

IBM Software Group

®

IBM WebSphere eXtreme Scale V7.0

Query

© 2009 IBM Corporation

Updated August 21, 2009

WebSphere® eXtreme Scale provides the ability to query data in the cache using
traditional SQL queries. This presentation will provide an overview of the product’s query
capabilities.

WXS70_Query.ppt Page 1 of 22

IBM Software Group

2

Query © 2009 IBM Corporation

Flexible query engine

�Single query engine
�Traditional ObjectMap POJO objects

�Entity objects using the EntityManager APIs

�Similar to JPA's Query API
�Java™ Persistence Architecture Query Language

�Tailored for ObjectMaps

�SELECT only

The eXtreme Scale core programming model allows you to retrieve individual Objects from
the grid by primary key. It also provides mechanisms to retrieve a queue of primary keys
for an ObjectMap which allows you to access all data in the map.

As more and more data is stored in the grid, it becomes desirable to use more
sophisticated queries to retrieve a subset of the data in the grid. WebSphere eXtreme
Scale V7.0 provides a flexible query engine for retrieving Entities or Java objects from the
grid. The ObjectGrid query language uses semantics similar to the Java Persistence
Architecture Query Language, but is tailored to more closely match the ObjectMap
architecture.

The query engine allows SELECT type queries over both entities and Object-based
schemas. The same query language is used to query both types of objects, but they are
accessed using different API methods.

WXS70_Query.ppt Page 2 of 22

IBM Software Group

3

Query © 2009 IBM Corporation

Query engine capabilities

�Aggregate functions

�Sorting and grouping

� Joins

�Conditional expressions with subqueries

�Named and positional parameters

�Path expression syntax for object navigation

� Indexing

The ObjectGrid query language provides advanced query capabilities such as data
aggregation, sorting and grouping, and sub-expressions. These are described in detail in
the WebSphere eXtreme Scale Programming Guide.

WXS70_Query.ppt Page 3 of 22

IBM Software Group

4

Query © 2009 IBM Corporation

SQL-like query

�Select clause
�SELECT order.customerID, SUM(order.orderAmt)

� From clause
�FROM OrderBean order

�Where clause
�WHERE order.orderDate>=‘2009/01/01’

�Order by clause
�ORDER BY customerID

�Group by or Having clause
�GROUP by customerID

�HAVING count(customerID) > 3

With the ObjectGrid query engine, you can use a single query language for searching the ObjectGrid cache.
This query language can query Java objects that are stored in ObjectMaps, and it can query Entity objects.

An ObjectGrid query is a string that contains these elements:

A SELECT clause that specifies the objects or values to return. The query can return an entire Object or
Entity, a list of attribute values, or results of aggregation functions such as SUM().

A FROM clause that specifies the collections of objects to which to apply the query. Each collection is
identified either by an abstract schema name and an identification variable (called a range variable) or by a
collection member declaration that identifies either a single or multi-valued relationship and an identification
variable.

An optional WHERE clause that specifies which objects to include in the result set. If the WHERE clause is
omitted then all objects in the map are included.

An optional ORDER BY clause that specifies the ordering of the result collection.

The GROUP BY clause is used in conjunction with aggregate functions to group the result set by one or
more columns. For example, you might want to find the total order value for each customer ID from an order
map. To do this you select the customer ID and sum of order amounts, and group by customer ID. If you
SELECT non-aggregate attributes along with aggregate functions you must include a GROUP BY clause. If
you only include aggregate functions in the SELECT then the entire result set matching the WHERE is
treated as a group.

You can further filter these groups by including a HAVING clause that tests group properties before invoking
selected aggregate functions or grouping members. This filtering is similar to how the WHERE clause filters
objects from the FROM clause. However, while the WHERE selects input rows before groups and
aggregates are computed, the HAVING selects groups of rows after groups and aggregates are computed.
Unlike the WHERE clause, the HAVING clause can include aggregate functions. In the previous example,
you can limit results to active customers by requesting total sales only for customers that have placed more
than three orders.

WXS70_Query.ppt Page 4 of 22

IBM Software Group

5

Query © 2009 IBM Corporation

Aggregation functions

�AVG

�COUNT

�MIN

�MAX

�SUM

The aggregation functions include average of an attribute value for a group of objects,
count of objects in the group, minimum value, maximum value, and sum of a given
attribute value for a group of objects.

WXS70_Query.ppt Page 5 of 22

IBM Software Group

6

Query © 2009 IBM Corporation

Programming modelProgramming model

Section

This section will provide an overview of the eXtreme Scale query programming model.

WXS70_Query.ppt Page 6 of 22

IBM Software Group

7

Query © 2009 IBM Corporation

Single query model

� Create a query
�Session.createObjectQuery(String query)
�EntityManager.createQuery(String query)

� Query parameters
�named (:city, :state) and ordinal (?1, ?2)
�setParameter

� Pagination support
�setMaxResults
�setFirstResult

� Retrieve results
�getSingleResult
�getResultMap
�getResultIterator

WebSphere eXtreme Scale provides similar query interfaces for both ObjectMap and
Entities.

You create an ObjectQuery object through the session and an entity query through the
EntityManager. The input to both is an SQL SELECT statement.

The select statement can contain replaceable parameters. These allow you to create a
query once and run it multiple times with different values for the parameters. Replaceable
parameters can be either positional or named. Positional input parameters are defined by
a question mark followed by a positive number. They are numbered starting at one and
correspond to the arguments of the query. Named input parameters are defined by a colon
followed by a parameter name. Before executing the query you must provide actual values
for these parameters using the Query object’s setParameter method.

The query object also provides pagination support by allowing you to specify which entry
in the result set to return first and the maximum number of results to return for this
iteration.

You can retrieve a single object, an ObjectMap containing just the results of the query, or
an Iterator over the result set. A call to getSingleResult must return exactly one result. If
there are no results or more than one in the result set it will produce an exception.

WXS70_Query.ppt Page 7 of 22

IBM Software Group

8

Query © 2009 IBM Corporation

// A transaction is required when the results are in an iterator or ObjectMap.
// The results are transaction-scoped.
session.begin();

// Use Join syntax to join resolve a relationship.
ObjectQuery q = session.createObjectQuery(

"SELECT e.name, e.salary, d
FROM EmpMap e JOIN e.deptid as d
WHERE e.salary > :eSalary");

System. out.println("Rich Employees:");
q.setParameter("eSalary" , new Double(20000));
Iterator iEmployees = q.getResultIterator();

while(iEmployees.hasNext()) {
// Results are in an object array
Object[] emp = (Object[]) iEmployees.next();
String name = (String)emp[0];
double salary = ((Double)emp[1]).doubleValue();
DeptBean dept = (DeptBean)emp[2];
System. out.println(name + ", " + salary + ", " + dept. name);

}

session.commit();

Programming model – ObjectQuery example

This slide shows an example object query. The code creates a query object, sets
replacement query parameters, and runs the query. The code then iterates over the result
set. Note that the query results are only valid within the current transaction. EntityQuery is
similar; the primary difference being that the query is created through the EntityManager
rather than the session.

WXS70_Query.ppt Page 8 of 22

IBM Software Group

9

Query © 2009 IBM Corporation

// A transaction is required when the results are in an iterator or ObjectMap.
// The results are transaction-scoped.
session.begin();

// Use Join syntax to join resolve a relationship.
ObjectQuery q = session.createObjectQuery(

"SELECT emp
FROM EmpMap emp
WHERE emp.salary > :eSalary");

System. out.println("Rich Employees:");
q.setParameter("eSalary" , new Double(20000));
Iterator iEmployees = q.getResultIterator();

while(iEmployees.hasNext()) {
// Results are in an object array
Employee emp = (Employee) iEmployees.next();
String name = emp.getName();
double salary = emp.getSalary().doubleValue();
DeptBean dept = emp.getDepartment;
System. out.println(name + ", " + salary + ", " + dept. name);

}

session.commit();

Programming model – ObjectQuery example

This is similar to the previous example except the query retrieves an entire employee
object instead of just selected fields.

WXS70_Query.ppt Page 9 of 22

IBM Software Group

10

Query © 2009 IBM Corporation

Query results

�Single value query
�Attribute Object

�POJO

�Entity

�Multiple value query
�Array of Attribute Objects

�Entity

An individual query can return a single object, an ObjectMap containing just the results of
the query, or an Iterator over the result set. Each returned value is either an Object for a
single valued query, or an array of Objects for a multiple valued query. The values in an
Object array result are stored in the order specified in the SELECT clause; that is, the
zeroth element in the array corresponds to the first value specified in the SELECT. If you
request a result map, the map key is the result number starting at one and the map value
is an Object array.

WXS70_Query.ppt Page 10 of 22

IBM Software Group

11

Query © 2009 IBM Corporation

Entity query example
EntityTransaction tran = em.getTransaction();
tran.begin();

Query q = em.createQuery(
"SELECT e.name, e.salary, d FROM Employee e, Department d WHERE e.salary >

:eSalary");

System. out.println("Rich Employees:");
q.setParameter("eSalary" , new Double(20000));
Iterator iEmployees = q.getResultIterator();

while(iEmployees.hasNext()) {
// Results are in an object array
Object[] emp = (Object[]) iEmployees.next();

String name = (String)emp[0];
double salary = ((Double)emp[1]).doubleValue();
DeptBean dept = (DeptBean)emp[2];
System. out.println(name+ ", " +salary+ ", " +dept. name);

}
tran.commit();

This slide shows an example Entity query. Note that it is similar to the Object query. The
code creates the transaction and query objects through the EntityManager rather than the
session. The interface for setting replacement query parameters, running the query, and
iterating over the result set is the same.

WXS70_Query.ppt Page 11 of 22

IBM Software Group

12

Query © 2009 IBM Corporation

Entity query example
EntityTransaction tran = em.getTransaction();
tran.begin();

Query q = em.createQuery(
"SELECT e.name, e.salary, d FROM Employee e, Department d WHERE e.salary > :eSalary");

System. out.println("Rich Employees:");
q.setParameter("eSalary" , new Double(20000));
Iterator iEmployees = q.getResultIterator(QueryResult.class);

while(iEmployees.hasNext()) {
// Results are injected into a QueryResult temporary entity
QueryResult emp = (QueryResult) iEmployees.next();
System. out.println(emp. name + ", " + emp. salary + ", " + emp. dept .getName());

}
tran.commit();

…

// Create an entity that is compatible with the queried fields.
// Since query retrieves name, salary and department, the result entity only needs these.

@Entity
Public static class QueryResult {

@Basic String name;
@Basic double salary ;
@OneToOne Deptartment dept ;

}

An Entity Query can also project the results of a multiple valued query into a separate,
temporary, Entity designed to hold the query results. The temporary entity is valid for the
life of the transaction.

This slide shows an example Entity query which projects the results into a different class.
The QueryResult object defined in this example contains attributes that correspond to the
values in the SELECT clause of the query. The entity query getResultIterator method can
take this entity class as a parameter, instructing the EntityManager to convert the query
results to Entities rather than Object arrays.

WXS70_Query.ppt Page 12 of 22

IBM Software Group

13

Query © 2009 IBM Corporation

Entity QueryQueue

� Useful for retrieving select
entities in an iterative manner

� Like ObjectMap.getNextKey()
�But uses query to set match

criteria

� Interface similar to
EntityManager Query
�EntityManager.

createQueryQueue

�setParameter(…)

�getNextEntity

�getNextEntities(<num>,…)

�setPartition

Client

Client

Client

Client

Entity

…QueryQueue

Entity QueryQueues operate like the ObjectMap getNextKey method, which retrieves keys from a map in the
order they were inserted. Where the ObjectMap getNextKey method returns all entries in an ObjectMap, a
QueryQueue uses the query to filter returned Entities. Entities from the query result are retrieved from a
queue rather than through an Iterator. Unlike the Iterator returned by a normal Entity query, a QueryQueue is
shared by multiple transactions/clients.

You can retrieve entries from a QueryQueue one at a time, or in batches. When an entry is retrieved from a
QueryQueue it is locked for update, so no other client can retrieve that Entity.

When a query queue is created and the getNextEntity is called, the query associated with the queue is run
and the results are placed into the queue. Every time getNextEntity is called, an entity is taken off the queue
until the queue is empty. When getNextEntity is called against the empty queue, the entity query will
automatically re-run and re-populate the queue. Since the QueryQueue automatically recycles when it is
empty, you must be aware of the possibility of an infinite loop over the data. To avoid this, modify returned
entities so they no longer match the query.

For example, a customer support application includes a Call entity. A support agent client gets the next
unassigned Call for the agent’s specialty and assigns it to the agent. After the Call is assigned to an agent it
will no longer match the query, so it will no longer show up in the QueryQueue.

When operating in a distributed environment you can optionally specify which partition the query must be
routed to. If the partition ID is not specified, the QueryQueue is routed to all partitions, starting from a random
partition.

A query queue is uniquely identified within an eXtreme Scale grid by the query string and parameters. The
grid will contain only one result set for each unique query queue. If 1000 grid clients all create QueryQueue
instances using the same string, the grid will create one “global” queue instance within the grid rather than
evaluating the query separately for each client. The client QueryQueue instances will attach to this “global”
queue and pull entities from it.

See the EntityManager API documentation for additional information.

WXS70_Query.ppt Page 13 of 22

IBM Software Group

14

Query © 2009 IBM Corporation

Query and partitions

�Query.setPartitionId()
�Requires multiple transactions

�Loop over all partitions

�Use MapGridAgent or ReduceGridAgent to spray
queries over all partitions simultaneously
�Agent will serialize results (including entities) to client

� Entities must support serialization and are therefore detached

�Limited to joins over data collocated in single partition

�No aggregation over partitions
� For example, count() will retrieve a count per partition and the total result

has to be computed by applying the function to the results from the agent

Normally, queries only search within a single partition. If you have multiple partitions your
code must specify which partition to run the query against using the setPartitionId method.
If you need to gather data from multiple partitions you must loop through the available
partitions, running the query against each partition in turn.

As an alternative, you can use the data grid APIs to run the same query in parallel on all
partitions or a subset of partitions in order to query large amounts of data efficiently.

WXS70_Query.ppt Page 14 of 22

IBM Software Group

15

Query © 2009 IBM Corporation

ConfigurationConfiguration

Section

This section will describe how to configure an eXtreme Scale grid for Query.

WXS70_Query.ppt Page 15 of 22

IBM Software Group

16

Query © 2009 IBM Corporation

Query schema

� Type/class of object stored in the ObjectMap

�Primary key attribute name

� The method for which each query should access
the data attributes in the Objects
�Directly or getter/setter

�Relationships between ObjectMaps

Before you can query an object you must define a query schema in the grid descriptor
XML file. The query schema tells the ObjectGrid what type of data you plan on inserting
into the maps and how to relate them. The query schema includes a map schema entry for
each queryable map and an entry for each relationship between maps. The map schema
specifies the name and the type of object that is stored in the queryable BackingMap. It
also identifies which field within the stored object represents the primary key attribute. The
primary key must also be stored in the key portion of the BackingMap.

The query engine uses Java introspection to access persistent data in the Objects stored
in the map. You can specify whether the query engine access these fields directly or
through a getter method.

Specify relationships between objects in the maps if you need to follow the relationships in
a query. For instance, if you specify that an Employee is a member of a department, your
query can include a reference to employee.department.number. Relationships are also
used implicitly to optimize joins.

Each relationship must be explicitly defined in the schema configuration. The cardinality of
the relationship is automatically determined by the type of the attribute. For instance, if the
attribute implements the java.util.Collection interface, then the relationship is either a one­
to-many or many-to-many relationship.

Entities accessed through the EntityManager do not require a separate query schema as
the required information is explicitly defined in the Entity metadata.

WXS70_Query.ppt Page 16 of 22

IBM Software Group

17

Query © 2009 IBM Corporation

Indexes

�Used to optimize query
�Avoid full-map scans

�Defined as
�MapIndexPlugin in grid descriptor XML file

�@Index annotation for Entities

�Range indexes
�Support for between, min, max, <, >, and others

�More expensive to keep up to date

�Not supported for Composite indexes

ObjectGrid uses backing map plug-ins to manage indexes on maps. A backing map can
have multiple indexes. The query engine automatically incorporates any indexes that are
defined on a schema map element. eXtreme Scale includes a default index
implementation: the HashIndex plug-in . You can provide your own index implementation
by implementing the MapIndexPlugin interface.

In addition to indexes statically defined in the grid descriptor XML file, you can dynamically
create indexes after the backing map has been initialized using the createDynamicIndex
method.

Entities can use the @Index annotation to implicitly define indexes in the map schema.

A RangeIndex is a specialization of the MapIndex that adds flexibility in the type
comparisons supported. RangeIndexes can greatly improve the performance of some
queries, but they are relatively expensive to maintain.

In general, the more indexes that are available, the faster the query will run. However,
each index consumes system resources. In addition to the memory required for indexes,
additional processing is required for index maintenance as grid entries are added,
removed, and updated. This can have an adverse affect on performance as the number of
the indexes on the BackingMap increases.

WXS70_Query.ppt Page 17 of 22

IBM Software Group

18

Query © 2009 IBM Corporation

Problem determination

� The following trace specifications are available
�Query Engine: QueryEngine (or com.ibm.queryengine.*)

� Object Query: com.ibm.ws.objectgrid.query.*
� Entity Query: com.ibm.ws.objectgrid.em.query.*

�QueryEnginePlan
� Query plan diagnostics

� Must be set on server in distributed environment

�Query.getPlan()
�In distributed environment use agent to run on server

� Informational messages, warnings and errors can
be logged in the ObjectGrid logs

This slide lists trace strings you can set to get more details on query engine operations.
See the extreme Scale information center for more details on these traces.

You can also call the query object’s getPlan method from your code. getPlan returns a
String which describes the how the query engine will run the query. This string can be
displayed to standard output or written to a log. In a distributed environment, the getPlan
method does not run against the server and will not reflect any defined indexes. To view
the plan, use a data grid agent to view the plan on the server.

WXS70_Query.ppt Page 18 of 22

IBM Software Group

19

Query © 2009 IBM Corporation

Query plan

�Sample query
SELECT emp from employees AS emp WHERE

emp.salary<=?1

�No index
for q2 in employees ObjectMap using INDEX SCAN

filter (q2.getSalary() <= ?1)
returning new Tuple(q2)

�With index
for q2 in employees ObjectMap

using RANGE INDEX on SalaryIdx with range(, ?1]
filter (q2.getSalary() <= ?1)

returning new Tuple(q2)

This slide shows two plans for a simple query as returned by the getPlan method. The first
query does not use an index. This plan indicates it will perform a full scan. The second
sample is the same query after creating a range index named SalaryIDX on the salary
attribute. The query plan will also show how the query engine uses loops for JOINs and
complex WHERE clauses.

For complex queries the query engine might not always choose the best index for a query.
For those cases, the Query interface provides a setHint method that allows you to specify
the preferred index. The WebSphere eXtreme Scale Programming Guide contains more
examples of query plans along with advice on how queries can be re-factored for better
performance.

WXS70_Query.ppt Page 19 of 22

IBM Software Group

20

Query © 2009 IBM Corporation

Summary

�Single query engine
�POJOs

�Entities

�Similar to JPA's Query API
�Java Persistence Architecture Query Language

�Tailored for ObjectMaps

�SELECT only

WebSphere eXtreme Scale V7.0 provides a flexible query engine for retrieving Java
objects using the ObjectQuery API and entities using the EntityManager API. The
ObjectGrid query language uses SQL semantics similar to the Java Persistence
Architecture Query Language. The query engine allows SELECT type queries over both
entity or Object-based schema using a common query language.

WXS70_Query.ppt Page 20 of 22

IBM Software Group

21

Query © 2009 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WXS70_Query.ppt

This module is also available in PDF format at: ../WXS70_Query.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WXS70_Query.ppt Page 21 of 22

IBM Software Group

22

Query © 2009 IBM Corporation

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

WebSphere

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Java, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

WXS70_Query.ppt Page 22 of 22

