letter

“U”. Using SQL states starting with the letter “U” allows a handler to match all

user-defined and thrown exceptions with a LIKE’U%’ operator.

3. If the selected exception originated in the message transport or in the ESQL

implementation itself, the SQL code, state, native error, and error text are as

described in the list below.

4. For all other exceptions, the SQL state is ’’, indicating no origin, no class, and

no subclass.

Some exceptions that currently give an empty SQL state might give individual

states in future releases. If you want to catch unclassified exceptions, use the “all”

wildcard (“%”) for the SQL state on the last handler of a scope. This will continue

to catch the same set of exceptions if previously unclassified exceptions are given

new unique SQL states.

The following SQL states are defined:

Dddddd

ddddd is the state returned by the database.

SqlState = ‘S22003’

Arithmetic overflow. An operation whose result is a numeric type resulted in a

value beyond the range supported.

SqlState = ‘S22004’

Null value not allowed. A null value was present in a place where null values

are not allowed.

SqlState = ‘S22007’

Invalid date time format. A character string used in a cast from character to a

date-time type had either the wrong basic format (for example, ’01947-10-24’)

or had values outside the ranges allowed by the Gregorian calendar (for

example, ’1947-21-24’).

SqlState = ‘S22008’

Date time field overflow. An operation whose result is a date/time type

resulted in a value beyond the range supported.

SqlState = ‘S22011’

SUBSTRING error. The FROM and FOR parameters, in conjunction with the

length of the first operand, violate the rules of the SUBSTRING function.

SqlState = ‘S22012’

Divide by zero. A divide operation whose result data type has no concept of

infinity had a zero right operand.

SqlState = ‘S22015’

Interval field overflow. An operation whose result is of type INTERVAL

resulted in a value beyond the range supported by the INTERVAL data type.

SqlState = ‘S22018’

Invalid character value for cast.

SqlState = ‘SPS001’

Invalid target terminal. A PROPAGATE to terminal statement attempted to use

an invalid terminal name.

SqlState = ‘SPS002’

Invalid target label. A PROPAGATE to label statement attempted to use an

invalid label.

262 ESQL

SqlState = ’MQW001’, SqlNativeError = 0

The bit-stream does not meet the requirements for MQ messages. No attempt

was made to put it to a queue. Retrying and queue administration will not

succeed in resolving this problem.

SqlState = ’MQW002’, SqlNativeError = 0

The target queue or queue manager names were not valid (that is, they could

not be converted from unicode to the queue manager’s code page). Retrying

and queue emptying will not succeed in resolving this problem.

SqlState = ’MQW003’, SqlNativeError = 0

Request mode was specified but the “reply to” queue or queue manager names

were not valid (i.e. could not be converted from unicode to the message’s code

page). Retrying and queue emptying will not succeed in resolving this

problem.

SqlState = ’MQW004’, SqlNativeError = 0

Reply mode was specified but the queue or queue manager names taken from

the message were not valid (that is, they could not be converted from the

given code page to unicode). Retrying and queue emptying will not succeed in

resolving this problem.

SqlState = ’MQW005’, SqlNativeError = 0

Destination list mode was specified but the destination list supplied does not

meet the basic requirements for destination lists. No attempt was made to put

any message to a queue. Retrying and queue administration will not succeed

in resolving this problem.

SqlState = ’MQW101’, SqlNativeError = As returned by MQ

The target queue manager or queue could not be opened. Queue

administration may succeed in resolving this problem but retrying will not.

SqlState = ’MQW102’, SqlNativeError = as returned by MQ

The target queue manager or queue could not be written to. Retrying and

queue administration might succeed in resolving this problem.

SqlState = ’MQW201’, SqlNativeError = number of destinations with an error

More than one error occurred while processing a destination list. The message

may have been put to zero or more queues. Retrying and queue administration

might succeed in resolving this problem.

Anything that the user has used in a THROW statement

Use Uuuuuuu for user exceptions, unless imitating one of the exceptions defined

above.

Empty string

All other errors.

ESQL datetime functions

This topic lists the ESQL datetime functions.

In addition to the functions described here, you can use arithmetic operators to

perform various calculations on datetime values. For example, you can use the -

(minus) operator to calculate the difference between two dates as an interval, or

you can add an interval to a timestamp.

This section covers the following topics:

“EXTRACT function” on page 264

ESQL reference 263

“CURRENT_DATE function” on page 266

“CURRENT_TIME function” on page 266

“CURRENT_TIMESTAMP function” on page 266

“CURRENT_GMTDATE function” on page 267

“CURRENT_GMTTIME function” on page 267

“CURRENT_GMTTIMESTAMP function” on page 267

“LOCAL_TIMEZONE function” on page 268

EXTRACT function

The EXTRACT function extracts fields (or calculates values) from datetime values

and intervals.

The result is INTEGER for YEAR, MONTH, DAY, HOUR, MINUTE, DAYS,

DAYOFYEAR, DAYOFWEEK, MONTHS, QUARTEROFYEAR, QUARTERS,

WEEKS, WEEKOFYEAR, and WEEKOFMONTH extracts, but FLOAT for SECOND

extracts, and BOOLEAN for ISLEAPYEAR extracts. If the SourceDate is NULL, the

result is NULL regardless of the type of extract.

Syntax

�� EXTRACT (YEAR FROM SourceDate)

MONTH

DAY

HOUR

MINUTE

SECOND

DAYS

DAYOFYEAR

DAYOFWEEK

MONTHS

QUARTEROFYEAR

QUARTERS

WEEKS

WEEKOFYEAR

WEEKOFMONTH

ISLEAPYEAR

 ��

EXTRACT extracts individual fields from datetime values and intervals. You can

extract a field only if it is present in the datetime value specified in the second

parameter. Either a parse-time or a runtime error is generated if the requested field

does not exist within the data type.

The following table describes the extracts that are supported in Version 6.0:

Note: All new integer values start from 1.

 Table 2.

Extract Description

YEAR Year

264 ESQL

Table 2. (continued)

Extract Description

MONTH Month

DAY Day

HOUR Hour

MINUTE Minute

SECOND Second

DAYS Days encountered between 1st January 0001

and the SourceDate.

DAYOFYEAR Day of year

DAYOFWEEK Day of the week: Sunday = 1, Monday = 2,

Tuesday = 3, Wednesday = 4, Thursday = 5,

Friday = 6, Saturday = 7.

MONTHS Months encountered between 1st January

0001 and the SourceDate.

QUARTEROFYEAR Quarter of year: January to March = 1, April

to June = 2, July to September = 3, October

to December = 4.

QUARTERS Quarters encountered between 1st January

0001 and the SourceDate.

WEEKS Weeks encountered between 1st January

0001 and the SourceDate.

WEEKOFYEAR Week of year

WEEKOFMONTH Week of month

ISLEAPYEAR Whether this is a leap year

Notes:

1. A week is defined as Sunday to Saturday, not any seven consecutive

days. You must convert to an alternative representation scheme if

required.

2. The source date time epoch is 1 January 0001. Dates before the epoch

are not valid for this function.

3. The Gregorian calendar is assumed for calculation.

Example

EXTRACT(YEAR FROM CURRENT_DATE)

and

EXTRACT(HOUR FROM LOCAL_TIMEZONE)

both work without error, but

EXTRACT(DAY FROM CURRENT_TIME)

fails.

EXTRACT (DAYS FROM DATE ’2000-02-29’)

calculates the number of days encountered since year 1 to ’2000-02-29’ and

EXTRACT (DAYOFYEAR FROM CURRENT_DATE)

ESQL reference 265

calculates the number of days encountered since the beginning of the current year

but

EXTRACT (DAYOFYEAR FROM CURRENT_TIME)

fails because CURRENT_TIME does not contain date information.

CURRENT_DATE function

The CURRENT_DATE datetime function returns the current date.

Syntax

�� CURRENT_DATE ��

CURRENT_DATE returns a DATE value representing the current date in local time.

As with all SQL functions that take no parameters, no parentheses are required or

accepted. All calls to CURRENT_DATE within the processing of one node are

guaranteed to return the same value.

CURRENT_TIME function

The CURRENT_TIME datetime function returns the current local time.

Syntax

�� CURRENT_TIME ��

CURRENT_TIME returns a TIME value representing the current local time. As

with all SQL functions that take no parameters, no parentheses are required or

accepted. All calls to CURRENT_TIME within the processing of one node are

guaranteed to return the same value.

CURRENT_TIMESTAMP function

The CURRENT_TIMESTAMP datetime function returns the current date and local

time.

Syntax

�� CURRENT_TIMESTAMP ��

CURRENT_TIMESTAMP returns a TIMESTAMP value representing the current

date and local time. As with all SQL functions that take no parameters, no

parentheses are required or accepted. All calls to CURRENT_TIMESTAMP within

the processing of one node are guaranteed to return the same value.

266 ESQL

Example

To obtain the following XML output message:

<Body>

<Message>Hello World</Message>

<DateStamp>2006-02-01 13:13:56.444730</DateStamp>

</Body>

use the following ESQL:

SET OutputRoot.XML.Body.Message = ’Hello World’;

SET OutputRoot.XML.Body.DateStamp = CURRENT_TIMESTAMP;

CURRENT_GMTDATE function

The CURRENT_GMTDATE datetime function returns the current date in the GMT

time zone.

Syntax

�� CURRENT_GMTDATE ��

CURRENT_GMTDATE returns a DATE value representing the current date in the

GMT time zone. As with all SQL functions that take no parameters, no parentheses

are required or accepted. All calls to CURRENT_GMTDATE within the processing

of one node are guaranteed to return the same value.

CURRENT_GMTTIME function

The CURRENT_GMTTIME datetime function returns the current time in the GMT

time zone.

Syntax

�� CURRENT_GMTTIME ��

It returns a GMTTIME value representing the current time in the GMT time zone.

As with all SQL functions that take no parameters, no parentheses are required or

accepted. All calls to CURRENT_GMTTIME within the processing of one node are

guaranteed to return the same value.

CURRENT_GMTTIMESTAMP function

The CURRENT_GMTTIMESTAMP datetime function returns the current date and

time in the GMT time zone.

ESQL reference 267

Syntax

�� CURRENT_GMTTIMESTAMP ��

CURRENT_GMTTIMESTAMP returns a GMTTIMESTAMP value representing the

current date and time in the GMT time zone. As with all SQL functions that take

no parameters, no parentheses are required or accepted. All calls to

CURRENT_GMTTIMESTAMP within the processing of one node are guaranteed to

return the same value.

LOCAL_TIMEZONE function

The LOCAL_TIMEZONE datetime function returns the displacement of the local

time zone from GMT.

Syntax

�� LOCAL_TIMEZONE ��

LOCAL_TIMEZONE returns an interval value representing the local time zone

displacement from GMT. As with all SQL functions that take no parameters, no

parentheses are required or accepted. The value returned is an interval in hours

and minutes representing the displacement of the current time zone from

Greenwich Mean Time. The sign of the interval is such that a local time can be

converted to a time in GMT by subtracting the result of the LOCAL_TIMEZONE

function.

ESQL numeric functions

This topic lists the ESQL numeric functions and covers the following:

“ABS and ABSVAL functions” on page 269

“ACOS function” on page 270

“ASIN function” on page 270

“ATAN function” on page 270

“ATAN2 function” on page 270

“BITAND function” on page 271

“BITNOT function” on page 271

“BITOR function” on page 272

“BITXOR function” on page 272

“CEIL and CEILING functions” on page 273

“COS function” on page 273

“COSH function” on page 274

268 ESQL

“COT function” on page 274

“DEGREES function” on page 274

“EXP function” on page 274

“FLOOR function” on page 275

“LN and LOG functions” on page 275

“LOG10 function” on page 276

“MOD function” on page 276

“POWER function” on page 277

“RADIANS function” on page 277

“RAND function” on page 277

“ROUND function” on page 278

“SIGN function” on page 278

“SIN function” on page 279

“SINH function” on page 279

“SQRT function” on page 279

“TAN function” on page 280

“TANH function” on page 280

“TRUNCATE function” on page 281

ABS and ABSVAL functions

The ABS and ABSVAL numeric functions return the absolute value of a supplied

number.

Syntax

�� ABS (source_number)

ABSVAL
 ��

The absolute value of the source number is a number with the same magnitude as

the source but without a sign. The parameter must be a numeric value. The result

is of the same type as the parameter unless it is NULL, in which case the result is

NULL.

For example:

ABS(-3.7)

returns 3.7

ABS(3.7)

returns 3.7

ABS(1024)

returns 1024

ESQL reference 269

ACOS function

The ACOS numeric function returns the angle of a given cosine.

Syntax

�� ACOS (NumericExpression) ��

The ACOS function returns the angle, in radians, whose cosine is the given

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

ASIN function

The ASIN numeric function returns the angle of the given sine.

Syntax

�� ASIN (NumericExpression) ��

The ASIN function returns the angle, in radians, whose sine is the given

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

ATAN function

The ATAN numeric function returns the angle of the given tangent.

Syntax

�� ATAN (NumericExpression) ��

The ATAN function returns the angle, in radians, whose tangent is the given

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

ATAN2 function

The ATAN2 numeric function returns the angle subtended in a right angled

triangle between an opposite and the base.

270 ESQL

Syntax

�� ATAN2 (OppositeNumericExpression , BaseNumericExpression) ��

The ATAN2 function returns the angle, in radians, subtended (in a right angled

triangle) by an opposite given by OppositeNumericExpression and the base given by

BaseNumericExpression. The parameters can be any built-in numeric data type. The

result is FLOAT unless either parameter is NULL, in which case the result is NULL

BITAND function

The BITAND numeric function performs a bitwise AND on the binary

representation of two or more numbers.

Syntax

��

�

 ,

BITAND

(

source_integer

,

source_integer

)

��

BITAND takes two or more integer values and returns the result of performing the

bitwise AND on the binary representation of the numbers. The result is INTEGER

unless either parameter is NULL, in which case the result is NULL.

For example:

BITAND(12, 7)

returns 4 as shown by this worked example:

 Binary Decimal

 1100 12

AND 0111 7

 0100 4

BITNOT function

The BITNOT numeric function performs a bitwise complement on the binary

representation of a number.

Syntax

�� BITNOT (source_integer) ��

BITNOT takes an integer value and returns the result of performing the bitwise

complement on the binary representation of the number. The result is INTEGER

unless either parameter is NULL, in which case the result is NULL.

ESQL reference 271

For example:

BITNOT(7)

returns -8, as shown by this worked example:

 Binary Decimal

00...0111 7

NOT

11...1000 -8

BITOR function

The BITOR numeric function performs a bitwise OR on the binary representation

of two or more numbers.

Syntax

��

�

 ,

BITOR

(

source_integer

,

source_integer

)

��

BITOR takes two or more integer values and returns the result of performing the

bitwise OR on the binary representation of the numbers. The result is INTEGER

unless either parameter is NULL, in which case the result is NULL.

For example:

BITOR(12, 7)

returns 15, as shown by this worked example:

 Binary Decimal

 1100 12

OR 0111 7

 1111 15

BITXOR function

The BITXOR numeric function performs a bitwise XOR on the binary

representation of two or more numbers.

Syntax

��

�

 ,

BITXOR

(

source_integer

,

source_integer

)

��

BITXOR takes two or more integer values and returns the result of performing the

bitwise XOR on the binary representation of the numbers. The result is INTEGER

unless either parameter is NULL, in which case the result is NULL.

272 ESQL

For example:

BITXOR(12, 7)

returns 11, as shown by this worked example:

 Binary Decimal

 1100 12

XOR 0111 7

 1011 11

CEIL and CEILING functions

The CEIL and CEILING numeric functions return the smallest integer equivalent of

a decimal number.

Syntax

�� CEIL (source_number)

CEILING
 ��

CEIL and CEILING return the smallest integer value greater than or equal to

source_number. The parameter can be any numeric data type. The result is of the

same type as the parameter unless it is NULL, in which case the result is NULL.

For example:

CEIL(1)

returns 1

CEIL(1.2)

returns 2.0

CEIL(-1.2)

returns -1.0

If possible, the scale is changed to zero. If the result cannot be represented at that

scale, it is made sufficiently large to represent the number.

COS function

The COS numeric function returns the cosine of a given angle.

Syntax

�� COS (NumericExpression) ��

The COS function returns the cosine of the angle, in radians, given by

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

ESQL reference 273

COSH function

The COSH numeric function returns the hyperbolic cosine of a given angle.

Syntax

�� COSH (NumericExpression) ��

The COSH function returns the hyperbolic cosine of the angle, in radians, given by

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

COT function

The COT numeric function returns the cotangent of a given angle.

Syntax

�� COT (NumericExpression) ��

The COT function returns the cotangent of the angle, in radians, given by

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

DEGREES function

The DEGREES numeric function returns the angle of the radians supplied.

Syntax

�� DEGREES (NumericExpression) ��

The DEGREES function returns the angle, in degrees, specified by

NumericExpression in radians. The parameter can be any built-in numeric data type.

The result is FLOAT unless the parameter is NULL, in which case the result is

NULL.

EXP function

The EXP numeric function returns the exponential value of a given number.

274 ESQL

Syntax

�� EXP (NumericExpression) ��

The EXP function returns the exponential of the value specified by

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

FLOOR function

The FLOOR numeric function returns the largest integer equivalent to a given

decimal number.

Syntax

�� FLOOR (source_number) ��

FLOOR returns the largest integer value less than or equal to source_number. The

parameter can be any numeric data type. The result is of the same type as the

parameter unless it is NULL, in which case the result is NULL.

For example:

FLOOR(1)

returns 1

FLOOR(1.2)

returns 1.0

FLOOR(-1.2)

returns -2.0

If possible, the scale is changed to zero. If the result cannot be represented at that

scale, it is made sufficiently large to represent the number.

LN and LOG functions

The LN and LOG equivalent numeric functions return the natural logarithm of a

given value.

ESQL reference 275

Syntax

�� LN (NumericExpression)

LOG
 ��

The LN and LOG functions return the natural logarithm of the value specified by

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

LOG10 function

The LOG10 numeric function returns the logarithm to base 10 of a given value.

Syntax

�� LOG10 (NumericExpression) ��

The LOG10 function returns the logarithm to base 10 of the value specified by

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

MOD function

The MOD numeric function returns the remainder when dividing two numbers.

Syntax

�� MOD (dividend , divisor) ��

MOD returns the remainder when the first parameter is divided by the second

parameter. The result is negative only if the first parameter is negative. Parameters

must be integers. The function returns an integer. If any parameter is NULL, the

result is NULL.

For example:

MOD(7, 3)

returns 1

MOD(-7, 3)

returns -1

MOD(7, -3)

returns 1

MOD(6, 3)

276 ESQL

returns 0

POWER function

The POWER numeric function raises a value to the power supplied.

Syntax

�� POWER (ValueNumericExpression , PowerNumericExpression) ��

POWER returns the given value raised to the given power. The parameters can be

any built-in numeric data type. The result is FLOAT unless any parameter is

NULL, in which case the result is NULL

An exception occurs, if the value is either:

v Zero and the power is negative, or

v Negative and the power is not an integer

RADIANS function

The RADIANS numeric function returns a given radians angle in degrees.

Syntax

�� RADIANS (NumericExpression) ��

The RADIANS function returns the angle, in radians, specified by

NumericExpression in degrees. The parameter can be any built-in numeric data type.

The result is FLOAT unless the parameter is NULL, in which case the result is

NULL.

RAND function

The RAND numeric function returns a pseudo random number.

Syntax

�� RAND ()

IntegerExpression
 ��

The RAND function returns a pseudo random number in the range 0.0 to 1.0. If

supplied, the parameter initializes the pseudo random sequence.

The parameter can be of any numeric data type, but any fractional part is ignored.

The result is FLOAT unless the parameter is NULL, in which case the result is

NULL.

ESQL reference 277

ROUND function

The ROUND numeric function rounds a supplied value to a given number of

places.

Syntax

�� ROUND (source_number , precision) ��

If precision is a positive number, source_number is rounded to precision places right

of the decimal point. If precision is negative, the result is source_number rounded to

the absolute value of precision places to the left of the decimal point.

source_number can be any built-in numeric data type. precision must be an integer.

The result of the function is INTEGER if the first parameter is INTEGER, FLOAT if

the first parameter is FLOAT, and DECIMAL if the first parameter is DECIMAL.

The result is of the same type as the source_number parameter unless it is NULL, in

which case the result is NULL. When rounding a DECIMAL, the banker’s or half

even symmetric rounding rules are used. Details of these can be found in “ESQL

DECIMAL data type” on page 153.

For example:

ROUND(27.75, 2)

returns 27.75

ROUND(27.75, 1)

returns 27.8

ROUND(27.75, 0)

returns 28.0

ROUND(27.75, -1)

returns 30.0

If possible, the scale is changed to the given value. If the result cannot be

represented within the given scale, it is INF.

SIGN function

The SIGN numeric function tells you whether a given number is positive, negative,

or zero.

278 ESQL

Syntax

�� SIGN (NumericExpression) ��

The SIGN function returns -1, 0, or +1 when the NumericExpression value is

negative, zero, or positive respectively. The parameter can be any built-in numeric

data type and the result is of the same type as the parameter. If the parameter is

NULL, the result is NULL

SIN function

The SIN numeric function returns the sine of a given angle.

Syntax

�� SIN (NumericExpression) ��

The SIN function returns the sine of the angle, in radians, given by

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

SINH function

The SINH numeric function returns the hyperbolic sine of a given angle.

Syntax

�� SINH (NumericExpression) ��

The SINH function returns the hyperbolic sine of the angle, in radians, given by

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

SQRT function

The SQRT numeric function returns the square root of a given number.

ESQL reference 279

Syntax

�� SQRT (source_number) ��

SQRT returns the square root of source_number. The parameter can be any built-in

numeric data type. The result is a FLOAT. If the parameter is NULL, the result is

NULL.

For example:

SQRT(4)

returns 2E+1

SQRT(2)

returns 1.414213562373095E+0

SQRT(-1)

throws an exception.

TAN function

The TAN numeric function returns the tangent of a given angle.

Syntax

�� TAN (NumericExpression) ��

The TAN function returns the tangent of the angle, in radians, given by

NumericExpression. The parameter can be any built-in numeric data type. The result

is FLOAT unless the parameter is NULL, in which case the result is NULL.

TANH function

The TANH numeric function returns the hyperbolic tangent of an angle.

Syntax

�� TANH (NumericExpression) ��

The TANH function returns the hyperbolic tangent of the angle, in radians, given

by NumericExpression. The parameter can be any built-in numeric data type. The

result is FLOAT unless the parameter is NULL, in which case the result is NULL.

280 ESQL

TRUNCATE function

The TRUNCATE numeric function truncates a supplied decimal number a

specified number of places.

Syntax

�� TRUNCATE (source_number , precision) ��

If precision is positive, the result of the TRUNCATE function is source_number

truncated to precision places right of the decimal point. If precision is negative, the

result is source_number truncated to the absolute value of precision places to the left

of the decimal point.

source_number can be any built-in numeric data type. precision must evaluate to an

INTEGER. The result is of the same data type as source_number. If any parameter is

NULL, the result is NULL.

For example:

TRUNCATE(27.75, 2)

returns 27.75

TRUNCATE(27.75, 1)

returns 27.7

TRUNCATE(27.75, 0)

returns 27.0

TRUNCATE(27.75, -1)

returns 20.0

If possible, the scale is changed to the given value. If the result cannot be

represented within the given scale, it is INF.

ESQL string manipulation functions

This topic lists the ESQL string manipulation functions.

Most of the following functions manipulate all string data types (BIT, BLOB, and

CHARACTER). Exceptions to this are UPPER, LOWER, LCASE, UCASE, and

SPACE, which operate only on character strings.

In these descriptions, the term singleton refers to a single part (BIT, BLOB, or

CHARACTER) within a string of that type.

In addition to the functions described here, you can use the logical OR operator to

perform various calculations on ESQL string manipulation values.

To concatenate two strings, use the “ESQL string operator” on page 170.

ESQL reference 281

This section covers the following topics:

“LEFT function”

“LENGTH function”

“LOWER and LCASE functions” on page 283

“LTRIM function” on page 283

“OVERLAY function” on page 284

“POSITION function” on page 285

“REPLACE function” on page 286

“REPLICATE function” on page 286

“RIGHT function” on page 287

“RTRIM function” on page 287

“SPACE function” on page 288

“SUBSTRING function” on page 288

“TRANSLATE function” on page 289

“TRIM function” on page 290

“UPPER and UCASE functions” on page 291

LEFT function

LEFT is a string manipulation function that returns a string consisting of the

source string truncated to the length given by the length expression.

Syntax

�� LEFT (source_string , LengthIntegerExpression) ��

The source string can be of the CHARACTER, BLOB or BIT data type and the

length must be of type INTEGER. The truncation discards the final characters of

the source_string

The result is of the same type as the source string. If the length is negative or zero,

a zero length string is returned. If either parameter is NULL, the result is NULL

LENGTH function

The LENGTH function is used for string manipulation on all string data types

(BIT, BLOB, and CHARACTER) and returns an integer value giving the number of

singletons in source_string.

282 ESQL

Syntax

�� LENGTH (source_string) ��

It If the source_string is NULL, the result is the NULL value. The term singleton

refers to a single part (BIT, BYTE, or CHARACTER) within a string of that type.

For example:

LENGTH(’Hello World!’);

returns 12.

LENGTH(’’);

returns 0.

LOWER and LCASE functions

The LOWER and LCASE functions are equivalent, and manipulate CHARACTER

string data; they both return a new character string, which is identical to

source_string, except that all uppercase letters are replaced with the corresponding

lowercase letters.

Syntax

�� LOWER (source_string)

LCASE
 ��

For example:

LOWER(’Mr Smith’)

returns ’mr smith’.

LOWER(’22 Railway Cuttings’)

returns ’22 railway cuttings’.

LCASE(’ABCD’)

returns ’abcd’.

LTRIM function

LTRIM is a string manipulation function, used for manipulating all data types (BIT,

BLOB, and CHARACTER), that returns a character string value of the same data

type and content as source_string, but with any leading default singletons removed.

ESQL reference 283

Syntax

�� LTRIM (source_string) ��

The term singleton is used to refer to a single part (BIT, BLOB, or CHARACTER)

within a string of that type.

The LTRIM function is equivalent to TRIM(LEADING FROM source_string).

If the parameter is NULL, the result is NULL.

The default singleton depends on the data type of source_string:

 Table 3.

Character ’ ’ (space)

BLOB X’00’

Bit B’0’

OVERLAY function

OVERLAY is a string manipulation function that manipulates all string data types

(BIT, BLOB, and CHARACTER) and replaces part of a string with a substring.

Syntax

�� OVERLAY (source_string PLACING source_string2 �

� FROM start_position)

FOR

string_length
 ��

OVERLAY returns a new string of the same type as the source and is identical to

source_string, except that a given substring in the string, starting from the specified

numeric position and of the given length, has been replaced by source_string2.

When the length of the substring is zero, nothing is replaced.

For example:

OVERLAY (’ABCDEFGHIJ’ PLACING ’1234’ FROM 4 FOR 3)

returns the string ’ABC1234GHIJ’

If any parameter is NULL, the result is NULL. If string_length is not specified, it is

assumed to be equal to LENGTH(source_string2).

The result of the OVERLAY function is equivalent to:

SUBSTRING(source_string FROM 1 FOR start_position -1)

 || source_string2 ||

 SUBSTRING(source_string FROM start_position + string_length)

284 ESQL

where || is the concatenation operator.

POSITION function

POSITION is a string manipulation function that manipulates all data types (BIT,

BLOB, and CHARACTER), and returns the position of one string within another.

Syntax

�� POSITION (SearchExpression IN SourceExpression

FROM

FromExpression
 �

�)

REPEAT

RepeatExpression
 ��

POSITION returns an integer giving the position of one string (SearchExpression) in

a second string (SourceExpression). A position of one corresponds to the first

character of the source string.

If present, the FROM clause gives a position within the search string at which the

search commences. In the absence of a FROM clause, the source string is searched

from the beginning.

If present, the REPEAT clause gives a repeat count, returning the position returned

to be that of the nth occurrence of the search string within the source string. If the

repeat count is negative, the source string is searched from the end.

In the absence of a REPEAT clause, a repeat count of +1 is assumed; that is, the

position of the first occurrence, searching from the beginning is returned. If the

search string has a length of zero, the result is one.

If the search string cannot be found, the result is zero: if the FROM clause is

present, this applies only to the section of the source string being searched; if the

REPEAT clause is present this applies only if there are insufficient occurrences of

the string.

If any parameter is NULL, the result is NULL.

The search and source strings can be of the CHARACTER, BLOB, or BIT data

types but they must be of the same type.

For example:

 POSITION(’Village’ IN ’Hursley Village’); returns 9

 POSITION(’Town’ IN ’Hursley Village’); returns 0

 POSITION (’B’ IN ’ABCABCABCABCABC’); -> returns 2

 POSITION (’D’ IN ’ABCABCABCABCABC’); -> returns 0

 POSITION (’A’ IN ’ABCABCABCABCABC’ FROM 4); -> returns 4

 POSITION (’C’ IN ’ABCABCABCABCABC’ FROM 2); -> returns 3

 POSITION (’B’ IN ’ABCABCABCABCABC’ REPEAT 2); -> returns 5

 POSITION (’C’ IN ’ABCABCABCABCABC’ REPEAT 4); -> returns 12

 POSITION (’A’ IN ’ABCABCABCABCABC’ FROM 4 REPEAT 2); -> returns 7

 POSITION (’AB’ IN ’ABCABCABCABCABC’ FROM 2 REPEAT 3); -> returns 10

ESQL reference 285

POSITION (’A’ IN ’ABCABCABCABCABC’ REPEAT -2); -> returns 10

 POSITION (’BC’ IN ’ABCABCABCABCABC’ FROM 2 REPEAT -3); -> returns 5

REPLACE function

REPLACE is a string manipulation function that manipulates all string data types

(BIT, BLOB, and CHARACTER), and replaces parts of a string with supplied

substrings.

Syntax

�� REPLACE (SourceStringExpression , SearchStringExpression)

ReplaceStringExpression
 ��

REPLACE returns a string consisting of the source string, with each occurrence of

the search string replaced by the replace string. The parameter strings can be of the

CHARACTER, BLOB, or BIT data types, but all three must be of the same type.

If any parameter is NULL, the result is NULL.

The search process is single pass from the left and disregards characters that have

already been matched. The following examples give the results shown:

 REPLACE(’ABCDABCDABCDA’, ’A’, ’AA’)

 -- RESULT = AABCDAABCDAABCDAA

 REPLACE(’AAAABCDEFGHAAAABCDEFGH’, ’AA’, ’XYZ’)

 -- RESULT = XYZXYZBCDEFGHXYZXYZBCDEFGH

 REPLACE(’AAAAABCDEFGHAAAABCDEFGH’, ’AA’, ’XYZ’)

 -- RESULT = XYZXYZABCDEFGHXYZXYZBCDEFGH

The first example shows that replacement is single pass. Each occurrence of A is

replaced by AA but these are not then expanded further.

The second example shows that characters once matched are not considered

further. The first AA pair is matched, replaced and disregarded. The second and

third As are not matched.

The third example shows that matching is from the left. The first four As are

matched as two pairs and replaced. The fifth A is not matched.

If you do not specify the replace string expression, the replace string defaults to an

empty string and the behavior of the function is to delete all occurrences of the

search string from the result.

REPLICATE function

REPLICATE is a string manipulation function that manipulates all data types (BIT,

BLOB, and CHARACTER) and returns a string made up of multiple copies of a

supplied string.

286 ESQL

Syntax

�� REPLICATE (PatternStringExpression , CountNumericExpression) ��

REPLICATE returns a string consisting of the pattern string given by

PatternStringExpression repeated the number of times given by

CountNumericExpression.

The pattern string can be of the CHARACTER, BLOB, or BIT datatype and the

count must be of type INTEGER. The result is of the same data type as the pattern

string.

If the count is negative or zero, a zero length string is returned. If either parameter

is NULL, the result is NULL.

The count is limited to 32*1024*1024 to protect the broker from erroneous

programs. If this limit is exceeded, an exception condition is issued.

RIGHT function

RIGHT is a string manipulation function that manipulates all data types (BIT,

BLOB, and CHARACTER), and truncates a string.

Syntax

�� RIGHT (SourceStringExpression , LengthIntegerExpression) ��

RIGHT returns a string consisting of the source string truncated to the length given

by the length expression. The truncation discards the initial characters of the source

string.

The source string can be of the CHARACTER, BLOB, or BIT data type and the

length must be of type INTEGER.

If the length is negative or zero, a zero length string is returned. If either

parameter is NULL, the result is NULL

RTRIM function

RTRIM is a string manipulation function that manipulates all data types (BIT,

BLOB, and CHARACTER), and removes trailing singletons from a string.

ESQL reference 287

Syntax

�� RTRIM (source_string) ��

RTRIM returns a string value of the same data type and content as source_string

but with any trailing default singletons removed. The term singleton refers to a

single part (BIT, BLOB, or CHARACTER) within a string of that type.

The RTRIM function is equivalent to TRIM(TRAILING FROM source_string).

If the parameter is NULL, the result is NULL.

The default singleton depends on the data type of source_string:

 Character ’ ’ (space)

BLOB X’00’

Bit B’0’

SPACE function

SPACE is a string manipulation function that manipulates all data types (BIT,

BLOB, and CHARACTER), and creates a string consisting of a defined number of

blank spaces.

Syntax

�� SPACE (NumericExpression) ��

SPACE returns a character string consisting of the number of blank spaces given

by NumericExpression. The parameter must be of type INTEGER; the result is of

type CHARACTER.

If the parameter is negative or zero, a zero length character string is returned. If

the parameter is NULL, the result is NULL.

The string is limited to 32*1024*1024 to protect the broker from erroneous

programs. If this limit is exceeded, an exception condition is issued.

SUBSTRING function

SUBSTRING is a string manipulation function that manipulates all data types (BIT,

BLOB, and CHARACTER), and extracts characters from a string to create another

string.

288 ESQL

Syntax

�� SUBSTRING (source_string FROM start_position �

�)

FOR

string_length
 ��

SUBSTRING returns a new string of the same type as source_string, containing one

contiguous run of characters extracted from source_string as specified by

start_position and string_length.

The start position can be negative. The start position and length define a range.

The result is the overlap between this range and the input string.

If any parameter is NULL, the result is NULL. This is not a zero length string.

For example:

SUBSTRING(’Hello World!’ FROM 7 FOR 4)

returns ’Worl’.

TRANSLATE function

TRANSLATE is a string manipulation function that manipulates all string data

types (BIT, BLOB, and CHARACTER), and replaces specified characters in a string.

Syntax

�� TRANSLATE (SourceStringExpression , SearchStringExpression)

ReplaceStringExpression
 ��

TRANSLATE returns a string consisting of the source string, with each occurrence

of any character that occurs in the search string being replaced by the

corresponding character from the replace string.

The parameter strings can be of the CHARACTER, BLOB, or BIT data type but all

three must be of the same type. If any parameter is NULL, the result is NULL.

If the replace string is shorter than the search string, there are characters in the

search string for which there is no corresponding character in the replace string.

This is treated as an instruction to delete these characters and any occurrences of

these characters in the source string are absent from the returned string

If the replace string expression is not specified, the replace string is assumed to be

an empty string, and the function deletes all occurrences of any characters in the

search string from the result.

ESQL reference 289

TRIM function

TRIM is a string manipulation function that manipulates all string data types (BIT,

BLOB, and CHARACTER), and removes trailing and leading singletons from a

string.

Syntax

�� TRIM (

trim_singleton

FROM

BOTH

LEADING

TRAILING

trim_singleton

 �

� source_string) ��

TRIM returns a new string of the same type as source_string, in which the leading,

trailing, or both leading and trailing singletons have been removed. The term

singleton refers to a single part (BIT, BYTE, or CHARACTER) within a string of that

type.

If trim_singleton is not specified, a default singleton is assumed. The default

singleton depends on the data type of source_string:

 Character ’ ’ (space)

BLOB X’00’

Bit B’0’

If any parameter is NULL, the result is NULL.

It is often unnecessary to strip trailing blanks from character strings before

comparison, because the rules of character string comparison mean that trailing

blanks are not significant.

The following examples illustrate the behavior of the TRIM function:

TRIM(TRAILING ’b’ FROM ’aaabBb’)

returns ’aaabB’.

TRIM(’ a ’)

returns ’a’.

TRIM(LEADING FROM ’ a ’)

returns ’a ’.

TRIM(’b’ FROM ’bbbaaabbb’)

returns ’aaa’.

290 ESQL

UPPER and UCASE functions

UPPER and UCASE are equivalent string manipulation functions that

manipulation CHARACTER string data and convert lowercase characters in a

string to uppercase.

Syntax

�� UPPER (source_string)

UCASE
 ��

UPPER and UCASE both return a new character string, which is identical to

source_string, except that all lowercase letters are replaced with the corresponding

uppercase letters.

For example:

UPPER(’ABCD’)

returns ’ABCD’.

UCASE(’abc123’)

returns ’ABC123’.

ESQL field functions

This topic lists the ESQL field functions and covers the following:

“ASBITSTREAM function”

“BITSTREAM function (deprecated)” on page 295

“FIELDNAME function” on page 295

“FIELDNAMESPACE function” on page 296

“FIELDTYPE function” on page 296

“FIELDVALUE function” on page 299

“FOR function” on page 299

“LASTMOVE function” on page 301

“SAMEFIELD function” on page 301

ASBITSTREAM function

The ASBITSTREAM field function generates a bit stream for the subtree of a given

field according to the rules of the parser that owns the field, and uses parameters

supplied by the caller for:

v Encoding

v CCSID

v Message set

v Message type

v Message format

ESQL reference 291

v Options

This function effectively removes the limitation of the existing BITSTREAM

function, which can be used only on a tree produced by a parser belonging to an

input node

The BITSTREAM function is retained only for backward compatibility.

Syntax

��

�

 (1)

ASBITSTREAM

(

FieldReference

)

<<

OPTIONS

expression

ENCODING

expression

CCSID

expression

SET

expression

TYPE

expression

FORMAT

expression

��

Notes:

1 Each clause can occur once only

ASBITSTREAM returns a value of type BLOB containing a bitstream representation

of the field pointed to by FieldReference and its children

The algorithm for doing this varies from parser to parser and according to the

options specified. All parsers support the following modes:

v RootBitStream, in which the bitstream generation algorithm is the same as that

used by an output node. In this mode, a meaningful result is obtained only if

the field pointed to is at the head of a subtree with an appropriate structure.

v EmbeddedBitStream, in which not only is the bitstream generation algorithm the

same as that used by an output node, but also the

– Encoding

– CCSID

– Message set

– Message type

– Message format

are determined, if not explicitly specified, in the same way as the output node.

That is, they are determined by searching the previous siblings of FieldReference

on the assumption that they represent headers.

In this way, the algorithm for determining these properties is essentially the

same as that used for the BITSTREAM function.

Some parsers also support another mode, FolderBitStream, which generates a

meaningful bit stream for any subtree, provided that the field pointed to represents

a folder.

In all cases, the bit stream obtained can be given to a CREATE statement with a

PARSE clause, using the same DOMAIN and OPTIONS to reproduce the original

subtree.

292 ESQL

When the function is called, any clause expressions are evaluated. An exception is

thrown if any of the expressions do not result in a value of the appropriate type.

If any parameter is NULL the result is NULL.

 Clause Type Default value

Options integer RootBitStream & ValidateNone

Encoding integer 0

Ccsid integer 0

Message set character Zero length string

Message type character Zero length string

Message format character Zero length string

Although the OPTIONS clause accepts any expression that returns a value of type

integer, it is only meaningful to generate option values from the list of supplied

constants, using the BITOR function if more than one option is required.

Once generated, the value becomes an integer and can be saved in a variable or

passed as a parameter to a function, as well as being used directly in an

ASBITSTREAM call. The list of globally-defined constants is:

 Validate master options...

 ValidateContentAndValue

 ValidateValue -- Can be used with ValidateContent

 ValidateContent -- Can be used with ValidateValue

 ValidateNone

 Validate failure action options...

 ValidateException

 ValidateExceptionList

 ValidateLocalError

 ValidateUserTrace

 Validate value constraints options...

 ValidateFullConstraints

 ValidateBasicConstraints

 Validate fix up options...

 ValidateFullFixUp

 ValidateNoFixUp

Notes:

1. The validateFullFixUp option is reserved for future use. Selecting

validateFullFixUp gives identical behaviour to validateNoFixUp.

2. The validateFullConstraints option is reserved for future use. Selecting

validateFullConstraints gives identical behaviour to

validateBasicConstraints.

3. For full details of the validation options, refer to Validation properties

for messages in the MRM domain.

C and Java equivalent APIs

Note that equivalent options are not available on:

v The Java plugin node API MBElement methods

createElementAsLastChildFromBitstream() and toBitstream()

ESQL reference 293

v The C plugin node API methods cniCreateElementAsLastChildFromBitstream()

and cniElementAsBitstream.

Only one option from each group can be specified, with the exception of

ValidateValue and ValidateContent, which can be used together to obtain the

content and value validation. If you do not specify an option within a group, the

option in bold is used.

The ENCODING clause accepts any expression that returns a value of type integer.

However, it is only meaningful to generate encoding values from the list of

supplied constants:

 0

 MQENC_INTEGER_NORMAL

 MQENC_INTEGER_REVERSED

 MQENC_DECIMAL_NORMAL

 MQENC_DECIMAL_REVERSED

 MQENC_FLOAT_IEEE_NORMAL

 MQENC_FLOAT_IEEE_REVERSED

 MQENC_FLOAT_S390

0 uses the queue manager’s encoding.

The values used for the CCSID clause follow the normal numbering system. For

example, 1200 = UCS-2, 1208 = UTF-8.

In addition the following special values are supported:

 0

 -1

0 uses the queue manager’s CCSID and -1 uses the CCSID’s as determined by the

parser itself. This value is reserved.

For absent clauses, the given default values are used. Use the CCSID and encoding

default values, because they take their values from the queue manager’s encoding

and CCSID settings.

Similarly, use the default values for each of the message set, type, and format

options, because many parsers do not require message set, type, or format

information; any valid value is sufficient.

When any expressions have been evaluated, the appropriate bit stream is

generated.

Note: Because this function has a large number of clauses, an alternative syntax is

supported in which the parameters are supplied as a comma-separated list

rather than by named clauses. In this case the expressions must be in the

following order:

ENCODING -> CCSID -> SET -> TYPE -> FORMAT -> OPTIONS

The list can be truncated at any point and you can use an empty expression

for any clauses for which you do not supply a value.

294 ESQL

Examples

 DECLARE options INTEGER BITOR(FolderBitStream, ValidateContent,

 ValidateValue);

 SET result = ASBITSTREAM(cursor OPTIONS options CCSID 1208);

 SET Result = ASBITSTREAM(Environment.Variables.MQRFH2.Data,,1208

 ,,,,options);

BITSTREAM function (deprecated)

The BITSTREAM field function returns a value representing the bit stream

described by the given field and its children. Its use is deprecated: use the newer

ABITSTREAM function instead. BITSTREAM can be used only on a tree produced

by a parser belonging to an input node. ABITSTREAM does not suffer from this

limitation.

Syntax

�� BITSTREAM (field_reference) ��

BITSTREAM returns a value of type BLOB representing the bit stream described by

the given field and its children. For incoming messages, the appropriate portion of

the incoming bit stream is used. For messages constructed by Compute nodes, the

following algorithm is used to establish the ENCODING, CCSID, message set,

message type, and message format:

v If the addressed field has a previous sibling, and this sibling is the root of a

subtree belonging to a parser capable of providing an ENCODING and CCSID,

these values are obtained and used to generate the requested bit stream.

Otherwise, the broker’s default ENCODING and CCSID (that is, those of its

queue manager) are used.

v Similarly, if the addressed field has a previous sibling, and this sibling is the root

of a subtree belonging to a parser capable of providing a message set, message

type, and message format, these values are obtained and used to generate the

requested bit stream. Otherwise, zero length strings are used.

This function is typically used for message warehouse scenarios, where the bit

stream of a message needs to be stored in a database. The function returns the bit

stream of the physical portion of the incoming message, identified by the

parameter. In some cases, it does not return the bit stream representing the actual

field identified. For example, the following two calls return the same value:

BITSTREAM(Root.MQMD);

BITSTREAM(Root.MQMD.UserIdentifier);

because they lie in the same portion of the message.

FIELDNAME function

The FIELDNAME field function returns the name of a given field.

ESQL reference 295

Syntax

�� FIELDNAME (source_field_reference) ��

FIELDNAME returns the name of the field identified by source_field_reference as a

character value. If the parameter identifies a nonexistent field, NULL is returned.

For example:

v FIELDNAME(InputRoot.XML) returns XML.

v FIELDNAME(InputBody) returns the name of the last child of InputRoot, which

could be XML.

v FIELDNAME(InputRoot.*[<]) returns the name of the last child of InputRoot,

which could be XML.

This function does not show any namespace information; this must be obtained by

a separate call to the “FIELDNAMESPACE function.”

Whereas the following ESQL sets X to ″F1″:

SET X=FIELDNAME(InputBody.*[<]);

The following ESQL sets Y to null:

SET Y=FIELDNAME(InputBody.F1.*[<]);

However, the following ESQL sets Z to the (expected) child of F1:

SET Z=FIELDNAME(InputBody.*[<].*[<]);

This is because F1 belongs to a namespace and needs to be explicitly referenced by,

for example:

DECLARE ns NAMESPACE ’urn:nid:xxxxxx’;

SET Y=FIELDNAME(InputBody.ns:F1.*[<]);

FIELDNAMESPACE function

The FIELDNAMESPACE field function returns the namespace of a given field.

Syntax

�� FIELDNAMESPACE (FieldReference) ��

FIELDNAMESPACE takes a field reference as a parameter and returns a value of

type CHARACTER containing the namespace of the addressed field. If the

parameter identifies a nonexistent field, NULL is returned.

FIELDTYPE function

The FIELDTYPE field function returns the type of a given field.

296 ESQL

Syntax

�� FIELDTYPE (source_field_reference) ��

FIELDTYPE returns an integer representing the type of the field identified by

source_field_reference; this is the type of the field, not the data type of the field that

the parameter identifies. If the parameter identifies a nonexistent entity, NULL is

returned.

The mapping of integer values to field types is not published, and might change

from release to release. Compare the results of the FIELDTYPE function with

named field types.

For example:

IF FIELDTYPE(source_field_reference) = NameValue

 THEN ...

The named field types that you can use in this context are listed below.

Note: The first four are domain independent; the XML.* types are applicable to the

XML, XMLNS, JMSMap, and JMSStream domains, except for

XML.Namespace which is specific to the XMLNS domain.

You must use these types with the capitalization shown:

v Name

v Value

v NameValue

v MQRFH2.BitStream

v XML.AsisElementContent

v XML.Attribute

v XML.AttributeDef

v XML.AttributeDefDefaultType

v XML.AttributeDefType

v XML.AttributeDefValue

v XML.AttributeList

v XML.BitStream

v XML.CDataSection

v XML.Comment

v XML.Content

v XML.DocTypeComment

v XML.DocTypeDecl

v XML.DocTypePI

v XML.DocTypeWhiteSpace

v XML.Element

v XML.ElementDef

v XML.Encoding

v XML.EntityDecl

ESQL reference 297

v XML.EntityDeclValue

v XML.EntityReferenceStart

v XML.EntityReferenceEnd

v XML.ExternalEntityDecl

v XML.ExternalParameterEntityDecl

v XML.ExtSubset

v XML.IntSubset

v XML.NamespaceDecl

v XML.NotationDecl

v XML.NotationReference

v XML.ParameterEntityDecl

v XML.ParserRoot

v XML.ProcessingInstruction

v XML.PublicId

v XML.RequestedDomain

v XML.Standalone

v XML.SystemId

v XML.UnparsedEntityDecl

v XML.Version

v XML.WhiteSpace

v XML.XmlDecl

v XMLNSC.Attribute

v XMLNSC.BitStream

v XMLNSC.CDataField

v XMLNSC.CDataValue

v XMLNSC.Comment

v XMLNSC.DocumentType

v XMLNSC.DoubleAttribute

v XMLNSC.DoubleEntityDefinition

v XMLNSC.EntityDefinition

v XMLNSC.EntityReference

v XMLNSC.Field

v XMLNSC.Folder

v XMLNSC.HybridField

v XMLNSC.HybridValue

v XMLNSC.PCDataField

v XMLNSC.PCDataValue

v XMLNSC.ProcessingInstruction

v XMLNSC.SingleAttribute

v XMLNSC.SingleEntityDefinition

v XMLNSC.Value

v XMLNSC.XmlDeclaration

You can also use this function to determine whether a field in a message exists. To

do this, use the form:

FIELDTYPE(SomeFieldReference) IS NULL

298 ESQL

If the field exists, an integer value is returned to the function that indicates the

field type (for example, string). When this is compared to NULL, the result is

FALSE. If the field does not exist, NULL is returned and therefore the result is

TRUE. For example:

 IF FIELDTYPE(InputRoot.XML.Message1.Name)

 IS NULL THEN

 // Name field does not exist, take error

 action....

 ... more ESQL ...

 ELSE

 // Name field does exist, continue....

 ... more ESQL ...

 END IF

FIELDVALUE function

The FIELDVALUE field function returns the scalar value of a given field.

Syntax

�� FIELDVALUE (source_field_reference) ��

FIELDVALUE returns the scalar value of the field identified by

source_field_reference. If it identifies a non-existent field, NULL is returned.

For example, consider the following XML input message:

<Data>

 <Qty Unit="Gallons">1234</Qty>

</Data>

The ESQL statement

SET OutputRoot.XML.Data.Quantity =

 FIELDVALUE(InputRoot.XML.Data.Qty);

gives the result:

<Data><Quantity>1234</Quantity></Data>

whereas this ESQL statement (without the FIELDVALUE function):

SET OutputRoot.XML.Data.Quantity =

 InputRoot.XML.Data.Qty;

causes a tree copy, with the result:

<Data><Quantity Unit="Gallons">1234</Quantity></Data>

because the field Qty is not a leaf field.

FOR function

The FOR field function evaluates an expression and assigns a resulting value of

TRUE, FALSE, or UNKNOWN

ESQL reference 299

Syntax

��

FOR

ALL

-ANY

-SOME

�

 ,

fieldreference

AS

Identifier

�

� (expression) ��

FOR enables you to write an expression that iterates over all instances of a

repeating field. For each instance it processes a boolean expression and collates the

results.

For example:

FOR ALL Body.Invoice.Purchases."Item"[] AS I (I.Quantity <= 50)

Note:

1. With the quantified predicate , the first thing to note is the [] on the end

of the field reference after the FOR ALL. The square brackets define

iteration over all instances of the Item field.

In some cases, this syntax appears unnecessary, because you can get that

information from the context, but it is done for consistency with other

pieces of syntax.

2.

The ASclause associates the name I in the field reference with the

current instance of the repeating field. This is similar to the concept of

iterator classes used in some object oriented languages such as C++. The

expression in parentheses is a predicate that is evaluated for each

instance of the Item field.

If you specify the ALL keyword, the function iterates over all instances of the field

Item inside Body.Invoice.Purchases and evaluates the predicate I.Quantity <= 50.

If the predicate evaluates to:

v TRUE (if the field is empty, or for all instances of Item) return TRUE.

v FALSE (for any instance of Item) return FALSE.

v Anything else, return UNKNOWN.

The ANY and SOME keywords are equivalent. If you use either, the function

iterates over all instances of the field Item inside Body.Invoice.Purchases and

evaluates the predicate I.Quantity <= 50. If the predicate evaluates to:

v FALSE (if the field is empty, or for all instances of Item) return FALSE.

v TRUE (for any instance of Item) return TRUE.

v Anything else, return UNKNOWN.

To further illustrate this, the following examples are based on the message

described in “Example message” on page 357. In the following filter expression:

300 ESQL

FOR ANY Body.Invoice.Purchases."Item"[] AS I (I.Title = ’The XML Companion’)

the sub-predicate evaluates to TRUE. However, this next expression returns FALSE:

FOR ANY Body.Invoice.Purchases."Item"[] AS I (I.Title = ’C Primer’)

because the C Primer is not included on this invoice. If in this instance some of the

items in the invoice do not include a book title field, the sub-predicate returns

UNKNOWN, and the quantified predicate returns the value UNKNOWN.

Take great care to deal with the possibility of null values appearing. Write this

filter with an explicit check on the existence of the field, as follows:

FOR ANY Body.Invoice.Purchases."Item"[] AS I (I.Book IS NOT NULL AND

I.Book.Title = ’C Primer’)

The IS NOT NULL predicate ensures that, if an Item field does not contain a Book,

a FALSE value is returned from the sub-predicate.

LASTMOVE function

The LASTMOVE field function tells you whether the last MOVE function

succeeded.

Syntax

�� LASTMOVE (source_dynamic_reference) ��

LASTMOVE returns a boolean value indicating whether the last MOVE function

applied to source_dynamic_reference was successful (TRUE) or not (FALSE).

See “MOVE statement” on page 236 for an example of using the MOVE statement,

and the LASTMOVE function to check its success.

See “Creating dynamic field references” on page 36 for information about dynamic

references.

SAMEFIELD function

The SAMEFIELD field function tells you whether two field references point to the

same target.

Syntax

�� SAMEFIELD (source_field_reference1 , source_field_reference2) ��

SAMEFIELD returns a BOOLEAN value indicating whether two field references

point to the same target. If they do, SAMEFIELD returns TRUE; otherwise

SAMEFIELD returns FALSE.

For example:

ESQL reference 301

DECLARE ref1 REFERENCE TO OutputRoot.XML.Invoice.Purchases.Item[1];

MOVE ref1 NEXTSIBLING;

SET Result = SAMEFIELD(ref1,OutputRoot.XML.Invoice.Purchases.Item[2]);

Result is TRUE.

See “Creating dynamic field references” on page 36 for information about dynamic

references.

ESQL list functions

This topic lists the ESQL list functions and covers the following:

“CARDINALITY function”

“EXISTS function” on page 303

“SINGULAR function” on page 303

“THE function” on page 304

CARDINALITY function

The CARDINALITY function returns the number of elements in a list.

Syntax

�� CARDINALITY (ListExpression) ��

CARDINALITY returns an integer value giving the number of elements in the list

specified by ListExpression.

ListExpression is any expression that returns a list. All the following, for example,

return a list:

v A LIST constructor

v A field reference with the [] array indicator

v Some SELECT expressions (not all return a list)

A common use of this function is to determine the number of fields in a list before

iterating over them.

Examples

-- Determine the number of F1 fields in the message.

-- Note that the [] are required

DECLARE CountF1 INT CARDINALITY(OutputRoot.XML.Data.Source.F1[]);

-- Determine the number of fields called F1 with the value ’F12’ in the message.

-- Again note that the [] are required

DECLARE CountF1F12 INT

 CARDINALITY(SELECT F.* FROM OutputRoot.XML.Data.Source.F1[] AS F

 where F = ’F12’);

-- Use the value returned by CARDINALITY to refer to a specific element

-- in a list or array:

-- Array indices start at 1, so this example refers to the third-from-last

-- instance of the Item field

Body.Invoice.Item[CARDINALITY(Body.Invoice.Item[]) - 2].Quantity

302 ESQL

EXISTS function

The EXISTS function returns a BOOLEAN value indicating whether a list contains

at least one element (that is, whether the list exists).

Syntax

�� EXISTS (ListExpression) ��

If the list specified by ListExpression contains one or more elements, EXISTS returns

TRUE. If the list contains no elements, EXISTS returns FALSE.

ListExpression is any expression that returns a list. All the following, for example,

return a list:

v A LIST constructor

v A field reference with the [] array indicator

v Some SELECT expressions (not all return a list)

If you only want to know whether a list contains any elements or none, EXISTS

executes more quickly than an expression involving the CARDINALITY function

(for example, CARDINALITY(ListExpression) <> 0).

A common use of this function is to determine whether a field exists.

Examples

-- Determine whether the F1 array exists in the message. Note that the []

-- are required

DECLARE Field1Exists BOOLEAN EXISTS(OutputRoot.XML.Data.Source.F1[]);

-- Determine whether the F1 array contains an element with the value ’F12’.

-- Again note that the [] are required

DECLARE Field1F12Exists BOOLEAN

 EXISTS(SELECT F.* FROM OutputRoot.XML.Data.Source.F1[] AS F where F = ’F12’);

SINGULAR function

The SINGULAR function returns a BOOLEAN value indicating whether a list

contains exactly one element.

Syntax

�� SINGULAR (ListExpression) ��

If the list specified by ListExpression contains exactly one element, SINGULAR

returns TRUE. If the list contains more or fewer elements, SINGULAR returns

FALSE.

ListExpression is any expression that returns a list. All the following, for example,

return a list:

v A LIST constructor

v A field reference with the [] array indicator

ESQL reference 303

v Some SELECT expressions (not all return a list)

If you only want to know whether a list contains just one element or some other

number, SINGULAR executes more quickly than an expression involving the

CARDINALITY function (for example, CARDINALITY(ListExpression) = 1).

A common use of this function is to determine whether a field is unique.

Examples

-- Determine whether there is just one F1 field in the message.

-- Note that the [] are required

DECLARE Field1Unique BOOLEAN SINGULAR(OutputRoot.XML.Data.Source.F1[]);

-- Determine whether there is just one field called F1 with the value ’F12’

-- in the message. Again note that the [] are required

DECLARE Field1F12Unique BOOLEAN

 SINGULAR(SELECT F.* FROM OutputRoot.XML.Data.Source.F1[] AS F where F = ’F12’);

THE function

The THE function returns the first element of a list.

Syntax

�� THE (ListExpression) ��

If ListExpression contains one or more elements, THE returns the first element of

the list. Otherwise it returns an empty list.

Restrictions

Currently, ListExpression must be a SELECT expression.

Complex ESQL functions

This topic lists the complex ESQL functions and covers the following:

“CASE function” on page 305

“CAST function” on page 306

“SELECT function” on page 320

“ROW constructor function” on page 326

“LIST constructor function” on page 327

“ROW and LIST combined” on page 329

“ROW and LIST comparisons” on page 329

“Supported casts” on page 331

“Implicit casts” on page 339

“Implicit CASTs for comparisons” on page 339

“Implicit CASTs for arithmetic operations” on page 342

“Implicit CASTs for assignment” on page 343

304 ESQL

“Data types of values from external sources” on page 344

CASE function

CASE is a complex function which has two forms; the simple-when form and the

searched-when form. In either form CASE returns a value , the result of which

controls the path of subsequent processing.

Syntax

��

CASE

simple-when-clause

searched-when-clause

 ELSE NULL

ELSE

result_expression

END

��

simple-when-clause:

source_value

�

WHEN

test_value

THEN

result_value

NULL

searched-when-clause:

�

WHEN

search_condition

THEN

result_value

NULL

Both forms of CASE return a value depending on a set of rules defined in WHEN

clauses.

In the simple-when form, source_value is compared with each test_value until a

match is found. The result of the CASE function is the value of the corresponding

result_value. The data type of source_value must therefore be comparable to the data

type of each test_value.

The CASE function must have at least one WHEN. The ELSE is optional. The

default ELSE expression is NULL. A CASE expression is delimited by END. The

test values do not have to be literal values.

The searched-when clause version is similar, but has the additional flexibility of

allowing a number of different values to be tested.

The following example shows a CASE function with a simple WHEN clause. In

this example, the CASE can be determined only by one variable that is specified

next to the CASE keyword.

 DECLARE CurrentMonth CHAR;

 DECLARE MonthText CHAR;

 SET CurrentMonth = SUBSTRING(InputBody.Invoice.InvoiceDate FROM 6 FOR 2);

 SET MonthText =

 CASE CurrentMonth

 WHEN ’01’ THEN ’January’

ESQL reference 305

WHEN ’02’ THEN ’February’

 WHEN ’03’ THEN ’March’

 WHEN ’04’ THEN ’April’

 WHEN ’05’ THEN ’May’

 WHEN ’06’ THEN ’June’

 ELSE ’Second half of year’

 END

The following example shows a CASE function with a searched-when-clause. This

example is still determined by one variable CurrentMonth:

 DECLARE CurrentMonth CHAR;

 DECLARE MonthText CHAR;

 SET CurrentMonth = SUBSTRING(InputBody.Invoice.InvoiceDate FROM 6 FOR 2);

 SET MonthText =

 CASE

 WHEN Month = ’01’ THEN ’January’

 WHEN Month = ’02’ THEN ’February’

 WHEN Month = ’03’ THEN ’March’

 WHEN Month = ’04’ THEN ’April’

 WHEN Month = ’05’ THEN ’May’

 WHEN Month = ’06’ THEN ’June’

 ELSE ’Second half of year’

 END

In a searched-when-clause, different variables can be used in the WHEN clauses to

determine the result. This is demonstrated in the following example of the

searched-when-clause:

 DECLARE CurrentMonth CHAR;

 DECLARE CurrentYear CHAR;

 DECLARE MonthText CHAR;

 SET CurrentMonth = SUBSTRING(InputBody.Invoice.InvoiceDate FROM 6 FOR 2);

 SET CurrentYear = SUBSTRING(InputBody.Invoice.InvoiceDate FROM 1 FOR 4);

 SET MonthText =

 CASE

 WHEN CurrentMonth = ’01’ THEN ’January’

 WHEN CurrentMonth = ’02’ THEN ’February’

 WHEN CurrentMonth = ’03’ THEN ’March’

 WHEN CurrentYear = ’2000’ THEN ’A month in the Year 2000’

 WHEN CurrentYear = ’2001’ THEN ’A month in the Year 2001’

 ELSE ’Not first three months of any year or a month in the Year 2000 or 2001’

 END;

CAST function

CAST is a complex function that transforms one or more values from one

data-type into another.

306 ESQL

Syntax

��

CAST

(

�

 << , <<

source_expression

AS

DataType

CCSID

expression

�

�
ENCODING

expression

FORMAT

expression

DEFAULT

expression
 �

�) ��

Note: In practice, you cannot specify all of the above parameters at the same time.

For example, CCSID and ENCODING expressions take effect only on

string-to-string conversions, while FORMAT applies only to string-numeric

and string-datetime conversions (in either direction).

CAST transforms one or more values from one data-type into another data-type.

For example, you can use CAST to process generic XML messages. All fields in an

XML message have character values, so if, for example, you wanted to perform an

arithmetic calculation or a date/time comparison on a field, you could use CAST

to convert the string value of the field into a value of the appropriate type.

Not all conversions are supported; see “Supported casts” on page 331 for a list of

supported conversions.

Parameters:

Source expression

CAST returns its first parameter (source_expression), which can contain more than

one value, as the data-type specified by its second parameter (DataType). In all

cases, if the source expression is NULL, the result is NULL. If the evaluated source

expression is not compatible with the target data-type, or if the source expression

is of the wrong format, a runtime error is generated.

CCSID

The CCSID clause is used only for conversions to or from one of the string

data-types. It allows you to specify the code page of the source or target string.

The CCSID expression can be any expression evaluating to a value of type INT. It

is interpreted according to normal WebSphere Message Broker rules for CCSIDs.

See Supported code pages for a list of valid values.

DataType

DataType is the data-type into which the source value is to be transformed. The

possible values are:

v String types:

ESQL reference 307

– BIT

– BLOB

– CHARACTER
v Numeric types:

– DECIMAL

– FLOAT

– INTEGER
v Date/Time types:

– DATE

– GMTTIME

– GMTTIMESTAMP

– INTERVAL

– TIME

– TIMESTAMP
v Boolean:

– BOOLEAN

DEFAULT

The DEFAULT clause provides a method of avoiding exceptions being thrown

from CAST statements by providing a last-resort value to return.

The DEFAULT expression must be a valid ESQL expression that returns the same

data-type as that specified on the DataType parameter, otherwise an exception is

thrown.

The CCSID, ENCODING, and FORMAT parameters are not applied to the result of

the DEFAULT expression; the expression must, therefore, be of the correct CCSID,

ENCODING, and FORMAT.

ENCODING

The ENCODING clause allows you to specify the encoding. It is used for certain

conversions only. The ENCODING value can be any expression evaluating to a

value of type INT. It is interpreted according to normal WebSphere Message Broker

rules for encoding. Valid values are:

v MQENC_NATIVE (0x00000222L)

v MQENC_INTEGER_NORMAL (0x00000001L)

v MQENC_INTEGER_REVERSED (0x00000002L)

v MQENC_DECIMAL_NORMAL (0x00000010L)

v MQENC_DECIMAL_REVERSED (0x00000020L)

v MQENC_FLOAT_IEEE_NORMAL (0x00000100L)

v MQENC_FLOAT_IEEE_REVERSED (0x00000200L)

v MQENC_FLOAT_S390 (0x00000300L)

FORMAT

For conversions between string data-types and numerical or date-time data-types,

you can supply an optional FORMAT expression. For conversions from string

types, FORMAT defines how the source string should be parsed to fill the target

data-type. For conversions to string types, it defines how the data in the source

expression is to be formatted in the target string.

308 ESQL

FORMAT takes different types of expression for date-time and numerical

conversions. However, the same FORMAT expression can be used irrespective of

whether the conversion is to a string or from a string.

You can specify a FORMAT expression when casting:

v From any of the string data-types (BIT, BLOB, or CHARACTER) to:

– DECIMAL

– FLOAT

– INTEGER

– DATE

– GMTTIMESTAMP

– TIMESTAMP

– GMTTIME

– TIME
v To any of the string data-types (BIT, BLOB, or CHARACTER) from any of the

numerical and date-time data-types listed in the previous bullet.

Specifying FORMAT for an unsupported combination of source and target

data-types causes error message BIP3205 to be issued.

For more information about conversion to and from numerical data-types see

“Formatting and parsing numbers as strings” on page 311. For more information

about conversion to and from date-time data-types, see “Formatting and parsing

dateTimes as strings” on page 314.

The FORMAT expression is equivalent to those used in many other products, such

as ICU and Microsoft Excel.

Examples:

Example 1. Formatted CAST from DECIMAL to CHARACTER

DECLARE source DECIMAL 31415.92653589;

DECLARE target CHARACTER;

DECLARE pattern CHARACTER ’#,##0.00’;

SET target = CAST(source AS CHARACTER FORMAT pattern);

-- target is now "31,415.93"

Example 2. Formatted CAST from DATE to CHARACTER

DECLARE now CHARACTER = CAST(CURRENT_TIMESTAMP AS CHARACTER

 FORMAT "yyyyMMdd-HHmmss");

-- target is now "20041007-111656" (in this instance at least)

Example 3. Formatted CAST from CHARACTER to DATE

DECLARE source CHARACTER ’01-02-03’;

DECLARE target DATE;

DECLARE pattern CHARACTER ’dd-MM-yy’;

SET target = CAST(source AS DATE FORMAT pattern);

-- target now contains Year=2003, Month=02, Day=01

Example 4. Formatted CAST from CHARACTER to TIMESTAMP

DECLARE source CHARACTER ’12 Jan 03, 3:45pm’;

DECLARE target TIMESTAMP;

DECLARE pattern CHARACTER ’dd MMM yy, h:mma’;

SET target = CAST(source AS TIMESTAMP FORMAT pattern);

-- target now contains Year=2003, Month=01, Day=03, Hour=15, Minute=45,

 Seconds=58

-- (seconds taken from CURRENT_TIME since not present in input)

ESQL reference 309

Example 5. Formatted CAST from DECIMAL to CHARACTER, with negative

pattern

DECLARE source DECIMAL -54231.122;

DECLARE target CHARACTER;

DECLARE pattern CHARACTER ’#,##0.00;(#,##0.00)’;

SET target = CAST(source AS CHARACTER FORMAT pattern);

-- target is now "£(54,231.12)"

Example 6. Formatted CAST from CHARACTER to TIME

DECLARE source CHARACTER ’16:18:30’;

DECLARE target TIME;

DECLARE pattern CHARACTER ’hh:mm:ss’;

SET target = CAST(source AS TIME FORMAT pattern);

-- target now contains Hour=16, Minute=18, Seconds=30

Example 7. CASTs from the numeric types to DATE

CAST(7, 6, 5 AS DATE);

CAST(7.4e0, 6.5e0, 5.6e0 AS DATE);

CAST(7.6, 6.51, 5.4 AS DATE);

Example 8. CASTs from the numeric types to TIME

CAST(9, 8, 7 AS TIME);

CAST(9.4e0, 8.6e0, 7.1234567e0 AS TIME);

CAST(9.6, 8.4, 7.7654321 AS TIME);

Example 9. CASTs from the numeric types to GMTTIME

CAST(DATE ’0001-02-03’, TIME ’04:05:06’ AS TIMESTAMP);

CAST(2, 3, 4, 5, 6, 7.8 AS TIMESTAMP);

Example 10. CASTs to TIMESTAMP

CAST(DATE ’0001-02-03’, TIME ’04:05:06’ AS TIMESTAMP);

CAST(2, 3, 4, 5, 6, 7.8 AS TIMESTAMP);

Example 11. CASTs to GMTTIMESTAMP

CAST(DATE ’0002-03-04’, GMTTIME ’05:06:07’ AS GMTTIMESTAMP);

CAST(3, 4, 5, 6, 7, 8 AS GMTTIMESTAMP);

CAST(3.1e0, 4.2e0, 5.3e0, 6.4e0, 7.5e0, 8.6789012e0 AS GMTTIMESTAMP);

CAST(3.2, 4.3, 5.4, 6.5, 7.6, 8.7890135 AS GMTTIMESTAMP);

Example 12. CASTs to INTERVAL from INTEGER

CAST(1234 AS INTERVAL YEAR);

CAST(32, 10 AS INTERVAL YEAR TO MONTH);

CAST(33, 11 AS INTERVAL DAY TO HOUR);

CAST(34, 12 AS INTERVAL HOUR TO MINUTE);

CAST(35, 13 AS INTERVAL MINUTE TO SECOND);

CAST(36, 14, 10 AS INTERVAL DAY TO MINUTE);

CAST(37, 15, 11 AS INTERVAL HOUR TO SECOND);

CAST(38, 16, 12, 10 AS INTERVAL DAY TO SECOND);

Example 13. CASTs to INTERVAL from FLOAT

CAST(2345.67e0 AS INTERVAL YEAR);

CAST(3456.78e1 AS INTERVAL MONTH);

CAST(4567.89e2 AS INTERVAL DAY);

CAST(5678.90e3 AS INTERVAL HOUR);

CAST(6789.01e4 AS INTERVAL MINUTE);

CAST(7890.12e5 AS INTERVAL SECOND);

CAST(7890.1234e0 AS INTERVAL SECOND);

310 ESQL

Example 14. CASTs to INTERVAL from DECIMAL

CAST(2345.67 AS INTERVAL YEAR);

CAST(34567.8 AS INTERVAL MONTH);

CAST(456789 AS INTERVAL DAY);

CAST(5678900 AS INTERVAL HOUR);

CAST(67890100 AS INTERVAL MINUTE);

CAST(789012000 AS INTERVAL SECOND);

CAST(7890.1234 AS INTERVAL SECOND);

Example 15. CASTs to FLOAT from INTERVAL

CAST(INTERVAL ’1234’ YEAR AS FLOAT);

CAST(INTERVAL ’2345’ MONTH AS FLOAT);

CAST(INTERVAL ’3456’ DAY AS FLOAT);

CAST(INTERVAL ’4567’ HOUR AS FLOAT);

CAST(INTERVAL ’5678’ MINUTE AS FLOAT);

CAST(INTERVAL ’6789.01’ SECOND AS FLOAT);

Example 16. CASTs DECIMAL from INTERVAL

CAST(INTERVAL ’1234’ YEAR AS DECIMAL);

CAST(INTERVAL ’2345’ MONTH AS DECIMAL);

CAST(INTERVAL ’3456’ DAY AS DECIMAL);

CAST(INTERVAL ’4567’ HOUR AS DECIMAL);

CAST(INTERVAL ’5678’ MINUTE AS DECIMAL);

CAST(INTERVAL ’6789.01’ SECOND AS DECIMAL);

Example 17. A ternary cast that fails and results in the substitution of a default

value

CAST(7, 6, 32 AS DATE DEFAULT DATE ’1947-10-24’);

Example 18. A sexternary cast that fails and results in the substitution of a

default value

CAST(2, 3, 4, 24, 6, 7.8 AS TIMESTAMP DEFAULT TIMESTAMP ’1947-10-24 07:08:09’);

Example 19. A ternary cast that fails and throws an exception

BEGIN

 DECLARE EXIT HANDLER FOR SQLSTATE LIKE ’%’ BEGIN

 SET OutputRoot.XML.Data.Date.FromIntegersInvalidCast = ’Exception thrown’;

 END;

 DECLARE Dummy CHARACTER CAST(7, 6, 32 AS DATE);

 END;

Example 20. A sexternary cast that fails and throws an exception

BEGIN

 DECLARE EXIT HANDLER FOR SQLSTATE LIKE ’%’ BEGIN

 SET OutputRoot.XML.Data.Timestamp.FromIntegersInvalidCast = ’Exception thrown’;

 END;

 DECLARE Dummy CHARACTER CAST(2, 3, 4, 24, 6, 7.8 AS TIMESTAMP);

 END;

Formatting and parsing numbers as strings:

For conversions between string data-types and numerical data-types, you can

supply, on the FORMAT parameter of the CAST function, an optional formatting

expression. For conversions from string types, the formatting expression defines

how the source string should be parsed to fill the target data-type. For conversions

to string types, it defines how the data in the source expression is to be formatted

in the target string.

ESQL reference 311

You can specify a FORMAT expression for the following numerical conversions.

(Specifying a FORMAT expression for date/time conversions is described in

“Formatting and parsing dateTimes as strings” on page 314.)

v From any of the string data-types (BIT, BLOB, or CHARACTER) to:

– DECIMAL

– FLOAT

– INTEGER
v To any of the string data-types (BIT, BLOB, or CHARACTER) from any of the

numerical data-types listed in the previous bullet.

The formatting expression consists of three parts:

1. A subpattern defining positive numbers.

2. An optional subpattern defining negative numbers. (If only one subpattern is

defined, negative numbers use the positive pattern, prefixed with a minus

sign.)

3. The optional parameters groupsep and decsep.

Syntax

�� subpattern

;

subpattern

:groupsep=

chars
 �

�
:decsep=

chars
 ��

subpattern:

chars
 digits

.digits

e

digits

E

chars

Parameters:

chars

A sequence of zero or more characters. All characters can be used, except the

special characters listed in Table 4 on page 313.

decsep

One or more characters to be used as the separator between the whole and decimal

parts of a number (the decimal separator). The default decimal separator is a

period (.).

digits

A sequence of one or more of the numeric tokens (0 # - + , .) listed in Table 4 on

page 313.

312 ESQL

groupsep

One or more characters to be used as the separator between clusters of integers, to

make large numbers more readable (the grouping separator). The default grouping

separator is nothing (that is, there is no grouping of digits or separation of groups).

Grouping is commonly done in thousands, but it can be redefined by either the

pattern or the locale. There are two grouping sizes:

The primary grouping size

Used for the least significant integer digits.

The secondary grouping size

Used for all other integer digits.

In most cases, the primary and secondary grouping sizes are the same, but can be

different. For example, if the pattern used is #,##,##0, the primary grouping size is

3 and the secondary is 2. The number 123456789 would become the string

“12,34,56,789”.

If multiple grouping separators are used (as in the previous example), the

rightmost separator defines the primary size and the penultimate rightmost

separator defines the secondary size.

subpattern

The subpattern consists of:

1. An optional prefix (chars)

2. A mandatory pattern representing a whole number

3. An optional pattern representing decimal places

4. An optional pattern representing an exponent (the power by which the

preceding number is raised)

5. An optional suffix (chars)

Parts 2, 3, and 4 of the subpattern are defined by the tokens in the following table.

 Table 4. Tokens to define a formatting subpattern used for numeric/string conversions

Token Represents

0 Any digit, including a leading zero.

Any digit, excluding a leading zero. (See the explanation of the

difference between 0 and # that follows this table.)

. Decimal separator.

+ Prefix of positive numbers.

- Prefix of negative numbers.

, Grouping separator.

E/e Separates the number from the exponent.

; Subpattern boundary.

’ Quote, used to quote special characters. If a quote is needed in

output, it must be doubled (’’).

* Padding specifier. The character following the asterisk is used to pad

the number to fit the length of the format pattern.

ESQL reference 313

The # and 0 characters are used for digit substitution, the difference between them

being that a # character is removed if there is no number to replace it with. For

example, 10 formatted by the pattern #,##0.00 gives “10.00”, but formatted by

0,000.00 gives “0,010.00”.

To specify padding characters, use an asterisk. When an asterisk is placed in either

of the two chars regions (the prefix and suffix), the character immediately following

it is used to pad the output. Padding can be specified only once. For example, a

pattern of *x#,###,##0.00 applied to 1234 would give “xxx1,234.00”. Applied to

1234567, it would give “1,234,567.00”.

Examples of formatting patterns:

 Table 5. Examples of formatting patterns, showing the strings output from sample numerical

input

Pattern Input number Output string

+###,##0.00;-
###,###,##0.00:groupsep=’’:decsep=,

123456789.123 “+123’456’789,12”

##0.00 1000000 “1000000.00”

##0.00 3.14159265 “3.14”

Formatting and parsing dateTimes as strings:

This section gives information on how you can specify the dateTime format using

a string of pattern letters.

 When you are converting a date or time into a string, a format pattern can be

applied that directs the conversion. This would apply if you were formatting from

a date or time into a string or parsing a string into a date or time.

During the formatting (for example, a dateTime to a string) a pattern or a set of

tokens is replaced with their equivalent source. Figure 1 gives a representation of

how this is applied.

When a string is parsed (for example, converting it to a dateTime), the pattern or

set of tokens are used to determine which part of the target dateTime is

source pattern

output

Year=2004, Month=10, Day=07,
Hour=10, Minute=24, Second=40

yyyy-MM-dd HH:mm:ss

2004-10-07 10:24:40

Figure 1. Using a pattern to format a dateTime source to produce a string output.

314 ESQL

represented by which part of the string. Figure 2 gives a representation of how this

is applied.

Syntax

The expression pattern is defined by:

 .--------------.

 | .- -. |

 V V | |

 >------+-symbol-+->

 ’-string-’

Where:

symbol

is a character in the set adDeEFGhHIkKmMsSTUwWyYzZ.

string is a sequence of characters enclosed in single quotation marks. If a single

quote is required within the string, two single quotes, “’’”, can be used.

Characters for formatting a dateTime as a string

The following table lists the allowable characters that can be used in a pattern for

formatting or parsing strings in relation to a dateTime.

 Symbol Meaning Presentation Examples

a am or pm marker Text Input am, AM, pm, PM.

Output AM or PM

d day in month (1-31) Number 1, 20

dd day in month (01-31) Number 01, 31

D day in year (1-366) Number 3, 80, 100

DD day in year (01-366) Number 03, 80, 366

DDD day in year (001-366) Number 003

e day in week (1-7) Number 26

EEE day in week Text Tue

EEEE day in week Text Tuesday

source pattern

output

12 Jan 03, 3:45pm dd MMM yy, h:ma

Year=2003, Month=01, Day=12,
Hour=15, Minute=45

Figure 2. Using a pattern to parse a string source to produce a dateTime output.

ESQL reference 315

Symbol Meaning Presentation Examples

F day of week in month (1-5) Number 2 (for second Wednesday in

July)3

G Era Text BC or AD

h hour in am or pm (1-12) Number 6

hh hour in am or pm (01-12) Number 06

H hour of day in 24 hour

form (0-23)

Number 77

HH hour of day in 24 hour

form (00-23)

Number 077

I ISO8601 Date/Time (up to

yyyy-MM-dd’T’HH:mm:ss.

SSSZZZ)

text 2004-10-
07T12:06:56.568+01:00

5

IU ISO8601 Date/Time (as

above, but ZZZ with

output ″Z″ if the timezone

is +00:00)

text 2004-10-
07T12:06:56.568+01:00,

2003-12 -15T15:42:12.000Z

5

k hour of day in 24 hour

form (1-24)

Number 87

k hour of day in 24 hour

form (01-24)

Number 087

K hour in am or pm (0-11) Number 9

KK hour in am or pm (00-11) Number 09

m minute Number 4

mm minute Number 04

M numeric month Number 5, 12

MM numeric month Number 05, 12

MMM named month Text Jan, Feb

MMMM named month Text January, February

s seconds Number 5

ss seconds Number 05

S decisecond Number 78

SS centisecond Number 708

SSS millisecond Number 7008

SSSS 1/10,000 th seconds Number 70008

SSSSS 1/100,000 th seconds Number 700008

SSSSSS 1/1,000,000 th seconds Number 7000008

T ISO8601 Time (up to

HH:mm:ss.SSSZZZ)

text 12:06:56.568+01:005

TU ISO8601 Time (as above,

but a timezone of +00:00 is

replaced with ’Z’)

text 12:06:56.568+01:00,

15:42:12.000Z5

w week in year Number 7, 532

ww week in year Number 07, 532

W week in month Number 24

yy year Number 961

316 ESQL

Symbol Meaning Presentation Examples

yyyy year Number 19961

YY year: use with week in year

only

Number 962

YYYY year: use with week in year

only

Number 19962

zzz time zone (abbreviated

name)

Text gmt

zzzz time zone (full name) Text Greenwich Mean Time

Z time zone (+/-n) Text +3

ZZ time zone (+/-nn) Text +03

ZZZ time zone (+/-nn:nn) Text +03:00

ZZZU time zone (as ZZZ, ″+00:00″

is replaced by ″Z″)

Text +03:00, Z

ZZZZ time zone (GMT+/-nn:nn) Text GMT+03:00

ZZZZZ time zone (as ZZZ, but no

colon) (+/-nnnn)

Text +0300

’ escape for text ’User text’

’’ (two single quotes) single

quote within escaped text

’o’’clock’

The presentation of the dateTime object depends on what symbols you specify as

follows:

v Text. If you specify four or more of the symbols, the full form is presented. If

you specify less than four, the short or abbreviated form, if it exists, is presented.

For example, EEEE produces Monday, EEE produces Mon.

v Number. The number of characters for a numeric dateTime component must be

within the bounds of the corresponding formatting symbols. Repeat the symbol

to specify the minimum number of digits required. The maximum number of

digits permitted will be the upper bound for a particular symbol. For example,

day in month has an upper bound of 31 therefore a format string of d will allow

the values of 2 or 21 to be parsed but will disallow the value of 32 or 210. On

output, numbers are padded with zeros to the specified length. A year is a

special case, see note 1 in the list below. Fractional seconds are also special case,

see note 8 below.

v Any characters in the pattern that are not in the ranges of [’a’..’z’] and [’A’..’Z’]

are treated as quoted text. For example, characters like colon (:), comma (,),

period (.), the number sign (hash or pound, #), the at sign (@) and space appear

in the resulting time text even if they are not enclosed within single quotes.

v You can create formatting strings that produce unpredictable results, so you

must use these symbols with care. For example, if you specify dMyyyy, it is

impossible to distinguish between day, month, and year. dMyyyy tells the broker

that a minimum of one character represents the day, a minimum of one

character represents the month, and four characters represent the year. Therefore

3111999 could be interpreted as 3/11/1999 and 31/1/1999.

Notes: The following points explain the notes in the table above:

1. Year is handled as a special case:

ESQL reference 317

v On output, if the count of y is 2, the year is truncated to 2 digits. For

example, if yyyy produces 1997, yy produces 97.

v On input, for 2 digits years the century window is fixed to 53. For

example an input date of 52 will result in a year value of 2052, whilst

53 would give an output year of 1953 and 97 would give 1997.
2. In ESQL, the first day of the year is assumed to be in the first week,

thus January 1 is always in week 1. This can lead to dates specified

relative to one year actually being in a different year. For example,

″Monday week 1 2005″ parsed using ″EEEE’ week ’w’ ’YYYY″ would

give a date of 2004-12-27, since the Monday of the first week in 2005 is

actually a date in 2004.

If you use the y symbol, the adjustment is not done and unpredictable

results could occur for dates around the end of the year. For example, if

the string ″2005 01 Monday″ is formatted:

v Monday of week 1 in 2005 using format string ″YYYY ww EEEE″ is

correctly interpreted as 27st December 2004

v Monday of week 1 in 2005 using format string ″yyyy ww EEEE″ is

incorrectly interpreted as 27th December 2005
3. The 11th July 2001 is the second Wednesday in July and can be

expressed as 2001 July Wednesday 2 using format string yyyy MMMM

EEEE F. This is not the same as Wednesday in week 2 of July 2001,

which is 4th July 2001.

4. The first and last week in a month might include days from

neighboring months. For example, Tuesday 31st July 2001 could be

expressed as Tuesday in week one of August 2001, which is 2001 08 1

Tuesday using format string yyyy MM W EEEE.

5. See the section ISO8601, I and T DateTime tokens.

6. The values specified in the day in week field are fixed to:

v 1 - Sunday

v 2 - Monday

v 3 - Tuesday

v 4 - Wednesday

v 5 - Thursday

v 6 - Friday

v 7 - Saturday
7. 24 hour fields may result in an ambiguous time if specified with a

conflicting am/pm field.

8. Fractional Seconds The length must implicitly match the number of

format symbols on input. The output is rounded to the specified length.

9. Long time zones work best when used in the Continent/City format.

Similarly, on Unix systems, the TZ environment variable should be

specified using the Continent/City format.

ISO8601, I and T DateTime tokens

If your dateTime values are compliant with the ISO8601:2000 ’Representation of

dates and times’ standard, you should consider whether it is possible to use the

formatting symbols I and T. These match a subset of the ISO8601 standard,

specifically:

v The restricted profile as proposed by the W3C at http://www.w3.org/TR/
NOTE-datetime

318 ESQL

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

v Truncated representations of calendar dates as specified in section 5.2.1.3 of

ISO8601:2000

– Basic format (sub-sections c, e and f)

– Extended format (sub-sections a, b and d)

These symbols should only be used on their own.

v The I formatting symbol matches any dateTime string conforming to the

supported subset.

v The T formatting symbol matches any dateTime string conforming to the

supported subset that consists of a time portion only.

On output, following form will be applied depending on the logical datatype:

 Logical MRM Datatype Logical ESQL Datatype Output Form

xsd:dateTime TIMESTAMP or GMTTIMESTAMP yyyy-MM-dd’T’HH:mm:ss.SSSZZZ

xsd:date DATE yyyy-MM-dd

xsd:gYear INTERVAL yyyy

xsd:gYearMonth INTERVAL yyyy-MM

xsd:gMonth INTERVAL --MM

xsd:gmonthDay INTERVAL --MM-dd

xsd:gDay INTERVAL ---dd

xsd:time TIME / GMTTIME ’T’HH:mm:ss.SSSZZZ

Note:

v On input both I and T accept ’+00:00’ and ’Z’ to indicated a zero time

difference from Coordinated Universal Time (UTC), but on output will

always generate ’+00:00’. If you require that ’Z’ is always generated on

output, you should use the alternative IU or TU formatting symbols

instead.

v ZZZ will always output ’+00:00’ to indicate a zero time difference from

Coordinated Universal Time (UTC). If you require that ’Z’ is always

generated on output, you should use the alternative ZZZU form instead.

Using the input UTC format on output

An element or attribute of logical type xsd:dateTime or xsd:time that contains a

dateTime as a string can specify Consolidated Universal Time (UTC) by using

either the Z character or time zone +00:00. On input the MRM parser remembers

the UTC format of such elements and attributes. On output you can specify

whether Z or +00:00 should appear by using the dateTime format property of the

element or attribute. Alternatively you can preserve the input UTC format by

checking message set property Use input UTC format on output. If this property is

checked, then the UTC format will be preserved into the output message and will

override that implied by the dateTime format property.

Examples

The following table shows a few examples of dateTime formats:

 Format pattern Result

″yyyy.MM.dd’at’HH:mm:ss ZZZ″ 1996.07.10 at 15:08:56 -05:00

ESQL reference 319

Format pattern Result

EEE, MMM d, ″yy″ Wed, July 10, ’96

″h:mm a″ 8:08 PM

″hh ’o’’clock’ a, ZZZZ″ 09 o’clock AM, GMT+09:00

″K:mm a, ZZZ″ 9:34 AM, -05:00

″yyyy.MMMMM.dd hh:mm aaa″ 1996.July.10 12:08 PM

SELECT function

The SELECT function combines, filters, and transforms complex message and

database data.

320 ESQL

Syntax

��
 (1)

SELECT

SelectClause

FromClause

WhereClause

��

WHERE:

SelectClause =

�

 <<---- ,------ <<

Expression

AS

Path

INSERT

ITEM

Expression

(2)

COUNT

(

Expression

)

MAX

MIN

SUM

FromClause =

FROM

�

 <<---- ,------ <<

FieldReference

AS

CorrelationName

 WhereClause = WHERE Expression

Notes:

1 You no longer require the enclosing brackets in SELECT expressions. This

does not prevent you using brackets but, if they are present, they are

merely normal, expression-scoping, brackets.

2 For the COUNT parameter only, you can specify the value of the following

Expression as a single star (*).

Usage

The SELECT function is the usual and most efficient way of transforming

messages. You can use SELECT to:

v Comprehensively reformat messages

v Access database tables

v Make an output array that is a subset of an input array

v Make an output array that contains only the values of an input array

v Count the number of entries in an array

v Select the minimum or maximum value from a number of entries in an array

v Sum the values in an array

ESQL reference 321

Introduction to SELECT

The SELECT function considers a message tree (or sub-tree) to consist of a number

of “rows” and “columns”, rather like a database table. A FieldReference in a FROM

clause identifies a field in a message tree and:

v The identified field is regarded as a “row” in a table.

v The field’s siblings are regarded as other “rows” of the same “table”.

v The field’s children are regarded as the table’s “columns”.

Note: The FieldReference in a FROM clause can also be a table reference that refers

directly to a real database table.

The return value of the SELECT function is typically another message tree that

contains “rows” whose structure and content is determined by the SelectClause. The

number of rows in the result is the sum of all the “rows” pointed to by all the field

references and table references in the FROM clause, filtered by the WHERE clause;

only those fields for which the WHERE clause evaluates to TRUE are included.

The return value of the SELECT function can also be scalar (see “ITEM selections”

on page 324).

You can specify the SelectClause in several ways; see:

v “Simple selections”

v “INSERT selections” on page 324

v “ITEM selections” on page 324

v “Column function selections” on page 324

Simple selections

To understand the SELECT function in more detail, first consider a simple case in

which:

v The SelectClause consists of a number of expressions, each with an AS Path

clause.

v The FROM clause contains a single FieldReference and an AS CorrelationName

clause.

The SELECT function creates a local, reference, correlation variable, whose name is

given by the AS CorrelationName clause, and then steps, in turn, through each

“row” of the list of rows derived from the FROM clause. For each “row”:

1. The correlation variable is set to point to the current “row”.

2. The WHERE clause (if present) is evaluated. If it evaluates to FALSE or

unknown (null), nothing is added to the result tree and processing proceeds to

the next “row” of the input. Otherwise processing proceeds to the next step.

3. A new member is added to the result list.

4. The SELECT clause expressions are evaluated and assigned to fields named as

dictated by the AS Path clause. These fields are child fields of the new member

of the result list.

Typically, both the SelectClause and the WHERE clause expressions use the

correlation variable to access “column” values (that is, fields in the input message

tree) and thus to build a new message tree containing data from the input

message. The correlation variable is referred to by the name specified in the AS

CorrelationName clause or, if an AS clause is not specified, by the final name in the

FROM FieldReference (that is, the name after the last dot).

322 ESQL

Note that:

v Despite the analogy with a table, you are not restricted to accessing or creating

messages with a flat, table-like, structure; you can access and build trees with

arbitrarily deep folder structures.

v You are not restricted to a “column” being a single value; a column can be a

repeating list value or a structure.

These concepts are best understood by reference to the examples.

If the field reference is a actually a TableReference, the operation is very similar. In

this case, the input is a real database table and is thus restricted to the flat

structures supported by databases. The result tree is still not so restricted, however.

If there is more than one field reference in the FROM clause, the rightmost

reference steps through each of its rows for each row in the next-to-rightmost

reference, and so on. The total number of rows in the result is thus the product of

the number of rows in each table. Such selects are known as joins and commonly

use a WHERE clause that excludes most of these rows from the result. Joins are

commonly used to add database data to messages.

The AS Path clause is optional. If it is unspecified, the broker generates a default

name according to the following rules:

1. If the SelectClause expression is a reference to a field or a cast of a reference to a

field, the name of the field is used.

2. Otherwise the broker uses the default names “Column1”, “Column2”, and so

on.

Examples

The following example performs a SELECT on the table “Parts” in the schema

“Shop” in the database “DSN1”. Because there is no WHERE clause, all rows are

selected. Because the select clause expressions (for example, P.PartNumber) contain

no AS clauses, the fields in the result adopt the same names:

SET PartsTable.Part[] = SELECT

 P.PartNumber,

 P.Description,

 P.Price

 FROM Database.DSN1.Shop.Parts AS P;

If the target of the SET statement (“PartsTable”) is a variable of type ROW, after

the statement is executed PartsTable will have, as children of its root element, a

field called “Part” for each row in the table. Each of the “Part” fields will have

child fields called “PartNumber”, “Description”, and “Price”. The child fields will

have values dictated by the contents of the table. (″PartsTable″ could also be a

reference into a message tree).

The next example performs a similar SELECT. This case differs from the last in that

the SELECT is performed on the message tree produced by the first example

(rather than on a real database table). The result is assigned into a subfolder of

“OutputRoot”:

SET OutputRoot.XML.Data.TableData.Part[] = SELECT

 P.PartNumber,

 P.Description,

 P.Price

 FROM PartsTable.Part[] AS P;

ESQL reference 323

INSERT selections

The INSERT clause is an alternative to the AS clause. It assigns the result of the

SelectClause expression (which must be a row) to the current new row itself, rather

than to a child of it. The effect of this is to merge the row result of the expression

into the row being generated by the SELECT. This differs from the AS clause, in

that the AS clause always generates at least one child element before adding a

result, whereas INSERT generates none. INSERT is useful when inserting data from

other SELECT operations, because it allows the data to be merged without extra

folders.

ITEM selections

The SelectClause can consist of the keyword ITEM and a single expression. The

effect of this is to make the results nameless. That is, the result is a list of values of

the type returned by the expression, rather than a row. This option has several

uses:

v In conjunction with a scalar expression and the THE function, it can be used to

create a SELECT query that returns a single scalar value (for example, the price

of a particular item from a table).

v In conjunction with a CASE expression and ROW constructors, it can be used to

create a SELECT query that creates or handles messages in which the structure

of some “rows” (that is, repeats in the message) is different to others. This is

useful for handling messages that have a repeating structure but in which the

repeats do not all have the same structure.

v In conjunction with a ROW constructor, it can be used to create a SELECT query

that collapses levels of repetition in the input message.

Column function selections

The SelectClause can consist of one of the functions COUNT, MAX, MIN, and SUM

operating on an expression. These functions are known as column functions. They

return a single scalar value (not a list) giving the count, maximum, minimum, or

sum of the values that Expression evaluated to in stepping through the rows of the

FROM clause. If Expression evaluates to NULL for a particular row, the value is

ignored, so that the function returns the count, maximum, minimum, or sum of the

remaining rows.

For the COUNT function only, Expression can consist of a single star (*). This form

counts the rows regardless of null values.

To make the result a useful reflection of the input message, Expression typically

includes the correlation variable.

Typically, Expression evaluates to the same data type for each row. In these cases,

the result of the MAX, MIN, and SUM functions will be of the same data type as

the operands. The returned values are not required to be all of the same type,

however, and, if they are not, the normal rules of arithmetic apply. For example, if

a field in a repeated message structure contains integer values for some rows and

float values for others, the sum follows the normal rules for addition. It would be

of type float because the operation is equivalent to adding a number of integer and

float values.

The result of the COUNT function is always an integer.

324 ESQL

Differences between message and database selections

FROM expressions in which a correlation variable represents a row in a message

behave slightly differently from those in which the correlation variable represents a

row in a real database table.

In the message case, a path involving a star (*) has the normal meaning; it ignores

the field’s name and finds the first field that matches the other criteria (if any).

In the database case a star (*) has, for historical reasons, the special meaning of “all

fields”. This special meaning requires advance knowledge of the definition of the

database table and is only supported when querying the default database (that is,

the database pointed to by the node’s data source attribute). For example, the

following queries return column name/value pairs only when querying the default

database:

SELECT * FROM Database.Datasource.SchemaName.Table As A

SELECT A.* FROM Database.Datasource.SchemaName.Table As A

SELECT A FROM Database.Datasource.SchemaName.Table AS A

Specifying the SELECT expressions

SelectClause

SelectClause expressions can use any of the broker’s operators and functions in

any combination. They can refer to the tables’ columns, message fields,

correlation names declared by containing SELECTs, and to any other declared

variables or constants that are in scope.

AS Path

An AS Path expression is a relative path (that is, there is no correlation name)

but is otherwise unrestricted in any way. For example, it can contain:

v Indices (for example, A.B.C[i])

v Field-type specifiers (for example, A.B.(XML.Attribute)C)

v Multipart paths (for example, A.B.C)

v Name expressions (for example, A.B.{var})

Any expressions in these paths can also use any of the broker’s operators and

functions in any combination. The expressions can refer to the tables’ columns,

message fields, correlation names declared by containing SELECTs, and any

declared variables or constants.

FROM clause

FROM clause expressions can contain multiple database references, multiple

message references, or a mixture of the two. You can join tables with tables,

messages with messages, or tables with messages.

 FROM clause FieldReferences can contain expressions of any kind (for example,

Database.{DataSource}.{Schema}.Table1).

 You can calculate a field, data source, schema, or table name at run time.

WHERE clause

 The WHERE clause expression can use any of the broker’s operators and

functions in any combination. It can refer to table columns, message fields, and

any declared variables or constants.

 However, be aware that the broker treats the WHERE clause expression by

examining the expression and deciding whether the whole expression can be

ESQL reference 325

evaluated by the database. If it can, it is given to the database. In order to be

evaluated by the database, it must use only those functions and operators

supported by the database.

 The WHERE clause can, however, refer to message fields, correlation names

declared by containing SELECTs, and to any other declared variables or

constants within scope.

 If the whole expression cannot be evaluated by the database, the broker looks

for top-level AND operators and examines each sub-expression separately. It

then attempts to give the database those sub-expressions that it can evaluate,

leaving the broker to evaluate the rest. You need to be aware of this situation

for two reasons:

1. Apparently trivial changes to WHERE clause expressions can have large

effects on performance. You can determine how much of the expression

was given to the database by examining a user trace.

2. Some databases’ functions exhibit subtle differences of behavior from those

of the broker.

Relation to the THE function

You can use the function THE (which returns the first element of a list) in

conjunction with SELECT to produce a non-list result. This is useful, for example,

when a SELECT query is required to return no more than one item. It is

particularly useful in conjunction with ITEM (see “ITEM selections” on page 324).

Differences from the SQL standard

ESQL SELECT differs from database SQL SELECT in the following ways:

v ESQL can produce tree-structured result data

v ESQL can accept arrays in SELECT clauses

v ESQL has the THE function and the ITEM and INSERT parameters

v ESQL has no SELECT ALL function in this release

v ESQL has no ORDER BY function in this release

v ESQL has no SELECT DISTINCT function in this release

v ESQL has no GROUP BY or HAVING parameters in this release

v ESQL has no AVG column function in this release

Restrictions

The following restrictions apply to the current release:

v When a SELECT command operates on more than one database table, all the

tables must be in the same database instance. (That is, the TableReferences must

not specify different data source names.)

v If the FROM clause refers to both messages and tables, the tables must precede

the messages in the list.

ROW constructor function

ROW constructor is a complex function used to explicitly generate rows of values

that can be assigned to fields in an output message.

326 ESQL

Syntax

��

�

 << , <<

ROW

(

expression

)

AS

fieldreference

��

A ROW consists of a sequence of named values. When assigned to a field reference

it creates that sequence of named values as child fields of the referenced field. A

ROW cannot be assigned to an array field reference.

Examples:

Example 1

SET OutputRoot.XML.Data = ROW(’granary’ AS bread,

 ’riesling’ AS wine,

 ’stilton’ AS cheese);

produces:

<Data>

 <bread>granary</bread>

 <wine>riesling</wine>

 <cheese>stilton</cheese>

</Data>

Example 2

Given the following XML input message body:

<Proof>

 <beer>5</beer>

 <wine>12</wine>

 <gin>40</gin>

</Proof>

the following ESQL:

SET OutputRoot.XML.Data = ROW(InputBody.Proof.beer,

 InputBody.Proof.wine AS vin,

 (InputBody.Proof.gin * 2) AS special);

produces the following result:

<Data>

 <beer>5</beer>

 <vin>12</vin>

 <special>80</special>

</Data>

Because the values in this case are derived from field references that already have

names, it is not necessary to explicitly provide a name for each element of the row,

but you might choose to do so.

LIST constructor function

The LIST constructor complex function is used to explicitly generate lists of values

that can be assigned to fields in an output message.

ESQL reference 327

Syntax

��

�

 << , <<

LIST

{

expression

}

��

A LIST consists of a sequence of unnamed values. When assigned to an array field

reference (indicated by [] suffixed to the last element of the reference), each value

is assigned in sequence to an element of the array. A LIST cannot be assigned to a

non-array field reference.

Examples:

Example 1

Given the following XML message input body:

<Car>

 <size>big</size>

 <color>red</color>

</Car>

The following ESQL:

SET OutputRoot.XML.Data.Result[] = LIST{InputBody.Car.colour,

 ’green’,

 ’blue’};

produces the following results:

<Data>

 <Result>red</Result>

 <Result>green</Result>

 <Result>blue</Result>

</Data>

In the case of a LIST, there is no explicit name associated with each value. The

values are assigned in sequence to elements of the message field array specified as

the target of the assignment. Curly braces rather than parentheses are used to

surround the LIST items.

Example 2

Given the following XML input message body:

<Data>

 <Field>Keats</Field>

 <Field>Shelley</Field>

 <Field>Wordsworth</Field>

 <Field>Tennyson</Field>

 <Field>Byron</Field>

</Data>

the following ESQL:

-- Copy the entire input message to the output message,

-- including the XML message field array as above

SET OutputRoot = InputRoot;

SET OutputRoot.XML.Data.Field[] = LIST{’Henri’,’McGough’,’Patten’};

Produces the following output:

328 ESQL

<Data>

 <Field>Henri</Field>

 <Field>McGough</Field>

 <Field>Patten</Field>

</Data>

The previous members of the Data.Field[] array have been discarded. Assigning a

new list of values to an already existing message field array removes all the

elements in the existing array before the new ones are assigned.

ROW and LIST combined

ROW and LIST combined form a complex function.

A ROW might validly be an element in a LIST. For example:

SET OutputRoot.XML.Data.Country[] =

 LIST{ROW(’UK’ AS name,’pound’ AS currency),

 ROW(’US’ AS name, ’dollar’ AS currency),

 ’default’};

produces the following result:

<Data>

 <Country>

 <name>UK</name>

 <currency>pound</currency>

 </Country>

 <Country>

 <name>US</name>

 <currency>dollar</currency>

 </Country>

 <Country>default</Country>

</Data>

ROW and non-ROW values can be freely mixed within a LIST.

A LIST cannot be a member of a ROW. Only named scalar values can be members

of a ROW.

ROW and LIST comparisons

You can compare ROWs and LISTs against other ROWs and LISTs.

Examples:

Example 1

IF ROW(InputBody.Data.*[1],InputBody.Data.*[2]) =

 ROW(’Raf’ AS Name,’25’ AS Age) THEN ...

IF LIST{InputBody.Data.Name, InputBody.Data.Age} = LIST{’Raf’,’25’} THEN ...

With the following XML input message body both the IF expressions in both the

above statements evaluate to TRUE:

<Data>

 <Name>Raf</Name>

 <Age>25</Age>

</Data>

In the comparison between ROWs, both the name and the value of each element

are compared; in the comparison between LISTs only the value of each element is

compared. In both cases, the cardinality and sequential order of the LIST or ROW

operands being compared must be equal in order for the two operands to be equal.

ESQL reference 329

In other words, all the following are false because either the sequential order or the

cardinality of the operands being compared do not match:

ROW(’alpha’ AS A, ’beta’ AS B) =

 ROW(’alpha’ AS A, ’beta’ AS B, ’delta’ AS D)

ROW(’alpha’ AS A, ’beta’ AS B) =

 ROW(’beta’ AS B,’alpha’ AS A)

LIST{1,2,3} = LIST{1,2,3,4}

LIST{3,2,1} = LIST{1,2,3}

Example 2

Consider the following ESQL:

IF InputBody.Places =

 ROW(’Ken’ AS first, ’Bob’ AS second, ’Kate’ AS third) THEN ...

With the following XML input message body, the above IF expression evaluates to

TRUE:

<Places>

 <first>Ken</first>

 <second>Bob</second>

 <third>Kate</third>

</Places>

The presence of an explicitly-constructed ROW as one of the operands to the

comparison operator results in the other operand also being treated as a ROW.

Contrast this with a comparison such as:

IF InputBody.Lottery.FirstDraw = InputBody.Lottery.SecondDraw THEN ...

which compares the value of the FirstDraw and SecondDraw fields, not the names

and values of each of FirstDraw and SecondDraw’s child fields constructed as a

ROW. Thus an XML input message body such as:

<Lottery>

 <FirstDraw>wednesday

 <ball1>32</ball1>

 <ball2>12</ball2>

 </FirstDraw>

 <SecondDraw>saturday

 <ball1>32</ball1>

 <ball2>12</ball2>

 </SecondDraw>

</Lottery>

would not result in the above IF expression being evaluated as TRUE, because the

values wednesday and saturday are being compared, not the names and values of

the ball fields.

Example 3

Consider the following ESQL:

IF InputBody.Cities.City[] = LIST{’Athens’,’Sparta’,’Thebes’} THEN ...

With the following XML input message body, the IF expression evaluates to TRUE:

<Cities>

 <City>Athens</City>

 <City>Sparta</City>

 <City>Thebes</City>

</Cities>

330 ESQL

Two message field arrays can be compared together in this way, for example:

IF InputBody.Cities.Mediaeval.City[] =

 InputBody.Cities.Modern.City[] THEN ...

IF InputBody.Cities.Mediaeval.*[] = InputBody.Cities.Modern.*[] THEN ...

IF InputBody.Cities.Mediaeval.(XML.Element)[] =

 InputBody.Cities.Modern.(XML.Element)[] THEN ...

With the following XML input message body, the IF expression of the first and

third of the statements above evaluates to TRUE:

<Cities>

 <Mediaeval>1350

 <City>London</City>

 <City>Paris</City>

 </Mediaeval>

 <Modern>1990

 <City>London</City>

 <City>Paris</City>

 </Modern>

</Cities>

However the IF expression of the second statement evaluates to FALSE, because

the *[] indicates that all the children of Mediaeval and Modern are to be compared,

not just the (XML.Element)s. In this case the values 1350 and 1990, which form

nameless children of Mediaeval and Modern, are compared as well as the values of

the City tags.

The IF expression of the third statement above evaluates to TRUE with an XML

input message body such as:

<Cities>

 <Mediaeval>1350

 <Location>London</Location>

 <Location>Paris</Location>

 </Mediaeval>

 <Modern>1990

 <City>London</City>

 <City>Paris</City>

 </Modern>

</Cities>

LISTs are composed of unnamed values. It is the values of the child fields of

Mediaeval and Modern that are compared, not their names.

Supported casts

This topic lists the CASTs that are supported between combinations of data-types.

A CAST is not supported between every combination of data-types. Those that are

supported are listed below, along with the effect of the CAST.

When casting, there can be a one-to-one or a many-to-one mapping between the

source data-type and the target data-type. An example of a one-to-one mapping is

where the source data-type is a single integer and the target data-type a single

float. An example of a many-to-one mapping is where the source data consists of

three integers that are converted to a single date. Table 6 on page 332 lists the

supported one-to-one casts. Table 7 on page 338 lists the supported many-to-one

casts.

ESQL reference 331

See “ESQL data types” on page 4 for information about precision, scale, and

interval qualifier.

 Table 6. Supported casts: one-to-one mappings of source to target data-type

Source data-type Target data-type Effect

BIT BIT The result is the same as the input.

BIT BLOB The bit array is converted to a byte array with a maximum of 263

elements. An error is reported if the source is not of a suitable length

to produce a BLOB (that is a multiple of 8).

BIT CHARACTER The result is a string conforming to the definition of a bit string literal

whose interpreted value is the same as the source value. The resulting

string has the form B’bbbbbb’ (where b is either 0 or 1).

If you specify either a CCSID or ENCODING clause, the bit array is

assumed to be characters in the specified CCSID and encoding, and is

code-page converted into the character return value.

If you specify only a CCSID, big endian encoding is assumed.

If you specify only an encoding, a CCSID of 1208 is assumed.

This function reports conversion errors if the code page or encoding

are unknown, the data supplied is not an integral number of characters

of the code page, or the data contains characters that are not valid in

the given code page.

BIT INTEGER The bit array has a maximum of 263 elements and is converted to an

integer. An error is reported if the source is not of the correct length to

match an integer.

BLOB BIT The given byte array is converted to a bit array with a maximum of 263

elements.

BLOB BLOB The result is the same as the input.

BLOB CHARACTER The result is a string conforming to the definition of a binary string

literal whose interpreted value is the same as the source value. The

resulting string has the form X’hhhh’ (where h is any hexadecimal

character).

If you specify either a CCSID or ENCODING clause, the byte array is

assumed to be characters in the specified CCSID and encoding, and is

code-page converted into the character return value.

If you specify only a CCSID, big endian encoding is assumed.

If you specify only an encoding, a CCSID of 1208 is assumed.

This function reports conversion errors if the code page or encoding

are unknown, the data supplied is not an integral number of characters

of the code page, or the data contains characters that are not valid in

the given code page.

BLOB INTEGER The byte array has a maximum of 263 elements and is converted to an

integer. An error is reported if the source is not of the correct length to

match an integer.

BOOLEAN BOOLEAN The result is the same as the input.

BOOLEAN CHARACTER If the source value is TRUE, the result is the character string TRUE. If

the source value is FALSE, the result is the character string FALSE.

Because the UNKNOWN Boolean value is the same as the NULL value

for Booleans, the result is NULL if the source value is UNKNOWN.

332 ESQL

Table 6. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

CHARACTER BIT The character string must conform to the rules for a bit string literal or

for the contents of the bit string literal. That is, the character string can

be of the form B’bbbbbbb’ or bbbbbb (where b’ can be either 0 or 1).

If you specify either a CCSID or ENCODING clause, the character

string is converted into the specified CCSID and encoding and placed

without further conversion into the bit array return value.

If you specify only a CCSID, big endian encoding is assumed.

If you specify only an encoding, a CCSID of 1208 is assumed.

This function reports conversion errors if the code page or encoding

are unknown or the data contains Unicode characters that cannot be

converted to the given code page.

CHARACTER BLOB This cast can work in two ways:

1. If you specify either a CCSID or ENCODING clause, the whole

string is written out in the code page or encoding that you

requested. For example, the string ″Cat″ in CCSID 850 becomes the

three-byte array in hexadecimal, 43,61,74.

2. If you specify neither the CCSID nor ENCODING clause, the string

must itself contain two-character hexadecimal digits of the form

X’hhhhhh’ or hhhhhh (where h can be any hexadecimal characters).

In this case, the input string ″436174″ becomes the same three-byte

binary array (43,61,74).

Note that an error is generated if the input string is not of the

correct format.

If you specify only a CCSID, big endian encoding is assumed.

If you specify only an encoding, a CCSID of 1208 is assumed.

This function reports conversion errors if the code page or encoding

are unknown or the data contains Unicode characters that cannot be

converted to the given code page.

CHARACTER BOOLEAN The character string is interpreted in the same way as a Boolean literal.

That is, the character string must be one of the strings TRUE, FALSE,

or UNKNOWN (in any case combination).

CHARACTER CHARACTER The result is the same as the input.

CHARACTER DATE If a FORMAT clause is not specified, the character string must conform

to the rules for a date literal or the date string. That is, the character

string can be either DATE ’2002-10-05’ or 2002-10-05.

See also “Formatting and parsing dateTimes as strings” on page 314.

CHARACTER DECIMAL The character string is interpreted in the same way as an exact numeric

literal to form a temporary decimal result with a scale and precision

defined by the format of the string. This is converted into a decimal of

the specified precision and scale, with a runtime error being

generated if the conversion results in loss of significant digits.

If you do not specify the precision and scale, the precision and

scale of the result are the minimum necessary to hold the given value.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing numbers as strings” on page 311.

ESQL reference 333

|||

|
|
|
|

|
|
|
|
|

|
|

|

|

|
|
|

Table 6. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

CHARACTER FLOAT The character string is interpreted in the same way as a floating point

literal.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing numbers as strings” on page 311.

CHARACTER GMTTIME The character string must conform to the rules for a GMT time literal

or the time string. That is, the character string can be either GMTTIME

’09:24:15’ or 09:24:15.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing dateTimes as strings” on page 314.

CHARACTER GMTTIMESTAMP The character string must conform to the rules for a GMT timestamp

literal or the timestamp string. That is, the character string can be

either GMTTIMESTAMP ’2002-10-05 09:24:15’ or 2002-10-05 09:24:15.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing dateTimes as strings” on page 314.

CHARACTER INTEGER The character string is interpreted in the same way as an integer literal.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing numbers as strings” on page 311.

CHARACTER INTERVAL The character string must conform to the rules for an interval literal

with the same interval qualifier as specified in the CAST function,

or it must conform to the rules for an interval string that apply for the

specified interval qualifier.

CHARACTER TIME The character string must conform to the rules for a time literal or for

the time string. That is, the character string can be either TIME

’09:24:15’ or 09:24:15.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing dateTimes as strings” on page 314.

CHARACTER TIMESTAMP The character string must conform to the rules for a timestamp literal

or for the timestamp string. That is, the character string can be either

TIMESTAMP ’2002-10-05 09:24:15’ or 2002-10-05 09:24:15.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing dateTimes as strings” on page 314.

DATE CHARACTER The result is a string conforming to the definition of a date literal,

whose interpreted value is the same as the source date value.

For example:

CAST(DATE ’2002-10-05’ AS CHARACTER)

returns

DATE ’2002-10-05’

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing dateTimes as strings” on page 314.

DATE DATE The result is the same as the input.

DATE GMTTIMESTAMP The result is a value whose date fields are taken from the source date

value, and whose time fields are taken from the current GMT time.

DATE TIMESTAMP The result is a value whose date fields are taken from the source date

value, and whose time fields are taken from the current time.

334 ESQL

Table 6. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

DECIMAL CHARACTER The result is the shortest character string that conforms to the

definition of an exact numeric literal and whose interpreted value is

the value of the decimal.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing numbers as strings” on page 311.

DECIMAL DECIMAL

The value is converted to the specified precision and scale, with a

runtime error being generated if the conversion results in loss of

significant digits. If you do not specify the precision and scale, the

value, precision and scale are preserved; it is a NOOP (no operation).

DECIMAL FLOAT The number is converted, with rounding if necessary.

DECIMAL INTEGER The value is rounded and converted into an integer, with a runtime

error being generated if the conversion results in loss of significant

digits.

DECIMAL INTERVAL If the interval qualifier specified has only one field, the result is an

interval with that qualifier with the field equal to the value of the exact

numeric. Otherwise a runtime error is generated.

FLOAT CHARACTER The result is the shortest character string that conforms to the

definition of an approximate numeric literal and whose mantissa

consists of a single digit that is not 0, followed by a period and an

unsigned integer, and whose interpreted value is the value of the float.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing numbers as strings” on page 311.

FLOAT FLOAT The result is the same as the input.

FLOAT DECIMAL The value is rounded and converted into a decimal of the specified

precision and scale, with a runtime error being generated if the

conversion results in loss of significant digits. If you do not specify the

precision and scale, the precision and scale of the result are the

minimum necessary to hold the given value.

FLOAT INTEGER The value is rounded and converted into an integer, with a runtime

error being generated if the conversion results in loss of significant

digits.

FLOAT INTERVAL If the specified interval qualifier has only one field, the result is an

interval with that qualifier with the field equal to the value of the

numeric. Otherwise a runtime error is generated.

GMTTIME CHARACTER The result is a string conforming to the definition of a GMTTIME

literal whose interpreted value is the same as the source value. The

resulting string has the form GMTTIME ’hh:mm:ss’.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing dateTimes as strings” on page 314.

GMTTIME GMTTIME The result is the same as the input.

GMTTIME TIME The resulting value is the source value plus the local time zone

displacement (as returned by LOCAL_TIMEZONE). The hours field is

calculated modulo 24.

GMTTIME GMTTIMESTAMP The result is a value whose date fields are taken from the current date,

and whose time fields are taken from the source GMT time.

GMTTIME TIMESTAMP The result is a value whose date fields are taken from the current date,

and whose time fields are taken from the source GMT time, plus the

local time zone displacement (as returned by LOCAL_TIMEZONE).

ESQL reference 335

Table 6. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

GMTTIMESTAMP CHARACTER The result is a string conforming to the definition of a

GMTTIMESTAMP literal whose interpreted value is the same as the

source value. The resulting string has the form GMTTIMESTAMP

’yyyy-mm-dd hh:mm:ss’.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing dateTimes as strings” on page 314.

GMTTIMESTAMP DATE The result is a value whose fields consist of the date fields of the

source GMTTIMESTAMP value.

GMTTIMESTAMP GMTTIME The result is a value whose fields consist of the time fields of the

source GMTTIMESTAMP value.

GMTTIMESTAMP TIME The result is a value whose time fields are taken from the source

GMTTIMESTAMP value, plus the local time zone displacement (as

returned by LOCAL_TIMEZONE). The hours field is calculated

modulo 24.

GMTTIMESTAMP GMTTIMESTAMP The result is the same as the input.

GMTTIMESTAMP TIMESTAMP The resulting value is source value plus the local time zone

displacement (as returned by LOCAL_TIMEZONE).

INTEGER BIT The given integer is converted to a bit array with a maximum of 263

elements.

INTEGER BLOB The given integer is converted to a byte array with a maximum of 263

elements.

INTEGER CHARACTER The result is the shortest character string that conforms to the

definition of an exact numeric literal and whose interpreted value is

the value of the integer.

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing numbers as strings” on page 311.

INTEGER FLOAT The number is converted, with rounding if necessary.

INTEGER INTEGER The result is the same as the input.

INTEGER DECIMAL The value is converted into a decimal of the specified precision and

scale, with a runtime error being generated if the conversion results in

loss of significant digits. If you do not specify the precision and scale,

the precision and scale of the result are the minimum necessary to

hold the given value.

INTEGER INTERVAL If the interval qualifier specified has only one field, the result is an

interval with that qualifier with the field equal to the value of the exact

numeric. Otherwise a runtime error is generated.

INTERVAL CHARACTER The result is a string conforming to the definition of an INTERVAL

literal, whose interpreted value is the same as the source interval value.

For example:

CAST(INTERVAL ’4’ YEARS AS CHARACTER)

returns

INTERVAL ’4’ YEARS

336 ESQL

Table 6. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

INTERVAL DECIMAL If the interval value has a qualifier that has only one field, the result is

a decimal of the specified precision and scale with that value, with a

runtime error being generated if the conversion results in loss of

significant digits. If the interval has a qualifier with more than one

field, such as YEAR TO MONTH, a runtime error is generated. If you

do not specify the precision and scale, the precision and scale of the

result are the minimum necessary to hold the given value.

INTERVAL FLOAT If the interval value has a qualifier that has only one field, the result is

a float with that value. If the interval has a qualifier with more than

one field, such as YEAR TO MONTH, a runtime error is generated.

INTERVAL INTEGER If the interval value has a qualifier that has only one field, the result is

an integer with that value. If the interval has a qualifier with more

than one field, such as YEAR TO MONTH, a runtime error is

generated.

INTERVAL INTERVAL The result is the same as the input.

Year-month intervals can be converted only to year-month intervals,

and day-second intervals only to day-second intervals. The source

interval is converted into a scalar in units of the least significant field

of the target interval qualifier. This value is normalized into an

interval with the target interval qualifier. For example, to convert an

interval that has the qualifier MINUTE TO SECOND into an interval

with the qualifier DAY TO HOUR, the source value is converted into a

scalar in units of hours, and this value is normalized into an interval

with qualifier DAY TO HOUR.

TIME CHARACTER The result is a string conforming to the definition of a TIME literal,

whose interpreted value is the same as the source time value.

For example:

CAST(TIME ’09:24:15’ AS CHARACTER)

returns

TIME ’09:24:15’

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing dateTimes as strings” on page 314.

TIME GMTTIME The result value is the source value minus the local time zone

displacement (as returned by LOCAL_TIMEZONE). The hours field is

calculated modulo 24.

TIME GMTTIMESTAMP The result is a value whose date fields are taken from the current date,

and whose time fields are taken from the source GMT time, minus the

local time zone displacement (as returned by LOCAL_TIMEZONE).

TIME TIME The result is the same as the input.

TIME TIMESTAMP The result is a value whose date fields are taken from the current date,

and whose time fields are taken from the source time value.

ESQL reference 337

Table 6. Supported casts: one-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

TIMESTAMP CHARACTER The result is a string conforming to the definition of a TIMESTAMP

literal, whose interpreted value is the same as the source timestamp

value.

For example:

CAST(TIMESTAMP ’2002-10-05 09:24:15’ AS CHARACTER)

returns

TIMESTAMP ’2002-10-05 09:24:15’

The behavior changes if the FORMAT clause is specified. See also

“Formatting and parsing dateTimes as strings” on page 314.

TIMESTAMP DATE The result is a value whose fields consist of the date fields of the

source timestamp value.

TIMESTAMP GMTTIME The result is a value whose time fields are taken from the source

TIMESTAMP value, minus the local time zone displacement (as

returned by LOCAL_TIMEZONE). The hours field is calculated

modulo 24.

TIMESTAMP GMTTIMESTAMP The resulting value is the source value minus the local time zone

displacement (as returned by LOCAL_TIMEZONE).

TIMESTAMP TIME The result is a value whose fields consist of the time fields of the

source timestamp value.

TIMESTAMP TIMESTAMP The result is the same as the input.

 Table 7. Supported casts: many-to-one mappings of source to target data-type

Source data-type Target data-type Effect

Numeric, Numeric,

Numeric

DATE Creates a DATE value from the numerics in the order year, month, and

day. Non-integer values are rounded.

Numeric, Numeric,

Numeric

TIME Creates a TIME value from the numerics in the order hours, minutes,

and seconds. Non-integer values for hours and minutes are rounded.

Numeric, Numeric,

Numeric

GMTIME Creates a GMTTIME value from the numerics in the order of hours,

minutes, and seconds. Non-integer values for hours and minutes are

rounded.

Numeric, Numeric,

Numeric, Numeric,

Numeric, Numeric

TIMESTAMP Creates a TIMESTAMP value from the numerics in the order years,

months, days, hours, minutes, and seconds. Non-integer values for

years, months, days, hours, and minutes are rounded.

Numeric, Numeric,

Numeric, Numeric,

Numeric, Numeric

GMTTIMESTAMP Creates a GMTIMESTAMP value from the numerics in the order years,

months, days, hours, minutes, and seconds. Non-integer values for

years, months, days, hours, and minutes are rounded.

DATE, TIME TIMESTAMP The result is a TIMESTAMP value with the given DATE and TIME.

DATE, GMTTIME GMTIMESTAMP The result is a GMTTIMESTAMP value with the given DATE and

GMTTIME.

Numeric, Numeric INTERVAL YEAR

TO MONTH

The result is an INTERVAL with the first source as years and the

second as months. Non-integer values are rounded.

Numeric, Numeric INTERVAL HOUR

TO MINUTE

The result is an INTERVAL with the first source as hours and the

second as minutes. Non-integer values are rounded.

Numeric, Numeric,

Numeric

INTERVAL HOUR

TO SECOND

The result is an INTERVAL with the sources as hours, minutes, and

seconds, respectively. Non-integer values for hours and minutes are

rounded.

338 ESQL

Table 7. Supported casts: many-to-one mappings of source to target data-type (continued)

Source data-type Target data-type Effect

Numeric, Numeric INTERVAL MINUTE

TO SECOND

The result is an INTERVAL with the sources as minutes and seconds,

respectively. Non-integer values for minutes are rounded.

Numeric, Numeric INTERVAL DAY TO

HOUR

The result is an INTERVAL with the sources as days and hours,

respectively. Non-integer values are rounded.

Numeric, Numeric,

Numeric

INTERVAL DAY TO

MINUTE

The result is an INTERVAL with the sources as days, hours, and

minutes, respectively. Non-integer values are rounded.

Numeric, Numeric,

Numeric, Numeric

INTERVAL DAY TO

SECOND

The result is an INTERVAL with the sources as days, hours, minutes,

and seconds, respectively. Non-integer values for days, hours, and

minutes are rounded.

Numeric INTERVAL YEAR The result is an INTERVAL with the source as years, rounded if

necessary.

Numeric INTERVAL MONTH The result is an INTERVAL with the source as months, rounded if

necessary.

Numeric INTERVAL DAY The result is an INTERVAL with the source as days, rounded if

necessary.

Numeric INTERVAL HOUR The result is an INTERVAL with the source as hours, rounded if

necessary.

Numeric INTERVAL MINUTE The result is an INTERVAL with the source as minutes, rounded if

necessary.

Numeric INTERVAL

SECOND

The result is an INTERVAL with the source as seconds.

Implicit casts

This topic discusses implicit casts.

It is not always necessary to cast values between types. Some casts are done

implicitly. For example, numbers are implicitly cast between the three numeric

types for the purposes of comparison and arithmetic. Character strings are also

implicitly cast to other data types for the purposes of comparison.

There are three situations in which a data value of one type is cast to another type

implicitly. The behavior and restrictions of the implicit cast are the same as

described for the explicit cast function, except where noted in the topics listed

below.

Implicit CASTs for comparisons

The standard SQL comparison operators >, <, >=, <=, =, <> are supported for

comparing two values in ESQL.

When the data types of the two values are not the same, one of them can be

implicitly cast to the type of the other to allow the comparison to proceed. In the

table below, the vertical axis represents the left hand operand, the horizontal axis

represents the right hand operand.

L means that the right hand operand is cast to the type of the left hand operand

before comparison; R means the opposite; X means that no implicit casting takes

place;a blank means that comparison between the values of the two data types is

not supported.

ESQL reference 339

ukn bln int float dec char time gtm date ts gts ivl blob bit

ukn

bln X L

int X R R L

float L X L L

dec L R X L

chr R R R R X R R R R R R1 R R

tm L X L

gtm L R X

dt L X R2 R2

ts L L2 X L

gts L L2 R X

ivl L1

 X

blb L X

bit L X

Notes:

1. When casting from a character string to an interval, the character string must be of the format INTERVAL

’<values>’ <qualifier>. The format <values>, which is allowede for an explicit CAST, is not allowed here because

no qualifier external to the string is supplied.

2. When casting from a DATE to a TIMESTAMP or GMTTIMESTAMP, the time portion of the TIMESTAMP is set

to all zero values (00:00:00). This is different from the behavior of the explicit cast, which sets the time portion to

the current time.

Numeric types:

The comparison operators operate on all three numeric types.

Character strings:

You cannot define an alternative collation order that, for example, collates upper

and lowercase characters equally.

When comparing character strings, trailing blanks are not significant, so the

comparison ’hello’ = ’hello ’ returns true.

Datetime values:

Datetime values are compared in accordance with the natural rules of the

Gregorian calendar and clock.

You can compare the time zone you are working in with the GMT time zone. The

GMT time zone is converted into a local time zone based on the difference

between your local time zone and the GMT time specified. When you compare

your local time with the GMT time, the comparison is based on the difference at a

given time on a given date.

Conversion is always based on the value of LOCAL_TIMEZONE. This is because

GMT timestamps are converted to local timestamps only if it can be done

unambiguously. Converting a local timestamp to a GMT timestamp has difficulties

around the daylight saving cut-over time, and converting between times and GMT

340 ESQL

times (without date information) has to be done based on the LOCAL_TIMEZONE

value, because you cannot specify which time zone difference to use otherwise.

Booleans:

Boolean values can be compared using all the normal comparison operators. The

TRUE value is defined to be greater than the FALSE value. Comparing either value

to the UNKNOWN boolean value (which is equivalent to NULL) returns an

UNKNOWN result.

Intervals:

Intervals are compared by converting the two interval values into intermediate

representations, so that both intervals have the same interval qualifier. Year-month

intervals can be compared only with other year-month intervals, and day-second

intervals can be compared only with other day-second intervals.

For example, if an interval in minutes, such as INTERVAL ’120’ MINUTE is compared

with an interval in days to seconds, such as INTERVAL ’0 02:01:00’, the two

intervals are first converted into values that have consistent interval qualifiers,

which can be compared. So, in this example, the first value is converted into an

interval in days to seconds, which gives INTERVAL ’0 02:00:00’, which can be

compared with the second value.

Comparing character strings with other types:

If a character string is compared with a value of another type, WebSphere Message

Broker attempts to cast the character string into a value of the same data type as

the other value.

For example, you can write an expression:

’1234’ > 4567

The character string on the left is converted into an integer before the comparison

takes place. This behavior reduces some of the need for explicit CAST operators

when comparing values derived from a generic XML message with literal values.

(For details of explicit casts that are supported, see “Supported casts” on page 331.)

It is this facility that allows you to write the following expression:

Body.Trade.Quantity > 5000

In this example, the field reference on the left evaluates to the character string

’1000’ and, because this is being compared to an integer, that character string is

converted into an integer before the comparison takes place.

You must still check whether the price field that you want interpreted as a decimal

is greater than a given threshold. Make sure that the literal you compare it to is a

decimal value and not an integer.

For example:

Body.Trade.Price > 100

does not have the desired effect, because the Price field is converted into an

integer, and that conversion fails because the character string contains a decimal

point. However, the following expression succeeds:

Body.Trade.Price > 100.00

ESQL reference 341

Implicit CASTs for arithmetic operations

This topic lists the implicit CASTs available for arithmetic operations.

Normally the arithmetic operators (+, -, *, and /) operate on operands of the same

data type, and return a value of the same data type as the operands. Cases where

it is acceptable for the operands to be of different data types, or where the data

type of the resulting value is different from the type of the operands, are shown in

the following table.

The following table lists the implicit CASTs for arithmetic operation.

 Left operand data type Right operand data type Supported

operators

Result data type

INTEGER FLOAT +, -, *, / FLOAT1

INTEGER DECIMAL +, -, *, / DECIMAL1

INTEGER INTERVAL * INTERVAL4

FLOAT INTEGER +, -, *, / FLOAT1

FLOAT DECIMAL +, -, *, / FLOAT1

FLOAT INTERVAL * INTERVAL4

DECIMAL INTEGER +, -, *, / DECIMAL1

DECIMAL FLOAT +, -, *, / FLOAT1

DECIMAL INTERVAL * INTERVAL4

TIME TIME - INTERVAL2

TIME GMTTIME - INTERVAL2

TIME INTERVAL +, - TIME3

GMTTIME TIME - INTERVAL2

GMTTIME GMTTIME - INTERVAL2

GMTTIME INTERVAL +, - GMTTIME3

DATE DATE - INTERVAL2

DATE INTERVAL +, - DATE3

TIMESTAMP TIMESTAMP - INTERVAL2

TIMESTAMP GMTTIMESTAMP - INTERVAL2

TIMESTAMP INTERVAL +, - TIMESTAMP3

GMTTIMESTAMP TIMESTAMP - INTERVAL2

GMTTIMESTAMP GMTTIMESTAMP - INTERVAL2

GMTTIMESTAMP INTERVAL +, - GMTTIMESTAMP3

INTERVAL INTEGER *, / INTERVAL4

INTERVAL FLOAT *, / INTERVAL4

INTERVAL DECIMAL *, / INTERVAL4

INTERVAL TIME + TIME3

INTERVAL GMTTIME + GMTTIME3

INTERVAL DATE + DATE3

INTERVAL TIMESTAMP + TIMESTAMP3

INTERVAL GMTTIMESTAMP + GMTTIMESTAMP3

342 ESQL

Left operand data type Right operand data type Supported

operators

Result data type

Notes:

1. The operand that does not match the data type of the result is cast to the data type of the result before the

operation proceeds. For example, if the left operand to an addition operator is an INTEGER, and the right

operand is a FLOAT, the left operand is cast to a FLOAT before the addition operation is performed.

2. Subtracting a (GMT)TIME value from a (GMT)TIME value, a DATE value from a DATE value, or a

(GMT)TIMESTAMP value from a (GMT)TIMESTAMP value, results in an INTERVAL value representing the time

interval between the two operands.

3. Adding or subtracting an INTERVAL from a (GMT)TIME, DATE or (GMT)TIMESTAMP value results in a new

value of the data type of the non-INTERVAL operand, representing the point in time represented by the original

non-INTERVAL, plus or minus the length of time represented by the INTERVAL.

4. Multiplying or dividing an INTERVAL by an INTEGER, FLOAT, or DECIMAL value results in a new INTERVAL

representing the length of time represented by the original, multiplied or divided by the factor represented by

the non-INTERVAL operand. For example, an INTERVAL value of 2 hours 16 minutes multiplied by a FLOAT

value of 2.5 results in a new INTERVAL value of 5 hours 40 minutes. The intermediate calculations involved in

multiplying or dividing the original INTERVAL are carried out in the data type of the non-INTERVAL, but the

individual fields of the INTERVAL (such as HOUR, YEAR, and so on) are always integral, so some rounding

errors might occur.

Implicit CASTs for assignment

Values can be assigned to one of three entities.

A message field (or equivalent in an exception or destination list)

Support for implicit conversion between the WebSphere Message Broker

data types and the message (in its bitstream form) depends on the

appropriate parser. For example, the XML parser casts everything as

character strings before inserting them into the WebSphere MQ message.

A field in a database table

 WebSphere Message Broker converts each of its data types into a suitable

standard SQL C data type, as detailed in the following table. Conversion

between this standard SQL C data type, and the data types supported by

each DBMS, depends on the DBMS. Consult your DBMS documentation

for more details.

 The following table lists the available conversions from WebSphere

Message Broker to SQL data types

 WebSphere Message Broker data type SQL data type

NULL, or unknown or invalid value SQL_NULL_DATA

BOOLEAN SQL_C_BIT

INTEGER SQL_C_LONG

FLOAT SQL_C_DOUBLE

DECIMAL SQL_C_CHAR1

CHARACTER SQL_C_CHAR

TIME SQL_C_TIME

GMTTIME SQL_C_TIME

DATE SQL_C_DATE

TIMESTAMP SQL_C_TIMESTAMP

GMTTIMESTAMP SQL_C_DATE

ESQL reference 343

WebSphere Message Broker data type SQL data type

INTERVAL Not supported2

BLOB SQL_C_BINARY

BIT Not supported2

Notes:

1. For convenience, DECIMAL values are passed to the DBMS in character form.

2. There is no suitable standard SQL C data type for INTERVAL or BIT. Cast these to

another data type, such as CHARACTER, if you need to assign them to a database

field.

A scalar variable

When assigning to a scalar variable, if the data type of the value being

assigned and that of the target variable data type are different, an implicit

cast is attempted with the same restrictions and behavior as specified for

the explicit CAST function. The only exception is when the data type of the

variable is INTERVAL or DECIMAL.

 In both these cases, the value being assigned is first cast to a CHARACTER

value, and an attempt is made to cast the CHARACTER value to an

INTERVAL or DECIMAL. This is because INTERVAL requires a qualifier

and DECIMAL requires a precision and scale. These must be specified in

the explicit cast, but must be obtained from the character string when

implicitly casting. Therefore, a further restriction is that when implicitly

casting to an INTERVAL variable, the character string must be of the form

INTERVAL ’<values>’ <qualifier>. The shortened <values> form that is

acceptable for the explicit cast is not acceptable here.

Data types of values from external sources

There are two external sources from which data can be extracted by ESQL:

v Message fields

v Database columns

The ESQL data type of message fields depends on the type of the message (XML

for example), and the parser used to parse it. The ESQL data type of the value

returned by a database column reference depends on the data type of the column

in the database.

The following table shows which ESQL data types the various built-in DBMS data

types are cast to, when they are accessed by WebSphere Message Broker.

The DBMS products are DB2 (version shipped with the product), SQL Server

Version 7.0, Sybase Version 12.0, and Oracle Version 8.1.5

 DB2 SQL Server and Sybase Oracle

BOOLEAN BIT

INTEGER SMALLINT, INTEGER,

BIGINT

INT, SMALLINT, TINYINT

FLOAT REAL, DOUBLE FLOAT, REAL NUMBER()1

DECIMAL DECIMAL DECIMAL, NUMERIC, MONEY,

SMALLMONEY

NUMBER(P)1,

NUMBER(P,S)1

344 ESQL

DB2 SQL Server and Sybase Oracle

CHARACTER CHAR, VARCHAR, CLOB CHAR, VARCHAR, TEXT CHAR, NCHAR,

VARCHAR2,

NVARCHAR2, ROWID,

UROWID, LONG, CLOB,

TIME TIME

GMTTIME

DATE DATE

TIMESTAMP TIMESTAMP DATETIME, SMALLDATETIME DATE

GMTTIMESTAMP

INTERVAL

BLOB BLOB BINARY, VARBINARY,

TIMESTAMP, IMAGE,

UNIQUEIDENTIFIER

RAW LONG, RAW BLOB

BIT

Not supported DATALINK, GRAPHIC,

VARGRAPHIC, DBCLOB

NTEXT, NCHAR, NVARCHAR NCLOB, BFILE

Note:

1. If an Oracle database column with NUMBER data type is defined with an explicit precision (P) and scale (S), it

is cast to an ESQL DECIMAL value; otherwise it is cast to a FLOAT.

For example, an ESQL statement like this:

SET OutputRoot.xxx[]

 = (SELECT T.department FROM Database.personnel AS T);

where Database.personnel resolves to a TINYINT column in an SQL Server database table, results in a list of

ESQL INTEGER values being assigned to OutputRoot.xxx.

By contrast, an identical query, where Database.personnel resolves to a NUMBER() column in an Oracle

database, results in a list of ESQL FLOAT values being assigned to OutputRoot.xxx.

Miscellaneous ESQL functions

This topic lists the miscellaneous ESQL functions and covers the following:

“COALESCE function”

“NULLIF function” on page 346

“PASSTHRU function” on page 346

“UUIDASBLOB function” on page 348

“UUIDASCHAR function” on page 349

COALESCE function

COALESCE is a miscellaneous function that lets you provide default values for

fields.

ESQL reference 345

Syntax

��

�

 ,

COALESCE

(

source_value

,

source_value

)

��

The COALESCE function evaluates its parameters in order and returns the first

one that is not NULL. The result is NULL if, and only if, all the arguments are

NULL. The parameters can be of any scalar type, but they need not all be of the

same type.

Use the COALESCE function to provide a default value for a field, which might

not exist in a message. For example, the expression:

COALESCE(Body.Salary, 0)

returns the value of the Salary field in the message if it exists, or 0 (zero) if that

field does not exist.

NULLIF function

NULLIF is a miscellaneous function that returns a NULL value if the arguments

are equal.

Syntax

�� NULLIF (expression1 , expression2) ��

The NULLIF function returns a NULL value if the arguments are equal; otherwise,

it returns the value of the first argument. The arguments must be comparable. The

result of using NULLIF(e1,e2) is the same as using the expression:

CASE WHEN e1=e2 THEN NULL ELSE e1 END

When e1=e2 evaluates to unknown (because one or both of the arguments is

NULL), NULLIF returns the value of the first argument.

PASSTHRU function

The PASSTHRU function evaluates an expression and executes the resulting

character string as a database statement, returning a result set.

The PASSTHRU function is similar to the PASSTHRU statement, which is

described in “PASSTHRU statement” on page 238.

346 ESQL

��

�

�

 PASSTHRU (Expression)

TO

DatabaseReference

,

VALUES

(

Expression

)

,

(1)

,

Expression

 ��

WHERE:

 DatabaseReference = Database . DataSourceClause

 DataSourceClause = DataSourceName

{

DataSourceExpression

}

Notes:

1 The lower half of the main syntax diagram describes syntax retained for

backward compatability.

Usage

The main use of the PASSTHRU function is to issue complex SELECTs, not

currently supported by the broker, to databases. (Examples of complex SELECTs

not currently supported by the broker are those containing GROUP BY or

HAVING clauses.)

The first expression is evaluated and the resulting character string is passed to the

database pointed to by DatabaseReference (in the TO clause) for execution. If the TO

clause is not specified, the database pointed to by the node’s data source attribute

is used.

Use question marks (?) in the database string to denote parameters. The parameter

values are supplied by the VALUES clause.

If the VALUES clause is specified, its expressions are evaluated and passed to the

database as parameters; (that is, their values are substituted for the question marks

in the database statement).

If there is only one VALUE expression, the result may or may not be a list. If it is a

list, the list’s scalar values are substituted for the question marks, sequentially. If it

is not a list, the single scalar value is substituted for the (single) question mark in

the database statement. If there is more than one VALUE expression, none of the

expressions should evaluate to a list. Their scalar values are substituted for the

question marks, sequentially.

Because the database statement is constructed by the user program, there is no

absolute need to use parameter markers (that is, the question marks) or the

VALUES clause, because the whole of the database statement could be supplied, as

a literal string, by the program. However, use parameter markers whenever

possible, because this reduces the number of different statements that need to be

prepared and stored in the database and the broker.

ESQL reference 347

Database reference

A database reference is a special case of the field references used to refer to

message trees. It consists of the word “Database” followed by a data source name

(that is, the name of a database instance).

You can specify the data source name directly or by an expression enclosed in

braces ({...}). A directly-specified data source name is subject to name substitution.

That is, if the name used has been declared to be a known name, the value of the

declared name is used rather than the name itself (see “DECLARE statement” on

page 217).

Handling errors

It is possible for errors to occur during PASSTHRU operations. For example, the

database may not be operational or the statement may be invalid. In these cases,

an exception is thrown (unless the node has its throw exception on database

error property set to FALSE). These exceptions set appropriate SQL code, state,

native error, and error text values and can be dealt with by error handlers (see the

DECLARE HANDLER statement).

For further information about handling database errors, see “Capturing database

state” on page 77.

Example

The following example performs a SELECT on table “Table1” in schema

“Schema1” in database DSN1, passing two parameters to the WHERE clause and

asking for the result set to be ordered in ascending name order. The result set is

assigned to the SelectResult folder:

SET OutputRoot.XML.Data.SelectResult.Row[] =

 PASSTHRU(’SELECT R.* FROM Schema1.Table1 AS R WHERE R.Name = ? OR R.Name =

 ? ORDER BY Name’

 TO Database.DSN1

 VALUES (’Name1’, ’Name4’));

UUIDASBLOB function

UUIDASBLOB is a miscellaneous function that returns universally unique

identifiers (UUIDs) as BLOBs.

Syntax

�� UUIDASBLOB

(

source_character_uuid

)
 ��

If (source_character_uuid) is not specified, UUIDASBLOB creates a new UUID and

returns it as a BLOB.

If (source_character_uuid) is specified, UUIDASBLOB converts an existing character

UUID in the form dddddddd_dddd_dddd_dddd_dddddddddddd to the BLOB form. An

exception is thrown if the parameter is not of the expected form.

348 ESQL

The result is NULL if a NULL parameter is supplied.

UUIDASCHAR function

UUIDASCHAR is a miscellaneous function that returns universally unique

identifiers (UUIDs) as CHARACTER values.

Syntax

�� UUIDASCHAR

(

source_blob_uuid

)
 ��

If (source_character_uuid) is not specified, UUIDASCHAR creates a new UUID and

returns it as a CHARACTER value.

If (source_character_uuid) is specified, UUIDASCHAR converts an existing BLOB

UUID to the character form.

The result is NULL if a NULL parameter is supplied.

Broker properties accessible from ESQL and Java

For an overview of broker properties, see “Broker properties” on page 8.

The following table shows the broker, flow, and node properties that are accessible

from ESQL. The table’s fourth column indicates whether the properties are also

accessible from Java nodes.

If a property is listed as being accessible from Java nodes (fourth column), it is

accessible from Java nodes only, not from Java routines called as ESQL functions or

procedures.

ESQL reference 349

Property type Property name Return type

From

Java

nodes? What is it?

General broker

properties

4

BrokerDataSourceUserId Character Yes.

1 The data source user ID used by

the broker.

BrokerDataSource Character No. The ODBC Data Source Name

(DSN) of the database that

contains the broker’s tables.

BrokerName Character Yes.2 The name of the broker.

BrokerUserId Character No The user ID that the broker uses

to access its database tables.

BrokerVersion Character No The 4-character version number

of the broker (see

“BrokerVersion” on page 352

below).

ExecutionGroupLabel Character Yes.3 The label of the Execution Group

(a human-readable name).

ExecutionGroupName Character No The name of the Execution Group

(often a UUID identifier).

Family Character No The generic name of the software

platform that the broker is

running on (’WINDOWS’, ’UNIX’, or

’ZOS’).

ProcessId Integer No The process identifier (PID) of the

DataFlowEngine.

QueueManagerName Character Yes.5 The name of the MQ queue

manager to which the broker is

connected.

WorkPath Character No. The (optional) directory in which

working files for this broker are

stored.

Flow properties

AdditionalInstances Integer No The number of additional threads

that the broker can use to service

the message flow.

CommitCount Integer No How many input messages are

processed by the message flow

before a syncpoint is taken.

CommitInterval Integer No The time interval at which a

commit is taken when the

CommitCount property is greater

than 1 (that is, where the message

flow is batching messages), but

the number of messages

processed has not reached the

value of the CommitCount

property.

CoordinatedTransaction Boolean Yes.6 Whether or not the message flow

is processed as a global

transaction, coordinated by

WebSphere MQ.

MessageFlowLabel Character Yes.7 The name of the flow.

350 ESQL

Property type Property name Return type

From

Java

nodes? What is it?

Node properties

DataSource Character No The ODBC Data Source Name

(DSN) of the database in which

the user tables are created.

DataSourceUserId Character No The user ID that the broker uses

to access the database user tables.

MessageOptions Integer (64-bit) No The bitstream and validation

options in force.

NodeLabel Character Yes.8 The name of the node.

NodeType Character No The type of node (Compute,

Filter, or Database).

ThrowExceptionOnDatabaseError Boolean No Whether the broker generates an

exception when a database error

is detected.

Transaction Character No The type of transaction

(Automatic or commit) used to

access a database from this node.

TreatWarningsAsErrors Boolean No Whether database warning

messages are treated as errors

and cause the output message to

be propagated to the failure

terminal.

Notes:

1. Accessible through:

a. MbNode.getBroker()

b. MbBroker.getDataSourceUserId()
2. Accessible through:

a. MbNode.getBroker()

b. MbBroker.getName()
3. Accessible through:

a. MbNode.getExecutionGroup()

b. MbExecutionGroup.getName()
4. The only broker-defined properties that can be used in a Trace node are those

in the “General broker properties” group. For example, you could specify the

Pattern setting of a Trace node as:

Start Trace Input Message

 Time: ${CURRENT_TIMESTAMP}

 Broker: ${BrokerName} Version: ${BrokerVersion} Platform: ${Family}

 ProcessID: ${ProcessId} BrokerUserId: ${BrokerUserId}

 ExecutionGroupLabel: ${ExecutionGroupLabel}

 Transaction: ${Transaction}

 Root Tree: ${Root}

End Trace Input Message

5. Accessible through:

a. MbNode.getBroker()

b. MbBroker.getQueueManagerName()
6. Accessible through:

a. MbNode.getMessageFlow()

b. MbMessageFlow.isCoordinatedTransaction()
7. Accessible through:

a. MbNode.getMessageFlow()

ESQL reference 351

b. MbMessageFlow.getName()
8. Accessible through MbNode.getName()

BrokerVersion

The BrokerVersion property contains a 4-character code that indicates the version

of the broker. The code is based on the IBM Version/Release/Modification/Fix

pack (VRMF) product-numbering system. The VRMF code works like this:

V The Version number. A Version is a separate IBM licensed program that

usually has significant new code or new function. Each version has its own

license, terms, and conditions.

R The Release number. A Release is a distribution of new function and

authorized program analysis report (APAR) fixes for an existing product.

M The Modification number. A Modification is new function added to an

existing product, and is delivered separately from an announced Version or

Release.

F The Fix pack number. Fix packs contain defect and APAR fixes. They do

not contain new function.

 A fix pack is cumulative: that is, it contains all the fixes shipped in

previous maintenance to the release, including previous fix packs. It can be

applied on top of any previously-shipped maintenance to bring the system

up to the current fix pack level.

Special characters, case sensitivity, and comments in ESQL

This topic describes the special characters used in ESQL, case sensitivity, and how

comments are handled in the following sections:

v “Special characters”

v “Case sensitivity of ESQL syntax” on page 353

v “Comments” on page 353

Special characters

 Symbol Name Usage

; semicolon End of ESQL statement

. period Field reference separator or

decimal point

= equals Comparison or assignment

> greater than Comparison

< less than Comparison

[] square brackets Array subscript

’ single quotation mark Delimit string, date-time,

and decimal literals

Note, that to escape a single

quotation mark inside a

string literal, you must use

two single quotation marks.

|| double vertical bar Concatenation

() parentheses Expression delimiter

352 ESQL

Symbol Name Usage

″ quotation mark Identifier delimiter

* asterisk Any name or multiply

+ plus Arithmetic add

- minus Arithmetic subtract, date

separator, or negation

/ forward slash Arithmetic divide

_ underscore LIKE single wild card

% percent LIKE multiple wild card

\ backslash LIKE escape character

: colon Name space and Time literal

separator

, comma List separator

<> less than greater than Not equals

-- double minus ESQL single line comment

/* */ slash asterisk asterisk slash ESQL multiline comment

? question mark Substitution variable in

PASSTHRU

<= less than or equal Comparison

>= greater than or equal Comparison

/*!{ }!*/ executable comment Bypass tools check

Case sensitivity of ESQL syntax

The case of ESQL statements is:

v Case sensitive in field reference literals

v Not case sensitive in ESQL language words

Comments

ESQL has two types of comment: single line and multiple line. A single line

comment starts with the characters -- and ends at the end of the line.

In arithmetic expressions you must take care not to initiate a line comment

accidentally. For example, consider the expression:

1 - -2

Removing all white space from the expression results in:

1--2

which is interpreted as the number 1, followed by a line comment.

A multiple line comment starts with /* anywhere in ESQL and ends with */.

ESQL reference 353

ESQL reserved keywords

The following keywords are reserved in uppercase, lowercase, or mixed case. You

cannot use these keywords for variable names. However, you can use reserved

keywords as names in a field reference.

 ALL ASYMMETRIC BOTH

CASE DISTINCT FROM

ITEM LEADING NOT

SYMMETRIC TRAILING WHEN

ESQL non-reserved keywords

The following keywords are used in the ESQL language but are not reserved. Do

not use them for variable, function, or procedure names (in any combination of

upper and lower case) because your code can become difficult to understand.

v AND

v ANY

v AS

v ATOMIC

v ATTACH

v BEGIN

v BETWEEN

v BIT

v BLOB

v BOOLEAN

v BY

v CALL

v CATALOG

v CCSID

v CHAR

v CHARACTER

v COMMIT

v COMPUTE

v CONDITION

v CONSTANT

v CONTINUE

v COORDINATED

v COUNT

v CREATE

v CURRENT_DATE

v CURRENT_GMTDATE

v CURRENT_GMTTIME

v CURRENT_GMTTIMESTAMP

v CURRENT_TIME

v CURRENT_TIMESTAMP

v DATA

v DATABASE

v DATE

v DAY

v DAYOFWEEK

v DAYOFYEAR

v DAYS

354 ESQL

v DECIMAL

v DECLARE

v DEFAULT

v DELETE

v DETACH

v DO

v DOMAIN

v DYNAMIC

v ELSE

v ELSEIF

v ENCODING

v END

v ENVIRONMENT

v ESCAPE

v ESQL

v EVAL

v EVENT

v EXCEPTION

v EXISTS

v EXIT

v EXTERNAL

v FALSE

v FIELD

v FILTER

v FINALIZE

v FIRSTCHILD

v FLOAT

v FOR

v FORMAT

v FOUND

v FULL

v FUNCTION

v GMTTIME

v GMTTIMESTAMP

v GROUP

v HANDLER

v HAVING

v HOUR

v IDENTITY

v IF

v IN

v INF

v INFINITY

v INOUT

v INSERT

v INT

v INTEGER

v INTERVAL

v INTO

v IS

v ISLEAPYEAR

v ITERATE

v JAVA

v LABEL

v LANGUAGE

v LAST

ESQL reference 355

v LASTCHILD

v LEAVE

v LIKE

v LIST

v LOCALTIMEZONE

v LOG

v LOOP

v MAX

v MESSAGE

v MIN

v MINUTE

v MODIFIES

v MODULE

v MONTH

v MONTHS

v MOVE

v NAME

v NAMESPACE

v NAN

v NEXTSIBLING

v NONE

v NULL

v NUM

v NUMBER

v OF

v OPTIONS

v OR

v ORDER

v OUT

v PARSE

v PASSTHRU

v PATH

v PLACING

v PREVIOUSSIBLING

v PROCEDURE

v PROPAGATE

v QUARTEROFYEAR

v QUARTERS

v READS

v REFERENCE

v REPEAT

v RESIGNAL

v RESULT

v RETURN

v RETURNS

v ROLLBACK

v ROW

v SAMEFIELD

v SCHEMA

v SECOND

v SELECT

v SET

v SETS

v SEVERITY

v SHARED

v SHORT

356 ESQL

v SOME

v SQL

v SQLCODE

v SQLERRORTEXT

v SQLEXCEPTION

v SQLNATIVEERROR

v SQLSTATE

v SQLWARNING

v SUM

v TERMINAL

v THE

v THEN

v THROW

v TIME

v TIMESTAMP

v TO

v TRACE

v TRUE

v TYPE

v UNCOORDINATED

v UNKNOWN

v UNTIL

v UPDATE

v USER

v UUIDASBLOB

v UUIDASCHAR

v VALUE

v VALUES

v WEEKOFMONTH

v WEEKOFYEAR

v WEEKS

v WHERE

v WHILE

v YEAR

Example message

This topic defines the example message that is used in many of the examples

throughout the information center.

The example message is:

<Invoice>

<InvoiceNo>300524</InvoiceNo>

<InvoiceDate>2000-12-07</InvoiceDate>

<InvoiceTime>12:40:00</InvoiceTime>

<TillNumber>3</TillNumber>

<Cashier StaffNo="089">Mary</Cashier>

<Customer>

 <FirstName>Andrew</FirstName>

 <LastName>Smith</LastName>

 <Title>Mr</Title>

 <DOB>20-01-70</DOB>

 <PhoneHome>01962818000</PhoneHome>

 <PhoneWork/>

 <Billing>

 <Address>14 High Street</Address>

 <Address>Hursley Village</Address>

 <Address>Hampshire</Address>

ESQL reference 357

<PostCode>SO213JR</PostCode>

 </Billing>

</Customer>

<Payment>

 <CardType>Visa</CardType>

 <CardNo>4921682832258418</CardNo>

 <CardName>Mr Andrew J. Smith</CardName>

 <Valid>1200</Valid>

 <Expires>1101</Expires>

</Payment>

<Purchases>

 <Item>

 <Title Category="Computer" Form="Paperback" Edition="2">The XML Companion

</Title>

 <ISBN>0201674866</ISBN>

 <Author>Neil Bradley</Author>

 <Publisher>Addison-Wesley</Publisher>

 <PublishDate>October 1999</PublishDate>

 <UnitPrice>27.95</UnitPrice>

 <Quantity>2</Quantity>

 </Item>

 <Item>

 <Title Category="Computer" Form="Paperback" Edition="2">A Complete Guide

to DB2 Universal Database</Title>

 <ISBN>1558604820</ISBN>

 <Author>Don Chamberlin</Author>

 <Publisher>Morgan Kaufmann Publishers</Publisher>

 <PublishDate>April 1998</PublishDate>

 <UnitPrice>42.95</UnitPrice>

 <Quantity>1</Quantity>

 </Item>

 <Item>

 <Title Category="Computer" Form="Hardcover" Edition="0">JAVA 2 Developers

Handbook</Title>

 <ISBN>0782121799</ISBN>

 <Author>Philip Heller, Simon Roberts </Author>

 <Publisher>Sybex, Inc.</Publisher>

 <PublishDate>September 1998</PublishDate>

 <UnitPrice>59.99</UnitPrice>

 <Quantity>1</Quantity>

 </Item>

</Purchases>

<StoreRecords/>

<DirectMail/>

<Error/>

</Invoice>

For a diagrammatic representation of this message, and for examples of how this

message can be manipulated with ESQL statements and functions, refer to “Writing

ESQL” on page 25.

358 ESQL

Part 3. Appendixes

© Copyright IBM Corp. 2000, 2006 359

360 ESQL

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this information

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this information. The furnishing of this information does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032,

Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2000, 2006 361

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM United Kingdom Laboratories,

Mail Point 151,

Hursley Park,

Winchester,

Hampshire,

England

SO21 2JN

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Programming License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information includes examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

362 ESQL

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

(C) (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

 AIX CICS Cloudscape

DB2 DB2 Connect DB2 Universal Database

developerWorks Domino

Everyplace FFST First Failure Support

Technology

IBM IBMLink IMS

IMS/ESA iSeries Language Environment

Lotus MQSeries MVS

NetView OS/400 OS/390

POWER pSeries RACF

Rational Redbooks RETAIN

RS/6000 SupportPac S/390

Tivoli VisualAge WebSphere

xSeries z/OS zSeries

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,

Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel and Pentium are trademarks or registered trademark of Intel Corporation or

its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix. Notices 363

364 ESQL

Index

C
code pages

converting with ESQL 56

D
databases

stored procedures in ESQL 70

deployment
Version 5 or Version 6 authored ESQL

to a Version 2.1 broker 15

Destination (LocalEnvironment),

populating 52

E
Environment tree

accessing with ESQL 53

ESQL
accessible from Java 8

BLOB messages 137

Broker attributes 8

converting EBCDIC NL to ASCII

CRLF 58

data
casting 55

converting 56

transforming 55

data types 4

database columns
referencing 64

selecting data from 65

database content, changing 68

database state, capturing 77

database updates, committing 70

databases, interacting with 62

datetime representation 150

deploying Version 5 or Version 6 to a

Version 2.1 broker 15

Destination, populating 52

developing 3

elements
accessing 29

setting or querying null 29

elements, multiple occurrences
accessing known 33

accessing unknown 34

Environment tree, accessing 53

errors, handling 72

example message 357

exception, throwing 76

ExceptionList tree, accessing 54

explicit null handling 29

field references 9

anonymous 36

creating 36

syntax 158

field types, referencing 29

fields
copying those that repeat 44

ESQL (continued)
fields (continued)

creating new 37

manipulating those that repeat in a

message tree 46

files
copying 21

creating 14

deleting 25

moving 22

opening 15

renaming 22

saving 20

functions 11

headers, accessing 47

IDoc messages 135

implicit null handling 29

JMS messages 134

keywords 62

non-reserved 354

reserved 354

like-parser-copy 61

LocalEnvironment tree, accessing 50

message body data, manipulating 28

message format, changing 61

message tree parts, manipulating 47

MIME messages 135

modules 12

MQMD header, accessing 47

MQRFH2 header, accessing 48

MRM domain messages
handling large 93

working with 91

MRM domain messages, accessing
attributes 81

base types 90

elements 79

elements in groups 82

embedded messages 85

embedded simple types 88

migrated objects 88

mixed content 84

multiple occurrences 80

namespace-enabled messages 86

MRM domain messages, null values
querying 87

setting 87

multiple database tables,

accessing 67

nested statements 10

node
creating 15

deleting 24

modifying 19

numeric operators with datetime 41

operators 9

complex comparison 166

logical 168

numeric 169

rules for operator precedence 170

simple comparison 164

ESQL (continued)
operators (continued)

string 170

output messages, generating 40

overview of 145

preferences, changing 23

procedures 11

Properties tree, accessing 49

returns to SELECT, checking 69

settings
editor 23

validation 24

special characters 352

statements 9

stored procedures, invoking 70

subfield, selecting 43

syntax preference 146

tailoring for different nodes 27

time interval, calculating 42

unlike-parser-copy 61

variables 5

XML messages
attributes, accessing 97

bit streams 124

complex message,

transforming 111

data, translating 118

DTD, accessing 100

fields, ordering 105

message and table data,

joining 121

message data, joining 119

messages, constructing 106

messages, handling large 113

paths and types,

manipulating 104

scalar value, returning 116

simple message, transforming 107

XMLDecl, accessing 99

XMLNS messages 125

XMLNSC parser, manipulating

messages using 127

ESQL data types
BOOLEAN 146

database, ROW 147

Datetime 146

DATE 147

GMTTIME 148

GMTTIMESTAMP 148

INTERVAL 149

TIME 148

TIMESTAMP 148

ESQL to Java, mapping of 156

list of 146

NULL 152

numeric 152

DECIMAL 153

FLOAT 154

INTEGER 154

REFERENCE 155

string 155

© Copyright IBM Corp. 2000, 2006 365

ESQL data types (continued)
BIT 155

BLOB 156

CHARACTER 156

ESQL functions 255

CAST
formatting and parsing dates as

strings 314

formatting and parsing numbers as

strings 311

formatting and parsing times as

strings 314

complex 304

CASE 305

CAST 306

Data types from external

sources 344

LIST constructor 327

ROW and LIST combined 329

ROW and LIST comparisons 329

ROW constructor 326

SELECT 320

Supported casts 331

database state 258

SQLCODE 259

SQLERRORTEXT 259

SQLNATIVEERROR 260

SQLSTATE 260

datetime 263

CURRENT_DATE 266

CURRENT_GMTDATE 267

CURRENT_GMTTIME 267

CURRENT_GMTTIMESTAMP 267

CURRENT_TIME 266

CURRENT_TIMESTAMP 266

EXTRACT 264

LOCAL_TIMEZONE 268

field 291

ASBITSTREAM 291

BITSTREAM 295

FIELDNAME 295

FIELDNAMESPACE 296

FIELDTYPE 296

FIELDVALUE 299

FOR 299

LASTMOVE 301

SAMEFIELD 301

implicit casts 339

arithmetic operations 342

assignment 343

comparisons 339

list 302

CARDINALITY 302

EXISTS 303

SINGULAR 303

THE 304

miscellaneous 345

COALESCE 345

NULLIF 346

PASSTHRU 346

UUIDASBLOB 348

UUIDASCHAR 349

numeric 268

ABS and ABSVAL 269

ACOS 270

ASIN 270

ATAN 270

ESQL functions (continued)
numeric (continued)

ATAN2 270

BITAND 271

BITNOT 271

BITOR 272

BITXOR 272

CEIL and CEILING 273

COS 273

COSH 274

COT 274

DEGREES 274

EXP 274

FLOOR 275

LN and LOG 275

LOG10 276

MOD 276

POWER 277

RADIANS 277

RAND 277

ROUND 278

SIGN 278

SIN 279

SINH 279

SQRT 279

TAN 280

TANH 280

TRUNCATE 281

string manipulation 281

LEFT 282

LENGTH 282

LOWER and LCASE 283

LTRIM 283

OVERLAY 284

POSITION 285

REPLACE 286

REPLICATE 286

RIGHT 287

RTRIM 287

SPACE 288

SUBSTRING 288

TRANSLATE 289

TRIM 290

UPPER and UCASE 291

ESQL statements 171

ATTACH 172

BEGIN ... END 174

BROKER SCHEMA 176

PATH clause 177

CALL 179

CASE 182

CREATE 185

CREATE FUNCTION 192

CREATE MODULE 201

CREATE PROCEDURE 203

DECLARE 217

DECLARE HANDLER 222

DELETE 226

DELETE FROM 223

DETACH 226

EVAL 227

FOR 228

IF 229

INSERT 230

ITERATE 232

LEAVE 232

list of available 171

ESQL statements (continued)
Local error handler 222

LOG 233

LOOP 235

MOVE 236

PASSTHRU 238

PROPAGATE 240

REPEAT 243

RESIGNAL 244

RETURN 244

SET 246

list type elements, working

with 248

THROW 250

UPDATE 251

WHILE 254

ExceptionList tree
accessing with ESQL 54

J
Java, broker attributes accessible from 8

K
keywords

ESQL 62

L
list of available 255

LocalEnvironment tree
accessing with ESQL 50

populating Destination 52

using as scratchpad 51

M
message body

ESQL, accessing with 28

message flows
creating ESQL code 15

customizing nodes with ESQL 25

ESQL 3

managing ESQL files 13

MQMD (message descriptor)
accessing with ESQL 47

MQRFH2 header
accessing with ESQL 48

P
Properties tree, accessing with ESQL 49

T
trademarks 363

366 ESQL

����

Printed in USA

	Contents
	About this topic collection
	Part 1. Developing ESQL
	Developing ESQL
	ESQL overview
	ESQL data types
	ESQL variables
	Broker properties
	ESQL field references
	ESQL operators
	ESQL statements
	ESQL functions
	ESQL procedures
	ESQL modules

	Managing ESQL files
	Creating an ESQL file
	Opening an existing ESQL file
	Creating ESQL for a node
	Modifying ESQL for a node
	Saving an ESQL file
	Copying an ESQL file
	Renaming an ESQL file
	Moving an ESQL file
	Changing ESQL preferences
	Deleting ESQL for a node
	Deleting an ESQL file

	Writing ESQL
	ESQL examples
	Tailoring ESQL code for different node types
	Manipulating message body content
	Manipulating other parts of the message tree
	Transforming from one data type to another
	Adding keywords to ESQL files
	Accessing databases from ESQL
	Coding ESQL to handle errors
	Manipulating messages in the MRM domain
	Manipulating messages in the XML domain
	Manipulating messages in the XMLNS domain
	Manipulating messages using the XMLNSC parser
	Manipulating messages in the JMS domains
	Manipulating messages in the IDoc domain
	Manipulating messages in the MIME domain
	Manipulating messages in the BLOB domain
	Using the CALL statement to invoke a user-written routine
	Accessing broker properties from ESQL
	Configuring a message flow at deployment time using UDPs

	Part 2. Reference
	ESQL reference
	Syntax diagrams: available types
	ESQL data types in message flows
	ESQL BOOLEAN data type
	ESQL datetime data types
	ESQL NULL data type
	ESQL numeric data types
	ESQL REFERENCE data type
	ESQL string data types
	ESQL-to-Java data-type mapping table

	ESQL variables
	ESQL field references
	Namespaces
	Indexes
	Types
	Summary
	Target field references
	The effect of setting a field to NULL

	ESQL operators
	ESQL simple comparison operators
	ESQL complex comparison operators
	ESQL logical operators
	ESQL numeric operators
	ESQL string operator
	Rules for ESQL operator precedence

	ESQL statements
	ATTACH statement
	BEGIN ... END statement
	BROKER SCHEMA statement
	CALL statement
	CASE statement
	CREATE statement
	CREATE FUNCTION statement
	CREATE MODULE statement
	CREATE PROCEDURE statement
	DECLARE statement
	DECLARE HANDLER statement
	DELETE FROM statement
	DELETE statement
	DETACH statement
	EVAL statement
	FOR statement
	IF statement
	INSERT statement
	ITERATE statement
	LEAVE statement
	LOG statement
	LOOP statement
	MOVE statement
	PASSTHRU statement
	PROPAGATE statement
	REPEAT statement
	RESIGNAL statement
	RETURN statement
	SET statement
	THROW statement
	UPDATE statement
	WHILE statement

	ESQL functions: reference material, organized by function type
	Calling ESQL functions
	ESQL database state functions
	ESQL datetime functions
	ESQL numeric functions
	ESQL string manipulation functions
	ESQL field functions
	ESQL list functions
	Complex ESQL functions
	Miscellaneous ESQL functions

	Broker properties accessible from ESQL and Java
	Special characters, case sensitivity, and comments in ESQL
	ESQL reserved keywords
	ESQL non-reserved keywords
	Example message

	Part 3. Appendixes
	Appendix. Notices
	Trademarks

	Index

