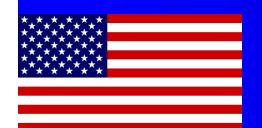
Charge Backs Shift to Reflect Economies Brought by SOA


WINTERGREEN RESEARCH

November 5, 2009

WGR Worldwide Market Presence

35 Distributors Worldwide

- Thompson Financial
- Dialog
- Global Information GII
- MarketResearch.com
- ResearchandMarkets.com
- Electronics.ca

Platform ROI / TCO Chargebacks

- Comparative chargeback ROI / TCO analysis of transactions per second or Web services invocations
- Permits comparative chargeback numbers for System z vs. Distributed servers on \$ per transaction base
- Platform decision tool
- Application by application basis

Shared Memory Key

- Distributed servers failover to only one other server – no shared memory
- System z manages memory
- System z shares memory
- System z workload sharing optimized

Calculate

Server to MIPS Conversion

Go

Server to MIPS Conversion Calculator

2. Application Workload Profile

Scenario 1 🔻 😡

•

Scenarios

Display Calc List

Step 2. Application Workload Profile

WINTERGREEN RESEARCH

Size Categories are Small (MQ or Swift message), Medium (TPC-C Order Entry or Inventory Posting to a Database Transaction), Large (TPC-E Large Brokerage Transaction), Extra Large (Complex set of Linked Transactions)

Transactions and Invocations	Small	Medium	Large	Extra Large	
Transaction Management (CICS)	0	0	100	0	
Presentation Logic	0	150	200	0	
Database Intensive	0	124	0	0	
Web Service Invocations	0	500	0	0	
Time Measurement					
Timespan of Transactions and Invocations (Hours)	0.00027777				
System z Model			System z Model		
System z Model	IBMSystem	z9EC2094-703	CHANGE MODEL		
System z Workload	% GPP MIPS Used	Total GPP MIPS Allocated	GPP MIPS Used (Actual)	% zIIP MIPS Used	Total zIIP MIPS Capacity
System z Workload	111.50%	1,409	1,571.43	0.00%	580
Server Model			Server Model		
Server Model	DellPowerEdgeR900		CHANGE MODEL		0
Server Workload	er Workload % CPU Cycles Used		CPU Cycles Used	% Offload Cycles Used	Total Offload Cycles Capacity
Server Workload	312.28%	23	73.20 0.00%		0
Server to MIPS Ratio	# Production Servers	Actual MIPS Used	# CIM Servers	Shared Workload MIPS	Server to MIPS Ratio
Server to MIPS Ratio	16.0	1,571.43	33.00	314.29	9.52
Proceed to Cost Overview		GO BACK			

Concept for Distributed Server CIM

- Introduce concept of compute intensive module (CIM)
- Makes server processing comparable to MIP calculation
- CIM includes test, development, presentation, production, database, and backup servers
- CIM includes storage, networking, and cabling, software licenses
- Sets up server CIM to MIPs conversion

Cost Distributed Server CIM Per Day

- \$9.82 cost per CIM server per day
- Peak time calculations are accounted for
- Workload offsets take into consideration differences in managing types of processing
- Includes labor and security costs
- Includes virtualization shared workload calculations
- Shared workload improves efficiency

Mainframe SOA

 Business-centric and IT-centric SOA achieve integration by leveraging connectivity and reuse to achieve flexible response to changing business conditions

• Shared workload is more efficient

SOA Reduces IT Runtime Costs

- IT Run time costs consume 80% budget
- Reducing IT run time costs competitive priority

- Invest in growing the business
- SOA provides flexible response to changing market conditions

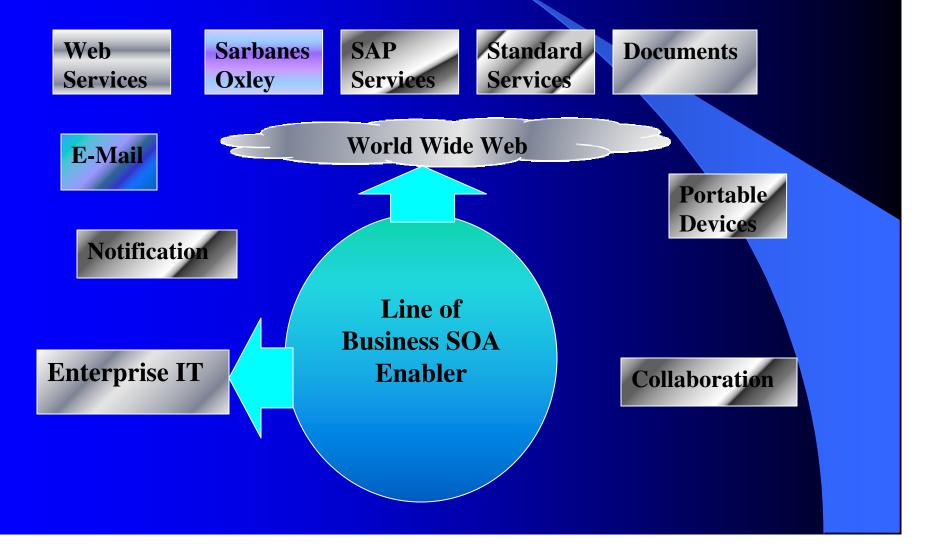
System z Runs WebSphere Efficiently

- Distributed data centers are big, expensive, and employ a lot of people compared to System z data centers
- System z runs one box with about three people
- New charge back systems needed

Distributed Server Data Center vs. System z

Data centers cost \$60 million to \$410 million

 System z costs \$4 million


SOA Creates Efficiency

- SOA supports innovation
- Distributed systems compared to mainframe systems as shared workload analysis
- Analysis is \$ per day for MIPS and for CIMs
- SOA supports flexible response to changing market conditions
- Decrease run time costs

Calculate Chargeback on Application Basis

Calculate Chargeback on Application Basis Line of Business Uses SOA

View Sessions

Help

Line of Business Develops Applications

Welcome: Sue7A [log off] Model: Enterprise_Computing --> Overview Session: enterprise computing 17

VIEW GRAPHS Summary Page: Navigate Pages: Current Scenario: Display Print Calc List Overview 1. Overview Expanded Go Scenario 1 💌 Scenarios Calculate Cost Analysis of Distributed Systems vs. 2012 Initial Unit 2009 2010 2011 2013 Mainframe for Single Application Total Costs to Achieve SLA 1.415.5 \$000 1.386.1 1.428.4 1.472.6 1.517.6 1.565.0 231.5 236.4 259.5 Disaster Recovery \$000 241.6 247.2 253.1 Hardware 11.0 \$000 -1.7 -17 22.0 -17 -1.7 Scalability 27.9 \$000 6.1 5.9 5.7 5.3 4.9 Network 321.9 \$000 36 46 56 6.6 77 Security 304.5 327.4 337.2 \$000 309.5 318.0 317. Software 49.0 \$000 49.5 50.0 50.5 51.0 51.5 92.9 94.9 97.0 99.3 101 7 104 4 Infrastructure \$000 **Total System Advantage** 2.466.9 \$000 2.079.3 2.135.3 2.220.8 2.261.0 2.328.4

Calculate

Labor Costs are 70% of IT Costs

Labor costs make up a large part of Total IT costs.... in excess of 70%

There is a significant difference between System z and distributed server costs for labor

SOA reduces labor costs on system z

On average the costs of labor for distributed servers programming is less than the System z systems programming costs

WinterGreen Research ROI/TCO Features and Benefits Analysis -- At least ten to one cost Advantage of System z over Distributed System Security is \$317,000 less per year

Security Cost Analysis

WINTERGREEN RESEARCH

welcome, Sue6A

Wintergreen

Summary Page:				Current Scenario:		Pri		Calculate
sec				Scenario 1 🚩	Go Scenarios	J Le	List	oulouluto
Security Cost Analysis - Mainframe Versu Distributed System	er sr	Current	Unit	2006	2007	2008	2009	2010
Analyst Comments - Security	330.5	\mathbf{V}						
Fotal Annual Security Costs - Distributed System		330.5	\$000	340.4	350.7	361.2	372.0	383.2
Fotal Annual Security Costs - Mainframe	13.3	13.3	\$000	13.7	14.1	14.5	14.9	15.4
Cost Differential		Total	Unit	2006	2007	2008	2009	2010
Security Cost Differential - Mainframe vs. Distribu	ted System	317.3	\$000	326.8	336.6	346.7	357.1	367.8

Network Efficiency: System z saves \$321,000 per year

Wintergreen	ROI
Research	ENGINE

1	,		ſ	loa	off]	
I	Ν	Е				

welcome, Sue7A

View Sessions Help

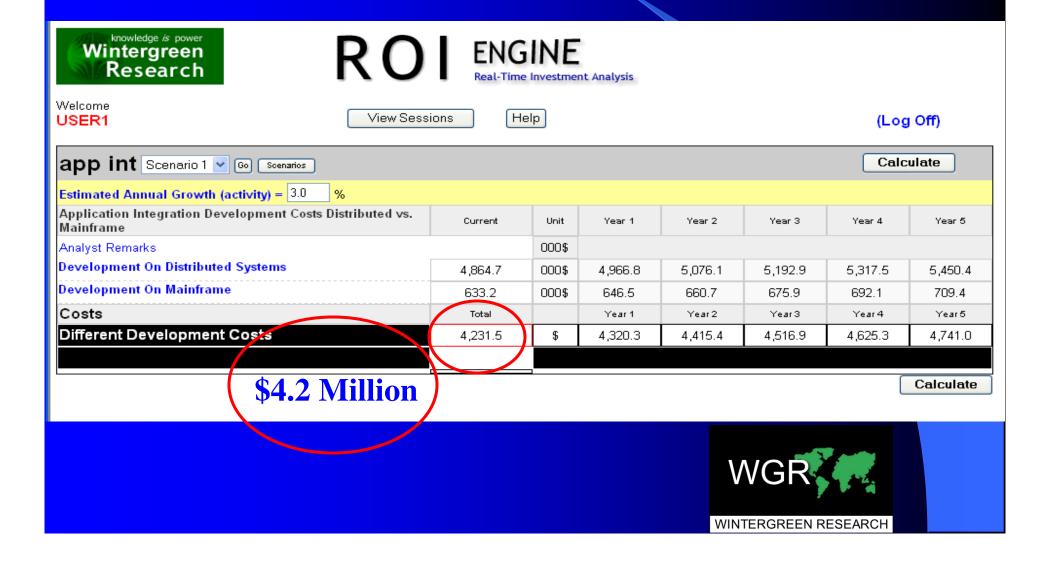
Summary Page: Network				Current Scenario: Scenario_1 💙 Go Scenarios		Print Display Cale List	Calculate
Network System Cost Comparisons on Mainframe vs. Distributed Servers	Initial	Unit	2008	2009	2010	2011	2012
Network Analyst Comments							
Network and Quality of Service (QoS) Voice VoIP Systems On Distributed Systems	Current	Unit	2008	2009	2010	2011	2012
Network Equipment and Cabling Costs Distributed Servers	51.6	000\$	1.4	2.4	3.3	4.3	5.3
Network Quality of Service (QoS) Costs Distributed Servers	288.0	000\$	3.0	3.1	3.1	3.1	3.2
Total Network and Quality of Service (QoS) Costs On Distributed System	339.6	000\$	4.5	5.4	6.4	7.4	8.4
Network and Quality of Service (QoS) On Mainframe	Current	Unit	2008	2009	2010	2011	2012
Network Equipment and Cabling Costs Mainframe	13.6	000\$	0.4	0.4	0.4	0.4	0.4
Network Quality of Service (QoS) Voice VoIP Systems Costs Mainframe	4.2	000\$	0.5	0.5	0.4	0.4	0.3
Total Network and Quality of Service (QoS) Costs Mainframe	17.8	000\$	0.9	0.9	0.8	0.8	0.7
Cost Differential	Initial	Unit	2008	2009	2010	2011	2012
Network Systems Costs Comparison Mainframe vs. Distributed Servers	321.9	000\$	3.6	4.6	5.6	6.6	7.7

321.9

Infrastructure Efficiency: System z saves \$118,200 per year

Wintergreen welcome, Sue7A Research [log off] View Sessions Help ENGINE Display Calc List Summary Page Current Scenario Print Calculate Infrastructure Scenario 1 💙 Go Scenarios Infrastructure - Mainframe Cost Analysis Current Unit 2008 2009 2010 2011 2012 Infrastructure Analyst Remarks Distributed Server Infrastructure Costs 000\$ 118.290 120.823 123.543 126.459 129.584 132.927 Mainframe Infrastructure Costs 0 000 000\$ 0.098 0 100 0 102 0 104 0 107 Cost Differential Total Unit 2008 2009 2010 2011 2012 Infrastructure Cost Differential -- Distributed System Vs. Mainframe 118.2 000\$ 120.7 123.4 126.4 129.5 132.8 18.2

Less electricity, less floor space, less cooling
System z is the green machine and more


Data Centers Run Out of Electricity All over the world data centers are

running out of electricity.

Energy calculations for Google:

1 million computers each with 2 processors. Processors consuming 235 watts of power. Electricity costs \$494 million for the direct costs, With indirect costs, total electricity bill estimated at \$1.5 billion per year.

Back-up and Disaster Recovery System z Saves \$4.2 Million Per Year

Service Level Availability (SLA) System z saves \$1.6 Million per year

Wintergreen Research ENGINE welcome, Sue7A

View Sessions Help

WGR

WINTERGREEN RESEARCH

Summary Page: SLA Service Level Availability					Current Scenario: Scenario 1 💙 Go Scenarios		Calculate
SLA - Analysis of Costs Needed to Achieve 5 Nines of Availability And Costs of Not Having 5 Nines of Availability	Current	Unit	2008	2009	2010	2011	2012
SLA Analyst Comments							
SLA - Distributed Server Cost Analysis	Initial	Unit	2008	2009	2010	2011	2012
Labor Costs For Hardware Technicians Needed to Achieve SLA On Distributed System	288.0	(000)\$	296.7	306.3	316.4	326.7	337.8
Labor Costs For Software Developers Needed to Achieve SLA On Distributed System	345.0	(000)\$	355.4	366.9	379.1	391.3	404.7
Costs of Software Needed to Achieve SLA On Distributed System	147.4	(000)\$	26.5	26.5	26.5	26.5	26.5
Business Cost of SLA Downtime On Distributed System	845.8	(000)\$	871.4	899.5	929.4	959.4	992.3
Total Labor, Software, and Business Costs to Achieve SLA On Distributed System	1,626.2	(000)\$	1,550.0	1,599.2	1,651.5	1,703.8	1,761.3
SLA - Mainframe Cost Analysis	Initial	Unit	2008	2009	2010	2011	2012
Labor Costs For Hardware Technicians Needed to Achieve SLA On Mainframe	1.4	(000)\$	1.4	1.5	1.5	1.6	1.6
Labor Costs For Software Developers Needed to Achieve SLA On Mainframe	3.0	(000)\$	3.1	3.2	3.3	3.4	3.5
Costs of Software Needed to Achieve SLA On Mainframe	3.0	(000)\$	0.1	0.1	0.1	0.1	0.1
Business Cost of SLA Downtime On Mainframe	0.1	(000)\$	0.0	0.0	0.0	0.0	0.0
Total Labor, Software, and Business Costs to Achieve SLA On Mainframe	7.5	(000)\$	4.6	4.8	4.9	5.1	5.3
Cost Differential	Total	Unit	2008	2009	2010	2011	2012
Cost Differential For Labor and Software To Achieve Service Level Availability On Mainfra\me vs. Distributed Systems	1,618.8	(000)\$	1,545.4	1,594.4	1,646.5	1,698.8	1,756.1

\$1.6 Million

SOA Used for New Workload Data Center economics analysis depends on optimizing Linux workload for System z

Performance tuning new workload

Decrease hidden recursion

Eliminate loops

Reduce calls to include files

Optimize database accesses

Manage memory allocation

Memory Stack

All New Workload is Web Based

Financing Advantages

- Expense or capitalize the cost
- Sometimes after an upgrade the total charges are less
- Unplugged units still accrue charges
- Trade in used or unused equipment as part of a financing package
- Residual value can be significant
- Tax advantages to the purchaser

Charge-backs

- SOA charge-back is on application by application basis
- SOA reduces cost of infrastructure
- Shared work load and shared memory key advantages of System z

Summary

WINTERGREEN RESEARCH

- The cost of a System z typically is 10 times less than the cost of a distributed system
- The cost of the infrastructure is significantly less for the System z
- The cost of security is inherent in System z architecture

IBM Transformation: Major IT Virtualization Initiative

Mainframe as a Green Machine - The Green Stripe

