
WXTR21_Overview.ppt

This presentation provides an overview of WebSphere® eXtended Transaction Runtime -

or WXTR - and talks about the new features introduced in V2.1

Page 1 of 22

WXTR21_Overview.ppt

Aging applications have a lot of limitations, from architecture to performance to usability. If

the application architecture is monolithic, reusing existing code and extending the logic is

extremely difficult. What was once conceived as self-sufficient code has limited integration

capabilities. The infrastructure has different components developed and maintained in a

silo. And it is hard to find the skills required to maintain these applications.

Consider the business implications of these problems: The cost of maintaining these

applications keeps increasing. Because of the rigid nature of these applications, the agility

to respond to ever changing business needs is lacking. And it is difficult to extend your

business to other channels.

The key requirement is to reduce cost by simplifying application infrastructure and improve

business agility.

Page 2 of 22

WXTR21_Overview.ppt

IBM WebSphere eXtended Transaction Runtime is the latest addition to the IBM
Transaction Processing capabilities joining such superior solutions as CICS, Transaction
Processing Facility on z/OS®, TXSeries, ALCS, WebSphere eXtreme Scale, and
WebSphere Application Server to provide fast, scalable, and reliable transaction
processing.

Many customers have invested time and effort in the development of business logic in
CICS style COBOL applications and are looking to unlock the value of those applications
and extend them using Java EE. By establishing WXTR as a core component of an
enterprise IT architecture, you can have a highly responsive, tightly integrated composite
application serving infrastructure for modern COBOL, C and Java workloads.

WXTR, along with IBM Rational® Application Development tools, delivers the capability to
create and host COBOL and C business applications using CICS transactional services
and extend them into a Java EE environment. It provides native runtime connectivity
between Java EE and composite applications, significantly easing integration in an
enterprise environment. Its tight integration with the system management capability of
WebSphere Application Server enables easy deployment, administration, and optimization
of services, significantly increasing administration efficiency unlike other competitor
environments for managing mixed language transactional applications.

WXTR provides an increased choice in deployment options to progressively modernize
your COBOL and C assets using CICS transactional services while standardizing IT
infrastructure around WebSphere Application Server as a hosting platform on distributed
systems, using extensive service-oriented architecture (SOA) enablement capability. This
approach complements IBM's premier offering for modern application hosting on z/OS
through products such as CICS Transaction Server V4 and WebSphere Application Server
for z/OS, with WXTR providing a subset of capabilities to those found on System z®.

Page 3 of 22

WXTR21_Overview.ppt

WXTR provides a tightly integrated and managed environment to host composite applications in a modern
platform provided by WebSphere Application Server. It allows you to manage and administer all your mixed
language assets using a single WebSphere Application Server console. You can develop and deploy all your
applications using one integrated application development environment provided by Rational. You can use
Rational Developer for Power Systems Software to develop and debug applications in C and COBOL and
Rational Application Developer for Java applications. This will help reduce infrastructure complexities and
drive operational efficiency.

WXTR provides an execution environment to host modern COBOL and C business applications, enabling
simplified interoperability between Java EE, COBOL and C workloads. This allows developers to focus on
business logic rather than on how to inter-operate between composite assets, detect and recover from
failures, and access data. It provides standard interfaces to invoke COBOL and C applications from Java.
Java applications can connect through standard connection interfaces - Java Connector Architecture (JCA)
or Service Component Architecture (SCA) - and invoke COBOL and C applications.

WXTR provides a common administration facility for managing both COBOL and Java EE assets from the
WebSphere Application Server administrative console, reducing the learning curve for administration
personnel and allowing them to deploy, administer, and optimize services. It also provides the capability for
user groups with predefined privileges to run certain administrative tasks, thus reducing the dependence on
administration personnel and improving their productivity.

WXTR enables COBOL and C Runtime library and application errors to be propagated as Java exceptions
back to Java EE applications for further processing, simplifying development and integration effort and
increasing developer productivity.

Using WXTR, mixed type data can be exchanged between C, COBOL and Java applications through the
binding feature provided with IBM Rational Application Developer. Data can also be exchanged using
COMMAREA in character format.

WXTR provides support for CICS data management facilities such as files and queues stored in a DB2®

database. It also allows VSAM style access to data stored in DB2.

Rational development tools, along with WXTR, provide a modern application development experience across
C, Java EE and COBOL applications. These tools let you develop, deploy, and debug applications within a

Page 4 of 22

single IDE. They also enable COBOL and C program inspection from within a Java EE
application.

WXTR21_Overview.ppt Page 4 of 22

WXTR21_Overview.ppt

This is the high level architecture of WXTR. The Java applications are hosted on

WebSphere Application Server and they run in the JVM address space. COBOL and C

applications are hosted on WXTR. The WXTR runtime itself is a set of UNIX® processes

that run outside of the JVM process. Java application running in WebSphere Application

Server can call a COBOL or C application using one of the two standard interfaces - JCA

or SCA. The two runtimes (WXTR and the application server) are interconnected using an

highly optimized proprietary intercommunication protocol.

The WXTR runtime supports DB2 and Oracle as resource managers. Along with other

modules, WXTR has system administration and application support modules.

Page 5 of 22

WXTR21_Overview.ppt

One of the pain points of managing composite applications in loosely coupled architecture

is to manage different hosting environments. For example, Java assets can be hosted on

a Java EE application server, COBOL and C assets can be hosted on TXSeries. The

administration of these two environments are completely different and it is very inefficient

to manage such an infrastructure. One of the key value propositions of WXTR is to

simplify administration of composite assets using a single administration console. Most of

the container runtime administration can be done from this console. There is also

command line administration support using wsadmin commands. Startup and shutdown of

WXTR processes are synchronized with WebSphere Application Server startup and

shutdown. This screen capture shows the WXTR container administration using the

WebSphere Application Server administration console.

Page 6 of 22

WXTR21_Overview.ppt

You can use a single integrated application development environment to develop and

debug all composite applications. Rational Developer for Power Systems Software can be

used to develop COBOL and C applications. Rational Application Developer can be used

to develop Java EE applications. Debugging these application is almost seamless. If you

have a Java application that calls COBOL, you start debugging Java, step into COBOL

and come back to Java again all using the same IDE.

To help make writing applications easier, WXTR provides a lot of scaffolding code in the

form of code snippets and templates.

Page 7 of 22

WXTR21_Overview.ppt

This slide lists the new capabilities and features introduced in WXTR version 2.1. The

features are broadly classified into three categories:

First, deploy and extend COBOL and C applications.

The language support has been extended to support C applications in WXTR. You can

now write applications in both C and COBOL.

Resource manager support has been extended to Oracle along with DB2.

Multiple versions and instances of WXTR can coexist on the same server, providing

scalability and version to version migration. (This was a restriction on V1.0.)

Second, superior transactional integrity and scalability.

Composite applications can now share the same global transaction context with full two-

phase commit protocol support.

Now with WebSphere Application Server Network Deployment support, applications can

scale both horizontally and vertically.

A new feature has been added to propagate security context to WXTR. Authentication

happens in WebSphere Application Server and the ID is propagated to WXTR. WXTR

does the authorization for the resources that are defined with WXTR.

Third, modernization of Oracle Tuxedo applications.

This is a feature pack that is released with WXTR V2.1 that enables almost seamless

migration of Oracle Tuxedo C and COBOL ATMI applications.

Page 8 of 22

WXTR21_Overview.ppt

One of the key capabilities introduced in WXTR V2.1 is the C language support. This lets

you host business applications, both CICS and non-CICS style, that are written in C. The

same theme of simplified infrastructure holds good for developing and deploying C

applications. You can use Rational Developer for Power Systems Software to develop and

deploy both COBOL and C applications. Resource manager coverage has been extended

to include Oracle database, along with BD2. You can configure Oracle DB as a resource

manager, but the VSAM capabilities are restricted to DB2 only.

Page 9 of 22

WXTR21_Overview.ppt

The transactional integrity feature enables sharing of transaction context across composite

applications. For example, if an application has some part of business logic written in Java

and some in COBOL with a requirement to participate in a single transaction, it is now

possible with this feature. WebSphere Application Server will co-ordinate the entire

transaction across multiple languages and resources.

Support is provided for both programmatic and declarative transaction demarcation. It also

has support for various two-phase commit protocol optimizations. Certain scenarios do not

require complete two-phase support; for example, if there are two resources participating

in a transaction and one of them is a read only resource, there is no need to flow a

“prepare” command to that resource. Similarly, if a resource is the last participant in a

transaction there is no need to flow a “prepare” command.

Page 10 of 22

WXTR21_Overview.ppt

This slide depicts a scenario for a local transaction. The EJB part of the transaction is local

to WebSphere Application Server and COBOL part of the transaction is local to WXTR.

The two business logic does not participate in a global transaction. Both EJB and COBOL

access different databases and do not need any coordination.

Page 11 of 22

WXTR21_Overview.ppt

This slide depicts a scenario that requires global transaction support. The business logic is

spread across an EJB running in WebSphere Application Server and a COBOL application

running in WXTR. COBOL applications access one or more databases managed by

WXTR. The COBOL application is called from EJB business logic, which is transactional.

This requires two phase co-ordination with resources managed by WXTR. Both COBOL

and EJB business logic become a single logical unit of work, a global transaction.

Page 12 of 22

WXTR21_Overview.ppt

This is a global transaction scenario where both EJB and COBOL applications access the

same database and have a requirement to update or access the same record of the same

table in the database. This is achieved by using the lock sharing feature provided by DB2,

where the DB2 allows two transaction branches of the same global transaction to share

locks on the same data, thus allowing updates to the same record in the database.

Page 13 of 22

WXTR21_Overview.ppt

This is a global transaction scenario in clustered environment. In this, EJB A deployed on

WebSphere Application Server in cluster A invokes the same business logic of EJB B

deployed on WebSphere Application Server in cluster B. Along with this, both EJB A and

EJB B invoke a COBOL application deployed in the WXTR container of their respective

clusters. This results in a coordination requirement in both WXTR containers in both

clusters for the resources managed by WXTR.

Page 14 of 22

WXTR21_Overview.ppt

WXTR V1.0 supported stand-alone profiles in both WebSphere Application Server base and

Network Deployment. WXTR V2.1 supports other profiles in WebSphere Application Server

Network Deployment. For example, deployment manager profile, custom profile and so on.

This not only lets you to create clustered topologies, but you can also manage them from a

single location using deployment manager.

Composite applications containing Java EE, COBOL, and C business logic can be deployed

in a horizontal or vertical cluster of application servers configured with WXTR, and requests

can be routed to them through any of the supported routing agents like IBM proxy server.

Page 15 of 22

WXTR21_Overview.ppt

A WebSphere Application Server profile defines the runtime environment. A profile

includes all files that the server processes in the runtime environment and that you can

change. WebSphere Application Server supports different types of profiles to cater to

different requirements. However, WXTR does not support all profile types. The application

server, custom, and deployment manager profiles are supported with WXTR.

Page 16 of 22

WXTR21_Overview.ppt

Production environments need clustering. This image shows a clustered deployment with

four cluster members. HTTP requests are getting routed through the HTTP proxy server to

these cluster members and load balancing happens in the proxy server.

The whole environment, including the proxy server, is being managed through deployment

manager.

It can get more complex than this with multiple clusters.

There is a heartbeat mechanism in place for WXTR in WebSphere Application Server.

Whenever a WXTR instance goes down abruptly, it will attempt to restart after recovery.

Manual intervention might not be required if the instance comes up after recovery.

Page 17 of 22

WXTR21_Overview.ppt

WebSphere Application Server provides facilities that allow you to secure administrative

applications and services that are used to manage and configure a WebSphere

environment. It allows you to secure applications running in the environment. These

configuration activities are done separately, although they can share common settings.

In WXTR, focus is on application security, and not on administrative security. Application

security infrastructure provides application isolation and requirements for authenticating

users of the applications. Applications can be secured in a declarative manner or

programmatically.

WebSphere Application Server will make use of the user registry for authenticating a user.

The JCA adapter connecting the application server and WXTR runtime has implemented

security contracts allowing propagation of credentials, which are attached with the

authenticated user. WXTR provides a JAAS (Java Authentication and Authorization

Services) module, which allows the propagation of user identity from WebSphere

Application Server to WXTR.

The authentication of a user is carried out by WebSphere Application Server. The

authorization of WXTR resources is done by WXTR. This type of user identity propagation

provides end-to-end security and consistent accountability when the applications are

composite with Java EE and COBOL applications.

Page 18 of 22

WXTR21_Overview.ppt

WXTR V1.0 had a restriction that all administrative tasks had to be done by the root user.

This restriction has been removed in the new version. With this, any WebSphere

Application Server administrator can administer WXTR resources.

The group installation option is an installation enhancement that allows multiple users to

use a single instance of Installation Manager to manage software packages.

Multiple versions and instances of WXTR can coexist on the same machine. With this

feature, if you have multiple application server instances on a machine, you can install

same number of WXTR instances. This feature also helps in achieving vertical scalability

and version to version migration.

The synchronization of the WXTR container and the application server has been

improved. WebSphere Application Server can now detect WXTR container failures and

attempt restart. This ensures that WXTR is always available.

Page 19 of 22

WXTR21_Overview.ppt

You can now migrate Oracle Tuxedo applications to WebSphere Application Server and

WXTR using the Modernizing Oracle Tuxedo Applications Feature Pack. You can install

this Feature Pack on WXTR V2.1. The Feature Pack allows easy migration of ATMI style

C and COBOL Tuxedo applications. WXTR Tuxedo runtime capability allows Tuxedo

assets to be migrated with minimal changes, if any, thus reducing cost and risk of

migrations. This feature pack, along with WebSphere Application Server, enables easy

consolidation of Oracle WebLogic and Tuxedo workloads to WebSphere Application

Server.

The migrated applications benefit from the extensive SOA integrations and ecosystem

support that comes with WebSphere Application Server.

Page 20 of 22

WXTR21_Overview.ppt

The feature pack consists of two components. The first component is the runtime

environment, which provides API functionality and error handling. The API functionality is

achieved by mapping tuxedo ATMI calls to one or more appropriate WXTR functions. The

latest version of the runtime supports ATMI applications written in C and COBOL.

The second component is the set of tools. There are tools to profile an application to

identify unsupported API's if there are any. This will assist the services team to suggest

modifications to the applications. There are tools to build and deploy applications to

WXTR. These set of tools are designed in such a way that you do not need to make

changes to your make file.

Page 21 of 22

WXTR21_Overview.ppt Page 22 of 22

