
IBM Integration Bus V9 Best practices
Version 9 Release 0

Reducing memory usage with parsers and
message trees

IBM

By:
Craig Briscoe
David Crighton
Paul Faulkner
Vivek Grover
Stef Pugsley

V1.0

Note
Before using this information and the product it supports, read the information in “Notices” on page 75.

Contents

Chapter 1. Reduce your memory usage with
parsers and message trees 1

Chapter 2. Introduction 3

Chapter 3. Terms and phrases 5

Chapter 4. Parsers 7
Selecting a parser 8
Parser creation and memory usage 9
Parser considerations: Managing memory
usage 14

The DELETE statement 14
MQSI_FREE_MASTER_PARSERS 15
Parsing strategies 18

Identifying problem message flows 26
Resource statistics 26
Parser resource statistics 28
Examples of reporting parser usage . . . 29

Chapter 5. Message tree 33
References & navigating the message tree . . 34
Message tree copying 36

Types of parser copy 38
Don't change a message tree and copy it 39
Always copy at the parser folder level for
the bitstream transfer to take place . . . 40
Parsers must be created when not copying
to OutputRoot 40
Avoid overwriting fields when a tree is
copied 41
Forcing a copy of the message tree fields
when required 42
Avoid copying the message tree even
when you alter it 42

Setting a field to NULL is NOT the same
as deleting it 43
XML, XMLNS, and XMLNSC are not the
same domains 43
Avoiding tree copying. 43
Message tree copying summary 45

Reducing the size of the message tree . . . 46
Message size versus Message tree 48

Chapter 6. Handling large input messages 49
Large messages: Tricky trailer records . . . 51
Large output messages 52

Binary large object (BLOB) processing . . 54
Why does the memory usage grow? . . . 55

The Splitter pattern 58

Chapter 7. ESQL coding practices 65
ESQL and flow coding practices 65
Environment and Local Environment
considerations 66
Using reference variables. 70
Reduce statements with SELECT 71
Database interaction 72

The WHERE clause 72
Host variables 73
Conditional logic 73

Notices 75
Programming interface information 77
Trademarks 77

Sending your comments to IBM 79

© Copyright IBM Corp. 2016 iii

iv IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

Chapter 1. Reduce your memory usage with parsers and
message trees

Every message flow uses parsers, and therefore they are integral to all
message flows. Parsers construct a message tree from incoming data, in an
Input node for example, and then serialize a bitstream from the message tree,
for example in an Output node. When a message flow processes larger
messages, the message tree can grow and use more memory than the
bitstream itself.

Parsers are used to own the incoming message data, construct a message tree
from that incoming data, and then serialize a bitstream from a message tree.
When a message flow processes larger messages, the message tree can grow
and use more memory than the bitstream itself.

The information in this guide is intended as a guide to not only reduce the
memory usage of your current message flows, but also offer examples and
good practices for planning and creating future flows.

The best practice information in the following sections share common
approaches to solving common problems based on real customer
environments. They do not provide a "one size fits all" solution. They assume
that you have a basic understanding of IBM® Integration Bus. As technology
evolves and improved functionality is added to the product, new
recommendations and advice might be added to the information in these
documents.

© Copyright IBM Corp. 2016 1

2 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

Chapter 2. Introduction

Messages are routed and transformed by message flows within IBM
Integration Bus. As a message passes through the message flow, it is
manipulated by message processing nodes that are often implemented in
ESQL (Extended Structured Query Language). The message is stored in
memory in the form of a message tree, which is created from the input
message bitstream and serialized into an output bitstream by a parser.

When you process small messages, for example messages that are a few
kilobytes in size, only a small amount of memory is needed to fully parse the
message.

However, when you process large messages, the amount of memory and
processing time that is required to store the message tree can quickly increase.
The size of a message tree can vary substantially, and it is directly
proportional to the size of the messages that are being processed: The larger
the messages, the larger the message tree. The inefficient use of parsers, using
the wrong parser, or even parsing when you do not need to, can all increase
the amount of memory that is used by the integration node.

When the message size grows to megabytes, it becomes even more important
to keep memory usage to a minimum. If all your memory is being used by
processing large messages, then there might not be enough to maintain your
expected level of service. Also, there might not be enough resources for other
processes, such as deployment, to run smoothly.

The best practice information in the following sections share common
approaches to solving common problems based on real customer
environments. They do not provide a "one size fits all" solution. They assume
that you have a basic understanding of IBM Integration Bus. As technology
evolves and improved functionality is added to the product, new
recommendations and advice might be added to the information in these
documents.

© Copyright IBM Corp. 2016 3

4 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

Chapter 3. Terms and phrases

Parsers, messages, and message trees are so interconnected, that it is difficult
to discuss one aspect without using terms and phrases from another.
Therefore, this section introduces key words, terms, and phrases that are used
throughout this document.

Table 1.

Term Meaning Further reading

Body folder The Body folder is the last child of Root,
and contains the message payload.

Domain Each parser is suited to a particular
class of messages (such as fixed-length
binary, delimited text, or XML) known
as a message domain. Each message
that is to be processed by a message
flow must be associated with a
domain. A domain determines the
parser that is used when parsing and
serializing the message. Each domain
is suited to a particular class of
messages, and some domains support
several different classes of message.
The domain for an input message is
typically specified on the input node of
the message flow.

Folder Folders are elements of the message
tree under Root, such as Properties or
Body.

Fragmentation Fragmentation means that the memory
heap has enough free space on the
current heap, but has no contiguous
blocks that are large enough to satisfy
the current request.

Logical Tree The logical tree structure is the internal
(broker) representation of a message. It
is also known as the Message Assembly.

For more information, see
Logical tree structure in the
main product
documentation.

Message Tree A message tree is a structure that is
created, either by one or more parsers
when an input message bit stream is
received by a message flow, or by the
action of a message flow node

For more information, see
The message tree in the
main product
documentation.

© Copyright IBM Corp. 2016 5

http://www.ibm.com/support/knowledgecenter/SSMKHH_9.0.0/com.ibm.etools.mft.doc/ac00490_.htm
http://www.ibm.com/support/knowledgecenter/SSMKHH_9.0.0/com.ibm.etools.mft.doc/ac00495_.htm

Table 1. (continued)

Term Meaning Further reading

On-Demand
Parsing

On-demand parsing, also referred to as
partial parsing, is used to parse an
input message bit stream only as far as
is necessary to satisfy the current
reference.

For more information, see
Parsing on demand in the
main product
documentation.

Opaque
Parsing

For XMLNSC messages, you can use
Opaque parsing: A technique that allows
the whole of an XML sub tree to be
placed in the message tree as a single
element. You can use opaque parsing
where you do not need to access the
elements of the subtree.

For more information, see
“Opaque parsing” on page
22.

Partial Parsing Partial parsing, also referred to as
on-demand parsing, is used to parse an
input message bit stream only as far as
is necessary to satisfy the current
reference.

For more information, see
Parsing on demand in the
main product
documentation.

Root The root of a message tree is called
Root. The last element beneath the root
of the message tree is always the
message body.

For more information, see
Message tree structure in
the main product
documentation.

Serialization When an output message is created in
a message flow, the message tree must
be converted back into an actual
message bitstream. This conversion is
done by the parser and the process is
referred to as serialization of the
message tree. The creation of the
output message is a simpler process
than reading an incoming message.

6 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

http://www.ibm.com/support/knowledgecenter/SSMKHH_9.0.0/com.ibm.etools.mft.doc/ac20814_.htm
http://www.ibm.com/support/knowledgecenter/SSMKHH_9.0.0/com.ibm.etools.mft.doc/ac20814_.htm
http://www.ibm.com/support/knowledgecenter/SSMKHH_9.0.0/com.ibm.etools.mft.doc/ac12610_.htm

Chapter 4. Parsers

Every message flow uses parsers, and therefore they are integral to all
message flows. Parsers construct a message tree from incoming data, in an
Input node for example, and then serialize a bitstream from the message tree,
for example in an Output node. When a message flow processes larger
messages, the message tree can grow and use more memory than the
bitstream itself.

Before the bitstream is processed, it must be interpreted by a parser in the
message flow. The parser builds a representation of the message data that is
called a logical tree or a message tree from the bitstream of the message data.
This message tree can then be interpreted, transformed, and processed. The
message tree has contents that are identical to the message, but the message
tree is easier to manipulate in the message flow. The message flow nodes
provide an interface to query, update, or create the content of the tree.

When an output message is created in a message flow, the message tree must
be converted back into an actual message bitstream. This conversion is done
by the parser. The process of creating the output message is referred to as
serialization of the message tree. The creation of the output message is a
simpler process than reading an incoming message: The whole message is
written immediately after an output message is created.

A parser is typically created implicitly by node operations. However, they can
also be created manually as part of language function/procedure calls using
ESQL, Java™, PHP, or .NET.

Parsers are used within the IBM Integration Bus nodes to perform the
following necessary tasks:
v For input nodes and get nodes, parsers are created to own the required

portions of the incoming message data.
v For output nodes and reply nodes, parsers create output message data that

is sent on the transport.
v For request nodes, parsers create the request message data that is sent on

the transport, and they own the required portions of the incoming response.
v For transformation nodes, such as Compute or Mapping, parsers are

associated with the output trees.
v For each message tree that represents the message, Root and Properties

parsers are created to own and represent the content of the other parsers.

© Copyright IBM Corp. 2016 7

v For each of the other message trees (Environment, LocalEnvironment, and
ExceptionList), a Root parser is created to represent the message tree.

v Each ESQL ROW variable (shared or otherwise) is represented by a Root
parser.

Parser usage and the size of the message tree usually have the largest impact
on memory and the performance of the message flow because the parsers are
directly related to the size of the incoming message data.

Selecting a parser

When you select a parser, your decision must be based on the characteristics
of the messages that your applications exchange.

IBM Integration Bus provides a range of parsers to handle the following
messaging standards in use:
v XMLNSC
v DFDL
v MIME
v JMSMap
v JMSStream
v BLOB
v SOAP
v IDoc

The following parsers are provided but deprecated:
v MRM-XML
v MRM-CWF
v MRM-TDS

The parsers parse AND SERIALIZE the messages into and out of the message
flow, with different parsers having different performance costs.

Each parser can process either:
v The message body data of messages in a particular message domain, XML

for example.
v particular message or transport headers, MQMD for example.

You must review the messages that your applications send through the IBM
Integration Bus, and determine which message domain the message body data
belongs to. The following table lists your application requirements, and the
recommended parser to use:

8 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

Table 2.

Application requirements Parser domain

Use SOAP-based web services, including SOAP with
Attachments (MIME) or MTOM

SOAP

Uses JSON format, as maybe used in RESTful web
services

JSON

Your application data is in XML format other than
SOAP

XMLNSC

Data comes from a C or COBOL application, or
consists of fixed-format binary data

DFDL

Data consists of formatted text, perhaps with field
content that is identified by tags, or separated by
specific delimiters, or both

DFDL

Data is from a WebSphere Adapter such as the
adapters for SAP, PeopleSoft, or Siebel

DataObject

Data is in SAP text IDoc format, such as those
exported using the WebSphere MQ Link for R3

DFDL

Data is in MIME format, other than SOAP, with
attachments (for example, RosettaNet). You do not
know, or do not have to know, the content of your
application data

MIME

You do not know, or do not have to know, the
content of your application data

BLOB

It is recommended to use compact parsers such as XMLNSC for XML parsing
and DFDL for non-XML parsing. The benefit of compact parsers is that they
discard white space and comments in a message. Therefore those portions of
the input message are not populated in the message tree, which keeps
memory usage down.

While parsers are created implicitly by node operations, they can also be
created manually as part of language function/procedure calls:

Parser creation and memory usage

Partial Parsing, sometimes referred to as on-demand parsing, is the most efficient
way to parse in IBM Integration Bus.

For more information relating specifically to partial parsing, see Partial
parsing in “Parsing strategies” on page 18. The rest of this section discusses
parsers and their memory usage in general.

Chapter 4. Parsers 9

Messages are parsed from the start of the message, and proceeds as far along
the message as required to access the element that is being referred to in the
flow though the processing logic (ESQL, Java, XPath, Graphical Data Mapper
map, and so on). Depending on the field that is being accessed, it might not
be necessary to parse the whole message. Only the portion of the message
that is parsed is populated in the message tree. The rest is held as an
unprocessed bitstream. The remainder might be parsed later in the flow if
there is logic that requires it, or it might never be parsed if it is not required
as part of the message flow processing.

When a message flow receives message data in one of its input nodes, parsers
are created to handle that incoming data. Multiple parsers are created and
chained to own each of the transport headers and then a body parser, such as
XMLNSC, DFDL, or JSON, is created to own the message body. IBM
Integration Bus also creates a Properties parser to represent the properties of
the message tree, and a Root parser is created to own all these parser
instances.

For example, when a message arrives on an MQInput node, you might have
an incoming WebSphere® MQ message with the following message structure:
Root
- Properties

- ...
- MQMD

- ...
- MQRFH2

- ...
- MQCIH

- ...
- XMLNSC

- ...

This message tree has 6 parsers that represent it. For each main folder that is
created from Root by a built-in node, a parser is created to own that folder.

The following example shows the message tree in full:
[’MQROOT’ : 0x642f630]
Properties = ([’MQPROPERTYPARSER’ : 0x6366008]
MessageSet = ’’ (CHARACTER)
MessageType = ’’ (CHARACTER)
MessageFormat = ’’ (CHARACTER)
Encoding = 546 (INTEGER)
CodedCharSetId = 437 (INTEGER)
Transactional = TRUE (BOOLEAN)
Persistence = FALSE (BOOLEAN)
CreationTime = GMTTIMESTAMP ’2015-01-14 13:14:12.350’ (GMTTIMESTAMP)
ExpirationTime = -1 (INTEGER)
Priority = 0 (INTEGER)
ReplyIdentifier = X’00’ (BLOB)
ReplyProtocol = ’MQ’ (CHARACTER)
Topic = NULL
ContentType = ’’ (CHARACTER)
IdentitySourceType = ’’ (CHARACTER)
IdentitySourceToken = ’’ (CHARACTER)

10 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

IdentitySourcePassword = ’’ (CHARACTER)
IdentitySourceIssuedBy = ’’ (CHARACTER)
IdentityMappedType = ’’ (CHARACTER)
IdentityMappedToken = ’’ (CHARACTER)
IdentityMappedPassword = ’’ (CHARACTER)
IdentityMappedIssuedBy = ’’ (CHARACTER)
)
MQMD = ([’MQHMD’ : 0x63433c8]
SourceQueue = ’IN’ (CHARACTER)
Transactional = TRUE (BOOLEAN)
Encoding = 546 (INTEGER)
CodedCharSetId = 437 (INTEGER)
Format = ’ ’ (CHARACTER)
Version = 2 (INTEGER)
Report = 0 (INTEGER)
MsgType = 8 (INTEGER)
Expiry = -1 (INTEGER)
Feedback = 0 (INTEGER)
Priority = 0 (INTEGER)
Persistence = 0 (INTEGER)
MsgId = X’414d512042524b36312020202020202006e06d4920001a04’ (BLOB)
CorrelId = X’00’ (BLOB)
BackoutCount = 0 (INTEGER)
ReplyToQ = ’ ’ (CHARACTER)
ReplyToQMgr = ’V9IN ’ (CHARACTER)
UserIdentifier = ’vgrover ’ (CHARACTER)
AccountingToken = X’1601051500000060022a3f33997b361af17567f401000000000000000000000b’ (BLOB)
ApplIdentityData = ’ ’ (CHARACTER)
PutApplType = 11 (INTEGER)
PutApplName = ’rfhutil.exe’ (CHARACTER)
PutDate = DATE ’2015-01-14’ (DATE)
PutTime = GMTTIME ’13:14:12.350’ (GMTTIME)
ApplOriginData = ’ ’ (CHARACTER)
GroupId = X’00’ (BLOB)
MsgSeqNumber = 1 (INTEGER)
Offset = 0 (INTEGER)
MsgFlags = 0 (INTEGER)
OriginalLength = -1 (INTEGER)
)

MQRFH2 {
MQCHAR4 StrucId;
MQLONG Version;
MQLONG StrucLength;
MQLONG Encoding;
MQLONG CodedCharSetId;
MQCHAR8 Format;
MQLONG Flags;
MQLONG NameValueCCSID;
} MQRFH2;

)
MQCIH = (
Version = 2
Format = ’ ’
Encoding = 2
CodedCharSetId = 437
Flags = 0
ReturnCode = 0
CompCode = 0
Reason = 0
UOWControl = 273
GetWaitInterval = -2
LinkType = 1
OutputDataLength = -1
FacilityKeepTime = 0
ADSDescriptor = 0
ConversationalTask = 0
TaskEndStatus = 0
Facility = X’0000000000000000’
Function = ’ ’
AbendCode = ’ ’
Authenticator = ’ ’
Reserved1 = ’ ’

Chapter 4. Parsers 11

ReplyToFormat = ’ ’
RemoteSysId = ’ ’
RemoteTransId = ’ ’
TransactionId = ’ ’
FacilityLike = ’ ’
AttentionId = ’ ’
StartCode = ’ ’
CancelCode = ’ ’
NextTransactionId = ’ ’
Reserved2 = ’ ’
Reserved3 = ’ ’
CursorPosition = 0
ErrorOffset = 0
InputItem = 0
Reserved4 = 0
)

XMLNSC = ([’xmlnsc’ : 0x63669b8]
root = (
Folders = (
Folder1 = (
SubField = ’1’ (CHARACTER)

)
Folder2 = (
SubField = ’1’ (CHARACTER)
)

)
Fields = (
Field1 = ’field1Value’ (CHARACTER)
Field2 = ’field1Value’ (CHARACTER)
Field3 = ’field1Value’ (CHARACTER)
)
Elements = (
Field1 = ’field1Value’ (CHARACTER)
Folder1 = (
SubField = ’1’ (CHARACTER)
)

Field2 = ’field1Value’ (CHARACTER)
Field3 = ’field1Value’ (CHARACTER)
Folder2 = (
SubField = ’1’ (CHARACTER)
)

)
)

)

If this message tree goes through a transformation node, then a new output
message tree is created that might have none, some or all of the contents of
the input message tree. This output tree is a separate message tree from the
input message tree. As such, a new set of parsers are created to own the
parser folders in the output tree. That is, there is not just one parser per
domain, multiple instances can be created based on the message flow logic

So in the previous example, if this tree were copied with ESQL such as SET
OutputRoot = InputRoot; then you would now have 12 parsers that were
created by this message flow. It is clear to see that the more transformation
nodes that are used, the more parsers are created to own the new output
message trees. Therefore, when you consider copying message trees, the cost
of the extra parsers must be considered.

The request nodes, such as the SOAPRequest nodes, are similar to a
transformation node, in that a different message tree is propagated to the one

12 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

that is received on the input node. The input message tree is used to form a
request message for which a response to is received, usually from a remote
server. The response message is then parsed using the parser parameters that
are specified on the request node. This sequence means that the propagated
response message creates a new set of parsers such as Root, Properties, and
Header parsers, and a body parser. A message flow developer does not often
have any choice on which request nodes are used in a message flow, and as
such cannot make any improvements in this area.

The transformation nodes also allow a message flow developer to create
parser instances manually. This creation can be done explicitly using
method/function call:
v In ESQL the CREATE with the DOMAIN clause creates a parser of the

named domain.
v In Java the MbElement create*UsingParser methods create a parser of the

named parser name.
v In .Net the NbElement create*UsingParser methods create a parser of the

named parser name.
v In the C Plugin interface the cniCreate*UsingParser methods create a

parser of the named parser name.

The creation can also be done implicitly when constructing MbMessage,
NbMessage, or CciMessage objects.

Although built-in transformation nodes construct one set of Output trees only,
the Java, C, and .Net APIs allow many sets of output message objects to be
created. Therefore it is important to understand the scope of these objects and
associated parsers.

Consider a scenario where multiple bitstream portions are retrieved from an
external source and need to be mapped into an output message as shown in
the following ESQL example:

-- Bitstream portions are in Environment.Variables.MsgData[]
DECLARE outRef REFERENCE TO OutputRoot;
CREATE LASTCHILD OF outRef AS outRef DOMAIN(’XMLNSC’) NAME ’XMLNSC’;
CREATE LASTCHILD OF outRef AS outRef NAME ’TestCase’;
DECLARE envRef REFERENCE TO Environment.Variables.MsgData;
DECLARE parseOptions INTEGER BITOR(RootBitStream, ValidateNone);
WHILE LASTMOVE(envRef) DO

CREATE LASTCHILD OF Environment DOMAIN(’DFDL’) PARSE(envRef OPTIONS parseOptions TYPE ’{}:CSV_DFDL’);
CREATE LASTCHILD OF outRef NAME ’Record’;
SET outRef = Environment.DFDL;
MOVE envRef NEXTSIBLING NAME ’MsgData’;

END WHILE;

In this example, the CREATE with the DOMAIN clause creates a DFDL parser in
each iteration of the WHILE loop. Each of these DFDL parsers is a new DFDL
parser to the one on the previous iteration. Therefore, if this loop iterates 2000
times, then 2000 DFDL parsers are created. More parsers means more memory

Chapter 4. Parsers 13

usage, so resources are rapidly consumed with this approach. The following
sections describe ways to mitigate the memory problems that are associated
with this kind of scenario.

Parser considerations: Managing memory usage

There are a number of techniques that can be used to keep memory usage to a
minimum and these are described in the following sections:

The DELETE statement
Creating many parsers has a detrimental impact on the memory that is used
because all the parsers are in memory at the same time. The DELETE
statement detaches and deletes a portion of a message tree, allowing its
memory to be reused.

Looking at the scenario that is described in the previous section “Parser
creation and memory usage” on page 9, of the multiple bitstream portions
that are retrieved from an external source and mapped into an output
message, a message flow developer can clean up the resources that are created
during the loop with the DELETE statement. The following example
demonstrates this behavior by adding a DELETE statement into the previous
example:

-- Bitstream portions are in Environment.Variables.MsgData[]
DECLARE outRef REFERENCE TO OutputRoot;
CREATE LASTCHILD OF outRef AS outRef DOMAIN(’XMLNSC’) NAME ’XMLNSC’;
CREATE LASTCHILD OF outRef AS outRef NAME ’TestCase’;
DECLARE envRef REFERENCE TO Environment.Variables.MsgData;
DECLARE parseOptions INTEGER BITOR(RootBitStream, ValidateNone);
WHILE LASTMOVE(envRef) DO

CREATE LASTCHILD OF Environment DOMAIN(’DFDL’) PARSE(envRef OPTIONS parseOptions TYPE ’{}:CSV_DFDL’);
CREATE LASTCHILD OF outRef NAME ’Record’;
SET outRef = Environment.DFDL;
DELETE FIELD Environment.DFDL;
MOVE envRef NEXTSIBLING NAME ’MsgData’;

END WHILE;

The following image shows the message tree before and after the DELETE
statement is used:

14 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

The recommendations in this section do not apply if your parsers are being
created in the OutputRoot trees (or the equivalent message objects in Java),
and the trees are propagated. For more information, see “The Splitter pattern”
on page 58.

MQSI_FREE_MASTER_PARSERS
When you consider message flow processing from the message data point of
view, you might implement a number of common patterns.

The five patterns are as follows:
1. Routing: Receive input message and route the content unchanged (The

headers might be updated).
2. Augmentation: Receive input message, update the content, and write the

changed content to a different destination.
3. Transformation: Receive input message, and then map all or some of its

content to a different domain.
4. Splitter: A large input message is received, and is then broken into many

smaller output records that are then output.
5. Collector: Many small records are collected into a much larger output

message.

In any of these types of scenarios, remember the following points:
v The input, output, or both might be large.
v The input data, output data, or both might be validated.

How the logic is implemented for #1 and #5 has a significant impact on both
performance and memory usage. The six external aspects of message
processing that affect how much memory a message flow consumes are as
follows:
1. The size of the incoming bitstream.

Figure 1.

Chapter 4. Parsers 15

2. The number of message tree fields that are created in the message tree that
represents the incoming bitstream.

3. How often the message tree is copied in the message flow.
4. The number of message tree fields in any output, request, or reply

message trees.
5. Whether any output, request, or reply message trees are serialized, and the

size of these trees.
6. Whether other parsers are created to handle portions of a message tree or

bitstream in the formation of an output message tree.

To summarize: Multiple instances of parsers can be created. In language
nodes, the instances might be created to excess. If a large message is parsed or
created without using the appropriate techniques, then many message tree
fields can be created.

If extraneous parsers, fields, or both are created, then a valid question to ask
is:

When are these parsers cleaned up?

When a parser is created, it is owned by the creating thread, and cannot be
used by any other thread. This situation means that if a message flow has
extra instances, then each instance has its own set of parsers. Similarly, if a
message flow has multiple input nodes, then a thread serves each input node,
which means that there are multiple message flow threads. If a message flow
does not use appropriate techniques for managing parser and tree creation,
then extra threads amplify memory usage issues.

Because an input node controls the processing of input message data, it also
owns the pool of parsers that are used by the message flow. Generally, any
parser that is created within the message flow is assigned to this master
parser pool. If a parser is created in a SHARED ROW variable, then this
parser is owned by the execution group not a message flow thread.

For any nodes that create new output trees (transformation or request nodes),
they request the parsers from this thread level master pool of parsers. The
parser is returned to the pool for reuse when the following events happen:
1. The message flow execution unwinds such that node is no longer on the

stack. For example: All downstream nodes were executed and the next
path is propagated to, or an exception is thrown such that a previous
Try-Catch node Catch terminal is propagated to.

2. ESQL PROPAGATE or MbOutputTerminal.propagate(MbMessageAssembly,
true) is returned from, and all conditions were met to free the parsers for
reuse.

16 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

3. DELETE FIELD (or equivalent or language APIs) was issued and all fields
for the parser were deleted. This action is likely to happen when the delete
is issued on a parsers root element. The following image shows the extra
parsers that are to be deleted:

When a parser is freed for reuse, none of its resources are deleted. It is
returned to the pool of parsers and keeps all of its message tree field
allocation that is cached for reuse. When the message flow completes the
processing of the input message, by default it does not delete any parser
resources. Instead, it resets all the parsers that were created, ready for reuse,
and maintains all the message tree fields within them. The logic here is that
when a message flow executes its main path repeatedly, it is likely to process
similar size messages using the same nodes and order. Therefore, for
performance reasons, the same parsers are maintained with the same
resources. However, this behavior does have the consequence that if a
message flow creates many parsers, or creates many message tree fields in one
or more parsers, then these parsers are maintained for the life of the message
flow.

When this situation causes memory exhaustion issues, the
MQSI_FREE_MASTER_PARSERS environment variable can be used. When
this variable is set, it gives the following behavior:
1. When a message flow finishes processing an input message, all the parsers

and their resources are deleted.
2. The memory that is occupied by the parser is returned to the heap, NOT

to the operating system. That is, the user does not see a reduction in the
memory that is occupied by the DataFlowEngine process. However, the
blocks of memory can be reused for other executions that require memory.

3. This alternative processing does not occur mid-flow. It deletes the parsers
only when the input node finishes with the input message.

Figure 2.

Chapter 4. Parsers 17

From IBM Integration Bus V9.0.0.0 onwards, if you implement good operating
practice for managing parser creation and message trees, then you do not
need to use the MQSI_FREE_MASTER_PARSERS environment variable. You
do not need to use the variable because a message flow does not need to
create many parsers or allocate many message tree fields.

If best practices are implemented to ensure that extraneous parsers and fields
are not created, you must be aware that only the user aspects of the data are
affected. When parsing or serializing messages, the parse mechanics allocate
memory to process the bitstream or tree, and these allocations are unaffected
by any parser or tree management techniques.

The environment variable MQSI_FREE_MASTER_PARSERS can be exported
in the profile of the broker service ID. When MQSI_FREE_MASTER_PARSERS
is set, the parsers are freed after every message instead of caching them to be
reused. The following steps can be followed on the broker machine:
1. Export MQSI_FREE_MASTER_PARSERS=YES
2. Restart the broker

Parsing strategies
You can use several efficient parsing strategies during the message flow
development to reduce memory usage when you parse and serialize
messages. This section describes Partial parsing, Opaque parsing, and how to
avoid unnecessary parsing.

These strategies are as follows:
v “Identifying the message type quickly”
v “Partial parsing” on page 21
v “Opaque parsing” on page 22
v “Avoiding unnecessary parsing” on page 25

These strategies are described in detail in the following sections.

Identifying the message type quickly
It is important to be able to correctly recognize the correct message format
and type as quickly as possible. In message flows that process multiple types
of message, this identification can be a problem. What often happens is that
the message needs to be parsed multiple times to ensure that you have the
correct format. That extra parsing to determine the message type needs to be
avoided to reduce memory usage.

The message flow in Figure 3 on page 19 shows a number of Filter nodes
(Filter1 & Filter2), several subflows (subflow1, subflow2, and so on) each
containing more nodes. The message flow is complex and is implemented

18 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

with a long critical path. As such, messages are parsed multiple times.

Message_IN

CATCH

Filter Filter1 ProcessB

ProcessA Check for
not null

subflow2

subflow3 subflow5

subflow1

Filter3

Failure2 Unknown1

Reparse

Reparse1 ERROR2

FAIL

subflow4

subflow6

subflow7

False

Compute1

MQ Output8

Publication

Unknown

ERROR

Figure 3.

Chapter 4. Parsers 19

In this example, the use of functions and procedures, ESQL parsing
techniques, and dynamic routing of the flow are combined into the minimum
number of nodes (excludes error handling subflow nodes). The logic for each
of the paths is coded as a function or procedure, and called from the main
procedure in the Compute node. This method also avoids the multiple
parsing of messages that is executed in the multiple Filter nodes
and subflows. This method significantly reduces the performance cost due to
fewer nodes, and ultimately leads to less parsing, tree copying, and so on, for
the most optimized solution.

Tip: You must remember; when you section a large, complex flow into
multiple smaller message flows allows the individual message flows to release
memory after each large step of processing. That is, after each smaller flow
finishes its processing. So, you need to ensure that a balanced approach is
adopted between these strategies to get the optimum memory and
performance usage.

Figure 4.

20 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

Partial parsing
A message is parsed only when necessary to resolve the reference to a
particular part of its content. An input message can be of any length, and
parsing the entire message for only a specific part of content is not usually
required. Partial parsing (also referred to as On-demand parsing) improves the
performance of message flows, and reduces the amount of parsed data that is
stored in memory. Partial parsing is used to parse an input message bit stream
only as far as is necessary to satisfy the current reference.

To use Partial parsing, you must set the Parse timing property on the input
node to On Demand

All the parsers that are provided with IBM Integration Bus support partial
parsing. The amount of parsing that must be performed depends on which
fields in a message need to be accessed, and the position of those fields in the
message. In the next two diagrams, one has the fields ordered A to Z
(Figure 5) and the other with them ordered Z to A (Figure 6). Depending on
which field is needed, one of the cases is more efficient than the other. If you
need to access field Z, then the first case would be best. Where you have
influence over message design ensure that information that is needed for
routing for example is placed at the start of the message and not at the end of
the message.

When you use ESQL and Mapping nodes, the field references are typically
explicit. That is, you have references such as InputRoot.Body.A. IBM
Integration Bus parses only as far as the required message field to satisfy that
reference. The parser stops at the first instance. When you use the XPath
query language, the situation is different. By default, an XPath expression
searches for all instances of an element in the message, which implicitly
means that a full parse of the message takes place. If you know that there is
only one element in a message, then there is the chance to optimize the XPath

User data (bytes to Mb)

Message parsed

RFH2MQMD

A B C ... X Y Z

Figure 5.

User data (bytes to Mb)

Message parsed

RFH2MQMD

Z B C ... X Y A

Figure 6.

Chapter 4. Parsers 21

query, for example, to retrieve only the first instance. For example, /aaa[1] if
you want just the first instance of the search argument.

Opaque parsing
For XMLNSC messages, you can use Opaque parsing: A technique that allows
the whole of an XML sub tree to be placed in the message tree as a single
element.

Opaque parsing is supported for the XMLNS and XMLNSC domains only.

Use the XMLNSC domain in new message flows if you want to use opaque
parsing. The XMLNS domain is deprecated, and offers a more limited opaque
parsing facility than the XMLNSC domain. The XMLNS domain is provided
only to support legacy message flows.

The entry in the message tree is the bitstream of the original input message.
This technique has two benefits:
1. It reduces the size of the message tree because the XML subtree is not

expanded into the individual elements.
2. The cost of parsing is reduced because less of the input message is

expanded as individual elements and added to the message tree.

You can use opaque parsing where you do not need to access the elements of
the subtree. For example, you need to copy a portion of the input tree to the
output message but might not care about the contents in this particular
message flow. You accept the content in the subfolder and have no need to
validate or process it in any way.

Specifying elements for opaque parsing

You must specify elements for opaque parsing in the Parser Options section
of the Input node of the message flow, as shown in Figure 8 on page 23:

<order>

 <name>

 <first>John</first>

 <last>Smith</last>

 </name>

 <item>Graphics Card</item>

 <quantity>32</quantity>

 <price>200</price>

 <date>06/24/2010</date>

</order>

DON’T

PARSE

THIS

OR THIS

Figure 7.

22 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

To specify elements for opaque parsing, add the element names to the
Opaque elements table. Ensure that message validation is not enabled,
otherwise it automatically disables opaque parsing. Opaque parsing does not
make sense for validation, because the whole message must be parsed and
validated.

Tip: Opaque parsing for the named elements occurs automatically when the
message is parsed. It is not possible to use the CREATE statement to opaquely
parse a message in the XMLNSC domain; only node options can be used to
add opaque parsing.

Opaque parsing in action

With typical on-demand parsing, if you need to access fields in the header
and trailer sections of the message then the whole message must be parsed. In
this example, you have a flow that needs to access the <version> and <type>
fields only. The following message structure shows those structures, and is
abbreviated for clarity:
<tns:Inventory xmlns:tns="http://www.example.org/NewXMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.example.org/NewXMLSchema Inventory.xsd ">
<tns:header> <tns:version>V100</tns:version>
</tns:header>
<tns:body>
<tns:field1>tns:field1</tns:field1>

Figure 8.

Chapter 4. Parsers 23

<tns:field2>tns:field2</tns:field2>
.....

<tns:field1000>tns:field2</tns:field1000>
</tns:body>
<tns:trailer>

<tns:type>tns:type</tns:type>
</tns:trailer>
</tns:Inventory>

Using opaque parsing, you can eliminate the need to parse the body section
of the payload. You need to set the parent of the elements that you do not
want to parse in the Parser Options section of the Input node of the message
flow, as shown in Figure 9.

All elements that are defined in the Opaque elements list are treated as a
single string when parsed. This parsing behavior is shown in Figure 10 on
page 25.

Figure 9.

24 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

When you design a message structure, if you have the opportunity to group
elements based on the parsing needs, then this method greatly improves
performance. In the previous example, if you move the <type> field into the
header, there would be no need for opaque parsing: The on-demand parser
would not need to go past the header in this example.

Avoiding unnecessary parsing
One effective technique to reduce the cost of parsing, is not to parse.

The strategy is to avoid having to parse some parts of the message as shown
in Figure 11.

For example:

You have a message routing message flow that needs to look at a field to
make a routing decision. If that field is in the body of the message, then the
body of the incoming message must be parsed to get access to it. The
processing cost varies depending on which field is needed:
v If it is field A, then it is right at the beginning of the body and would be

found quickly.

Figure 10.

User data (bytes to Mb)

RFH2MQMD

A B C ... X Y Z

Figure 11.

Chapter 4. Parsers 25

v If it is field Z, then the cost might be different, especially if the message is
several megabytes in size.

Here is a technique to reduce this cost:

Use the application that created this message to copy the field that is needed
for routing into a header within the message. For an WebSphere MQ message,
this field might an MQRFH2 header, and a JMS property for a JMS message
for example. If you use this technique, it is no longer necessary to parse the
message body, potentially saving a large amount of processing effort. The
MQRFH2 or JMS Properties folder still needs to be parsed, but with a smaller
amount of data. The parsers in this case are also more efficient than the
general parser for a message body because the structure of the header is
known. Copy key data structures to MQMD, MQRFH2, or JMS Properties to
prevent parsing the user data.

Identifying problem message flows

When you need to find out whether message flows are creating an excessive
number of message tree fields, then parser resource statics can provide the
answer.

The statistics show the number of Fields in memory, and the approximate
amount of user data-related memory that is used for the named message flow
parser type. These statistics are grouped by message flow and name, and you
can quickly identify when millions of fields are in memory, or gigabytes of
data storage is being used.

Resource statistics
Resource statistics are collected by a broker to record performance and
operating details of resources that are used by integration servers.

As a system administrator, you can use the resource statistics to ensure that
your systems are using the available resources in the most efficient manner.
By monitoring systems and analyzing statistical trends, you can keep system
resource usage within boundaries that you consider acceptable, and help to
prevent situations where system resources are overstretched and might
become unavailable. Analysis of the data that is returned might require
specialist skills and knowledge of each resource type.

If you detect that system resources are under pressure, you can examine the
statistics that are collected by the broker to assess whether the cause of the
concern is the use of those resources by processes in IBM Integration Bus.

You must activate statistics collection because collection is not active by
default. If you activate statistics, you might experience a minor degradation in
operating performance of the broker or brokers for which you are collecting

26 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

data. You can collect data on one or more integration servers, and all
integration servers on a broker, so that you can limit the statistics gathering
activity if appropriate.

Resource statistics complement the accounting and statistics data that you can
collect on message flows, which are also available in the IBM Integration
Explorer.

To start, stop, or check the status of resource statistics collection, use one or
more of the following options:
v The IBM Integration Explorer: See the Starting resource statistics collection in

the IBM Integration Explorer section in the main product documentation.
v See the mqsichangeresourcestats command section in the main product

documentation.
v See the mqsireportresourcestats command section in the main product

documentation.
v A CMP application: See the Working with resource statistics in a CMP

application section in the main product documentation.

To view the output that is generated by statistics collection, use one or more
of the following options:
v The IBM Integration Explorer. Numeric data and graphs are displayed for

each integration server with activated statistics collection.
v An application that subscribes to a publication message, that is published

by the broker every 20 seconds. The message contains the data that is
collected for each integration server with activated statistics collection. The
published message is available in XML format and in JSON format.
The topic for each message has the following structure:
– For XML format:

$SYS/Broker/broker_name/ResourceStatistics/integration_server_name

– For JSON format:
$SYS/Broker/broker_name/Statistics/JSON/Resource/integration_server_name

You can set up subscriptions for a specific integration server on a specific
broker. For example:
– For XML format:

$SYS/Broker/IB9NODE/ResourceStatistics/default

– For JSON format:
$SYS/Broker/IB9NODE/Statistics/JSON/Resource/default

You can also use wildcards in the subscriptions to broaden the scope of
what is returned. For example, to subscribe to reports for all integration
servers on all brokers, use the following values:
– For XML format:

Chapter 4. Parsers 27

$SYS/Broker/+/ResourceStatistics/#

– For JSON format:
$SYS/Broker/+/Statistics/JSON/Resource/#

Parser resource statistics
You can view these statistics in the IBM Integration Explorer, or you can write
a program that subscribes to a publication (single XML message) that returns
this data.

All message flows in an integration server create parsers to parse and write
input and output messages. Use the Parsers statistics to see how much
resource is being used by the message trees and bit streams that these parsers
own.

A statistics summary is returned, followed by an entry for accumulation by
parser type for each message flow. The rows are named in the style <Message
Flow>.<Parser>. A row is shown for every parser type that is used by that
message flow. Extra instances are included in the accumulated statistics for
each message flow.

The following table describes the statistics that are returned for each message
flow parser since the integration server was last restarted.

Table 3.

Measurements Description

Threads The number of message flow threads that contributed to
the statistics for a message flows parser type
accumulation.

ApproxMemKB The approximate amount of user data-related memory
that is used for the named message flow parser type. An
estimate of storage that the fields themselves are
occupying in kilobytes. This value does include data that
was in a specific message tree such as names, namespaces,
and values. As such, this metric is intended to give a base
for comparison from one message flow to another. It is
not possible to calculate the exact amount of memory that
is used by a parser, and so the returned value is the
lowest it could possibly be.

MaxReadKB This metric records the largest bitstream that is passed to
the parser for parsing. For most transports, the input
bitstream is a contiguous buffer of bytes, which is
allocated when it was read in. Therefore, if maxReadKB is a
large number, it might be contributing to a high
integration server memory use.

MaxWrittenKB Shows the largest bit stream that is written by the parser
type for the named message flow.

28 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

Table 3. (continued)

Measurements Description

Fields Shows how many cached fields this parser is associated
with. This number never reduces, even if the DELETE
FIELD command is used, because deleted fields are
reused. These fields are retained by the parser and are
used for constructing the message trees.

Reads The number of successful parses that were completed by
the named message flow parser type.

TotalReads The totalReads metric reports how many times the parser
was assigned a bitstream to parse. These assignments
might be as a result of a node reading data from a
transport and assigning it to the parser, or it might be
from a CREATE with PARSE clause in ESQL for example.

FailedReads The failedReads metric reports the amount of totalReads
that encountered a parsing exception. The
successfulReads and failedReads add up to the
totalReads for that parser. Examining the failedReads
value might give an indication that a message flow is
driving error handling paths, which might use more
memory than expected.

Writes The number of successful writes that were completed by
the named message flow parser type.

FailedWrites The failedReads metric reports the amount of totalReads
that encountered a parsing exception. The
successfulReads and failedReads add up to the
totalReads for that parser. Examining the failedReads
value might give an indication that a message flow is
driving error handling paths, which might use more
memory than expected.

Examples of reporting parser usage
The parser resource statistics do not show the number of parsers that were
created. Only the following runtime command returns detailed information on
each parser that was created on each thread:
mqsireportproperties broker -e integrationserver -o ComIbmParserManager -r

where broker is the name of your broker and integrationserver is the name of
your integration server.

This command shows the number of parsers that are owned by each thread,
and how many fields each one has. You can search the text output from this
command for the keywords totalFieldsUsed or approxMemKB to see whether
there are any excessively large numbers.

Chapter 4. Parsers 29

Capture the output of this command to a file and search for totalParsers. The
results show the total number of parsers that were created on each thread. If
this result is an excessive number, then the flow needs to be analyzed to see
where these parsers are being created.

Although the number of parser instances is not recorded in the resource
statistics, when an excessive amount of parsers are created the totalFields
count is larger than expected. Even if a parser instance is not parsed to
completion, it still creates a root element. This root element contributes to the
totalFields count for a flow ParserName entry. So if a message flow
accidentally created 100,000 parsers for example, then there would be at least
100,000 root elements that contribute to the total fields count.

The following text shows an example output from this mqsireportproperties
command:

ComlbmParserManager
uuid=’ComlbmParserManager’
userTraceLevel=’none.
traceLevel=’none.
userTraceFilter=’none.
traceFilter=’none.
vrmfintroducedAt=.7.0.0.2.
resourceStatsReporting0n=’inactive.
resourceStatsMeasurements=’<ResourceStatsSwitches ResourceType="Parsers" version=’2’ vrmfIntroducedAt=’7.0.0.2’>
<MeasurementV2 name="Threads" collect="on" /><MeasurementV2 name="ApproxMemKB" collect="on" />
<MeasurementV2 name="MaxReadKB" collect="on" /><MeasurementV2 name="MaxWrittenKB" collect="on" />
<MeasurementV2 name="Fields" collect="on" /><MeasurementV2 name="Reads" collect="on" />
<MeasurementV2 name="FailedReads" collect="on" /><MeasurementV2 name="Writes" collect="on" />
<MeasurementV2 name="FailedWrites" collect="on" />
</ResourceStatsSwitches>’

activityLogSupported=’no’
Parser-Statistics
Threads-Parsers
Thread
threadld=’8160’
threadName=’Thread-8160’
totalParsers=’0’
Parsers
Thread
threadld=’1544’
threadName=’Thread-1L544’
totalParsers=’0’
Parsers
Thread
threadld=’11496’
threadName=’Thread-11496’
totalParsers=’7’
Parsers
Parser
name=’XMLNSC
address=’Oxla6fd0c0’
type=’xminsc’
isShared=’FALSE’
creationTime=’2015-10-13 21:31:35.177812’
lastUsedTime=2015-10-13 21:31:35.177867’
totalTimesUsed=’1’
approxMemKB=’7.98’
fields=’44’
totalFieldsUsed=’44’
Parser
name=’DFDL’
address=’Oxla180190’
type=’dfdl’

30 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

isShared=’FALSE’
creationTime=’2015-10-13 21:31:35.177921’
lastUsedTime=’2015-10-13 21:31:35.177939’
totalTimesUsed=’1’
approxMemKB=’7.98’
fields=’14’
totalFieldsUsed=’14’
Parsing
totalReads=’1’
maxReadKB=’0.02’
totalReadKB=’0.02’
successfulRead=’l’
fullReads=’1’
approxMemKB=’7.B8’
totalFieldsUsed=’1’
Parsing
totalReads=’1’
maxReadKB=’0.02’
totalReadKB=’0.02’
successfulReads=’1’
Parser
name=’DFDL’
address=’0x1Bb37770’
type=’dfdl’
isShared=’FALSE’
creationTime=’2015-10-13 21:31:35.386184’
lastUsedTime=’2015-10-13 21:31:35.386188’
totalTimesUsed=’1’
approxMemKB=’7.98’
fields=’1’
totalFieldsUsed=’1’
Parsing
totalReads=’1’
maxReadKB=’0.02’
totalReadKB=’0.02’
successfulRead,l’

BIP80711: Successful command completion.

Chapter 4. Parsers 31

32 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

Chapter 5. Message tree

A message tree is a structure that is created, either by one or more parsers
when an input message bit stream is received by a message flow, or by the
action of a message flow node.

A message is used to describe:
v A set of business data that is exchanged by applications
v A set of elements that are arranged in a predefined structure
v A structured sequence of bytes

IBM Integration Bus routes and manipulates messages after converting them
into a logical tree. The process of conversion, called parsing, makes obvious the
content and structure of a message, and simplifies later operations. After the
message has been processed, the parser converts it back into a bit stream.

The logical tree structure is the internal (integration node) representation of a
message. It is also known as the message assembly. When a message arrives
at an integration node, it is received by an input node that you have
configured in a message flow. Before the message can be processed by the
message flow, the message must be interpreted by one or more parsers that
create a logical tree representation from the bit stream of the message data.

The input node creates this message assembly, which consists of four trees:
1. Message tree structure
2. Environment tree structure
3. Local environment tree structure
4. Exception list tree structure

The first of these trees, the Message tree structure, is populated with the
contents of the input message bit stream. The remaining three trees are
initially empty.

The message tree is always present, and is passed from node to node in a
single instance of a message flow. The root of a message tree is called Root.
The message tree includes all the headers that are present in the message, in
addition to the message body. If a supplied parser created a message tree,
then the element that represents the Properties subtree is followed by zero or
more headers.

When you design an IBM Integration Bus flow, it is essential to understand
the concepts in the Message Tree copying section, and the effective way to

© Copyright IBM Corp. 2016 33

navigate the tree. Both of these subjects can have a large impact on the overall
performance of a flow. The following sections describe in more detail the
considerations that you must take in to account when you develop a flow.

References & navigating the message tree

Navigation is the process of accessing elements in the message tree. You can
access them in the Compute, JavaCompute, .NETCompute, PHPCompute, and
Mappingnodes. The cost of accessing elements is not always apparent and is
difficult to separate from other processing costs.

The path to elements is not cached from one statement to another. Consider
the following ESQL statement:
SET Description = InputBody.Level1.Level2.Level3.Description.Line[1];

When using the following message:
<Level1>

<Level2>
<Level3>

<Description>
<Line>1</Line>

</Description>
</Level3>

</Level2>
</Level1>

The broker runtime accesses the message tree, starting at the correlation Root,
and then moves down the tree to Level1, then Level2, then Level3, then
Description, and finally it finds the first instance of the Line array. If you have
this same statement in the next line of your ESQL module, then the same
navigation takes place all over again. There is no cache to the last referenced
element in the message tree because the access to the tree is intended to be
dynamic to take account of the fact that it might change structure from one
statement to another. This behavior can lead to repeated sets of navigation
and traversing through the elements in a tree. If it is a large message tree,
then the cost of navigation can become significant, leading to poor efficiency
of your code.

Therefore, to reduce the memory usage of tree navigation, it is recommended
that you use a reference variable (for ESQL) or reference pointers (for Java).
Use this technique to save a pointer to a specific place in the message tree,
and move it from one field to next as needed.

For example, you can use reference variables to refer to long correlation
names such as InputRoot.XMLNSC.Level1.Level2.Level3.Description. Declare a
reference pointer as shown in the following example:
DECLARE refDescPtr REFERENCE TO InputRoot.XMLNSC.Level1.Level2.Level3.Description;

34 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

Use the correlation name refDescPtr.Line to access the element Line of the
message tree.

Use REFERENCE and MOVE statements to reduce the amount of navigation
within the message tree and improve performance. This technique can be
useful when you are constructing many SET or CREATE statements: Rather
than navigating to the same branch in the tree, you can use a REFERENCE
variable to establish a pointer to the branch and then use the MOVE
statement to process one field at a time.

You have multiple reference variables that are defined within a flow. In the
previous example, if your code needed to access fields at Level2
InputRoot.XMLNSC.Level1.Level2 and Level3
InputRoot.XMLNSC.Level1.Level2.Level3 for example, you would define a
reference to Level2 and a reference to Level3 as shown in the following
example:
DECLARE refToLevel2 REFERENCE TO InputRoot.XMLNSC.Level1.Level2;
DECLARE refToLevel3 REFERENCE TO refToLevel2.Level3;

The following example shows the ESQL that you can use to reduce the
number of times that you navigate when you create new output message tree
fields:
SET OutputRoot.XMLNSC.Level1.Level2.Level3.Description.Line[1]=’1’;
DECLARE outRef REFERENCE TO OutputRoot.XMLNSC.Level1.Level2.Level3.Description;
SET outRef.Line2 = ’2’;
SET outRef.Line3 = ’3’;
SET outRef.Line4 = ’4’;
SET outRef.Line5 = ’5’;

When you reference repeating input message tree fields, you can use the
following ESQL:
DECLARE myChar CHAR;
DECLARE inputRef REFERENCE TO InputRoot.XMLNSC.Level1.Level2.Level3.Descritpion.Line[1];
WHILE LASTMOVE(inputRef) DO

SET myChar = inputRef;
MOVE inputRef NEXTSIBLING NAME ’Line’; --Repearing record

END WHILE;

In summary, use reference variables or reference pointers to avoid repeated
traversing and referencing of the elements that are caused by loops and other
ineffective tree navigation.

Chapter 5. Message tree 35

Message tree copying

When a message passes through a Compute node, a copy of the message tree
can be taken (specified by the Compute Mode property) for recovery reasons. If
the Compute node changes the message during processing, or if it generates
an exception, the message tree can be recovered to a point earlier in the
message flow. This process of copying the message tree either in whole or
part is called message tree copying.

Without this copy, a failure in the message flow downstream might have
implications for a different path in the message flow. The tree copy is a copy
of a structured object in memory, not a sequence of bytes, and so creating
large copies or many copies of these structured objects often requires large
amounts of memory. The logical tree is duplicated in memory across the
message flow, and therefore to reduce the cost that is associated with message
tree copying, you must remember the following points when you design your
message flows:
v Minimize the number of message tree copies: It is recommended to

minimize the number of Compute nodes in a message flow.
v Look for substitutes instead of using Compute node: For example, a Filter

node might be used which does not copy the tree because ESQL references
only the data in the message tree without updating it. Or using the Compute
Mode property to control which components are used by default in the
output message.

v Produce a smaller message tree in the first place: A smaller tree costs less to
copy. You can produce a smaller message tree in the following ways:
– Use smaller messages: “Message size versus Message tree” on page 48
– Use compact parsers, such as XMLNSC and RFH2C: “Selecting a parser”

on page 8
– Use “Opaque parsing” on page 22
– Use “Partial parsing” on page 21

v Reduce the number of times the whole tree is copied: Reducing the number
of Compute nodes (ESQL or Java) helps to reduce the number of times that
the whole tree needs to be copied. Avoid designs where you have one
Compute node that is followed immediately by another in particular.

In many cases, you might need multiple compute nodes across a message
flow. Do not force everything into a single Compute node in these cases. You
can optimize the processing in the following ways:
v Copy portions of the tree at the branch level if possible rather than copying

individual leaf nodes. This process works only where the structure of the
source and destination are the same but it is worth doing if possible. For
example, if we use the following input message:

36 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

<Request>
<Parent>

<Address>
<City>Colorado Springs</City>
<State>CO</State>

</Address>
</Parent>

</Request>

and use the following code to copy the Address branch to the output:
SET OutputRoot.XMLNSC.Target.Address = InputRoot.XMLNSC.Request.Parent.Address;

The following message tree is copied:
<Target>

<Address>
<City>Colorado Springs</City>
<State>CO</State>

</Address>
</Target>

v Copy data to the Environment tree and work with it in Environment so that
the message tree does not have to be copied every time that you run a
Compute node. Environment is a scratchpad area that exists for each
invocation of a message flow. The contents of Environment are accessible
across the whole of the message flow. For example, if we use the following
input message:
<Request>

<Parent>
<Address>

<City>Colorado Springs</City>
<State>CO</State>

</Address>
</Parent>

</Request>

and use the following code to copy the Address branch to the Environment:
CREATE LASTCHILD OF Environment DOMAIN ’XMLNSC’ NAME ’XMLNSC’;
SET Environment.XMLNSC = InputRoot.XMLNSC;

Then the environment can be used throughout the flow, for example:
SET OutputRoot.XMLNSC.Target.Address = Environment.XMLNSC.Request.Parent.Address;

These examples result in the following message tree:
<Target>

<Address>
<City>Colorado Springs</City>
<State>CO</State>

</Address>
</Target>

Chapter 5. Message tree 37

v Where possible, set the Compute Mode property on the node to exclude the
message. The Compute Mode property controls which components are used
by default in the output message. You can select the property to specify
whether the Message, LocalEnvironment, and Exception List components
that are either generated in the node or contained in the incoming message
are used. For more information, see Compute node in the main product
documentation.

v The first Compute node in a message flow can copy InputRoot to
Environment. Intermediate nodes then read and update values in the
Environment instead of using the InputRoot and OutputRoot correlations.

v In the final Compute node of the message flow OutputRoot must be
populated with data from Environment. The MQOutput node then
serializes the message as usual. Serialization does not take place from
Environment.

While the use of the Environment correlation is good from a performance
point of view, be aware that any updates made by a node that then generate
an exception remains in place. There is no back-out of changes as there is
when a message tree copy was made before the node exception. For more
information, see Chapter 7, “ESQL coding practices,” on page 65 and
“Environment and Local Environment considerations” on page 66.

Types of parser copy
When you create a changed output message, the message flow needs to copy
the message tree. Nodes such as the Compute node, mapping nodes, and
DecisionService node have input and output trees where the output trees are
often different from the input trees. In other language nodes such as the
JavaCompute node, Java plugin nodes, and .NET nodes, one or many output
messages can be created. When you consider memory usage and performance
in general, you must take care to determine when the message tree is copied.

When a tree is copied between different domains, the whole of the input tree
must be parsed so that it can be copied to the new domain. This behavior is
referred to as an unlike parser copy. Each individual field in the source message
must be individually transferred to the target domain so that the correct
structure and field types apply.

When both the source and target messages have the same folder structure at
root level, there is the concept of the like parser copy, where a message tree is
copied to a like domain. For example:
SET OutputRoot = InputRoot;
SET OutputRoot.MQMD = InputRoot.MQMD;
SET OutputRoot.XMLNSC = InputRoot.XMLNSC;

In a like parser copy, if the source message tree is unchanged since the input
node, then a bitstream copy takes place. That is, the message tree is not

38 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

http://www.ibm.com/support/knowledgecenter/SSMKHH_9.0.0/com.ibm.etools.mft.doc/ac04660_.htm

copied and the new target folder is created using a bitstream reference to the
input data. This default capability is useful in routing scenarios where none of
the content is updated, or only parts of the headers are updated. Therefore,
the potentially larger body can be transferred to the output tree without
inflating it. For example:
SET OutputRoot = InputRoot;
SET Output.Properties.CorrelId = X’010203040506070809101112131415161718192021222324’;

However, if the codepage changes during a routing, then an MQInput node
must inflate the output tree to reserialize the new bitstream.

The following example uses an MQInput->Compute->MQOutput flow, and the
Computenode ESQL is as follows:
SET OutputRoot = InputRoot;SET
Output.Properties.CodedCharSetId = 500;

The MQInput node parses the output tree that it was passed. But it is
important to know that even in this scenario, the original input tree that is
received on the input node is not parsed. The high-speed bitstream copy for
an unchanged message tree can be useful, and in fact large message handling
techniques depend on this process.

In a Compute node, the InputRoot tree is not modifiable. So this technique
relies on a high-speed bitstream copy to transfer the tree to the OutputRoot,
such that the InputRoot is never inflated.

Don't change a message tree and copy it
Do not change a message tree, and then copy it unnecessarily in other nodes.

If a message tree is ever changed, then the bitstream copy cannot take place.
This situation means that ESQL such as SET OutputRoot = InputRootRoot
copies the tree. Therefore, a message flow should avoid copying a message
tree (especially a large one) after a new output message tree is generated.
Consider the simple flow of; MQInput->Compute1->Compute2->MQOutput where
the ESQL is as follows:
Compute1:
- SET OutputRoot = InputRoot;
- SET OutputRoot.XMLNSC.TestCase.LastUpdated = CURRENT_TIMESTAMP;
Compute2:
- SET OutputRoot = InputRoot;
- INSERT INTO Database.myDB

Because Compute2 encounters the changed message tree, Compute2 forces the
whole of the InputRoot trees changed XMLNSC folder to be parsed to transfer
it to the OutputRoot version.

Chapter 5. Message tree 39

The general advice that is given is for the message flow developer to ensure
that all the updates are done to the message tree in the same node. However,
in a flow where subflows are written by other message flow developers, then
this behavior might not always be possible.

Therefore, in this type of scenario it would be better for the second Compute
node Compute2 not to issue the SET OutputRoot = InputRoot command, and
instead set the ComputeMode property so that it is not Message.These settings
mean that the node is not going to propagate a new/changed OutputRoot,
and as such propagates the one it received.

The same technique can be used if Compute2 were updating the
LocalEnvironment with routing information. Here the ComputeMode property
must be set to LocalEnvironment.

Always copy at the parser folder level for the bitstream transfer to take
place

When a message tree is copied, the high-speed bitstream transfer takes place
only at the parser folder level. So SET OutputRoot.XMLNSC = InputRoot.XMLNSC
considers creating the target XMLNSC folder using a bitstream copy as shown
in the following example:

ESQL code such as:
SET OutputRoot.XMLNSC.TestCase = InputRoot.XMLNSC.TestCase

does not create the target XMLNSC folder with a bitstream. Instead, the
message tree is copied in its entirety from TestCase downwards. For an XML
message, this behavior still contains nearly all of the message tree.

Parsers must be created when not copying to OutputRoot
Only the OutputRoot correlation name in ESQL has the special property that a
parser is created for parser name folders. So in the case of SET
OutputRoot.XMLNSC = InputRoot.XMLNSC, an XMLNSC parser is created on
behalf of the flow in the OutputRoot message tree. Now consider the
following ESQL:
SET Environment.Variables.XMLNSC = InputRoot.XMLNSC;

As the target field is in the Environment tree, an XMLNSC parser is not
automatically created in the target, and as such an unlike parser copy takes
place. This process means that the bitstream copy cannot take place, and the
whole of the source tree is parsed and then copied to the Environment tree.
The consequence of this behavior is that any XML-specific field types are lost.
For example, if the Environment tree were copied back to the OutputRoot tree
then any attributes would now be tags.

40 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

To preserve the XMLNSC nature of the target and ensure that a bitstream
copy can take place, the ESQL must be as follows to correctly specify that the
target folder is XMLNSC:
CREATE FIELD Environment.Variables.XMLNSC DOMAIN(’XMLNSC’);
SET Environment.Variables.XMLNSC = InputRoot.XMLNSC;

The same is true of the other language APIs when message trees are copied.
The target element must be created specifying an owning parser before the
copy takes place. Although ESQL OutputRoot has the special behavior such
that the SET statement creates parsers for the direct children of OutputRoot, it
is not true if OutputRoot is passed into a PROCEDURE/FUNCTION as a row
variable. At this point, the ROW variable representation of OutputRoot no
longer has the behavior of OutputRoot. This behavior is why OutputRoot is a
globally recognized correlation name throughout all ESQL procedures and
functions, and as such does not need to be passed in as a ROW variable.

Avoid overwriting fields when a tree is copied
When a message tree is copied, any existing children of target message tree
field are detached first. Detaching fields is not the same as deleting fields.
Detaching fields means that they are still in scope, but are no longer attached
to the tree. As such, the detached fields cannot be reused by the parser, and
might cause more message tree fields to be created than intended.

In the following example a RepeatingRecord structure is copied to an XMLNSC
tree so that the XML version of the record can be inserted into a database:
DECLARE inputRef REFERENCE TO InputRoot.DFDL.Parent.RepeatingRecord[1];
WHILE LASTMOVE(inputRef) = TRUE DO

SET OutputRoot.XMLNSC.TestCase = inputRef
DECLARE recordBytes BLOB ASBITSTREAM(OutputRoot.XMLNSC.TestCase)
INSERT INTO Database.myDB(Records) VALUES(recordBytes);
MOVE inputRef NEXTSIBLING NAME ’RepeatingRecord’;

END WHILE;

If the RepeatingRecord structure has 10 fields in it, then each
OutputRoot.XMLNSC.TestCase parent is created with 10 fields. On each
iteration of the loop, these 10 fields are detached by the SET statement.
Therefore if there are 100000 RepeatingRecord input structures, the XMLNSC
parser in the OutputRoot tree creates 1 million fields that it did not need to. If
the ESQL is modified to Delete the TestCase parent on each iteration of the
loop, then the same 10 fields can be reused on each iteration. The following
example demonstrates the preferred behavior:
DECLARE inputRef REFERENCE TO InputRoot.DFDL.Parent.RepeatingRecord[1];
WHILE LASTMOVE(inputRef) = TRUE DO

SET OutputRoot.XMLNSC.TestCase = inputRef
DECLARE recordBytes BLOB ASBITSTREAM(OutputRoot.XMLNSC.TestCase)
-- Record is now serialized, delete the Output fields we no longer need;

Chapter 5. Message tree 41

DELETE FIELD OutputRoot.XMLNSC.TestCase;
INSERT INTO Database.myDB(Records) VALUES(recordBytes);
MOVE inputRef NEXTSIBLING NAME ’RepeatingRecord’;

END WHILE;

Forcing a copy of the message tree fields when required
In some message flow implementations, it might be necessary to ensure that
the message tree fields are copied instead of the bitstream copy taking place.

When a bitstream copy takes place, the target parser starts from the beginning
again. This behavior means that if any message tree fields are parsed in the
source message tree, then they are not copied to the target parser. If a node
parsed a large portion of the message tree already, then from a performance
perspective it would be less expensive to copy the message tree than have the
new target parser parse the message again. So a message flow would want to
preserve the current message tree, especially in cases where other nodes
(possibly in subflows) continue updating the same message tree. You could
for example force all the children of a parser folder to be copied by using the
following example:
SET OutputRoot.XMLNSC.*[] = InputRoot.XMLNSC.*[]

This example copies the children of the source XMLNSC folder instead of the
XMLNSC folder itself, and as such avoids any bitstream copying. For
information about bitstream copying, see “Always copy at the parser folder
level for the bitstream transfer to take place” on page 40.

Avoid copying the message tree even when you alter it
Transformation nodes can produce an entirely different message from the
original that was on an input terminal. For this reason, InputRoot and
OutputRoot references are provided so that the different message trees can be
accessed.

Some transformations need to amend only the existing content, and as such
they copy the message tree. For example, the following commands mean that
the content of the Input message tree is duplicated in the Output tree and as
such more memory is used than required:
SET OutputRoot = InputRoot;
SET OutputRoot.XMLNSC.TestCase.myField = ’An updated field’;

In a Computenode, it is possible to update the input message tree and have it
propagated. By default InputRoot is not modifiable, and if any attempt is
made to update it, the attempt is rejected with an exception. However, a
reference can be taken to the input tree, and the input tree can be modified
through this reference. The following example shows that them ComputeMode
property of a Computenode expects to propagate a new message, and
therefore expects a populated OutputRoot:

42 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

DECLARE inputRef REFERENCE TO InputRoot;
SET inputRef.XMLNSC.TestCase.myField = ’An updated field’;

For this ESQL, the ComputeMode property must be changed so that the original
input tree is propagated. Although updating the Input trees directly is
efficient, care must be taken that this behavior does not affect upstream node
processing in the message flow. If a constant input tree is propagating
multiple times to a subflow, then the message flow ensures that the input tree
is unchanged. This ESQL example means the input tree that was propagated
would get modified, and so all other propagations see the updated value.

Setting a field to NULL is NOT the same as deleting it
Setting a field to NULL is not the same as deleting a field. The following two
ESQL examples do have the same result:
1. SET OutputRoot.XMLNSC.TestCase = NULL;

2. DELETE FIELD OutputRoot.XMLNSC.TestCase;

The first ESQL example detaches the element from a message tree, but it does
not configure it for reuse on the next elements parsed. Therefore, when you
attempt to improve the memory usage of message tree usage, setting a field to
NULL should never be used.

XML, XMLNS, and XMLNSC are not the same domains
Although XML, XMLNS, and XMLNSC are all XML domains, they are not the
same domain when you copy a message tree. Therefore, the efficient bitstream
transfer does not take place when the tree is copied between these domains
with SET OutputRoot.XMLNSC = InputRoot.XML; for example.

Both XML and XMLNS are deprecated and should be used only for legacy
message flows.

Avoiding tree copying
Sometimes you might need to use a Compute node, but do not need to
change the tree. In these situations the Compute node should be configured to
use only LocalEnvironment, which avoids a tree copy for the payload.

Tip: The payload can still be accessed in the Compute node, but it cannot be
modified.

In the following example, a Compute node is used to inspect a version field
in the header of a payload, and then propagates to a label with the content of
the version:

Chapter 5. Message tree 43

To further improve performance, the Input node parses only the header
portion of the payload, the body is configured for opaque parsing. A full
parse of the body is then performed in the subsequent nodes as needed.

The Compute node contains the following code:

Figure 12.

44 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

DECLARE rVersion REFERENCE TO InputRoot.XMLNSC.ns:Inventory.ns:header.ns:version;
PROPAGATE TO LABEL(rVersion);
RETURN FALSE;

Message tree copying summary
This section contained a large amount of information relating to message tree
copying, therefore this summary might be useful:

Table 4.

Don't change a message tree and copy it If a message tree is ever changed, then
the bitstream copy cannot take place, and
extra parsing is needed.

Always copy at the parser folder level for
the bitstream transfer to take place

When a message tree is copied, the
high-speed bitstream transfer takes place
only at the parser folder level.

Parsers must be created when not
copying to OutputRoot

Only the OutputRoot correlation name in
ESQL has the special property that a
parser is created for parser name folders.
Not copying to OutputRoot means that
the bitstream copy cannot take place, and
the whole of the source tree is parsed and
then copied to the Environment tree.

Avoid overwriting fields when a tree is
copied

When a message tree is copied, any
existing children of target message tree
field are detached first. Detaching fields is
not the same as deleting fields, so they
are still in scope, but are no longer
attached to the tree.

Setting a field to NULL is NOT the same
as deleting it

When you attempt to improve the
memory usage of message tree usage,
setting a field to NULL should never be
used.

XML, XMLNS, and XMLNSC are not the
same domains

The efficient bitstream transfer does not
take place when the tree is copied
between these domains. Both XML and
XMLNS are deprecated.

v Don't change a message tree and copy it:
v Always copy at the parser folder level for the bitstream transfer to take

place:
v Parsers must be created when not copying to OutputRoot
v Avoid overwriting fields when a tree is copied
v Forcing a copy of the message tree fields when required
v Setting a field to NULL is NOT the same as deleting it
v XML, XMLNS, and XMLNSC are not the same domains

Chapter 5. Message tree 45

v Avoid tree copying

Reducing the size of the message tree

When a message flow processes messages, the input bitstream is split up by a
parser and allocated to fields in the message trees. The resultant message tree
uses far more memory than the bitstream itself. Therefore, when processing
large messages, the memory cost is much greater.

As the message tree is stored in UCS-2 (2-byte Unicode), when the input
message data is distributed into its separate fields, any text fields double in
size for their memory representation. The message tree fields must then have
a name, a field type, and other underlying information that is used internally
by IBM Integration Bus. When the memory usage to maintain the message
tree structure are also added, then it is easy to see that a fully parsed message
tree is far larger than the bit-stream itself. This behavior is demonstrated in
the following example of a simple fixed-length message model:
myParent: minOccurs=1, maxOccurs=unbounded
- myElement1: STRING: :Length=1
- myElement2: STRING: :Length=1
- myElement3: STRING: :Length=1
- myElement4: STRING: :Length=1
- myElement5: STRING: :Length=1

In a single-byte codepage, an example input message is as follows:
ABCDE

These 5 bytes produce a body folder message tree that looks like the following
example:
DFDL
- myParent

- myElement1 = A
- myElement2 = B
- myElement3 = C
- myElement4 = D
- myElement5 = E

This body message tree with 7 elements uses 62 characters just to represent
the names of these 7 elements. As a minimum, the memory usage is 124 bytes
in UCS-2. The 5 bytes of bitstream data is stored in the tree, and doubled to
10 bytes because it is stored as UCS-2 data. So already it is approximately 134
bytes of message tree for just the 5 bytes of data.

The value of each field is stored as a syntax element. Syntax elements do not
allocate the exact amount of memory for each field because this behavior is
inefficient when syntax elements are reused. Syntax element storage string
data has a reserve of 28 bytes, meaning that the name and value pairs are

46 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

taking up 14 multiples of 28 bytes giving 392 bytes. Each tree field generally
has a minimum memory usage of at least 100 bytes (and can be more
dependent on domain): This result is another 700 bytes for the 7 fields, and as
such the 5 bytes that are parsed now take up 1092 bytes. This tree structure
memory usage is unavoidable, and because these resources are reused for
each message, they are not directly accessible by a message flow.

However, if the following example used the unbounded nature of the
repeating parent structure, and has 1000 repetitions of the 5-byte input
message:
ABCDEABCDEABCDEABCDE.......

The input bitstream data alone would be 5000 bytes. A fully parsed message
tree for this input bitstream contains 6001 fields (That is, 6 for each of the 1000
repeating record and 1 for the DFDL root element). Assuming again that there
are 100 bytes for each repeating 6 fields, and then 6 * 2 lots of 28 bytes for
simple name and value pairs, then that is 936 bytes for each repeating record.
So for a 5000-byte input messages the 1000 repeating records would occupy
936000 bytes, which is getting close to 1 MB. These numbers are just to
demonstrate the weight of the tree structure in memory, and their exact range
and maximum values change between release. However. it is easy to see that
for more complex models and for more repetitions, the memory usage
becomes much larger.

So how do I reduce the size of the memory tree?

Some simple ways to reduce the size of the memory tree are:
1. Build a smaller message tree where possible. Use compact parsers such as

XMLNSC, DFDL, and RFH2C, and use opaque parsing.
2. You can improve performance by reducing the number of times that the

message tree is copied, by using the following techniques:
v Reduce the number of Compute nodes and JavaCompute nodes in a

message flow.
v If possible, set the Compute Mode property on the node to not include the

message.
v Copy at an appropriate level in the message tree; for example, copy

once rather than for multiple branch nodes.
v Copy data to the environment.

Chapter 5. Message tree 47

Message size versus Message tree

When the size of messages that are being processed is being discussed, then
the terms small and large are often used. It is difficult to quantify these terms
in a generic way even to explain where the crossover point is from small to
large.

When messages are a couple of kilobytes in a size, then they are classed as
small messages. When messages are in the tens of megabytes range, then
some users would class them as large. However, these attempts at a
classification are just considering the size of the bitstream data that is being
processed. Nearly all transports in IBM Integration Bus read the incoming
message data into a contiguous memory buffer, and as such a message flow
allocates the required storage. But the message tree is larger than just the
buffer. For example, if there is a repeating element to the message flow, then
the size of the input data can grow over time until it is much larger than was
initially planned for.

Some of the file transports such as File and TCP/IP are able to stream data in
chunks. For such transports, it is not necessary to read the whole of the input
data into memory at the same time. The amount of contiguous storage that is
required to read a "chunk" depends on the options that are selected on the
input node.

48 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

Chapter 6. Handling large input messages

Although a message flow developer cannot usually change the size of the
input data or the model that leads to large memory usage, they can influence
how much of a message is actively storied in memory at the same time.

In previous examples, fully parsed message trees were discussed. A standard
full parse of a message tree parses a bitstream from start to finish, and fully
inflates the message tree in memory. When this process produces a large
message tree, large message handling techniques can be implemented to
reduce memory usage.

The large message handling techniques presented here work on the principle
that any large message tree is large because it has many repeating records. As
such, the logic that is implemented by a message flow deals with each record
one at a time and undertakes the necessary processing on that record. Because
only one record is ever viewed at a time, only that one record needs to be
held in memory. This process is achieved by the following sequence:
1. Using partial parsing to parse the bitstream in a message tree.
2. Parse the first repeating record with a reference variable (see “References

& navigating the message tree” on page 34 for more information).
3. Move to the next repeating record and delete the parent field of the

previous record.

If an input message was large because it contained an embedded video or
audio file for example, then this message is a single field, not many fields.
Therefore, you cannot use these methods to reduce memory usage. As the
whole structure must be populated in the message tree, there is typically less
capacity to optimize processing. However, you can still take advantage of the
Configuration Recommendations to Reduce Memory Usage Best Practice PDF
document, or Configuration Recommendations to Reduce Memory Usage in
the main product documentation.

By deleting the parent field of the record after it was processed, the elements
that were being used for that record are made available to the parser to use
again. This behavior means that when the next repeating record is fully
parsed, it reuses the same underlying message tree field objects instead of
creating new ones. Using this technique means that only the memory for one
record is ever used, irrespective of how many repeating records are in the
input message.

© Copyright IBM Corp. 2016 49

https://developer.ibm.com/integration/docs/ibm-integration-bus/performance/recommendations/ibm-integration-bus-configuration-recommendations-reduce-memory-usage/
http://www-01.ibm.com/support/knowledgecenter/SSMKHH_9.0.0/com.ibm.scenarios.doc/gop_02/topics/bj60020_.htm

Large message handling depends on being able to delete message tree fields,
and the following methods are currently supported:
1. For ESQL, use the DELETE FIELD statement.
2. For .NET, use the NbElement delete() method.
3. For Java, use the MbElement delete() method.
4. For C, use the cniDelete() method.

This technique is also dependent on the message tree never being fully parsed
by any other aspects of IBM Integration Bus. If at any point all of the
repeating records are in memory at the same time, then deleting instances of
these records does not reduce memory usage because the largest footprint for
message tree was already allocated. The following are examples of IBM
Integration Bus function might lead to fully parsing a message tree, and
therefore would negate the benefits of large message handling:
v Complete or Immediate parsing on any input node.
v A trace node with ${Root} or ${Body} in it.
v The flow debugger being attached as the content of message trees and is

sent to the debugger.
v Serializing a large message tree with a different codepage/encoding or

validation options than it was created with.
v Copying the message tree to a different domain such as with SET

OutputRoot.XMLNSC = InputRoot.DFDL. This behavior forces both the
input and output trees in their entirety to be in memory at the same time

In summary, large message handling techniques can reduce how many
message tree fields are in memory at the same time. Deleting fields does not
apply only to repeating fields, it can also apply to any message tree field.
Because the DELETE FIELD command has an overhead when the field is
removed from the tree hierarchy, a message flow developer might not want to
do this for every field that is ever referenced.

Tip: Large message handling relies on the Input trees not being parsed at all,
and being copied to a modifiable output tree for record handling. Care must
be taken that this InputRoot tree is never fully parsed, upstream as well as
downstream. You must avoid situations where the InputRoot is handled
correctly from the Compute node onwards, but then when processing returns
to the nodes before the Compute node, the original input tree gets
accidentally parsed.

50 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

Large messages: Tricky trailer records

Message data is typically large when it contains many repeating records, and
these repeating records might be enclosed by Header and Trailer records. The
header record gives origin or batch information on the batch of records that is
being received and the trailer record gives summary information about the
batch as whole, such as counts on items or total prices.

In a routing application, a message flow might need to examine the header
and trailer records before routing. In augmentation scenarios, a message flow
might need to update only the trailer record. To get to the trailer record in
each case, all repeating record instances must be parsed. For these types of
scenario, different approaches must be considered when you use the XMLNSC
or DFDL domains. The aim of the different approaches is to reduce the
number of fields that are handled in the message tree.

XMLNSC supports opaque elements. This capability is covered in Opaque
parsing in the Parsing strategies section. That section describes the opaque
parsing functionality, which enables XPaths to be entered for elements that are
not intended to be "inflated" in the message tree. That is, instead of parsing all
the fields for the named record, a single opaque field is added to the message
tree. This opaque field contains the portion of the bitstream that would be
parsed for this record. If the XPath identifies all the repeating records between
a header and trailer record, then no individual fields would be created for
each record.

For model-based domains such as DFDL and XMLNSC, the model determines
the structure of the message tree that is parsed. When you parse a large
message with a repeating record that does not need to be inflated, memory
can be saved by constructing an alternative model to represent the sparse
message. This alternative model has just a single field for a record instead of
all of its detailed fields. The single field is defined to consume the same
bitstream content as the detailed version of the record.

The following example is a simple DFDL fixed-length model:
myHeader
- BatchNumber: String: Length=16
myRecord: minOccurs=1, maxOccurs=unbounded
- Field1 : String: Length=1
- Field2 : String: Length=1
- Field3 : String: Length=1
- Field4 : String: Length=1
- Field5 : String: Length=1
myTrailer
- TotalRecord: Int: Length=8

In this example, the myRecord parent field could repeat millions of times. As
such, even with large message handling techniques, the 5 fields of every

Chapter 6. Handling large input messages 51

repeating record must be parsed and then deleted. The following model can
be used instead, to reduce memory usage:
myHeader
- BatchNumber: String: Length=16
myRecord: hexBinary: Length=5, minOccurs=1, maxOccurs=unbounded
myTrailer
- TotalRecord: Int: Length=8

In this example, each single myRecord is parsed and deleted, but the parser
does not have to parse and inflate the complexity of each record. This
technique does not only save memory, but also improves performance of a
large parse, especially when each repeating record has a complex or large
structure itself. However, if that data is needed, then there is no saving in
performance.

Large output messages

So far the recommendations have covered the input message trees and how
these trees can be handled and copied efficiently. However, some message
flows might need to generate a large output message, especially if a large
input message is being augmented and routed.

In the same way that large input trees need to be handled correctly, large
output trees can be optimized to reduce memory usage. The following
example is a large output tree that requires a large amount of memory:
Root
- Properties

-
- MQMD

- ..
- XMLNSC

- TestCase
- Record

- Field01 = A
- Field02 = B
- Field03 = C
- Field04 = D
- Field05 = E

- Record
- ...

- Record
- ...

In this example tree, Record repeats 100 000 times. The parent field that is
combined with its 5 child fields, means that there are 600 000 output fields for
the repeating records. The resulting large output message tree could cause
memory issues in the DataFlowEngine process.

52 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

While most domains can parse large input messages using large message
handling techniques, only a few domains are able to store large message trees.
The domain needs to be able to serialize using the FolderBitStream
instruction (that is, serialize a portion at a time).Then, the domains
serialization needs to support elements of type BitStream.

The following example demonstrates how the ESQL can be changed to build a
large message tree. The following ESQL creates over 600 000 fields for the
repeating records:
CREATE LASTCHILD OF OutputRoot DOMAIN(’XMLNSC’) NAME ’XMLNSC’;
DECLARE outRef REFERENCE TO OuptutRoot.XMLNSC;
CREATE LASTCHILD OF outRef AS outRef NAME ’TestCase’;
DECLARE currentRecord REFERENCE TO outRef
DECLARE recordTotal INT 100000;
DECLARE recordCount INT 0;
WHILE recordCount < recordTotal DO

CREATE LASTCHILD OF outRef AS currentRecord NAME ’Record’;
SET currentRecord.Field01 = ’A’;
SET currentRecord.Field02 = ’B’;
SET currentRecord.Field03 = ’C’;
SET currentRecord.Field04 = ’D’;
SET currentRecord.Field05 = ’E’;
SET recordCount = recordCount + 1;

END WHILE;

When augmenting a large message then the large message handling
techniques for parsing and writing large messages may be combined. The next
record would be parsed using partial parsing. This next record could be
updated and then ASBITSTREAM called on it in FolderBitStream mode, and
inserted into the tree as a BitStream field. The current record is then deleted,
as shown in the following example:

CREATE LASTCHILD OF OutputRoot DOMAIN(’XMLNSC’) NAME ’XMLNSC’;
DECLARE outRef REFERENCE TO OuptutRoot.XMLNSC;
DECLARE currentRecord REFERENCE TO outRef
CREATE LASTCHILD OF currentRecord AS currentRecord NAME ’Record’;
CREATE LASTCHILD OF outRef AS outRef NAME ’TestCase’;
DECLARE folderBytes BLOB;
DECLARE recordTotal INT 100000;
DECLARE recordCount INT 0;
WHILE recordCount < recordTotal DO

SET currentRecord.Field01 = ’A’;
SET currentRecord.Field02 = ’B’;
SET currentRecord.Field03 = ’C’;
SET currentRecord.Field04 = ’D’;
SET currentRecord.Field05 = ’E’;
SET folderBytes = ASBITSTREAM(currentRecord OPTIONS FolderBitStream);
CREATE LASTCHILD OF outRef TYPE XMLNSC.BitStream NAME ’Record’ VALUE folderBytes;
SET recordCount = recordCount + 1;
DELETE FIELD currentRecord; -- Free up the temporary record that was used in serialization.

END WHILE;

Although a message flow that handles real business data is likely to be more
complex than this example, the technique is the same. Use ASBITSTREAM in
FolderBitStream mode on the next record, insert it into the tree as BitStream
field and then delete the current record as shown in the following example:

Chapter 6. Handling large input messages 53

--Parse in the Environment message tree to avoid clashing with the OutputRoot.XMLNSC folder.
CREATE FIELD Environment.Variables.XMLNSC DOMAIN(’XMLNSC’);
SET Environment.Variables.XMLNSC = InputRoot.XMLNSC; -- Assumes we are copying an unparsed
-- XMLNSC folder by its bitstream
DECLARE inputRef REFERENCE TO Environment.Variables.XMLNSC.RepeatingRecord;

--Create the output folders
CREATE LASTCHILD OF OutputRoot DOMAIN(’XMLNSC’) NAME ’XMLNSC’;
DECLARE outRef REFERENCE TO OuptutRoot.XMLNSC;
CREATE LASTCHILD OF outRef AS outRef NAME ’TestCase’;

WHILE LASTMOVE(inputRef) = TRUE DO
SET inputRef.Field02 = ’Z’;
DECLARE folderBytes BLOB ASBITSTREAM(inputRef OPTIONS FolderBitStream);
CREATE LASTCHILD OF outRef TYPE XMLNSC.BitStream NAME ’RepeatingRecord’ VALUE folderBytes;
DECLARE previousRecord REFERENCE TO inputRef;
MOVE inputRef NEXTSIBLING ’RepeatingRecord’; -Move to the next repeating record
DELETE FIELD previousRecord; -- delete the record we have dealt with

END WHILE;
DELETE Environmet.Variables.XMLNSC; -- Delete the XMLNSC folder that was being used.

Large data is often associated with the File transport. The FileOutput node
can append data to a file during the flow processing. Therefore, you can write
message flows where records are written to a file individually, and as such
large output message trees are not required. The FolderBitStream and
BitStream elements provide a method of constructing a large message tree
where multiple records are represented by single records. If a domain does
not support these capabilities, but is model-based, then it is possible to write
an alternative model where records are represented as single binary elements.
If a global element represents the record content, it is possible to avoid the
use of the FolderBitStream and BitStream elements.

Binary large object (BLOB) processing
If your message flow solutions uses raw BLOB processing in ESQL to build an
output message, then use these solutions to concatenate function to join BLOB
portions together in OutputRoot.BLOB.BLOB for example. This technique can
cause excessive memory use due to fragmentation and a large final result.
Consider a message flow that reads in a 1 MB BLOB and assigns it to the
BLOB domain. For the purposes of the following demonstration, ESQL uses a
WHILE loop that causes the repeated concatenation of the 1 MB BLOB to
produce a 57 MB output message:
DECLARE c, d CHAR;
SET c = CAST(InputRoot.BLOB.BLOB AS CHAR CCSID InputProperties.CodedCharSetId);
SET d = c;
DECLARE i INT 1;
WHILE (i <= 56) DO

SET c = c || d;
SET i = i + 1;

END WHILE;
SET OutputRoot.BLOB.BLOB = CAST(c AS BLOB CCSID InputProperties.CodedCharSetId);

In this example, the following sequence of events occurs:
1. A 1 MB input message is assigned to a variable c and is then also copied

to d.

54 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

2. The loop then concatenates c to d, and assigns the result back to c on
iteration.

3. Variable c grows by 1 MB on every iteration.

As this processing generates a 57 MB BLOB, you might expect the message
flow to use around 130 MB of storage (The ~60 MB of variables in the
Compute node, and then 57 MB in the Output BLOB parser, which is
serialized on the MQOutput node.)

However, this is not the case. This ESQL causes a significant growth in the
integration server's storage usage due to the nature of the processing. This
ESQL encourages what is known as fragmentation in the memory heap. This
condition means that the memory heap has enough free space on the current
heap, but has no contiguous blocks that are large enough to satisfy the current
request.

When you deal with BLOB or CHAR Scalar variables in ESQL, these values
must be held in contiguous buffers in memory. These buffers are continuous
blocks of storage, which are large enough to hold the values. Therefore, when
the ESQL statement: SET c = c || d; is executed, in memory terms it is not
just a case of appending the value of d to the current memory location of c.
The concatenation operator takes two operands and then assigns the result to
another variable, and in this case the variable is one of the input parameters.

So logically the concatenation operator could be written: SET c =
concatenate(c,d);

This example is not valid syntax, but is being used to illustrate that this
operator is like any other binary operand function.

The value that was originally contained in c cannot be deleted until the
operation is complete because c is used on input. Furthermore, the result of
the operation needs to be contained in temporary storage before it can be
assigned to c. The scenario has ever increasing values that makes it more
likely that the current heap does not have enough contiguous free blocks to
contain the larger value.

This limitation is because the blocks that are being freed are smaller than the
larger values that are being generated.

Why does the memory usage grow?
This section continues from the previous fragmentation example, which is
repeated here for reference:
DECLARE c, d CHAR;
SET c = CAST(InputRoot.BLOB.BLOB AS CHAR CCSID InputProperties.CodedCharSetId);
SET d = c;
DECLARE i INT 1;

Chapter 6. Handling large input messages 55

WHILE (i <= 56) DO
SET c = c || d;
SET i = i + 1;

END WHILE;
SET OutputRoot.BLOB.BLOB = CAST(c AS BLOB CCSID InputProperties.CodedCharSetId);

So, now consider the possible pattern of allocations that could take place in
this scenario. The best possible case is where no other threads are running
that might make allocations in the freed blocks. This scenario also assumes
that during the execution of ESQL for this thread, no small allocations are
made in the free blocks. In a real integration server, these allocations would
take place even with one flow running, because the broker has administration
threads that run periodically. As this scenario considers only the memory
increases, the starting size of the integration server is ignored and only the
allocations that are made around the while loop are discussed.

For this example, the following assumptions are made:
v The variables c and d are 1 MB blocks, and so in the example each

character is 1 MB.
v The X character represents a used block.
v The - character represents a free block.
1. First, c and d occupy a total of 2 MB storage:

c d
X X

2. Then, c and d are concatenated together, which requires another 2 MB of
storage. This storage must be allocated on the heap to store the result of
the concatenation, which gives:
c d c d
X X X X

3. After the result is assigned to c1, the original c 1 MB block is freed:
- d c d
- X X X

|_|
c1

4. The heap grows to 4 MB, with 1 MB free. Now, d is concatenated to c
again, and therefore needs 3 MB because c1 is 2 MB. There is not 3 MB
free on the heap, and so the heap must expand by 3 MB to give:
- d c d c d d
- X X X X X X

|_| |___|
c1 c2

5. Now the original c1 is freed, which gives a heap of 7 MB, with 3 MB of
free blocks:

56 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

- d - - c d d
- X - - X X X

|___|
c2

6. A further concatenation of 3 MB and 1 MB now requires 4 MB for the
result, and there is not a contiguous 4 MB block on the heap. Therefore,
the heap needs to expand to satisfy this request, giving:
- d - - c d d c d c d
- X - - X X X X X X X

|___| |_____|
c2 c3

7. And the original c2 is freed to give a heap of 11 MB, with 6 MB of free
blocks:
- d - - - - - c d c d
- X - - - - - X X X X

|_____|
c3

So even in the unrealistic best case possible scenario, this heap keeps
expanding on the basis that the variable cannot be freed during the processing
of the current iteration. Therefore, the heap must contain both inputs and
targets at the same time. If this pattern is projected to 56 iterations to produce
a 57 MB output message, then this behavior causes the integration server
using 500 - 600 MB of memory which is much larger than the original
estimate.

However, this example was the best case scenario. The worst case scenario is
that there is no heap reuse, and so every iteration causes an ever increasing
growth. When this growth is projected out, the integration server requires
over 1.5 GB of storage. Therefore, it is possible that this scenario causes a
situation where the operating system refuses to allocate storage to this process
which results in an abend.

As demonstrated, this type of costly BLOB processing must be avoided. The
BLOB parser supports multiple BLOB children on output. Therefore, when
you manually construct an output message in the BLOB domain, the different
portions of the BLOB message must be assigned to multiple BLOB children.
The following example demonstrates this behavior with changes the previous
fragmentation ESQL example. In this example, the memory can build up as the
message is processed through the loop with concatenation (c || d) leading to
fragmentation. The last piece of code avoids fragmentation in this example
with no concatenation and CREATE LASTCHILD OF OutputRoot.BLOB NAME
’BLOB’ VALUE c :
DECLARE c, d CHAR;
SET c = CAST(InputRoot.BLOB.BLOB AS CHAR CCSID InputProperties.CodedCharSetId);
DECLARE i INT 1;

Chapter 6. Handling large input messages 57

WHILE (i <= 56) DO
CREATE LASTCHILD OF OutputRoot.BLOB NAME ’BLOB’ VALUE c;
SET i = i + 1;

END WHILE;

The Splitter pattern

A common large message scenario which results in large memory
requirements is is to take an input message with a batch of records, and then
create individual output messages for each record. The processing loops
around the repeating records, and then builds a small output tree that is
propagated to the rest of the message flow.

This type of scenario can also be referred to as the read large -> propagate many
scenario. To support this type of processing, the ESQL language has the
PROPAGATE statement. This statement allows a Compute node to propagate
the current set of Output message trees to the named terminal (or named
label). The following example message flow demonstrates this behavior:

When the down stream nodes are called, the processing returns back to the
Compute node. The next line of ESQL is then called after the PROPAGATE
statement.

Figure 13.

58 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

DECLARE msgCount INT 0;
WHILE msgCount < 5 DO

SET OutputRoot.Properties = InputRoot.Properties;
SET OutputRoot.MQMD = InputRoot.MQMD;
SET OutputRoot.XMLNSC.TestCase.MsgNumber = msgCount;
SET msgCount = msgCount + 1;
PROPAGATE;

END WHILE;
RETURN FALSE;

This ESQL propagates five output messages, where each output message
contains the message number, and the message headers are populated each
time around the loop, as shown in the following example:
Message
----- Properties

----- MQMQ

----- XMLNSC

TestCase
MsgNumber

This propagation works because the PROPAGATE statement clears all the
Output message trees (OutputRoot, OutputLocalEnvironment, and
OutputExceptionList) when the propagation is complete. By clearing all these
message trees, any parsers that were created within them can are reset and
freed for reuse. Therefore, no matter how many times the PROPAGATE
statement is called, the same memory is reused for each output message. If all
the output messages are approximately the same size, then such a
propagation scenario does not cause any memory growth irrespective of the
number of propagations. This process results in the path shown in the
following example:

Chapter 6. Handling large input messages 59

Tip: The Environment tree is not cleared by the PROPAGATE call because it
is not considered an Output message tree.

What changes were made to the Java API?

The Java API has some similar functionality to ESQL:
1. The clearMessage() method takes a boolean parameter to indicate if the

root element is to be deleted as well.
v If the old clearMessage() method is called, then the default is NOT to

delete the root element.
v By calling clearMessage(true), the API code is giving the broker

permission to delete the root element and reset any parsers that are
associated with the message.

v If, after the root element is deleted, elements are still in scope (because
they were attached elsewhere) then the owning parser is NOT reset.

v Any MbElement references to the message trees in the message should
not be used after calling clearMessage(true).

2. The MbOuptutTerminal.propagate() method now has a boolean parameter
that indicates whether the message objects in the assembly are to be
cleared.
v When true is specified, the clearMessage(true) is called on the three

message objects in the MbMessageAssembly that was propagated.

Figure 14.

60 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

v False is the default, and gives the same behavior as before where the
MbMessageAssembly are not cleared.

v If any of these MbMessage objects are read-only, then clearMessage() is
not called on them.

v When MbOutputTerminal.propagate(MbMessageAssembly, true) is
called, there is no need to call clearMessage() on the MbMessage objects
that were propagated.

Although it might appear that the functionality of #2 supersedes that of #1, it
is possible that some implementations build a temporary MbMessage object
that is not propagated. By providing a clearMessage(boolean) method, these
MbMessage objects can also be cleared completely.

MbOutputTerminal.propagate(MbMessageAssembly, true) has the same
behavior of ESQL PROPAGATE, and as such any number of iterations should
cause the same amount of parser resources to be used throughout. When you
use Java, there might be some JVM heap growth because Java objects are not
cleared until a garbage collection cycle.

.NET and the C API do not yet have this support available, which means that
a large message splitter scenario in the .NETCompute node or C Plugin node
leads to large memory growth. Both the .NETCompute and C Plugin interface
support the deleting of elements using MbElement.delete() and cniDelete().
Therefore, the root element in any message can be accessed and a delete that
is issued on it.

Now that deletion of fields can free up parser resources for use, deletion can
be used as a manual approach that stops memory growth after each
propagation. That is, after propagation the root element of each message can
be accessed and deleted before cnoClearMessage() or the NbMessage is
deleted.

The .NET and C language APIs support multiple propagations, meaning that
the .NETCompute, and C Plugin nodes can attempt splitting a large message.
In these languages, a new message object can be created on each iteration of
the loop, and then the message (NbMessage or CciMessage) is propagated.
This process uses the NbOutputTerminal.propagate() or cniPropagate()
methods. These propagate methods do not have the same behavior as ESQL
PROPAGATE, such that the message trees and parsers are NOT reset for
reuse. The reason for the difference is due to the scope and ownership of the
objects that are involved. In a Compute node, the Output trees are owned by
the broker code and all references to these trees can be managed, and so the
trees are cleared. However, for the .NETCompute and plugin nodes the

Chapter 6. Handling large input messages 61

message flow developer's code owns the message objects. Therefore, the
propagate methods cannot clear them because the caller might still be either
using them or referencing them.

Each API offers a method of clearing the resources that are used by the
method:
v In Java, MbMessage has a clearMessage() method. MbMessage needs to

have a clearMessage() call on it so that the associated C++ objects and
message bitstream are deleted. For example, if your Java node (plugin/JCN)
is creating a new output message, then you would have lines like:
MbMessage newMsg = null;
try
{
newMsg = createMessage(inputFileBytes);
MbMessageAssembly outputAssembly = new MbMessageAssembly(assembly, newMsg);
MbOutputTerminal outTerm = getOutputTerminal("out");
if (outTerm != null)
{

outTerm.propagate(outputAssembly);
}

}

In this case, if the createMessage() method is called, a buffer is allocated
ready to serialize the message tree. As indicated previously, for every
createMessage() issued, an associated clearMessage() needs to be called.
This needs to be done after the "outTerm.propagate" and regardless of
whether an exception is thrown or not. For example:
MbMessage newMsg = null;
try
{
newMsg = createMessage(inputFileBytes);
MbMessageAssembly outputAssembly = new MbMessageAssembly(assembly, newMsg);
MbOutputTerminal outTerm = getOutputTerminal("out");
if (outTerm != null)
{

outTerm.propagate(outputAssembly);
}

}
finally
{

if(newMsg != NULL)
{
newMsg.clearMessage();

}
}

v In .NET, the NbMessage can be deleted.
v In C, the cniDeleteMessage() method can be called.

Although these methods erase the message object and its associated buffers,
they do not erase the parse trees or reset the parsers for reuse. A parser and
its parse tree can have wider scope than a single message object because
message tree fields could be detached and attached between them.

62 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

Therefore, by default a large message splitter pattern in either of the
.NETCompute or plugin nodes causes a large amount of memory to be used if
multiple propagations take place within a loop. This behavior is due to new
parsers that are created for each new message object that is constructed within
the loop.

Chapter 6. Handling large input messages 63

64 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

Chapter 7. ESQL coding practices

Individual sections of this Good operating practice have ESQL samples and
recommendations were appropriate. The following recommendations do not
fit neatly into a section.

The following recommendations are intended to ensures that flows are
optimized for performances. Before the specific recommendations, there is a
list of more general coding recommendations.

ESQL and flow coding practices

1. Initialize variables within DECLARE statements to reduce the number of
statements required. The following example uses multiple statements,
which is not recommended:
DECLARE iIndex INTEGER; --Declare only
SET iIndex = 0; --Initialize

Instead of using multiple statements, use a single statement as shown in
the following example so that the memory required to process the
statements is reduced:
DECLARE iIndex INTEGER 0; --Declare and initialize in one statement

2. Use a single DECLARE statement when you define multiple variables of
the same type. The following example uses multiple statements, which is
not recommended:
DECLARE cVar1 CHARACTER;
DECLARE cVar2 CHARACTER;
DECLARE cVar3 CHARACTER;

Instead of using multiple statements, use a single statement as shown in
the following example. This action reduces the number of statements to
execute, and reduces the memory that is required to define the variables:
DECLARE cVar1, cVar2, cVar3 CHARACTER; --Declare multiple variables

3. Declare a REFERENCE to avoid excess navigation of the Message Tree. For
more information, see the Using Reference variables section.

4. Use CREATE with PARSE clause in preference to a read/write operation.
For more information, see Using CREATE with PARSE in the Environment
tree in the Environment and Local Environment considerations section.

5. Make code as concise as possible. Restricting the number of statements
reduces the memory that the parsing requires.

© Copyright IBM Corp. 2016 65

6. Combine ESQL into the minimum number of compute nodes possible.
Fewer compute nodes usually means less tree copying. For more
information, see the Reduce the number of Computenodes section.

Environment and Local Environment considerations

Individual sections of this Good operating practice have some information
about the Environment and Local Environment, however the following
recommendations do not fit neatly into those sections.

Do not use the Environment tree to handle local variables

For most circumstances, using local variables with the node is the optimal
solution. This section covers the use of Local Environment to store the
variables when more than a flat structure is required.

All data that is stored in the Environment tree is stored in memory during the
whole message flow, and is not freed after it is out of scope. Even if you
delete the fields from the Environment tree, the memory is not freed until the
message flow finishes processing the message. The broker uses pool allocation
and reuses resources of the Environment Tree. Therefore, if you need space to
store local data for node work, then use the LocalEnvironment tree and avoid
high memory consumption.

If you create local environment variables, store them in a subtree called
Variables. This action provides a work area that you can use to pass
information between nodes. This subtree is never inspected or modified by
any supplied node.

Variables in the local environment can be changed by any subsequent message
processing node, and the variables persist until the node that created them
goes out of scope.

Generally, use the Environment for scratchpad work where you need to
maintain the content beyond the scope of the current node, and use the
LocalEnvironment for larger scratchpad areas that are only required during
the current node, and you need to release the memory after use.

The scope of Environment and Local Environment

The following flow diagram demonstrates the use of Environment and Local
Environment:

66 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

The following table details the contents of the Environment and Local
Environment as a message traverses through the flow:

Table 5.

Stage Environment Local Environment

A Empty Empty

B myVar1 = ‘abc’ myVar1 = ‘abc’

C myVar1 = ‘123’ myVar1 = ‘123’

myVar2 = ‘123’

Figure 15.

Chapter 7. ESQL coding practices 67

Table 5. (continued)

Stage Environment Local Environment

D myVar1 = ‘123’ myVar1 = ‘abc’

E myVar1 = ‘XYZ’ myVar1 = ‘abc’

Environment variables maintain state throughout the flow, and the memory is
not released regardless of whether the elements are removed from the
environment.

Local Environment variables maintain state only while the flow progresses
(along a single propagated path). The Local Environment variables are
available to all nodes on the same propagated path, but changes are only
passed out of a Computenode if the ComputeMode property includes Local
Environment. If the ComputeMode is set to Message, the LocalEnvironment is
passed through the node as-is. The Local Environment can still be used within
a Computenode (read or written to) when the ComputeMode does not include
Local Environment but the scope of these additions and modifications
survives this node.

Environment with Domain

Copying a message tree (or a portion of it) into the Environment can be useful
for many scenarios, but it is essential that the correct domain is created prior
to copying the structure. Forgetting to assign the correct domain to the
Environment tree before copying the fragment of the input message causes
inflation of the tree to occur before the copy happens. For more information,
see the Types of parser copy section.

Sample with PARSE included:
CREATE LASTCHILD OF Environment DOMAIN ’XMLNSC’ PARSE(InputRoot.BLOB.BLOB);

Sample without PARSE included:
CREATE LASTCHILD OF Environment DOMAIN ’XMLNSC’;

When the source and target trees have the same domain, it is just a bitstream
copy.

Using CREATE with PARSE in the Environment tree

When the subject of a parser is discussed in terms of the broker, then it is
seen as a single entity such as the XMLNSC parser. However, this situation is
not the case, and many instances of a parser can be created based on the logic
implemented in a message flow. A parser is responsible for creating a message
tree from a bitstream and vice versa.

68 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

Since the introduction of the CREATE with PARSE ESQL statement, the term
message tree could apply to a portion of a message tree. In the following
example, an XMLNSC parser is created in the CREATE statement, and
another is created in OutputRoot message:
CREATE FIELD Environment.Variables;
DECLARE envRef REFERENCE TO Environment.Variables;
DECLARE count INT 0;
WHILE count < 50000 DO

SET count = count + 1;
CREATE LASTCHILD OF envRef DOMAIN(’XMLNSC’)
PARSE(InputRoot.DFDL.record[count],);
CALL CopyMessageHeaders();
SET OutputRoot.XMLNSC = Environment.Variables.XMLNSC[count];
PROPAGATE;

END WHILE;

This example assumes that the input DFDL tree has 5000 repeating records
that contain XML blobs. The XMLNSC parser created in the Environment tree
is owned by the Environment tree's message group. Hence all parsers created
in the Environment tree are owned by the Input message group, and are not
cleared and reused until processing returns to the input node. However the
XMLNSC parser created in the OutputRoot message tree, is owned by a sub
message group. This parser is cleared, reset, and all parsers are freed for reuse
at the end of the PROPAGATE. For more information, see the The Splitter
pattern section.

This ESQL leads to 5001 XML parsers being created. Once created, they exist
for the life of the integration server, and are reused throughout. Even
modifying the ESQL to the following example makes no difference:
CREATE FIELD Environment.Variables;
DECLARE envRef REFERENCE TO Environment.Variables;
DECLARE count INT 0;
WHILE count < 50000 DO

SET count = count + 1;
CREATE LASTCHILD OF envRef DOMAIN(’XMLNSC’)
PARSE(InputRoot.DFDL.record[count],);
CALL CopyMessageHeaders();
SET OutputRoot.XMLNSC = Environment.Variables.XMLNSC[count];
DELETE FIELD Environment.Variables.XML[count];
PROPAGATE;

END WHILE;

The DELETE FIELD statement just deletes all the message tree fields for reuse,
but the parsers syntax element pool owns them and gets them ready for
reuse. Therefore, the parser must still exist to do this. A parser can be reset
and reused when the message tree it is associated with goes out of scope. So
when the CREATE with PARSE is used in the OutputLocalEnvironment, this
message tree goes out of scope when:
v Either when returning from a PROPAGTAE statement, or

Chapter 7. ESQL coding practices 69

v When the Computenode completes and the processing returns to a previous
point in the message flow.

Any parsers that are associated with the Environment tree are not be freed
and reused until the message flow completes for that message. However if
many parsers are created in the Environment tree for one message, then this
behaviour might lead to storage exhaustion before the flow completes.

If such conditions are found to be present in a message flow, then the use of
OutputLocalEnvironment should be considered along with the PROPAGATE
statement.

Tip: Use Environment when the parsed results are required throughout all
paths in the flow or need to survive a rollback. But keep in mind the
performance implications with loops as described above. Otherwise consider
the use of a Local Environment variable where scope can be managed to
within a Propagate path.

Using reference variables

Reference variables have two benefits:
1. They make code more readable.
2. They reduce the overhead of repeatedly traversing the message tree each

time a location in the tree structure is required to be accesses. This
behavior applies to any message tree such as InputRoot or OutputRoot.

The following example demonstrates Reference declarations:
DECLARE rInputAddress REFERENCE TO InputRoot.DFDL.Invoice.Customer.Address;
DECLARE rOutputCustomer REFERENCE TO OutputRoot.DFDL.Invoice.Customer;

References can be used within references. So when you need to access
multiple levels of a tree structure with code, create a reference for each level.
The following example demonstrates multiple reference levels:
DECLARE rInputInvoice REFERENCE TO InputRoot.DFDL.Invoice.Customer.Address;
DECLARE rInputCustomer REFERENCE TO rInputInvoice.Customer.Address;
DECLARE rInputAddress REFERENCE TO rInputCustomer.Address;

References only maintain the scope of the code block that they are defined in.
For example, if you defined a reference within an IF statement, then the
Reference is only accessible within that IF block. Therefore, if you need to use
the same reference in multiple code blocks, you must define the reference
outside of any logical statements. References are often defined at the top of
each Function or Procedure to add to the readability of the code.

70 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

References can be either static (defined to a fixed location) or dynamic. The
definition for both is identical but the pointer within the reference can be
moved.

In the following code sample, a reference is created to Product which can
occur one or more times. The LASTMOVE instruction checks if the reference
that is defined has found the tree location (Product of parent Invoice). The
WHILE loop iterates through each Product found by moving the reference
rProduct through each sibling element of name Product:
DECLARE rProduct REFERENCE TO InputRoot.DFDL.Invoice.Product;
WHILE LASTMOVE(rProduct) DO

...some logic
MOVE rProduct NEXTSIBLING NAME ’Product’;

END WHILE;

Reduce statements with SELECT

The number of statements used in an ESQL procedure or function impacts the
performance of the flow. Where possible, consider using a SELECT statement
when a single ESQL statement can be used instead of multiple SET
statements.

The following example uses SET statements, and is not recommended:
SET rXMLRoot.ota:parentFolder.ota:childFolder. = ota:field1 = rLocInfo.fielda;
SET rXMLRoot.ota:parentFolder.ota:childFolder. = ota:field2 = rLocInfo.fieldb;
SET rXMLRoot.ota:parentFolder.ota:childFolder. = ota:field3 = rLocInfo.fieldc;

However, the following example, although obviously very simple, has
performance benefits that become substantial when you have more fields to
map:
SET rXMLRoot.ota:parentFolder.ota:childFolder =

(SELECT
rLocInfo.fielda AS ota:field1,
rLocInfo.fieldb AS ota:field2,
rLocInfo.fieldc AS ota:field3

FROM rRQD.LOCATION_INFO AS rLocInfo);

SELECT statements can also be embedded within another SELECT statement
to allow nesting of the output structure as shown in the following example:
SET rSoapEnv =

(SELECT
nsSoapenv AS (XMLNSC.NamespaceDecl)xmlns:"soap,
nsXsi AS (XMLNSC.NamespaceDecl)xmlns:"xsi",
nsXsd AS (XMLNSC.NamespaceDecl)xmlns:"xsd",
’’ AS nsSoapenv:Header,
(SELECT

nsRnt AS (XMLNSC.NamespaceDecl)xmlns:"rnt",
fs.up AS nsSch:pickup,

Chapter 7. ESQL coding practices 71

fs.off AS nsSch:dropoff,
cDate AS nsSch:"date"

FROM rRent AS fs) AS nsSoapenv:Body.nsSch:Rental
FROM rRental);

To include logic within the SELECT statement, you can add a CASE statement
as shown in the following example:
SET rData.Original =

(SELECT
’XYZ’ AS SystemID,
(CASE

WHEN rDetails.Error = ’A’ THEN ’001’
WHEN rDetails.Error = ’B’ THEN ’002’
WHEN rDetails.Error = ’Z’ THEN ’027’
ELSE ’N/A’

END) AS ErrorCode
FROM rEnv.Details AS rDetails);

Database interaction

Individual sections of this Good operating practice have ESQL samples and
recommendations were appropriate. The following recommendations do not
fit neatly into a section.

The WHERE clause
The WHERE clause expression can use any broker operator or function in any
combination. It can refer to table columns, message fields, and any declared
variables or constants. However, the broker treats the WHERE clause
expression by examining the expression and deciding whether the whole
expression can be evaluated by the database. If it can, it is given to the
database. To be evaluated by the database, it must use only those functions
and operators that are supported by the database.

The WHERE clause can, however, refer to message fields, correlation names
declared by containing SELECTs, and to any other declared variables or
constants within scope. If the whole expression cannot be evaluated by the
database, the broker looks for top-level AND operators and examines each
subexpression separately. It then attempts to give the database those
subexpressions that it can evaluate, leaving the broker to evaluate the rest.
This information is important for or two reasons:
1. Trivial changes to WHERE clause expressions can have large effects on

performance. You can determine how much of the expression was given to
the database by examining a user trace.

2. Some database functions exhibit subtle differences of behavior from the
behavior of the broker.

72 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

Host variables
It is essential to use host variables so that dynamic SQL statements can be
reused; host variables map a column value to a variable. An SQL PREPARE
statement is expensive in terms of memory, so reuse where possible.

The following statement can be used only when Price is 100 and Company is
IBM. Therefore, when Price or Company change, another statement is needed,
with another PREPARE statement:

PASSTHRU('UPDATE SHAREPRICES AS SP SET Price = 100 WHERE SP.COMPANY = 'IBM'');

Recoding the sample allows Price and Company to change, but still uses same
statement as follows:

PASSTHRU('UPDATE SHAREPRICES AS SP SET Price = ? WHERE SP.COMPANY = ?', rMessage.Price, rMessage.Company);

To see the level of dynamic statement cache activity with DB2, use the
following commands:

db2 connect to <database name>
db2 get snapshot for database on <database name>

To see the contents of the dynamic statement cache, use the following
commands:

db2 connect to <database name>
db2 get snapshot for dynamic SQL on <database name>

Conditional logic
Avoid nested IF statements. The following example uses nested IF statements,
and the structure is not recommended:
IF mylogic = myvalue1 THEN

-- Do something
ELSE

IF mylogic = myvalue1 THEN
-- Do something else

ELSE
IF mylogic = myvalue1 THEN

-- Do something else
ELSE

-- Do something else
END IF;

END IF;
END IF;

Use ELSEIF or better still, use CASE with WHEN clauses to provide a quicker
drop-out from the conditional logic. The following example uses ELSEIF
conditional logic:
IF mylogic = myvalue1 THEN

-- Do something
ELSEIF mylogic = myvalue1 THEN

-- Do something else

Chapter 7. ESQL coding practices 73

ELSEIF mylogic = myvalue1 THEN
-- Do something else

ELSE
-- Do something else

END IF;

The following example uses a CASE statement:
CASE mylogic
WHEN myvalue1 THEN

-- Do something
WHEN myvalue1 THEN

-- Do something else
WHEN myvalue1 THEN

-- Do something else
ELSE

-- Do something else
END CASE;

74 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

Notices

This information was developed for products and services offered in the
U.S.A.

IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing 2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

© Copyright IBM Corp. 2016 75

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will
be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department 49XA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM

76 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written. These examples have not been thoroughly tested under all conditions.
IBM, therefore, cannot guarantee or imply reliability, serviceability, or function
of these programs.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information

Programming interface information, if provided, is intended to help you
create application software for use with this program.

However, this information may also contain diagnosis, modification, and
tuning information. Diagnosis, modification and tuning information is
provided to help you debug your application software.

Important: Do not use this diagnosis, modification, and tuning information
as a programming interface because it is subject to change.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other
countries, or both. If these and other IBM trademarked terms are marked on
their first occurrence in this information with a trademark symbol (® or ™),
these symbols indicate U.S. registered or common law trademarks owned by

Notices 77

IBM at the time this information was published. Such trademarks may also be
registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at Copyright and trademark information
(www.ibm.com/legal/copytrade.shtml).

78 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

http://www.ibm.com/legal/copytrade.shtml

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of
the methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and
on the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in
which the information is presented.

To make comments about the functions of IBM products or systems, talk to
your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use
or distribute your comments in any way it believes appropriate, without
incurring any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink: HURSLEY(IDRCF)
– Email: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2016 79

mailto:idrcf@hursley.ibm.com

80 IBM Integration Bus V9 Best practices:: Reducing memory usage with parsers and message trees

IBM®

Printed in USA

	Contents
	Chapter 1. Reduce your memory usage with parsers and message trees
	Chapter 2. Introduction
	Chapter 3. Terms and phrases
	Chapter 4. Parsers
	Selecting a parser
	Parser creation and memory usage
	Parser considerations: Managing memory usage
	The DELETE statement
	MQSI_FREE_MASTER_PARSERS
	Parsing strategies
	Identifying the message type quickly
	Partial parsing
	Opaque parsing
	Avoiding unnecessary parsing

	Identifying problem message flows
	Resource statistics
	Parser resource statistics
	Examples of reporting parser usage

	Chapter 5. Message tree
	References & navigating the message tree
	Message tree copying
	Types of parser copy
	Don't change a message tree and copy it
	Always copy at the parser folder level for the bitstream transfer to take place
	Parsers must be created when not copying to OutputRoot
	Avoid overwriting fields when a tree is copied
	Forcing a copy of the message tree fields when required
	Avoid copying the message tree even when you alter it
	Setting a field to NULL is NOT the same as deleting it
	XML, XMLNS, and XMLNSC are not the same domains
	Avoiding tree copying
	Message tree copying summary

	Reducing the size of the message tree
	Message size versus Message tree

	Chapter 6. Handling large input messages
	Large messages: Tricky trailer records
	Large output messages
	Binary large object (BLOB) processing
	Why does the memory usage grow?

	The Splitter pattern

	Chapter 7. ESQL coding practices
	ESQL and flow coding practices
	Environment and Local Environment considerations
	Using reference variables
	Reduce statements with SELECT
	Database interaction
	The WHERE clause
	Host variables
	Conditional logic

	Notices
	Programming interface information
	Trademarks

	Sending your comments to IBM

