
P20_WPF_001.ppt

Welcome to the WebSphere® Portlet Factory presentation as part of the SAP Integration

Workshop. This presentation will give you an introduction to the Portlet Factory product

and concepts. The special focus is on the different options on how to integrate SAP with

the help of this powerful development environment.

Page 1 of 28

P20_WPF_001.ppt

The presentation will introduce the key technologies and features of the different

components and will also give a short positioning and overview about the two tool options

from IBM.

Both have their special target space and can work together, as you will see.

Page 2 of 28

P20_WPF_001.ppt

The Portlet Factory is a rapid development tool.

The tools are focused on very fast creation of portlets and fast change of the created

content. Together with the robust integration capabilities that are part of the SOA concept,

these tools drive the development in WebSphere environments.

The rapid iteration and change also allows an evolution of the portlets step by step.

But now to the key features of these tools…

Page 3 of 28

P20_WPF_001.ppt

The Portlet Factory allows a easy creation of multi-page portlets with a rich content out of

different back-end systems.

The portlets can leverage the integration capabilities, which helps to integrate complex

data with a single form. This form concept is like a wizard based development; you use the

predefined markup to define what the content should look like, then the code is generated

automatically.

The portlet factory tools are Eclipse based, so they can be installed on any Eclipse

environment like Rational Application Developer, Rational Software Architect, WebSphere

Integration Developer and a plain Eclipse installation.

But the seamless integration in the WebSphere portfolio is not only into the tools…

Page 4 of 28

P20_WPF_001.ppt

The portlet factory also supports the different built-in mechanism of the WebSphere Portal.

The Sametime people-awareness can be added to a portlet with a simple wizard, as can

the usage of the credential vault to store user credentials for the login to backend systems.

The portlets can work together using portlet-to-portlet communication – including portlets

that are created with other tools.

The profiling of the portlets can react on the WebSphere Portal Server group definitions

and the visualization can be different depending on the actual portlet mode – normal or

maximized.

And of course the tools leverage the XML interface to deploy the portlets to the test or

production systems.

The development options allow you to put a facade on your current working environment

with new portlets.

You can use already installed and created applications and set a portlet-based user

interface on top of them.

There the portlet factory does not care if the application is SAP, Lotus, PeopleSoft or a lot

of other data sources.

Page 5 of 28

P20_WPF_001.ppt

Here the typical Portlet Factory perspective in Rational Application Developer is shown.

Builders offer easy-to-use, wizard-like user interfaces, which make it fast and easy to

develop portlets. The builder generates all of the application code including Java, XML

schemas, variables, and so on, based on the inputs given. Builders are also used

throughout the entire development process, allowing developers to go back and change a

builder’s input values and have the entire portlet application update instantly.

A profile contains a set of parameters that vary the way an application behaves. A profile

feeds values into builders based on the user’s identity or other contextual information such

as language, geography or group membership. Then once the profile is automatically

applied, the application regenerates itself to adapt to that specific user.

A model is the container that holds the ordered list of builder calls. Typically, developers

who want to create a new portlet will create a new model and then add the appropriate

builders to the model.

Page 6 of 28

P20_WPF_001.ppt

This section will take a deeper look into the automation and regeneration possibilities.

Page 7 of 28

P20_WPF_001.ppt

Often developers use the tools to generate specific portlets. But after a while it becomes

clear that the same pattern is needed very often.

This is the time to generate your own custom builders for the tools to save time, effort and

ensure the quality of code.

There are two options to generate your own builder:

The first one is to use a special builder, where you just assemble the builders as usual and

define the manual inputs. Everything else is then generated automatically and the new

builder appears in the builder list.

The second option is more complex but also more powerful. For example, if you connect

to your own back-end system with a special protocol, you can write Java code to do

whatever you like. This is well documented in the tools.

The newly created builders can than be reused every time, making the work very easy for

all developers.

Page 8 of 28

P20_WPF_001.ppt

All builders - no matter if they are shipped with the product or self created – automate the

creation of real code.

As you can see, the forms will be stored in the background as xml documents. This meta-

data gets compiled in running code when accessed.

Page 9 of 28

P20_WPF_001.ppt

There are over a hundred builders that are shipped with the product. They are grouped in

the different target topics like portal integration and backend integration.

Page 10 of 28

P20_WPF_001.ppt

The builders drive also includes the Service Oriented Architecture. The data provider can

be created independently from the data consumer, so the portlet factory generated data

provider can be also used by other consumers and the other way around.

This makes the tools more powerful in providing and consuming the different services with

different protocols.

All consumers work with automatic generated user interfaces depending on the data

structure.

Page 11 of 28

P20_WPF_001.ppt

This section talks about the mentioned profiles and the possibility to tailor the portlets to

the actual needs.

Page 12 of 28

P20_WPF_001.ppt

Speeding development the first time is only half the real power of WebSphere Portlet

Factory. Profiles allow new versions of existing portlets without new development cycles.

In the past if you needed a portlet for one group, say an Order Summary portlet for internal

sales reps that was very detailed, then determined that pushing that out to distributors on

an extranet would increase efficiency even more – but with less detailed order information,

you would do one of two things. You would either add conditional logic to the existing

portlet, or you would copy, edit and deploy a new portlet. Both are approaches that will

work, but in either case, new development cycles and lengthy testing and deployment

cycles are necessary. Profiles eliminate further lengthy development, test and deployment

cycles making it even quicker to build portlets for subsequent requirements.

That is because developers do not create new portlets each time a new portlet is required,

they just profile a single instance - essentially, a single code base - and then apply profiles

that allow it to be called by different portals at run-time for use in different contexts. This

regeneration capability, based on Profiles, significantly eases ongoing maintenance by

propagating changes on-demand to all portlet instances. Additionally, profiles can be

exposed through the portal’s standard edit, configure and administration features – a

powerful capability that allows portlets and variations to be created and customized by any

delegated administrator or user, with no limits. IT and developers are no longer the

bottleneck for much of the varied portlets required as the needs of the business evolve.

Page 13 of 28

P20_WPF_001.ppt

To organize your profiles you will use the built-in profile management tool where you have

one point of access to all profiles.

These profiles will then get used in the builders to generate your customized portlet for

every profile.

This is possible because the entire application is created by builders and the real code is

always generated on demand.

Page 14 of 28

P20_WPF_001.ppt

Another feature included in the Dashboard Framework is the ability to very
easily create robust, browser-based configuration wizards that enable non-
technical users to dynamically personalize and configure their dashboard
portlets –without having to involve IT. Users can change really any aspect of
the portlet exposed by IT, which can include the appearance of the portlet, the
functionality, application flow, and even connectivity to the back end system.

Basic support for creating these browser-based configuration screens is
included as part of the WebSphere Portlet Factory, but the framework adds
some features that makes this even easier. For example, the Table Customizer
builder makes it very straightforward to customize a table, including features
such as the ability to reorder columns, rename columns, change column
widths and alignments, add sorting, and so on.

With this capability to extend portlet configuration to business users,
companies can increase the flexibility of their dashboards and reduce IT
maintenance costs.

Page 15 of 28

P20_WPF_001.ppt

The profiles are more powerful then simple “if clauses”; the behavior of the portlet can be

different depending on different options.

Through the tight integration with WebSphere Portal, the group membership can be used.

Different user attributes, language settings or any custom criteria can also be used for

profiling.

Page 16 of 28

P20_WPF_001.ppt

The regeneration approach has many positive aspects. One is of course the possibility of
iterative design and rapid change. Because you can change the model and the code is
automatically regenerated you see what you developed – without additional manual
compile steps.

Another main factor is the reduction of maintenance costs because there is only one
deployed portlet and one code base to maintain.

Page 17 of 28

P20_WPF_001.ppt

The regeneration engine is responsible for building the portlets for the specific needs at

the moment.

For that, the models get combined with the different profile sets to build different

application instances of one application model.

Page 18 of 28

P20_WPF_001.ppt

This section will take a short view in the architecture of the portlet factory tools.

To illustrate this you will see a flow from call to serve, and the placement of the portlet

factory modules in the installed software stack.

Page 19 of 28

P20_WPF_001.ppt

This shows the flow after the model is already developed and installed in the running

environment.

The call enters the ‘Factory controller’ running in the application.

The controller checks if the current portlet is already compiled. If not, it accesses the

application components and starts the generation.

These generated modules are then used to deliver the correct response.

Page 20 of 28

P20_WPF_001.ppt

In the portal server the portlet factory components are placed in several places.

The portal server is the front end to the user, and on request it calls the factory portlet

adapter. The portlet adapter is the capsulation containing all portlet specific values and sits

on the dispatcher.

The tool then decides if the objects are already accessible or if they need to be built.

Also some special support libraries are shipped with the product and included in the

classpath.

Page 21 of 28

P20_WPF_001.ppt

The Rational Application Developer and the WebSphere Portlet Factory are both Eclipse-

based IBM development tools to create portlets.

This section will cover the difference between these two tools.

Page 22 of 28

P20_WPF_001.ppt

From a skills perspective, the tools are comparable. Neither requires you to have deep

technical knowledge of portlet APIs or J2EE application development in order to be

productive. Both enable you to integrate back-end systems such as SAP, Siebel, Domino,

or PeopleSoft into portlets with no programming required. However, due to its highly-

abstracted model-driven approach, the WebSphere Portlet Factory is less technical to use

for portlet generation. Rational Application Developer provides a visual environment for

portal and portlet development but by virtue of the fact that you are hand-building portlets

and portal applications. Rational Application Developer requires some knowledge of portlet

and portal application construction and typically requires writing some Java code when

building more complex portlets.

A common scenario is to use Rational Application Developer and WebSphere Portlet

Factory together to form comprehensive portal solutions. Portlets created in Rational

Application Developer can be combined with portlets created with WebSphere Portlet

Factory on portal pages that are created, tested, and deployed using Rational Application

Developer. Since the tools plug into Rational Application Developer, the development

environment is consistent when working in either tool.

Page 23 of 28

P20_WPF_001.ppt

To choose the right toolset for your needs, developer preference is one decision

component.

The Rational Application Developer is for developers who need complete access and

control of all portlet, portal and other application code.

The WebSphere Portlet Factory enables development of portlet applications quickly with

wizard-driven tools that automate portlet creation.

Of course the Rational Application Developer also provides several wizards to make the

portlet development more easy, but the focus is different.

Page 24 of 28

P20_WPF_001.ppt Page 25 of 28

P20_WPF_001.ppt

Remember that the portlet factory and the Rational Application Developer can be installed

on the same Eclipse base.

Here you can see the steps necessary for this installation option.

Page 26 of 28

P20_WPF_001.ppt

So the Rational Application Developer and the WebSphere Portlet Factory can be used in

the same environment for their main competencies.

And not only the target system can be the same, the different portlets can also cooperate

using the portlet-to-portlet communication standard.

Page 27 of 28

P20_WPF_001.ppt Page 28 of 28

