

®

IBM Software Group | Rational software

© 2009 IBM Corporation

Updated March 10, 2009

IBM Rational Software Analyzer

Writing custom rules

This module covers the topic on how to write a custom rule for IBM Rational® Software
Analyzer versions 7.0 and higher.

rsar_writing_custom_files.ppt Page 1 of 15

2

Writing custom rules © 2009 IBM Corporation

IBM Software Group | Rational software

Module objectives

� Topics covered in this module:
�Rule Check

�Introduction to AST Nodes

�Parsing Nodes

�Writing the Rule

�Analyze Method

�Getting the Rational Software Analyzer Resource

�Getting the AST Nodes

�Doing the Work

� When you complete this module, you are now able to:
�Write a custom rule for Rational Software Analyzer

This course covers eight topics. The first three topics provide you with information
about a Rule Check, an introduction to AST Nodes and Parsing Nodes. The next
few topics outline writing the rule, the Analyze Method, getting the Rational
Software Analyzer resource, getting the AST Nodes and doing the work. When you
complete this module, you will understand what an AST Node is and how it relates
to Rational Software Analyzer. You will also be able to write a custom rule for
Rational Software Analyzer.

rsar_writing_custom_files.ppt Page 2 of 15

3

Writing custom rules © 2009 IBM Corporation

IBM Software Group | Rational software

Rule check

� Rational Software Analyzer uses Eclipse technology for
checking the rule.

� In order for Rational Software Analyzer to determine if a
code file passes a rule or not, you need to parse it and
verify its syntax.

� Eclipse handles the parsing of the code. Once it is parsed,
you will write a Java™ class that will check those parsed
code files. This will verify that is passes your requirements
for the custom rule.

This slide will cover three points. The first point lets you know that Rational Software
Analyzer does not have its own code parser, rather is uses the existing Eclipse parsers.
Secondly, Rational Software Analyzer uses the results of the parser pass to determine if a
rule has passed or failed. And thirdly, you need to write your Java class to look for
particular patterns in the code file to make a decision as to whether the file passes the
rule.

rsar_writing_custom_files.ppt Page 3 of 15

4

Writing custom rules © 2009 IBM Corporation

IBM Software Group | Rational software

Introduction to AST nodes

� AST stands for Abstract Syntax Tree. It is the structure that
Eclipse puts the syntax into after it is done parsing the file.

� These nodes are arranged into a tree. The nodes are
assigned different types for different parts of the file.
�Expression – This generally is any line with an operator , for

example =, +, ­
�Name – This is a subclass of Express that defines the name of

the variable
�Statement – This is what covers most every line. If and Else

statements for example.
�Type – This covers primitive types like int, char and more

complex ones like arrays.
�BodyDeclaration – This breaks down the contents of the

Class, Method or other part that might have a body.

This slide gives an Introduction to AST Nodes. Abstract Syntax Tree (AST) is the data
structure that is the result of the Eclipse parser pass. The data structure itself is a product
of the Eclipse project, but its purpose is to break code files down into a tree structure that
represents the file fully. The tree will start at the highest, broadest scope and through the
children of that top level node, create gradually narrower scoped nodes. These nodes will
have different types for different parts of the code file, however everything that the parser
encounters is represented somehow in this tree.

rsar_writing_custom_files.ppt Page 4 of 15

5

Writing custom rules © 2009 IBM Corporation

IBM Software Group | Rational software

Parsing nodes

� Rational Software Analyzer uses the AST Nodes to define
its rule checking behavior.

� By checking for particular patterns of nodes, Rational
Software Analyzer is able to define the rule behavior. For
example make sure that type nodes are always part of an
expression node with a value nod. This can be used to
make sure that all declarations are always initialized.

� When you define your class, you are defining a particular
structure of AST Nodes that will encompass your rule

Rational Software Analyzer uses this Abstract Syntax Tree to check its rule syntax. So
when you are defining your rule for Rational Software Analyzer, what you are really doing
is specifying a particular AST structure that will either be acceptable or unacceptable. So
in fact checking the rule will involve traversing the tree and looking for a specific pattern.

rsar_writing_custom_files.ppt Page 5 of 15

6

Writing custom rules © 2009 IBM Corporation

IBM Software Group | Rational software

�Create a new Java class in the plug-in project with
the default values. Make sure that the class
extends
com.ibm.rsaz.analysis.codereview.java.AbstractCo
deReviewRule

�Since your class is extending
AbstractCodeReviewRule then your class must
include the analyze method as required by that
abstract class

Writing the rule

In the previous set of slides, you have set up the custom plug-in, but you did not create the
Java class. You already have all the plug-in blocks in place, but you need to write the
actual steps to check the code. The Java class needs to extend the
AbstractCodeReviewRule object. This Rational Software Analyzer object contains the
analyze method which is what Rational Software Analyzer will call to start the scan.
Therefore you are putting all of your analysis code there.

rsar_writing_custom_files.ppt Page 6 of 15

7

Writing custom rules © 2009 IBM Corporation

IBM Software Group | Rational software

7

� The analyze method passes in an AnalysisHistory
object. This is where you append the history of
your rule. So the first action you need to take is to
get the history id, which is:
String historyID =
history.getHistoryId();

�You will require historyID at the end of the method
when you have determined there is actually
something to report on

The analyze method

The analyze method will pass in an AnalysisHistory object. This will tell the analyze
method what the previous history of the rule scan is. The first action you should always
take when you are implementing the rule is to acquire the historyID, so you know where to
put the results of this rule. You will reference this later on when you decide whether to add
something to your history for this rule.

rsar_writing_custom_files.ppt Page 7 of 15

8

Writing custom rules © 2009 IBM Corporation

IBM Software Group | Rational software

Getting the Software Analyzer resource

�You now know what the historyID is, but you need
to get connected to the Rational Software Analyzer
‘stuff’. This is done by using the getProvider
method like so:
resource = (CodeReviewResource)
getProvider().getProperty(historyId,
CodeReviewProvider.RESOURCE_PROPERTY)
;

� The resource reference is your gateway to the
Rational Software Analyzer methods API.

You now have the historyID, but you need more from Rational Software Analyzer. You
need to get access to the Rational Software Analyzer API and its associated objects. The
way to do this is through the getProvider method. By using the syntax here you are able to
get the Rational Software Analyzer CodeReviewResource object which is your window
into all things Rational Software Analyzer.

rsar_writing_custom_files.ppt Page 8 of 15

9

Writing custom rules © 2009 IBM Corporation

IBM Software Group | Rational software

Getting the AST nodes

� Now that you have your Rational Software Analyzer
resource, you need to get into the actual algorithm to test
your rule.

� Here is an example that will gather all the Declaration AST
nodes in the code file: listDeclaration =
resource.getTypedNodeList(resource.getResour
ceCompUnit(),
CodeReviewVisitor.TYPE_IASTDeclaration);

� Check the JavaDoc for the full list of the possible AST
Nodes that can be gathered from the resource. They will all
be part of the CodeReviewVisitor object.

The resource reference is set up and ready to go. The last thing you need to do is set up
the code to check the pattern to verify if the rule passes or fails. First you need to collect
the AST Nodes that are of interest to you. In the example here you are gathering an array
of nodes of the ASTDeclaration type. From the array you can sift through looking for
particular declaration nodes of interest.

rsar_writing_custom_files.ppt Page 9 of 15

10

Writing custom rules © 2009 IBM Corporation

IBM Software Group | Rational software

Doing the work

�You have your collections and ASTNodes. All you
need to do now is the actual work to determine the
action of your rule.

� The ASTNodes are part of a full tree describing the
statement. It can be broken down into its
constituent parts. That is how to get to the parts
you need for your rule.

�Now that all levels of the ASTNode are available
and you are able to filter them, the implementation
of the rule is up to you.

At this point you have the arrays of AST Nodes. Now you have all the parts you need to
start checking rules. By checking for particular patterns of nodes in the arrays you collect,
you can decide what actions to take to determine the success or failure of your custom
rule.

rsar_writing_custom_files.ppt Page 10 of 15

11

Writing custom rules © 2009 IBM Corporation

IBM Software Group | Rational software

Filtering nodes

� The resource will return the collection of ASTNodes, but
declaration is a fairly broad category. RSAR includes a
method to filter the collection to only contain those nodes
that you need. To use the filter, you first need to set up an
array like so.
IRuleFilter[] typeFilter = {new StructTypeRuleFilter(false),
new UnionTypeRuleFilter(false) };

� This particular filter array will look for and exclude those
Declaration nodes of types Struct and Union. To run this
filter against a collection, write something like:
ASTHelper.satisfy(listDeclaration,
typeFilter);

� As a result of this, the listDeclaration collection will now not
contain Structs or Unions.

Rational Software Analyzer provides an additional filter method on top of those provided
through the ASTNode methods. The IRuleFilter allows not only the particular type of
ASTNode to be filtered but it can get more specific implementations of the ASTNode. For
example, both Struct and Union declarations are ASTDeclaration ASTNode types. Without
iterating through the entire array of Declaration Nodes you do not know what
implementations there were. By using the satisfy method with the IRuleFilter array you can
check that the collection either inclusively or exclusively contains those particular nodes.

rsar_writing_custom_files.ppt Page 11 of 15

12

Writing custom rules © 2009 IBM Corporation

IBM Software Group | Rational software

12

Summary

� Rule Check

� Introduction to AST Nodes

� Parsing Nodes

� Writing the Rule

� The Analyze Method

� Getting the Rational Software Analyzer Resource

� Getting the AST Nodes

� Doing the Work

This module provided an overview of writing custom rules in Rational Software Analyzer.
You should now be familiar with knowing what an AST Node is and how it relates to
Rational Software Analyzer. You are now able to write your own custom rule.

rsar_writing_custom_files.ppt Page 12 of 15

13

Writing custom rules © 2009 IBM Corporation

IBM Software Group | Rational software

13

Additional resources

� Additional resources on ibm.com
http://www-01.ibm.com/software/awdtools/swanalyzer/enterprise/index.html

http://www-01.ibm.com/software/awdtools/swanalyzer/enterprise/support/
http://www.ibm.com/developerworks/rational/library/08/0429_gutz1/index.html?S_TACT=105AGX54&S_CMP=B0612

Additional resources can be found on the ibm.com Web site and in the Whitepaper on
“Static analysis IBM Rational Software Analyzer: Getting started”.

rsar_writing_custom_files.ppt Page 13 of 15

14

Writing custom rules © 2009 IBM Corporation

IBM Software Group | Rational software

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_rsar_writing_custom_files.ppt

This module is also available in PDF format at: ../rsar_writing_custom_files.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

rsar_writing_custom_files.ppt Page 14 of 15

15

Writing custom rules © 2009 IBM Corporation

IBM Software Group | Rational software

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

Rational

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Rational is a trademark of International Business Machines Corporation and Rational Software Corporation in the United States, Other Countries, or both.

Java, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

rsar_writing_custom_files.ppt Page 15 of 15

