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Abstracting the process 

This module covers the basics of Abstracting the Process for IBM Rational Build Forge 
Version 7.0 and above. 

This module assumes users are familiar with IBM Rational Build Forge basics. For a 
primer on Build Forge, exit this module and first review the Introduction to Build Forge 
module, then continue with this more advanced topic. 
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Objectives 

� To understand and implement Build Forge 
projects 

� To understand and implement steps 

� To match current processes to Build Forge project 
implementations 

This module discusses Build Forge projects, along with how to implement their steps. This 
module also shows how to match the current process of the organization into an 
equivalent process in Build Forge. 
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Build Forge projects 

� Projects are the logical units for organizing 
processes. 

� A project needs: 
�Steps 

�Hardware to run on 

� Projects are the units that are picked up and run 
by the engine. 

Projects are the logical units that Build Forge uses for handling processes. This module 
details the steps that the project goes through, along with detailing how to define a 
selector that explains where to run those steps. Additionally, the Build Forge engine only 
works with Projects, thus this module also explains how units are passed to the engine 
and executed. 
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Build Forge libraries 

� Libraries are very similar to projects, except they 
do not have hardware information regarding where 
to run. 

� Libraries are designed for use similar to a function 
in code. 

� If there is a set of operations shared across 
projects, use a library to reuse the information. 

Libraries are almost identical to Projects. The only difference between the two is that the 
Library does not define a selector. Therefore, the Library does not have any hardware 
information as to where it should run. The Library is dependent on a Project to give it the 
hardware execution information, and is used like a function call in code. Typically, there 
might be a sub-process shared across multiple processes, such as with a checkout 
procedure. Rather than implementing it in each process that does a checkout, call the 
library in each process that needs it. This way, it avoids duplicating work. If there is an 
update to the checkout process, the Build Forge process can be updated in one place. 

RBF_Module4_AbstractingTheProcess.ppt Page 4 of 24 



  

    

     

  

   
     

         
  

         

    
  

     

    

            

                
            
            

              
           

               
                 

       

             
                 
  

5 

Abstracting the process © 2008 IBM Corporation 

IBM Software Group | Rational software 

Deeper into projects 

� Projects/Libraries have these settings: 
�Name – Logical name of the Project/Library 

�Max Threads – The number of threaded steps that can 
run at once 

�Run Limit – The number of builds that can run 
concurrently 

�Pass/Fail Chain – Conditional project/library execution-
based project results 

�Start/Pass/Fail Notify – Conditional e-mail notification 
settings 

The Project/Library has several configuration settings. 

The Name field defines the Build Forge logical name for the Project or Library. 

Max Threads is where to define the most concurrent steps that can run at one time. The 
Project/Library Max Thread value caps the number of threaded steps that run 
simultaneously, no matter how many threaded values can run at a given moment. 

Run Limit controls the number of instances that the Project/Library can run at one time. 
Use this setting to allow one Project/Library instance to run at a time. 

Pass/Fail Chain sets up conditional project Builds based on the result of this project as a 
whole. If, for example, this project were to fail, and a project was defined for the fail chain, 
that fail chain starts upon this project’s failure. 

Start/Pass/Fail Notify sets up e-mail notifications for events when they occur. If a Start 
notify group is defined for a project, then whenever a Build of that project is started, that 
group is e-mailed. 
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Deeper into projects 

� Projects/Libraries have these settings: 
�Class – The class of the project 

�Selector – What the project should run on (blank for 
libraries) 

�Environment – What environment to run the project with 

�Console – Globally distributed development setting 

�Sticky – Changes the default selector behavior for the 
project 

Class controls how long Builds of a particular project should remain on the console. Class 
is further discussed later in this module. 

Selector is where the selector for this project is defined. 

Environment sets up the environment variables for the project Build. It is important to 
note that the environment variables applied are cumulative with those applied at the server 
level. Environment is further discussed later in this module. 

Console is a setting for Globally Distributed Development. Console is further discussed 
later in this module. 

Sticky changes the default selector behavior for the project. By default, the project uses 
the selector for every step, so each step can theoretically run on different agents every 
time. However, if sticky is set, then the project will reserve the first agent it selects and use 
that agent for every step. This ensures that the agent is consistent for the entire project. 
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Additional project settings 

� Tags 
�Control how the project is labeled when a build is 

generated 

�Can auto-increment and combine strings and numbers 

� Registers 
�Store persistent information that remains even between 

executions of a build 

�Store and persist files for future runs of the project 

Tags are what the project uses to name Builds of a project. Tags are very flexible, and use 
any number of variables. Those variables can be set to automatically increment when 
Builds are queued. 

Registers are used for persisting information between Builds. Build Forge works to keep 
each Build a totally separate entity. 
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Project/Library details 

This is the project screen in Build Forge. The envelope columns on the right signify the 
notifications for the project: Start, Pass, and Fail, from left to right. Moving the mouse over 
the entries shows a popup that displays the value of that setting. The green play button on 
the left side allows users to start the project with all default settings. Clicking the link under 
the project column links directly to the steps for that project. To edit the project, click the 
pencil icon to the left of the project name. 
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Build Forge steps 

� The smallest logical unit of the process 

� Define a single action for the process defined by 
the project 

� Are semantically similar to Projects/Libraries 

Steps are where the smallest actions for a process are defined in Build Forge. From a 
settings standpoint, the step is not very different from the project or the library; it instead 
defines a smaller, more precise action. 
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Step settings 

� Steps have these settings: 
�Pass/Fail Chain, Start/Pass/Fail Notify, Class, Selector, 

Environment – Same as projects 

�Active – Shows whether the step is enabled or disabled 

� Inline – Inserts the steps from the given Library/Project 
to the current project below this step 

�Threaded – Determines whether this step can be 
threaded or if it should be joined 

�Directory and Path – Where to run the step - path can 
be relative or absolute to the server path 

Steps have certain configuration information: 

The Pass/Fail Chain, Start/Pass/Fail Notify, Class, Selector and Environment are all 
the same as the project, only now defined for the step. Note that the environment is still 
cumulative, so there are potential entries from the server, project, and step. Also, the 
Selector entry overwrites the Project Selector, allowing a step to select from a completely 
different pool than all other steps in the project. 

Active defines whether a step should be run or not when a Build is started. 

Inline allows a user to insert a project or library’s steps below the step with the inline 
defined. This is similar to the chain, and differences are further discussed later in this 
module. The inline will receive this project’s environment, and is able to make changes to 
it. 

Threaded defines if this step can be run concurrently with other steps. There are three 
options: Yes, No, and Join. The Join option runs with the threaded steps above it, but 
does not allow the subsequent steps to run until all the threaded steps above it are 
complete. 

Directory and Path define the location on the agent to run this step. Directory is the 
directory path, and path defines if the directory is Relative or Absolute. The common 
misconception is that Absolute takes the path out to the root directory on the agent 
machine, which is not true. Absolute only takes the path out to the directory defined in the 
Server definition of the agent. If the Server is defined with a path of C:\Builds, checking 
Absolute here goes to that path, NOT to C:\. 
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Step settings 

� Steps have these settings: 
�Timeout – Time in seconds to timeout 

�Result – How to determine pass or failure 

�Broadcast – Runs on all servers matching the selector 
instead of selecting a single machine 

�On Fail – The action to take on failure - halt or continue 

�Pass/Fail Wait – Only applies to the chains, determines 
whether the step should wait for the chained project to 
end 

Timeout defines how long Build Forge waits for output before failing a step. Note that the 
step timeout is clocked from the last time any output was received. It is not based on 
absolute time that a step has run, but from the last time ANY output was received. 

Result defines how a pass or fail is determined for this step. By default, this is done 
through exit code. If the step returns a zero exit code, then it passes. Any non-zero code 
fails. The other option is a log filter, which is further discussed later in this module. It 
allows a search for specific entries in the step log to cue passes or fails. 

Broadcast alters the default behavior of the project. By default, the step selects and runs 
on one Server. However, if Broadcast is set, then the step selects all Servers that fit the 
Selector criteria, and runs the step on all those Servers simultaneously. 

On Fail states that the Build should be stopped if the step fails, or if there can be no 
further progress made. 

Pass/Fail Wait applies when Pass or Fail chains are defined for the step. It determines 
that if a Pass or Fail chain has been defined, then the step should wait for that Chain to 
complete before continuing on to the next step. 
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Core of the step 

� The last setting is the command field. 

� Command field defines a command that runs on 
the agent on whatever shell is configured for that 
agent. 

� This is the small logical part of the process, and 
constitutes the building blocks of the Build Forge 
process. 

The final setting for the Step is the command field, where a user defines the actions to 
take. This is the literal command run on the shell of the Agent selected to run this step. 
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Step details 

This slide shows the Step menu for a project. Note that in addition to the Pass/Fail notifies, 
there are also pencil icons. These define Inline, Pass, and Fail Chain, from left to right. 
Moving the mouse over these icons shows the values of the settings. When moving the 
mouse over the far left program icon, a popup menu opens that allows users to move and 
copy steps. The box column to the right of that icon is the shortcut for disabling steps. If a 
step has an “X,” it is not included in the Build. 
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Chained versus inline 

� Chained 
�Fire and forget 

�Spawns a new build with its own environment 

� Inline 
�Function call 

� Inserts the library/project into the currently running 
Build below the step that has the inline 

Now that steps have been explained, this module will examine the differences between a 
Chain and an Inline. 

A chained Build is a completely separate Build entity. The chain begins and creates its 
own copy of the environment. This Build then runs separately and parallel to the currently 
running Build, and is now unable to affect anything in the original Build directly. This 
situation is commonly known as “Fire and Forget.” The chaining Build starts it and never 
thinks about it again, unless Pass or Fail Wait is defined for the step. 

Inline is similar to a function call, as everything still occurs in the currently running Build. If 
a project or library is inlined for a step, it is as if those steps had been cut out from the 
project or library and pasted below the step defining the inline. Any changes to the 
environment are reflected in the Build, and those steps appear in the Build. 
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Access groups 

� Control access to Build Forge objects 

� Are role based 

� Permissions are assigned by access groups, and 
not by a user. 
�A user’s permission set is determined by the sum of all 

access groups a user belongs to. 

� For any defined access group, there is an option 
to create child groups. 
�Child groups inherit all permissions, and can add more. 

� If the parent group owns a particular Build Forge object, 
the entire hierarchy of children for that group can see it. 

Access Groups allow Build Forge to assert its ownership. If a particular group owns a 
particular object in Build Forge, such as a Selector, then only that group can view that 
object. Ideally, Access Groups should be established to match particular roles. A user’s 
particular roles should be assigned to that user, providing access to all objects that a user 
needs. However, Access Groups also control permissions on the Build Forge console. In 
addition to assigning object ownership, Access Groups control what actions can be 
performed on the Management Console. The user’s permission set is determined as the 
sum of all the permissions to all Access Groups a user belongs to. 

Access Groups also allow a user to define subgroups, or separate Access Groups, that 
inherit all permissions from the parent. More permissions can be added to the child, and 
the parent does not receive those permissions. The child sees all objects assigned to the 
parent, but objects assigned to the child cannot be seen by the parent. When creating 
these Access Group hierarchies, they must be carefully planned to prevent unintended 
inherited visibility and permissions. 

RBF_Module4_AbstractingTheProcess.ppt Page 15 of 24 



  

    

     

  

         
       

           
   

        
         

     

               
                    

               
              

          

16 

Abstracting the process © 2008 IBM Corporation 

IBM Software Group | Rational software 

Access group diagram 

A 

B 

C 

• If a project is owned by group A, then 
both B and C can see that project. 

• If a project is owned by B, C can see the 
project, but A cannot. 

• Both B and C share the same permission 
set as A. If B adds permissions, C also 
inherits them, while A does not. 

This diagram shows a potential Access Group hierarchy. Access Group C is a child of 
Access Group B, and B is a child of Access Group A. Permissions pass from A to B to C. 
Note that if permissions are added to B, then permission set C receives those new 
permissions. C is ultimately the most powerful class, as it receives everything from the 
classes above, in addition to any other permissions given to C. 
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Access group diagram - complex 

A 

B C 

D 

• If a project is owned by B, 
only B can see that project. 
As far as groups in A, C 
and D are concerned, that 
project does not exist. 

• If a user belongs to both 
group B AND D, that user is 
able to see any project 
owned by any group A, B, 
C, or D. 

This is an Access Group hierarchy that is a bit more complex. Note that any projects 
assigned to Access Group B are only visible if a user is a part of group B. However, it is 
completely possible for a user to be assigned to Access Groups B and D. In this case, a 
user is able to see everything, as the set of permissions then encompasses all four 
groups. 
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Environments 

� An important part the Build Forge process 

� Are cumulative as the build runs 

� Servers, Projects/Libraries, and Steps can all have 
environments. 

� Persists as the project is run 

Environments are essential for creating the reproducibility and hardware abstraction that 
makes Build Forge work. The most important thing to remember is that environments are 
cumulative. Upon changing something in the Build environment, the Build remembers it 
until it is complete. Everything persists unless Build Forge is given instructions not to 
continue, or unless the Build terminates. 
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Environment hierarchy 

This diagram illustrates the flow of a Build and how it affects the environment. First, notice 
that the Server and Project level environments are immediately put together to constitute 
the beginning environment set. Each step then adds its environment as the Build runs. For 
step A, note that the inline chain takes place in the same environment set as the step 
before it. Step C chains, but the chain receives the environment from the step. At that 
point, the Build does not care what the chain does with the environment. It is a copy of the 
step level environment, and this Build will no longer be affected by the other Build. The 
same base environment that B received is applied to D, but note what the chain is called in 
D. The environment applied there does not affect the original Build. 
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Environment settings 

� Environment variables have these settings: 
�Name – Name of the variable 

�Value – The value of the variable 

�Action – Assorted actions that occur when setting up 
the variable, such as “Delete,” “Append,” “Set if not 
already set,” and so on. 

�On Project – Properties associated with the variable, 
such as “Hide this variable,” “Require this variable to be 
set,” and so on. 

The environment configuration has several settings: 

Name declares the variable and sets its value. 

Action defines what to do when the variable is set. There are several options here. Build 
Forge can delete the variable if it is found, set the variable if it is not already set, can 
append the value to the end of the existing variable, and so on. 

On Project defines what should be done on the Build Forge end with a specific variable. 
Again, there a few options here: whether Build Forge should require this variable to be set 
before starting a Build, whether the variable should be visible on the start screen, and so 
on. 

For the full set of options, look at Build Forge help for further reading. 
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Environment settings 

This is the Environment setting screen in Build Forge. Examine all available options for the 
Action and On Project settings. 
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Summary 

� Projects and libraries are almost the same, except 
projects have a selector. 

� Steps are the smallest logical unit in defining the 
process. 

� Chains are new builds; inlines are added to the 
existing build. 

� Environments are cumulative. 

In summary, this module explained various aspects of abstracting the process in Build 
Forge. Projects and Libraries are the basic unit of process in Build Forge and are largely 
identical, except Projects define the hardware where they will run. Steps are the smallest 
unit of process that Build Forge defines, and should be as small as possible when they are 
defined. Chained projects are “fire and forget.” They receive the environment of the calling 
step or project, but from then on, the Build is autonomous. The inlines become part of the 
Build that called them. Environments are cumulative as the Build runs, making any 
changes made to the environment persist until the Build terminates. 
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Feedback 

Your feedback is valuable 
You can help improve the quality of IBM Education Assistant content to better 

meet your needs by providing feedback. 

� Did you find this module useful? 

� Did it help you solve a problem or answer a question? 

� Do you have suggestions for improvements? 

Click to send e-mail feedback: 
mailto:iea@us.ibm.com?subject=Feedback_about_RBF_Module4_AbstractingTheProcess.ppt 

This module is also available in PDF format at: ../RBF_Module4_AbstractingTheProcess.pdf 

You can help improve the quality of IBM Education Assistant content by providing 
feedback. 
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