
IBM WebSphere Everyplace Deployment

Developer’s Guide

���

Note

Before using this information and the product it supports, read the information in “Notices,” on page 261.

Second Edition (August 2005)

This edition applies to version _6.0_, and to all subsequent releases and modifications until otherwise indicated in

new editions.

© Copyright International Business Machines Corporation 2004. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Introduction 1

Client platform 2

Managed client services 3

Access services 4

Interaction services 5

Platform management 6

Packaging 6

Class loading 9

Application models 11

Rich client application model 11

Web application model 12

Composite application model 12

Application design considerations 12

End-to-End applications 12

Business logic 14

Persistence 14

Messaging 14

Management 15

Serviceability 16

Interaction 16

Client toolkit 16

Getting started 16

Samples 16

Information roadmap 17

Navigating and customizing the

workbench 21

Migrating and uninstalling 23

Migrating 23

Automated migration 23

Manual migration 23

Uninstalling WebSphere Everyplace Client Toolkit 24

Developing Web applications 25

Client Services Web Application Concepts 26

Client Services Web projects 27

Using a Client Services Web project versus a

Dynamic Web project 27

Creating a Client Services Web project 28

Converting a Dynamic Web project to a Client

Services Web project 29

Client Services Web Application Development . . . 29

Unsupported tooling features 29

Accessing resources 29

Using JSP Standard Tag Libraries 30

Java Server Faces (JSF) development 30

Struts development 31

Securing Web Application resources 31

Platform integration 34

com.ibm.eswe.workbench.WctWebApplication . . 34

Importing and Exporting Web Application Bundles 37

Importing a Web Application bundle 37

Exporting a Web Application bundle 38

WAB Utility 38

WAB Utility installation 38

WAB Utility usage and parameters 38

Web Container Logging 40

Configuring the Web Container Logging 40

Developing messaging applications . . 43

Technology overview 43

Publish and Subscribe – Topics, subscriptions and

brokers 43

Point-to-point – queues and queue managers . . 44

Java Message Service 45

WebSphere MQ Everyplace 45

MicroBroker – Technical Preview 46

MQ Telemetry Transport – Technical Preview . . . 47

WebSphere MQ Everyplace and MicroBroker

comparison 47

Client Services platform profile components . . . 48

Related documentation 48

Developing the application user

interface 51

Technology overview 51

Eclipse 51

UI toolkits 52

Visual Editor for Java 52

Understanding the WebSphere Everyplace

Deployment User Interface 52

User interaction in the WebSphere Everyplace

Deployment 6.0 52

User interface organization 53

Creating a simple Rich Client Platform application 55

Extending the capabilities of your application . . . 57

Adding and contributing menus 57

Creating views 61

Creating preferences 61

Applying Capitalization and punctuation

guidelines 63

Creating helpful messages 63

Customizing existing applications 64

Activities 64

Integrating existing RCP applications into

WebSphere Everyplace Deployment 65

Developing data access and

synchronization applications 67

Databases 67

Embedded databases 68

DB2 Everyplace and Cloudscape comparison . . 68

Creating database access application

development best practices 69

Client Services platform profile components . . 70

Deployment and synchronization 70

DB2 Everyplace and IBM Cloudscape

Documentation 72

SyncML 73

© Copyright IBM Corp. 2004 iii

Technology overview 74

SyncML4J common 74

SyncML4J data synchronization 75

SyncML4J device management 75

Client Services platform profile components . . 75

Developing Embedded Transaction

applications 77

Embedded Transaction concepts 78

Embedded Transaction projects 79

Using a Client Services Embedded Transaction

project versus an EJB project 79

Creating a Client Services Embedded Transaction

project 79

Converting an EJB project to a Client Services

Embedded Transaction project 82

Embedded Transaction specific considerations . . . 83

Implementing finder methods 83

Configuring and using data sources 85

Locating EJBs 86

Conserving JDBC resources 86

Working with user managed transactions . . . 87

Providing custom bundle activation 87

Embedded Transaction Deployment 88

Invoking deployment 89

Automatic deployment when running or

exporting a project 89

Manual deployment through the Deploy action 89

Ant script deployment 89

Embedded Transaction Deployment Descriptor 89

Embedded Transaction Deployment Editor . . . 90

Customizing the deployment Ant script

(ejb-build.xml) 91

Customizing for target data base (DB2e and

Cloudscape) 91

Advanced topics 91

Importing and Exporting Embedded Transaction

Bundles 92

Importing an Embedded Transaction Bundle . . 92

Exporting an Embedded Transaction Bundle . . 93

Embedded Transaction specific debugging 93

Saving source for viewing during debugging . . 93

Enabling logging and tracing with the Embedded

Transaction Container 93

Developing Mobile Web Services . . . 95

Mobile Web Services overview 95

Technologies 95

Tools 96

Creating Mobile Web Services 97

Creating Mobile Web Services providers 97

Creating Mobile Web Services clients 98

Editing Mobile Web Services 103

Custom serialization (marshalling) 103

Securing Mobile Web Services 109

Securing Mobile Web Services providers . . . 109

Securing Mobile Web services clients 110

Editing the Mobile Web Services security

configuration 112

Deploying Mobile Web Services 140

Deploying Mobile Web Services providers . . . 141

Deploying Mobile Web Services clients 142

Validating Mobile Web Services using the Web

Services Gateway Utility 143

Accessing the Mobile Web Services Gateway

Utility 143

Consuming Mobile Web Services 144

Exposing Mobile Web Services providers . . . 144

Listing Mobile Web Services client OSGi

bundles 144

Listing Mobile Web Services provider OSGi

bundles 145

Creating client runtime images 147

Getting started building platforms 147

Setting up the target platform 147

Creating a Platform Builder project 148

Updating a Platform Builder project 149

Building a target runtime image 149

Exporting a target runtime image 150

Running a target runtime image 150

Platform Builder page options 150

Debugging and testing applications 157

Local debugging and testing 157

WebSphere Everyplace Deployment Launcher 157

WebSphere Everyplace Deployment Server . . 158

Remote debugging and testing 159

Remote debugging using Rational Software

Development Platform 159

Starting from the command line 160

Packaging and deploying applications 161

Packaging applications for distribution 161

Understanding methods of installation 161

Understanding the types of install artifacts . . 162

Using Ant tasks to build a deployable bundle 165

Deploying projects for local testing 166

Exporting Client Services projects 166

Exporting plug-ins from the Rational Software

Development Platform 167

Using the IBM WebSphere Everyplace

Client Toolkit 169

Getting started with the IBM WebSphere

Everyplace Client Toolkit 169

IBM WebSphere Everyplace Client Toolkit

overview 169

Supported platforms 169

Roadmap of major tasks 170

Setting up the WebSphere Everyplace Client

Toolkit 170

Creating a sample Client Services project . . . 171

Setting Manifest Editor preferences 171

Turning on build automatically 172

Concepts 172

Managing Client Services project dependencies 173

Creating and using Client Services applications . . 176

Creating a Client Services project 176

Creating a Client Services fragment project . . 177

iv IBM WebSphere Everyplace Deployment: Developer’s Guide

Converting a Java project into a Client Services

project 178

Setting Client Services project properties . . . 178

Using Platform Services 179

Using the HTTP Service 179

handleSecurity plug-in 179

Configuring HTTP Service 179

Using the Log Service and Log Reader Services 182

Configuring Log Service 182

Using the Meta Type Service 183

MetaData XML sample 184

Using the XML parser services 185

Creating help for the application 186

Using logging and tracing 187

Eclipse logging 187

Eclipse tracing 187

OSGi logging 188

Enabling your plug-in for startup 188

Using runtime developer tools 190

Using the Platform Manager 190

Using Admin Utility for OSGi 192

Using the JNDI Manager 194

Configuring Enterprise Definitions (JNDI) 195

WebSphere Everyplace Deployment JNDI

overview 195

Using declarative JNDI 196

Packaging 199

Extending declarative JNDI 199

Globalizing your application 200

Support for multiple locales 200

IBM language groups 201

Supporting preferred fonts and bidirectional

layouts 202

Creating translatable plug-ins 202

Troubleshooting 205

Logging 205

Logging framework 205

Manually adjusting the logging level 206

Log file management 207

Tracing 207

Using the IBM Support Assistant 208

Reference information 211

WebSphere Everyplace Deployment top level

menus 211

File menu 211

Application menu 211

View menu 212

Help menu 212

Extension points reference 213

Applications 213

Web applications 214

JNDI Binding 217

JNDI generic object 218

JNDI object factory 219

WebSphere Everyplace Client Toolkit ANT task and

types 220

bde.exportJarBundle 220

filedirectory 221

buildpolicyinfo 221

Managing client configurations 222

Understanding the client file layout 222

Configuring Java system properties 223

Configuring Java VM arguments 223

Configuring native library references 223

Configuring Java Bootclasspath libraries . . . 223

Configuring workbench options 224

Configuring the web container 224

Configuring platform configuration files . . . 228

Specifying platform branding 231

Configuring the platform launcher 236

OSGi 237

OSGi specification 237

Working with OSGi bundles 237

IBM WebSphere Everyplace Client toolkit 244

Editors 244

Wizards 245

Dialogs 253

Advanced topics 255

Platform Profile and Extension Points 255

Appendix. Notices 261

Trademarks 263

Contents v

vi IBM WebSphere Everyplace Deployment: Developer’s Guide

Introduction

The WebSphere Everyplace Deployment for Windows® and Linux® Developer’s

Guide is your tool for developing powerful applications that run on desktop and

laptop clients across Windows and Linux operating systems. If you are experienced

in developing J2EE applications, Web Services, or Eclipse applications, then you are

ready to develop applications for WebSphere Everyplace Deployment for Windows

and Linux.

With WebSphere Everyplace Deployment for Windows and Linux (also called the

client platform), you can move key components of your applications from the server

to desktop and laptop clients by using standard APIs and services.

Moving application components to run on a client can have dramatic results for

business. End-users benefit from improved application response time because

applications perform business operations locally on the client. As a result, there is a

reduction in network traffic between clients and servers, and in server workload.

Furthermore, mobile end-users can continue to productively use their applications

from their clients even when they are at a location that does not have network

connectivity, such as a customer site. You can also utilize the local graphical user

interface (GUI) capabilities of the client devices to deliver a richer user experience

than can be supported by a Web browser.

The client platform supports these capabilities by providing a set of

standards-based Client Services on which you can build your applications. These

Client Services include:

v Managed Client Services to enable multiple applications and services to run on

the same JVM, support life cycle management of these applications and services,

and provide application portability across Windows and Linux operating

systems.

v Platform Management to install, maintain, and configure the applications and

services on the client.

v Access Services, which provide middleware so your client applications can

securely access e-business on demand applications, services and data and

continue to operate even when a device is offline.

v Interaction Services, which support interaction with end-users through a

traditional Web browser and a rich graphical user interface through Eclipse

technology. Eclipse is an award-winning, open source platform for the

construction of powerful software development tools and rich desktop

applications.

The WebSphere® Everyplace® Client Toolkit (also called the toolkit) provides a

complete, integrated set of tools that allows you to develop, debug, test, package

and deploy client applications that use the Client Services. This toolkit is built on

Eclipse technology and extends the powerful Rational® suite of development tools

so you can leverage your existing skills and software components. The toolkit also

provides Ant tasks so you can create Ant scripts to automate the building of your

applications. In addition, the toolkit provides program samples to help jump start

your application development projects.

The combination of the WebSphere Everyplace Deployment for Windows and

Linux client and the WebSphere Everyplace Deployment server (also called the

© Copyright IBM Corp. 2004 1

server platform) provide the client and server middleware necessary to deliver and

manage end-to-end applications (see the below figure). Administrators use the

WebSphere Everyplace Deployment server to install and configure the server

middleware, so client applications can securely perform assured transactions and

database synchronization with Enterprise applications and data. For more

information on the server platform, please refer to the WebSphere Everyplace

Deployment server documentation.

In summary, the powerful client platform, toolkit, and server platform enable you

to develop compelling applications that run on desktops and laptops, and securely

access e-business on demand applications, services, and data. You can use

programming skills you have already acquired to develop these applications. This

guide provides the information you need to deliver these applications to your

customers.

Client platform

The client platform provides a way to install, launch and manage multiple

applications within an integrated application desktop window. The client platform

is built on the Eclipse 3.0.2 Rich Client Platform (RCP) framework. For application

developers familiar with the Eclipse Integrated Development Environment, or

Rational tools, it is the same core platform with the application development tools

removed, leaving a basic container for features and components, and a window

management and layout environment.

The client platform provides the following set of standards-based Client Services

for the development of your client applications:

v Managed Client Services including a JVM, a robust component framework, and

additional component services.

v Platform Management including the Eclipse Update Manager and an Enterprise

management agent to install and update applications and services on the client

platform.

Database
Synchronization

WebSphere Everyplace

Deployment

server

Assured
Transactions

Access Services

Database
Synchronization

Assured
Transactions

Access Services

Platform
Management

Platform
Management

WebSphere Everyplace

Deployment for Windows

and Linux client

End-to-End Security

Client
Applications

Enterprise
Applications

End-to-End
Applications

Databases

Client platform Server platform

Figure 1. End-to-end solution

2 IBM WebSphere Everyplace Deployment: Developer’s Guide

v Access Services including relational database services and synchronization,

transactional messaging, Web Services, a Web container to run local Web

applications, an embedded transaction container to run local embedded

Enterprise Java™ Beans (EJB’s), and more.

v Interaction Services including integrated browser controls to launch Web

applications, the Standard Widget Toolkit (SWT) and JFace Toolkit to support

GUI applications, and a Workbench that enables end-users to install and launch

one or more applications.

The client platform provides a standard set of APIs, such as JDBC and JMS, that

you use to invoke these services.

Managed client services

The client platform provides IBM’s Java 2 Standard Edition (J2SE) 1.4.2 JVM

(service release 2) as the base Java runtime environment. The JVM runs on the

client operating systems supported by the client platform: Windows XP and Red

Hat Linux.

The client platform provides a Service Framework that implements the OSGi R3

framework specification and provides a service-oriented architecture on top of the

JVM. The OSGi framework specification is provided by the OSGi Alliance. The

OSGi Alliance’s mission is to specify, create, advance, and promote wide industry

adoption of an open service delivery and management platform. Incorporating the

OSGi standard into the client platform provides four very important capabilities:

v It enables multiple applications and components to share a single Java Virtual

Machine (JVM). This saves valuable resources on the client when running

multiple applications because only one instance of the JVM is launched rather

than multiple instances of the JVM.

v It enables applications to share services and packages, which further reduces

resource requirements on devices.

v It separates service interface from service implementation and provides publish,

find, and bind operations in support of a service-oriented architecture. This

capability enables integration of business applications on the same device.

v It enables dynamic life-cycle management without a VM restart so components

can be updated without impacting other unrelated components that are running

at the same time.

The Eclipse RCP framework is built on the Service Framework, which provides the

Eclipse RCP with powerful capabilities, such as the ability to dynamically load and

unload components without restarting the Eclipse RCP framework and robust life

cycle management of components.

Enterprise and ISV Applications

Interaction Services

Access Services

Platform Management

Managed Client Services

Windows and Linux

Client
platform

Figure 2. The client platform

Introduction 3

The client platform also provides optional OSGi services, such as UserAdmin,

LogService, Configuration Management, and more.

Access services

Access Services provide a familiar programming model for J2EE developers so they

can reuse their skills and software components to develop applications that run on

clients. Additionally, Access Services enable client applications to support offline

operations. Access Services also enable you to move key components of your

application to the client platform through the use of standard APIs.

The client platform provides an embedded Web container to run J2EE Web

applications that support either the Servlet 2.3 and JSP 1.2 specifications, or the

Servlet 2.4 and JSP 2.0 specifications. The Web container enables you to move your

Web applications from the server to clients to preserve the existing browser user

interface, leverage your existing Web components, and provide a richer user

experience through support of local and offline operations.

The client platform also provides an embedded Transaction Container to run J2EE

Enterprise Java Beans (EJB’s) that conform to any of the following specifications:

1.1 and 2.0 Stateless Session Beans, Container Managed Persistence (CMP) Entity

Beans, and Bean Managed Persistence (BMP) Entity Beans. This container enables

you to move your business logic from the server to clients so you can leverage

your existing beans to make business logic available to client applications,

including Web applications, and support local and offline operations. These

business logic components are referred to as Embedded Transaction applications.

There are two key services that support local and offline operations.

First, you can use the JDBC API with DB2® Everyplace or IBM® Cloudscape™ as a

local SQL database when more advanced data manipulations are required than can

be supported by placing data in a local file store. These databases can periodically

synchronize with Enterprise databases to capture data on the client for use by the

client application when the user is offline. These databases can also protect local

data through data encryption.

DB2 Everyplace is an extremely small footprint relational database (200-300 KB). It

is especially suitable for embedded devices, where large databases and

sophisticated queries are not normally required, but can also be used on larger

devices. DB2 Everyplace provides transaction support covering updates to multiple

tables within a single transaction, encrypted tables, and zero client administration.

IBM Cloudscape is a 100% pure Java relational database, providing SQL-92, partial

SQL-99, and SQLJ support, indexes, triggers, transactions, encryption, and the

standard features that one expects of a relational database. Because IBM

Cloudscape contains a larger number of features, it is approximately 2 MB in size.

Therefore, IBM Cloudscape might not be suitable for smaller, resource-constrained

devices.

Second, you can also use the Java Message Service (JMS) API with WebSphere MQ

Everyplace (MQe) to send and receive messages. MQe provides once-only, assured

messaging and supports offline operations with local message queues that hold

messages when the device is offline and then sends these queued messages to

Enterprise applications when the device is back online. Similarly, messages

destined for client applications are held in server-side message queues and then

sent to the client applications when the device is back online. MQe encrypts

4 IBM WebSphere Everyplace Deployment: Developer’s Guide

messages to protect content over the network. As a result, the client platform

enables your users to conduct secure e-business on demand transactions.

For online operations, the client platform supports Web Services so client

applications can consume and provide Web Services in a secure manner. As a

result, your users have access to a broad range of business data and consumer

information. The client platform implements Web Services similar to those defined

in JSR 172 and provides support for document literal encoded streams that

exchange well-typed data objects so client applications can consume Web Services.

You can also develop an OSGi service and, during registration of the service,

indicate that it is also available as a Web Service.

The client platform also supports a technical preview of the MicroBroker, which is

suitable for applications that require messaging, notification and event services.

The MicroBroker supports publish and subscribe messaging in which publishers

generate messages containing information about a particular subject, subscribers

express interest in messages containing information on a particular subject, and a

broker receives messages from publishers and delivers messages on a particular

subject to the subscribers registered for that subject.

The SyncML4J (SyncML for Java) toolkit enables you to develop data

synchronization and device management client applications based on the Open

Mobile Alliance (OMA) Data Synchronization (DS) and Device Management (DM)

standard protocols. As a framework, SyncML4J supports user-defined data sources.

Data sources can range from simple resources, such as memos and images, to

complex schema-aware data types, such as relational databases or PIM databases.

Interaction services

The client platform is built on the Eclipse Rich Client Platform (RCP) so you can

deliver applications that provide a rich user experience across multiple platforms.

The client platform provides the Workbench, Standard Widget Toolkit (SWT), JFace,

Help and Preferences interaction services.

The Workbench provides an integrated application desktop window so end-users

can install, manage and launch one or more applications within a single window.

The Workbench presents each application individually in its own perspective, only

one of which is visible at any given time. When an end-user selects an application

from the Workbench, the Workbench launches the perspective for that application.

You specify an extension point for each of your applications so the Workbench can

correctly launch the perspective for your application.

The client platform supports servlets and JSP’s so users can interact with local Web

Applications through a Web browser. Each Web application installed onto the

Workbench runs in a browser perspective. When an end-user selects a Web

application from the Workbench, the Workbench launches a browser perspective

which in turn launches a local Web browser to run the Web application within the

Workbench window. When you specify the extension point for Web applications,

the Workbench automatically handles launching your Web applications in the

browser perspective. You can also use this extension point to enable the

Workbench to launch a Web application on a remote server.

The client platform also supports rich client applications, which interact with

end-users through a graphical user interface (GUI). Each rich client application

installed onto the Workbench runs in an application perspective. In this case, each

application must contribute its own perspective to the Workbench. In each

Introduction 5

perspective, an application provides the collection of views, layout of views, and

actions appropriate for the tasks that end-users will perform with the application.

You use SWT and the JFace toolkit to develop the GUI for rich client applications.

SWT provides a cross-platform API that tightly integrates with the native widgets

of the operating system and, therefore, gives your applications a look and feel that

makes them virtually indistinguishable from native applications. The JFace toolkit

provides a set of components and helper utilities that simplify many of the

common tasks in developing SWT user interfaces. When an end-user selects a rich

client application from the Workbench, the Workbench launches the appropriate

perspective to run the application within the Workbench window. When you

specify the extension point for rich client applications, the Workbench

automatically handles launching the perspectives for your rich client applications.

The client platform also provides services that enable you to contribute Helps and

Preferences for your applications so end-users can understand and configure your

applications respectively within the Workbench.

Platform management

Platform Management installs, maintains, and configures applications and services

on the client. There are two platform management services.

The Update Manager enables end-users to directly install applications and

components from standard Eclipse update sites onto the Workbench.

The Enterprise Management Agent works cooperatively with the Device

Management Server provided by the WebSphere Everyplace Deployment server to

perform management operations. The agent and server use the SyncML/DM

protocol defined by the Open Mobile Alliance to communicate management

requests. An administrator can schedule management jobs for devices that include

software installation, update, and configuration. When installing and updating

software components, the management system determines which components are

already on the device and then installs only the missing components.

Packaging

Client applications and application services are packaged as features, each of

which consists of one or more components. The client platform cannot directly run

J2EE packaging artifacts such as EAR and WAR files.

Components

The Eclipse framework, and therefore the client platform, is organized around a

plug-in and extension point model. The framework provides a core set of

components. Additional components are provided in a directory or JAR file

organized in a specific structure, and implement instantiations of the various

extension points. The framework reads the component declarative information, and

incorporates the components into the correct locations in the framework.

A plug-in is the level at which components are declared to the Eclipse framework.

A plug-in is a JAR file with a plug-in manifest file named plugin.xml. The plug-in

manifest describes the plug-in to the framework and enables a plug-in to consume

and/or provide extensions from/to other plug-ins. For example, a plug-in can

provide user interface extensions, such as perspectives, views, editors, and

wizards. It can also provide business logic or core services to other plug-ins, but

contribute no extensions to the user interface.

6 IBM WebSphere Everyplace Deployment: Developer’s Guide

A bundle is the level at which components are declared to the OSGi Service

Framework. A bundle is a JAR file with a bundle manifest file named MANIFEST.MF.

The bundle manifest describes the bundle to the service framework and enables a

bundle to consume and/or provide packages and services from/to other bundles.

Bundles can also include a Bundle Activator class. The Bundle-Activator header in

the bundle manifest file identifies the class to the framework. At startup time, the

framework creates an instance of this class and calls its start() method. The

Bundle Activator can then publish services, start its own threads, and so on. When

the bundle shuts down, the framework calls the activator’s stop() method. While

the bundle shuts down, the Bundle Activator can release resources that are

obtained since the start method was called and revoke any services it has

published.

Recall that the Eclipse framework is built on the OSGi Service Framework.

Therefore, you can define each component in your applications as a plug-in, a

bundle, or both depending on your requirements.

Note: For a component to be recognized by the client platform, the toolkit and the

Eclipse Plug-in Development Environment (PDE), it must have a unique

name and version. If you develop a plug-in, specify a unique value for the

name attribute and a version number for the version attribute in the plug-in

manifest. If you develop a bundle, specify a unique value for the

Bundle-SymbolicName attribute and a version number for the Bundle-Version

attribute in the bundle manifest.

A component can generally be organized in one of three ways:

v A directory containing at least a plugin.xml file. The directory may also contain

a MANIFEST.MF file located in the META-INF directory, additional files, as well as

Java code contained within JAR files.

A plugin.xml file is required if the component defines extension points for use

by other plug-ins or implements extension points provided by other plug-ins.

v A directory containing at least a MANIFEST.MF file in the META-INF directory. The

directory will also contain Java code contained in JAR files. The MANIFEST.MF will

refer to the JARs by referencing them via the Bundle-Classpath attribute.

Components that provide only business logic or OSGi services and do not

intend to provide or implement any extension points can use this format.

Components without plugin.xml files that need to be available when building

other components or when launching the client platform by using either the

toolkit or the PDE must be organized in this format.

v A single JAR file containing at least a META-INF\MANIFEST.MF or a plugin.xml file.

Components may be provided for use in the client platform by collecting all of

the component artifacts into a single JAR file. While this organization will run

successfully, this organization is not compatible with the toolkit and Eclipse

PDE.

Fragments

A component may not always provide a complete implementation. In some cases,

fragments may be used to complete or extend a component.

For example, the primary component may provide an implementation that contains

translatable text in a default language. Fragments are then used to provide

translations for additional languages.

A second case where fragments are often used is to provide platform

(processor/operating system) specific implementations.

Introduction 7

Fragments contain either a fragment.xml (similar to a plugin.xml), or a

MANIFEST.MF, or both. A fragment is associated with, or dependent upon, a specific

primary component, but still maintains a unique identity. Querying a list of

components will also return fragments, so that these fragments can be individually

started and stopped.

Fragments generally add classes or resources to the class path normally used by

the primary component. Fragments do not contain Bundle-Activator classes. Since

fragments are only extensions to a component, they cannot be required or

imported by another component.

Features

On disk, an Eclipse-based product is structured as a collection of components and

fragments. Each component or fragment contains the code that provides some of

the product’s functionality. The code and other files for a component or fragment

are installed on the local computer, and get activated automatically as required. A

product’s components are grouped together into features. A feature is the smallest

unit of separately downloadable and installable functionality

The fundamentally modular nature of the Eclipse platform makes it easy to install

additional features and components into an Eclipse-based product, and to update

the product’s existing features and components. You can do this either by using

traditional native installers running separately from Eclipse, or by using the Eclipse

platform’s own Update Manager. The Eclipse Update Manager can be used to

discover, download, and install updated features and components from special

web based Eclipse update sites.

The basic underlying mechanism of the Update Manager is simple: the files for a

feature or component are always stored in a sub-directory whose name includes a

version identifier (e.g., ″2.0.0″). Different versions of a feature or component are

always given different version identifiers, thereby ensuring that multiple versions

of the same feature or component can co-exist on disk. This means that installing

or updating features and components requires adding more files, but never

requires deleting or overwriting existing files. Once the files are installed on the

local computer, the new feature and component versions are available to be

configured. The same installed base of files is therefore capable of supporting

many different configurations simultaneously; installing and upgrading an existing

product is reduced to formulating a configuration that is incrementally newer than

the current one. Important configurations can be saved and restored to active

service in the event of an unsuccessful upgrade.

Large Eclipse-based products can organize their features into trees starting from

the root feature that represents the entire product. This root feature then includes

smaller units of functionality all the way down to leaf features that list one or

more plug-ins and fragments. The capability to group features hierarchically allows

products to be built on top of smaller products by including the smaller products

and adding more features.

Some included features may be useful add-ons but not vital to the proper

functioning of the overall product. Feature providers can elect to mark these

features as optional. The Update Manager allows users to choose whether or not to

install optional features. If not installed right away, optional features can be added

at a later date.

8 IBM WebSphere Everyplace Deployment: Developer’s Guide

Class loading

This section explains how classes are located and loaded by the client platform. A

class loader is responsible for loading classes. A class is loaded by a hierarchy of

cooperating class loaders as shown in the figure below.

A typical Java application has a global name space that consists of the contents of

the JARs in a single, well-defined class path. A set of class loaders cooperates to

locate and load classes based on this class path. These class loaders include the

Application Class Loader to load application classes (normally found in the

CLASSPATH), the Extension Class Loader to load standard extension classes

(normally in the jre/lib/ext directory, which is specified in the java.ext.dirs

property), and the Boot Class Loader to load system classes (normally from rt.jar

in the jre/lib directory).

Class loading functions differently in the client platform because the client

platform is built on the OSGi Service Framework. Since the mechanics for

supporting plug-ins are implemented by using the OSGi Service Framework, a

plug-in is the same as an OSGi bundle for the purpose of this explanation. The

bundle and its associated classes specify and implement the process for Java class

loading, prerequisite management, and the bundle’s life cycle.

Each bundle installed and resolved in the OSGi Service Framework must have a

class loader. This class loader, called the Bundle Class Loader, provides each

bundle with its own name space to avoid name conflicts and enables package

sharing with other bundles.

The Bundle Class Loader searches for classes and resources in the bundle’s class

path as defined by the Bundle-Classpath header in the bundle’s manifest. The

Bundle Class Loader has a parent class loader as specified in the

osgi.parentClassloader property. By default, the parent class loader is the

Extension Class Loader for the client platform. However, the Extension Class

Loader also has a parent class loader - the Boot Class Loader. As a result, the

parent of the Bundle Class Loader actually consists of the Boot Class Loader and

the Extension Class Loader.

Framework
Class Loader

Bundle
Class Loader

Boot Class Loader
(bootclasspath)

Extension
Class Loader
(java.ext.dirs)

Application
Class Loader
(classpath)

System
Bundle

Other
Bundles

Thread
(Content

Class
Loader)

Service

Class

Space

Named

Class

Space

(osgi.framework.systempackages)

default
(change via osgi.parentClassloader)

Export-Package

Import-Package

Provide-
Package

Require-Bundle

Figure 3. Class loaders

Introduction 9

A bundle can export the classes and resources in one or more of its packages by

specifying each such package name in the Export-Package header in its manifest.

The classes and resources in each exported package become part of the Service

Class Space and are made available to other bundles with permission to use the

package A bundle can import one or more packages by specifying each package

name in the Import-Package header in its manifest. If the bundle has permission to

import these packages, then the bundle can use the classes and resources in these

packages as defined in the Service Class Space. A package can be shared based on

its name and, optionally, its version. However, if multiple bundles share (export) a

package with the same name, then the OSGi Service Framework determines the

bundle that shares that package with other bundles based on the highest version of

the declared package. As a result, a bundle that imports a package must know the

name of the package it needs to import but cannot explicitly control which bundle

provides the package it actually uses.

A bundle can also provide the classes and resources in one or more of its packages

by specifying each such package name in the Provide-Package header in its

manifest. The classes and resources in each provided package become part of the

Named Class Space and are made available to other bundles with the appropriate

permissions. A bundle can explicitly use packages provided by a bundle by

specifying each required bundle in the Require-Bundle manifest in its header. The

Require-Bundle manifest header contains a list of bundle symbolic names that need

to be searched after the imports are searched but before the bundle’s class path is

searched. However, only packages that are marked as provided by the required

bundles are visible to the requiring bundle.

The figure below illustrates the search order used to locate classes and resources.

To locate a class or resource, the search order is as follows:

1. The Bundle Class Loader delegates the request to its parent class loader

(PARENT), which results in the Boot Class Loader and then the Extension Class

Loader attempting to locate the class or resource. If the class or resource was

found, then the class loader returns this result. If the class or resource was not

found, then the search continues with the next step.

2. If the Bundle Class Loader determines that the requested class or resource is in

a package imported from the Service Class Space (SERVICE) and it was found

Locate class
or resource

Imported
from Service

Locate in
PARENT

Locate in
SERVICE

Locate in
Required NAME

Locate in
PRIVATE

Look up
Failed

Look up
Succeeded

Yes

No

Yes

Yes

Yes

Yes

No

No

No

No

Found Found Found Found

Figure 4. Search order used to locate classes and resources

10 IBM WebSphere Everyplace Deployment: Developer’s Guide

in the Service Class Space, then the class loader returns this result. If the class

or resource is not found, then the request fails. If the Bundle Class Loader

determines that the requested class or resource was not in the Service Class

Space, then the search continues with the next step.

3. The Bundle Class Loader searches the Named Class Space (NAMED) and if the

class or resource was found, then the class loader returns this result. Otherwise,

the search continues with the next step.

4. The Bundle Class Loader searches its own internal class path and the internal

class path of any attached fragment bundles. If the class or resource was found,

then the class loader returns the results. If the class or resource was not found,

then the search terminates and the request fails.

Application models

There are two application user interface patterns that are recommended for use in

the client platform. The first pattern is the browser user interface pattern, which is

supported by the Web Application Model. Web applications present their user

interface through the use of generated scripting language such as HTML, which is

rendered for display by a browser.

The second pattern is to build a graphical user interface using Eclipse, to aggregate

display components into views, and views into perspectives. Applications will be

defined using extension points to define the actions, views, and perspective that

provide the user interface. This pattern is the rich client user interface pattern,

which is supported by the Rich Client Application Model.

The figure below details the client platform containing four applications. Each

application is composed differently.

Rich client application model

Applications that compose their user interface using extension points will typically

follow a plug-in model of providing components. Plug-ins will implement the

defined extension points to provide functions. The plug-ins may make use of

services provided by other plug-ins. In (Figure 5), Application 1 is composed of a

single plug-in using extension points to create a user interface. Application 2 is

composed of multiple plug-ins, one plug-in providing user interface components

and a second plug-in providing business logic and packages through its

plugin.xml file.

Application 1 Application 2 Application 3 Application 4

plugin.xml

User
Interface

Business
Logic

manifest.mf
web.xml

User
Interface

Business
Logic

plugin.xml

User
Interface

plugin.xml

Business
Logic

manifest.mf
web.xml

User
Interface

manifest.mf
web.xml

Business
Logic

Windows and Linux

Client platform

Figure 5. The client platform, with four applications

Introduction 11

Web application model

Web Applications can be built to either the Servlet 2.3 and JSP 1.2 specifications, or

to the Servlet 2.4 and JSP 2.0 specifications. Web Applications can make use of

technologies such as Tag Libraries, Templates, and other standard Web Application

features. Web Applications will typically be constructed of components that follow

the standard OSGi bundle format.

In (Figure 5), Application 3 is a web application contained in a single bundle (with

only the MANIFEST.MF file), while Application 4 separates the business logic and

user interface components into two bundles (containing only MANIFEST.MF files).

Composite application model

Application models are not limited to just Rich Client applications or Web

Applications. The term Composite Application refers to applications that make use of

both plug-ins and bundles, such as those identified in the figure below.

Application 5 is composed of a plug-in that provides user interface components

and a bundle that provides the business logic. Application 6 provides the main

user interface via a web application, but implements extension points in a plug-in

to provide preferences so an end-user can customize the application.

Application design considerations

You can design client applications in much the same way that you design standard

Enterprise applications. However, there are unique considerations for designing

client applications. The list of considerations in this section is not necessarily

comprehensive for all possible decision points; however, this list provides key

considerations for developing client applications.

End-to-End applications

The client and server platforms enable the development of end-to-end applications

through Access Services that connect client applications to Enterprise applications,

services and data. An end-to-end application can be distributed between a client

device and a server in which case there are two nodes in the application. However,

an end-to-end application might be distributed across more nodes. The exact

design of an end-to-end application depends on your specific requirements;

however, this section discusses specific examples that illustrate how you might

construct these applications (the figure below).

Application 5

manifest.mf

Business
Logic

Application 6

manifest.mf
web.xml

manifest.mf

Business
Logic

User
Interface

plugin.xml

User
Interface

plugin.xml

User
Interface

Windows and Linux

Client platform

Figure 6. The client platform, with two applications

12 IBM WebSphere Everyplace Deployment: Developer’s Guide

Client applications can use WebSphere MQ Everyplace (MQe) to exchange secure

transactional messages with Enterprise applications that support MQ messaging.

MQ Everyplace operates in many topologies, from peer-to-peer, to client, to server

using the MQ Everyplace gateway technology. For example, a J2EE application can

implement Message Driven Beans (MDB) to exchange messages with a client

application. This exchange can occur through an MQ Everyplace Gateway-MQ

Server configuration. However, client applications can also use MQe to exchange

messages directly with other MQe applications in the network.

DB2 Everyplace and Cloudscape are both capable of synchronizing with the DB2

Everyplace (DB2e) Sync Server, using the IBM ISync technology provided by the

client platform. A System Administrator configures the DB2e Sync Server to

synchronize data with Enterprise databases. The initial synchronization activity

creates the local database schema, and also populates the initial set of data in the

local database on a device. When a client application updates the local database,

synchronization can transfer that data to Enterprise databases that are configured

to receive it. When Enterprise applications update data in an Enterprise database,

synchronization can transfer that data to local device databases that are configured

to receive it. Database administrators set up the DB2e Sync Server with the

necessary subscriptions for synchronization, and can set up filtering of data to limit

the amount of data distributed between nodes. The DB2e Sync Server supports

synchronizing relational data on the client with relational data on the following

Enterprise databases: DB2 Universal Database™, Informix® Dynamic Server, IBM

Cloudscape, Lotus® Domino® Server, Oracle, Microsoft® SQL Server, and Sybase

Adaptive Server Enterprise.

Note: Administrators can use the WebSphere Everyplace Deployment server to

install and configure the DB2 Everyplace Synchronization Server, WebSphere

MQ Everyplace, including the function necessary for WebSphere MQ

Everyplace to act as a gateway server to the WebSphere MQ products, and

the Device Management Server.

Client applications can also consume and provide Web Services. This requires an

active connection between the Web services consumer and provider.

Applications

MQ
Everyplace

Web
Services

DB2e or
Cloudscape

Enterprise
Mgmt Agent

Service
Framework

JVM

Client

Client platform

WECM

Application
(MDBs)

E
J
B

Application
(Web Services)

W
A
R

DB2e
Sync Server

E
A
R

Device
Management

Server

E
A
R

Application
E
A
R

WAS

WECM

Enterprise Servers

Send and
receive secure
transactions

Consume and publish Web Services

Synchronize relational data

Install and maintain software

MQe
Gateway

MQ
Server

Operate over secure, optimized,

Roaming network connections

DB

Figure 7. Example end-to-end application

Introduction 13

An optional capability, which some customers have chosen to implement, is

another IBM product called WebSphere Everyplace Connection Manager (WECM).

WECM enables client applications to operate over secure, optimized, roaming

network connections on wireless and wire-line networks. WECM installs below

TCP/IP APIs so TCP/IP applications can continue to run without change and

benefit from these capabilities.

Business logic

When you build an end-to-end application, you must decide how to distribute the

business logic across the nodes that comprise the application so your mobile users

are productive when they are offline. The amount of business logic in the client

application must be sufficient to perform all necessary work. However, you might

consider moving business logic components that require frequent updating to a

server node to avoid network traffic and administration costs associated with

managing these same components on clients.

In addition, client applications can provide multiple levels of capability, reserving

some capability for when a reliable connection exists to an Enterprise server, and

disabling that capability if the server is unavailable.

Business logic can be packaged within a client application or made available as a

separate component, such as a plug-in, an embedded EJB or local Web Service.

Persistence

Most applications manipulate data. This can take the form of read-only access of

databases to retrieve catalog items, or of database update for creation of orders

that need to be processed. Data can take the form of files distributed on disk, or

relational database capability. When dealing with databases, you can choose to use

databases only as a local data repository, or as a repository that actively

synchronizes with an Enterprise database.

Consider the following design possibilities:

v Use a database as a local repository when your application requires more

advanced data organization and access capabilities than can be supported by a

local file store – especially if a relatively large amount of data is stored on the

device.

v Use a local database to protect, or encrypt, data in case a device is lost or stolen

v Use database synchronization to exchange the current state of data between local

databases and an Enterprise database, when transaction boundaries or the order

of state changes is not important

v Consider how much data needs to be distributed and when (once only at

initialization, one-way from one node to another only on an infrequent basis,

frequent exchange between nodes). Balance these considerations with the storage

capabilities at each node, and the networking requirements that would permit

the exchange to take place.

v Consider database organization, filtering, and conflict resolution policies if you

choose to use database synchronization.

Messaging

Messaging links client applications to Enterprise applications, services, and data.

Messaging can take various forms, whether a plain socket-based application, Web

Services, or a more sophisticated store and forward transaction messaging

14 IBM WebSphere Everyplace Deployment: Developer’s Guide

capability that supports connected as well as disconnected usage. When choosing a

form of messaging, you should consider the following requirements in the design

of your end-to-end applications:

v Online vs. offline operation

v Security, including message confidentiality, non-repudiation, and authentication

v Synchronous vs. asynchronous messaging

v Once-only assured transactions

v Configuration of the messaging solution

Web Services support secure, online, synchronous access to information; however,

an online connection must be active between the Web Services consumer and

provider to access information across the network. Security features include

message confidentiality, integrity, and authentication.

MQe provides transaction messaging that supports online and offline operation,

security features (message confidentiality, non-repudiation, authentication),

synchronous and asynchronous messaging, and once-only assured transactions.

Transaction messaging provides a convenient mechanism for defining or

identifying transaction boundaries when performing such actions as creating or

updating orders, particularly if the transaction requires updates across multiple

resources in the Enterprise such as inventory management, shipping and billing

systems.

Note: Certain nodes in the end-to-end system might not be able to manage or

commit transactions because these nodes might not have transaction

coordination and, therefore, do not have the master copy of all of the data.

The MicroBroker implements publish and subscribe messaging, which supports

online and offline operations, and synchronous and asynchronous messaging.

Management

Management covers a wide range of activities, from initial device provisioning to

application management. When you design your application, you should consider

the implications of your design in regards to application management, specifically

in two key areas: componentization and data formats.

First, if you design a monolithic application, then the management system must

distribute and install a complete new copy of the application to update nodes with

the latest version of the application. Depending on the size of the application and

the frequency of updates, this design might adversely affect network capacity and

disrupt users. If you design and package the application as multiple installable

components, then the management system distributes and installs only those

components that require an update. You might also be able to reuse components in

different applications that run on the same or different nodes. There is a trade-off

between the granularity of the components and the complexity of administering

the set of components that comprise an application.

Second, you must consider the effect on data when updating applications or

components. If you design your components and data format so that local data is

upwardly compatible, then users can continue to access their data after application

and component updates. Otherwise, you must provide a mechanism to update the

existing data to match a new or revised format and ensure that all installed

components that consume this data can process this format.

Introduction 15

Serviceability

Distributed applications pose additional issues of serviceability as compared to

applications running on a single node. Logging and problem resolution might be

difficult if the application is running on one node, and the node only occasionally

connects to a central logging repository. In these situations, you must consider how

to transfer logging information from a node to the central logging repository, how

to track user usage, and help in problem resolution.

Interaction

You must first decide if your application will support user interactions and, if so,

which interaction model to use. You might choose the Web Application model

when moving a Web application from the server to the client to reduce

development and training costs. You might choose the Rich Client Application

model when you require more control over the user experience.

Client toolkit

The WebSphere Everyplace Client Toolkit provides a complete, integrated set of

tools that allows you to develop, debug, test, package and deploy client

applications that use Client Services. You can use the toolkit to develop the

following types of client applications:

v Eclipse Rich Client Platform applications

v Web applications

v Embedded Transaction applications

v Database applications

v Messaging applications

v Web Services applications

The toolkit provides wizards that enable you to create Client Services projects to

develop client applications. The toolkit uses Platform Profiles to provide a

convenient method for you to specify the runtime environment, the build-time

environment, and the set of components that can run on the platform. For

example, when you create a Client Services project, you select a Platform Profile

from a list of available profiles and the toolkit automatically sets up the Java Build

Path and runtime for your project. You can then edit, compile, and debug your

project. The toolkit provides a default list of Platform Profiles; however, you can

create your own profiles.

You can also use the toolkit to build custom client platforms for your devices.

However, custom platforms require an OEM license from IBM.

The toolkit is built on Eclipse 3.0.2 and extends the Rational suite of development

tools so you can leverage your existing skills and software components.

Getting started

Samples

To get started using the client platform or specific features of the client platform,

review the collection of client platform samples in the Samples Gallery. The Sample

Gallery is a facility that is available in the Rational product set. It acts as a

centralized location or repository for samples. The gallery is accessible from both

the Welcome panel and from the Help menu. The samples in the gallery are split

16 IBM WebSphere Everyplace Deployment: Developer’s Guide

into three categories: Showcase samples, Application samples and Technology

samples. Showcase samples are end-to-end applications that follow best practices

for application development. Application samples are samples that demonstrate

more than one tool or API while Technology samples are samples that demonstrate

a single tool or API. When you open a sample, you see a short explanation of the

sample and a link for importing the sample into your tooling workspace. Samples

for the client are located in the WebSphere Everyplace Deployment section of each

category.

Information roadmap

The following information roadmap provides a list of appropriate documentation

for a variety of different user roles supported by the client. If the listed

documentation is part of the Developer’s Guide, then a link to the appropriate

section is provided.

 Table 1. Information roadmap

User Role Appropriate Documentation

Web Developer

v Creates Web components

v Converts J2EE Web components

v Migrates Workplace Client Technology™,

Micro Edition 5.7.1 Web components

v Selects Platform Profile for target

v Specifies deployment information

v Writes servlet source code

v Writes JSP and HTML files

v Optionally uses Struts or JSF

v Compiles Web components

v Packages the components in a Web

Application Bundle (WAB) file

v Unit tests and debugs components

v Imports/exports WABs

WebSphere Everyplace Deployment

Developers Guide: “Developing Web

applications” on page 25

In addition, you can use the following

services to develop your applications:

v Developing messaging applications

“Developing messaging applications” on

page 43

v Developing data access and

synchronization applications “Developing

data access and synchronization

applications” on page 67

v Developing Mobile Web Services

“Developing Mobile Web Services” on

page 95

Enterprise Bean Developer

v Creates Embedded Transaction

applications

v Converts J2EE EJBs

v Selects Platform Profile for target

v Specifies deployment information

v Writes and compiles the source code

v Packages Embedded Transaction

applications in Embedded Transaction

bundles

v Unit tests and debugs components

v Imports/exports Embedded Transaction

applications

WebSphere Everyplace Deployment

Developers Guide: “Developing Embedded

Transaction applications” on page 77

In addition, you can use the following

services to develop your applications:

v Developing messaging applications

“Developing messaging applications” on

page 43

v Developing data access and

synchronization applications “Developing

data access and synchronization

applications” on page 67

v Developing Mobile Web Services

“Developing Mobile Web Services” on

page 95

Introduction 17

Table 1. Information roadmap (continued)

User Role Appropriate Documentation

RCP User Interface Developer

v Creates RCP User Interface components

v Selects Platform Profile for target

v Writes and compiles the source code

v Uses the required extension points to

register applications with the client

platform and integrate with the

workbench, helps, and preferences

v Specifies the plugin.xml file

v Packages the .class files and plugin.xml

file in a plug-in JAR file

v Unit tests and debugs applications

WebSphere Everyplace Deployment

Developers Guide: “Developing the

application user interface” on page 51

In addition, you can use the following

services to develop your applications:

v Developing messaging applications

“Developing messaging applications” on

page 43

v Developing data access and

synchronization applications “Developing

data access and synchronization

applications” on page 67

v Developing Mobile Web Services

“Developing Mobile Web Services” on

page 95

Platform Provider

v Defines one or more Platform Profiles,

which specify the components and

applications for each platform

v Builds platform-specific files that can be

installed into devices with components

and applications

v Provides an Update site for optional

components and/or updates

WebSphere Everyplace Deployment

Developers Guide: “Creating client runtime

images” on page 147

Application Integrator

v Assembles components into Eclipse

Features

v Creates licenses for assembled Features

v Executes a simple path through the

application / solution to validate it

v Verifies that the Feature can run on the

Platform Profiles supported by the target

devices

System Administrator’s Guide

Solution Deployer

v Checks for and installs dependencies

v Configures applications for operational

environment (e.g. a port)

v Deploys applications and components via

Update Manager

v Deploys applications and components via

the Device Management Server

v Executes a simple install from the Update

Site or the Device Management Server to

verify Features can be installed correctly

v Where necessary, manages the rollback to

previous versions

v Manages deployment on a day-to-day

basis.

System Administrator’s Guide

18 IBM WebSphere Everyplace Deployment: Developer’s Guide

Table 1. Information roadmap (continued)

User Role Appropriate Documentation

End User

v Installs the client platform onto their

desktop or laptop

v Installs optional components

v Launches the client platform

v Installs one or more applications

v Launches applications from the client

platform

v Updates applications

v Migrates applications from WCTME-EO

5.8.1 to the client

v Uninstalls applications

v Uninstalls the client platform

v Manages bundles/plug-ins

v Changes/configures runtime environment

settings

v Submits problem log for support

WebSphere Everyplace Deployment for

Window’s and Linux User’s Guide

Introduction 19

20 IBM WebSphere Everyplace Deployment: Developer’s Guide

Navigating and customizing the workbench

The IBM WebSphere Everyplace Client Toolkit provides a number of additional

features to help developers build Client Services applications for the WebSphere

Everyplace Deployment platform.

Enhanced validation of the bundle manifest can be configured via the preferences

page. Access this page by navigating to Window > Preferences > WebSphere

Everyplace Client Toolkit. On this screen you can configure the notification level

you would like for the different possible problems detected in the manifest.

From the export panel (Window > Preferences > WebSphere Everyplace Client

Toolkit > Export), you can configure the naming format of the JAR files exported

via the OSGi bundle wizard. The default is the Eclipse naming and version

convention.

The WebSphere Everyplace Client Toolkit uses the Eclipse target platform to build

and run applications for WebSphere Everyplace Deployment. Upon installation or

new workspace creation, you will be prompted to have the target platform and

workspace JRE updated to the proper environment. If you wish to modify these

settings by hand, please see “Setting up the target platform” on page 147.

Additional customizations to the WebSphere Everyplace Client Toolkit can be set

via the PDE. Please refer to the PDE Guide available at Extending Rational

<development platform> functionality > Extending the workbench > PDE Guide

Where <development platform> is one of the following, depending on your

development platform:

v Software Architect

v Web Developer

v Application Developer

WebSphere Everyplace Client Toolkit project specific properties can be updated

from the Project properties menu. To access these settings, select a Client Services

project and click Project > Properties > Client Services.

© Copyright IBM Corp. 2004 21

22 IBM WebSphere Everyplace Deployment: Developer’s Guide

Migrating and uninstalling

WebSphere Everyplace Client Toolkit provides two methods to migrate Extension

Service 5.7 projects. Both methods convert Extension Service projects in the same

way. The toolkit sets the JRE and platform profile for all migrated projects to

default values.

The toolkit tries to migrate the application service from the platform profiles in

SMF Bundle Developer, to the latest platform profiles in the WebSphere Everyplace

Client Toolkit. After migrating a project, you may edit/add application services

and change platform profiles. To do this, right click on the project and select

Properties. Choose Client Services, then select the Application Profile tab. For

more information on this screen, refer to “Setting Client Services project

properties” on page 178.

Migrating

Automated migration

WebSphere Everyplace Client Toolkit allows you to migrate your Extension

Services projects from WebSphere Studio Device Developer 5.7 workspaces. Upon

startup on an existing WebSphere Studio Device Developer 5.7 workspace, the

toolkit detects and automatically converts all workspace projects.

This modifies your projects without any user interaction. If you would like to

preserve your 5.7 project format and data, you should back up the workspace prior

to opening the WebSphere Everyplace Client Toolkit on the folder.

Note: During migration, the class path is updated to match current platform

profiles, and the manifest is updated to match current runtime requirements.

The toolkit will update the MANIFEST.MF file if one exists, creating a backup

called MANIFEST.MF.BAK. It will also set the Java Build Path, the JRE, and

platform profile to default values.

Manual migration

You may choose to import an existing 5.7 Extension Service project into a Rational

Application Developer 6.0 workspace. If you would like to preserve your 5.7

project format and data, back up the project directory prior to using the Migration

wizard. Use the Extension Services Migration Wizard to migrate your project by

performing the following procedure:

1. Open the Wizard dialog by selecting File > New > Other.

2. Select Client Services > Migrate Extension Services Project.

If there is no Client Services category, select Show All Wizards to display the

Client Services category.

3. Select Next. The Migrate Extension Services Wizard opens.

4. Choose the projects you wish to migrate. Use the Select All button to migrate

all Extension Service projects in the workspace, if necessary.

Note: If the project(s) reference class path variables defined in other

workspaces, they will not resolve. To redefine/copy them into the

© Copyright IBM Corp. 2004 23

current workspace, you must include the location of the old workspace

in the Directory text box at the bottom of the page. Select the Browse

button to choose the folder.

5. Select Finish to migrate the selected project(s).

Note: During migration, the class path is updated to match current platform

profiles, and the manifest is updated to match current runtime requirements.

The toolkit will update the MANIFEST.MF file if one exists, creating a backup

called MANIFEST.MF.BAK. It will also set the Java Build Path, the JRE, and

platform profile to default values.

Uninstalling WebSphere Everyplace Client Toolkit

To uninstall the WebSphere Everyplace Client Toolkit, perform the following

procedure:

1. Select Windows > Preferences > Java > Installed JREs. The Installed Java

Runtime Environments panel displays, showing all installed JREs. Unselect

WebSphere Everyplace Deployment (to remove it as the default JRE), and

check the JRE originally provided with the Rational Software Development

Platform.

2. Select Windows > Preferences > Plug-in Development > Target Platform and

change the Location field to the Rational Software Development Platform, by

selecting it from the drop down list.

3. Select Help > Software Updates > Manage Configuration. The Product

Configuration menu displays. From the Navigator window, open the sdpisv

Extension Location, and select IBM WebSphere Everyplace Client Toolkit. The

information for the feature displays in the window to the right. Select Disable.1

4. Restart the platform when prompted.1

5. Select Help > Software Updates > Manage Configuration. The Product

Configuration menu displays. From the Navigator window, open the sdpisv

Extension Location and select IBM WebSphere Everyplace Client Toolkit. The

information for the feature displays in the window to the right. Select

Uninstall.

6. Select OK in the next dialog. Restart the platform when prompted.

1. Steps 3 and 4 are only required on Windows. Linux users can step directly from step 3 to step 5.

24 IBM WebSphere Everyplace Deployment: Developer’s Guide

Developing Web applications

The WebSphere Everyplace Deployment platform supports Servlet 2.4 and JSP 2.0

web applications as well as Servlet 2.3 and JSP 1.2 web applications. Web

applications targeting the WebSphere Everyplace Deployment platform are called

Client Services web applications. Since components in the WebSphere Everyplace

Deployment platform are called bundles, a web application targeting this platform

is also referred to as a Web Application Bundle or WAB.

A WAB can be developed using many of the same web development tools

provided by the Rational Software Development platform. You should therefore

refer to the Rational online help section “Developing Web applications” as your

initial web development tools reference. The following topics discuss the additional

development considerations and tool usage required when targeting a web

application for the WebSphere Everyplace Deployment platform.

The following table provides pointers to information on web development

activities and information on tasks that are unique to, or require special

consideration when developing web applications for the WebSphere Everyplace

Deployment platform.

 Table 2. Web development activities

Task Reference

Understanding Client Services web

application concepts.

“Client Services Web Application Concepts”

on page 26

Working with Client Services Web projects

versus Dynamic Web projects, and when to

use one versus the other.

“Client Services Web projects” on page 27

Developing Client Services web application

logic. This encompasses any special

development considerations when coding

and constructing the web application logic.

“Unsupported tooling features” on page 29

“Accessing resources” on page 29

“Using JSP Standard Tag Libraries” on page

30

“Java Server Faces (JSF) development” on

page 30

“Struts development” on page 31

Integrating the web application into the

WebSphere Everyplace Deployment

platform. This includes registering the web

application as a platform application, along

with specifying browser behavior.

“Platform integration” on page 34

Importing and exporting web application

bundles.

“Importing a Web Application bundle” on

page 37

“Exporting a Web Application bundle” on

page 38

Securing the web application through user

authentication and authorization.

“Securing Web Application resources” on

page 31

Debugging and testing the web application. “Debugging and testing applications” on

page 157

© Copyright IBM Corp. 2004 25

Table 2. Web development activities (continued)

Task Reference

Deploying the web application to a runtime. “Deploying projects for local testing” on

page 166

Using the command line WAB tool to

convert a WAR to a WAB.

“WAB Utility” on page 38

Configuring the runtime web container. Refer to the Web Container Configuration

information in the WebSphere Everyplace

Deployment for Windows and Linux

Administrator’s Guide

Web container logging. “Web Container Logging” on page 40

Client Services Web Application Concepts

Client Services web applications run on the WebSphere Everyplace Deployment

platform. A primary difference between a Client Services web application and one

that is deployed to run on a WAS or Tomcat runtime is that the Client Services

web application must also be a valid OSGi bundle. Refer to “Working with OSGi

bundles” on page 237 for more information on bundles and the WebSphere

Everyplace Deployment platform. The WebSphere Everyplace Client toolkit

automatically handles many of these bundle specific details, which is why

developing the web application through a Client Services web project is the

recommended development path for web applications that are to be run on the

WebSphere Everyplace Deployment platform. Nevertheless, it is also possible to

develop the web application through a Dynamic Web project, and subsequently

test run it on the WebSphere Everyplace Deployment platform. Refer to “Using a

Client Services Web project versus a Dynamic Web project” on page 27 for more

details. It is also possible to transform an existing Web Application Archive (WAR)

file into a Web Application Bundle (WAB) suitable for running on the WebSphere

Everyplace Deployment platform through the use of the WAB Utility.

The following lists aspects of a Client Services web application that differ from a

standard web application.

v The WebSphere Everyplace Deployment platform does not support deploying

Enterprise Applications through an EAR. The web application is directly

deployed to the runtime.

v A Client Services web application has a manifest file, located in

META-INF/MANIFEST.MF, that contains bundle information including package and

bundle dependencies. This is associated with the bundle, and is separate from

the manifest file found under the web application’s content folder.

v A Client Services web application contains additional deployment information in

wab.properties. This is located in the web content WEB-INF folder.

v JSP files are translated into their respective servlet classes before the web

application is deployed to the runtime as a WAB.

In most cases, these artifacts and differences are handled transparently by the

WebSphere Everyplace Client tools. These differences do not affect the functionality

of the web application. There are, however, some development considerations you

should take into account depending on the web technologies you will be using.

These are described in “Client Services Web Application Development” on page 29.

26 IBM WebSphere Everyplace Deployment: Developer’s Guide

A Client Services web application can be developed using many of the same web

development tools provided by the Rational Software Development platform. The

primary differences are:

v Use the Client Services Web project wizard to create a Client Services web

project, as described in “Creating a Client Services Web project” on page 28.

v Since the WebSphere Everyplace Deployment platform does not support EARs,

EAR projects are ignored.

v When testing the project, target the WebSphere Everyplace Deployment runtime

when using the Run / Debug on Server action. Or, use the WebSphere

Everyplace Deployment launch configuration when using the Eclipse Run /

Debug launch feature. This is explained in “Debugging and testing applications”

on page 157.

v When exporting the web application, use the export OSGi bundle file wizard, as

described in “Exporting a Web Application bundle” on page 38.

v Use the Import WAB wizard to import a Web Application Bundle.

Client Services Web projects

Using a Client Services Web project versus a Dynamic Web

project

Web applications can be developed using either a Client Services web project or a

Dynamic Web Project. The choice of which to use depends on the application

content and its primary usage. In general, web applications that primarily target

the WebSphere Everyplace Deployment platform or depend on other OSGi services

besides core servlet and JSP support should be developed using a Client Services

web project.

A Client Services web project is an extension of the dynamic web project. Because

of this, both types of projects make use of the Rational Software Development web

tools. In addition to this, a Client Services web project provides the following

support for developing a web application that is targeting the WebSphere

Everyplace Deployment platform.

v The OSGi manifest file required by WebSphere Everyplace Deployment

applications can be automatically managed by the tools.

v The project’s class path is maintained to match the class path environment that

will exist in the WebSphere Everyplace Deployment runtime. This is useful for

detecting class visibility problems at development time rather than runtime.

A Dynamic web project will not have the WebSphere Everyplace Deployment

specific tooling aids listed above, but can still be tested and run on the WebSphere

Everyplace Deployment platform. This is accomplished by targeting the project’s

server to the WebSphere Everyplace Deployment runtime through the project’s

server properties. The tooling will automatically add the proper OSGi manifest

entries for Servlet and JSP support. However, if the application references other

OSGi services or bundles, the developer will have to manually add these

dependencies to the manifest file.

A Client Services web project can also be tested and run on a platform other than

WebSphere Everyplace Deployment by reassigning its targeted runtime through the

project server properties. Refer to “Debugging and testing applications” on page

157 for further information.

Developing Web applications 27

Creating a Client Services Web project

Perform the following procedure to create a new Client Services Web project:

1. Select File > New > Project. The new project wizard displays.

2. Expand the Client Services folder. This lists the Client Services project wizards.

Choose Client Services Web Project, then select Next. The Client Services Web

Project panel displays.

3. Specify a project name in the Project name field. This is the only field you are

required to fill in. Select Finish to create a project with default settings.

The additional settings that can be configured through this wizard are described in

the following tables, along with their default values. Access the additional wizard

panels through the Next and Back buttons. Selecting Finish on any of the wizard

pages will create the project with the settings you have specified up to that point.

Client Services Web Project panel

 Table 3.

Option Description Default value

Project name Enter a name for the new

Client Services Web Project.

None

Project location You may click Browse to

select a file system location

for the new project.

The default location creates

the project in your current

workspace.

Servlet version The Servlet version that the

project is intended to use.

2.4

Context root The web application context

root.

Project name

Platform Profile panel

Allows the platform profile and associated application services to be selected for

the project. By default, the necessary services for supporting web projects will be

selected. Refer to “Platform Profile” on page 174 for a discussion of platform

profiles, and “Application Services” on page 174 for a discussion of application

services.

 Table 4.

Option Description Default value

Platform Profile Select from the list the

Platform Profile this Client

Services project will target.

You can change your

selection later in the Client

Services property page.

WebSphere Everyplace

Deployment (6.0.0) Default

Application Services Check the Application

Services that your Client

Services project will require.

You can change your

selection later in the Client

Services property page. Grey

entries are required by the

Platform Profile and cannot

be deselected.

The ″Core OSGi Interfaces″

Application Service is

required by all Platform

Profiles.

28 IBM WebSphere Everyplace Deployment: Developer’s Guide

Converting a Dynamic Web project to a Client Services Web

project

You can convert an existing Dynamic Web project into a Client Services Web

project by using the Convert Project to Client Services project wizard. Refer to

“Convert Project to Client Services Project Wizard” on page 250 for information on

how to use this wizard.

This will retain the existing web application logic of the project, and will add

Client Services tooling support.

Note: There is no wizard to convert a Client Services Web project back to a

Dynamic Web Project. If you wish to retain the original Dynamic Web

Project, you should copy the project before converting it. This can be done

as follows:

1. In the Package Explorer or Project Explorer view, right click the project

to be copied to display its context menu.

2. Select Copy.

3. Right click on an empty space in the project view.

4. Select Paste. This displays the Project Copy dialog.

5. Enter a project name for the project copy, and select OK.

Client Services Web Application Development

Unsupported tooling features

Various web application features can be selected through the project’s Web Project

Features properties page. Not all of these features are supported by the WebSphere

Everyplace Deployment platform. The following features are not supported:

v EGL Support

v Faces Base Components and Faces Client Framework

Java Server Faces is supported, as described in “Java Server Faces (JSF)

development” on page 30, but these particular features are unsupported.

v Domino SDO Mediator

v WDO Relational database runtime

v Crystal Reports

Accessing resources

The Servlet and JSP specifications do not guarantee that a web application’s

resources will be represented as files in the host machine’s file system. Many web

container implementations do expand web applications into the file system, and

some existing web applications take advantage of this implementation detail to

reference resources as Java Files. However, web applications that target a

WebSphere Everyplace Deployment runtime are represented as jar bundles that do

not have to be expanded in the file system to run. Because of this, your web

application should use the ServletContext.getResourceAsStream() API when

accessing web application resources. It should not assume these resources will be

available as files. The API ServletContext.getRealPath() should also not be used

as it is implementation dependant. For the WebSphere Everyplace Deployment

runtime, it will return null since the web application resources are not expanded in

the file system. Again, such resources can be accessed as IO streams through

ServletContext.getResourceAsStream().

Developing Web applications 29

Using JSP Standard Tag Libraries

The WebSphere Everyplace Deployment platform includes the JSP Standard Tag

Libraries (JSTL) version 1.1 as part of the runtime. These libraries will support both

Servlet 2.4 / JSP 2.0 compliant applications as well as Servlet 2.3 / JSP 1.2

applications. If your application makes use of JSTL tags, you do not need to

include copies of the JSTL libraries in your web application’s WEB-INF/lib

directory.

You should not use the project’s Web Project Features properties page to select JSP

Tag Libraries. This will incorrectly copy JSTL 1.0 libraries into your project’s

WEB-INF/lib directory. Remove these libraries if this option was selected

Java Server Faces (JSF) development

JavaServer Faces is a technology that helps you build user interfaces for dynamic

Web applications that run on the server. The JavaServer Faces framework manages

UI states across server requests and offers a simple model for the development of

server-side events that are activated by the client. JavaServer Faces is consistent

and easy to use. For additional information on JavaServer Faces, refer to the

Developing applications and Web Sites > Developing Web Applications > Web

Application Overview > Web Tools Features section in the Help Contents of the

Rational Software Development Platform.

Please refer to the product release notes for any updates to the Java Server Faces

development process.

The client platform supports the use of JavaServer Faces based web applications,

provided that the required JAR files are included within each web application. The

client platform does not include JSF jars as part of the client platform runtime as

does WebSphere Application Server v6.0.

To enable the creation of new web applications that use JavaServer Faces, you

must use the following project types and options when creating a new web

application:

v Client Services Web Project

You may select either Servlet Version 2.3 or 2.4

v Dynamic Web Project

You must choose from one of the following combinations:

– Servlet Version: 2.3 and Target Server: WebSphere Application Server v5.1

– Servlet Version: 2.3 and Target Server: WebSphere Everyplace Deployment

Client Runtime v6.0

– Servlet Version: 2.4 and Target Server: WebSphere Everyplace Deployment

Client Runtime v6.0

Only these combinations will correctly add the required libraries to your

Dynamic Web Project upon the creation of a Faces JSP file.

Note: The version of the JSP Standard Tag Library (JSTL) that will be added to

your project will be based on the 1.0 specification. Refer to “Using JSP

Standard Tag Libraries” for more information.

If you have an existing web application that was created with a Target Server:

WebSphere Application Server v6.0, and you intend to run this application on a

WebSphere Everyplace Deployment Client Runtime, then you will need to perform

the following procedures:

30 IBM WebSphere Everyplace Deployment: Developer’s Guide

1. If you want to preserve your original project environment, make a copy of the

project in your workspace.

2. Change the Target Runtime for your project:

a. Select your project, right click, then select Properties.

b. Select Server.

c. Change the Target Runtime to WebSphere Everyplace Deployment Client

Runtime v6.0.
3. Create a new web application project following the guidelines above.

4. Copy the set of libraries from the WebContent\WEB-INF\lib directory of the new

project into the WebContent\WEB-INF\lib directory of the existing project. If you

are prompted to overwrite the jsf-api.jar, jsf-impl.jar, or the jsf-ibm.jar,

select Yes.

You should now be able to continue development of your JSF based web

application.

Struts development

Struts is a framework of open-source software that can help you build Web

applications quickly and easily. It relies on standard technologies such as Java

beans, Java servlets, JavaServer Pages (JSP), and XML. Struts encourages

application architectures based on the Model 2 approach, which is basically the

same as the model-view-controller (MVC) design pattern. For additional

information on Struts, refer to the Developing applications and Web Sites >

Developing Web Applications > Web Application Overview > Web Tools

Features section in the Help Contents of the Rational Software Development

Platform.

The client platform supports the use of Struts-based web applications. All web

applications that intend to use Struts must include the Struts jars within the web

application.

The Web tools in the Rational Software Development Platform enable development

of Struts-based applications by adding libraries to the WebContent\WEB-INF\lib

directory of each web application. Perform the following procedure to add the

Struts libraries to your project:

1. Right click on your project in the Project Explorer view, and select Properties.

2. Select the Web Project Features page.

3. Select Struts, and then select OK.

Securing Web Application resources

Configuring a Web Application

The Web Container supports the declarative J2EE security model. In declarative

security the application’s web descriptor specifies the application’s security policy

(roles, access control etc.) without changing the applications code. The following is

an example code snippet from a web descriptor that shows the declarative security

syntax. This example secures web application resources with url-
pattern=/secure/* -

<security-constraint>

<display-name>myLoginTest</display-name>

 <web-resource-collection>

 <web-resource-name>LoginTest</web-resource-name>

 <url-pattern>/secure/*</url-pattern>

 <http-method>GET</http-method>

Developing Web applications 31

<http-method>PUT</http-method>

 <http-method>HEAD</http-method>

 <http-method>TRACE</http-method>

 <http-method>POST</http-method>

 <http-method>DELETE</http-method>

 <http-method>OPTIONS</http-method>

 </web-resource-collection>

 <auth-constraint>

 <description>Any user</description>

 <role-name>user.anyone</role-name>

 </auth-constraint>

</security-constraint>

<login-config>

 <auth-method>FORM</auth-method>

 <form-login-config>

 <form-login-page>/login.jsp</form-login-page>

 <form-error-page>/error.jsp</form-error-page>

 </form-login-config>

</login-config>

<security-role>

 <role-name>user.anyone</role-name>

</security-role>

To configure a web application to use declarative security on the Web Container,

the web descriptor must define a list of valid User Admin roles in the <role-name>

tag. This list of roles can include user and group roles. The above example uses the

default User Admin role of user.anyone. This means any valid user can be used to

log into this web application. The Web Container assumes that all User Admin

users store their passwords as a credential with the key ″password″. If no valid

users are created with User Admin then the Web Container will not let anyone

access the web application resources that have been secured.

Note: Developers may also use programmatic security to control access to a web

application. For more information on the Web descriptor, declarative and

programmatic security models refer to the Servlet 2.3 specification.

Using the User Admin Service to create users and roles

The Web Container uses the User Admin service to authenticate and authorize

requests for secured web application resources. You can use the User Admin API to

add, modify, or delete properties and credentials for existing users. The following

snippets of code show how you can add a user and delete a user:

Add a user

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceReference;

import org.osgi.service.useradmin.UserAdmin;

public class MyWebApplication {

/**

 * Used to store reference to UserAdmin service

 */

private static UserAdmin userAdmin = null;

/**

 * Plug-in bundle context

 */

private BundleContext context;

/**

 * Plug-in start method

 */

public void start(BundleContext bc) throws Exception {

32 IBM WebSphere Everyplace Deployment: Developer’s Guide

String username = “Joe”;

this.context = bc;

ServiceReference ref = bc.getServiceReference(“org.osgi.service.useradmin”);

userAdmin = (UserAdmin) bc.getService(ref);

useradmin.createRole(username, Role.User);

}

/**

 * Plug-in stop method

 */

public void stop(BundleContext bc) throws Exception {

}

}

Delete a user

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceReference;

import org.osgi.service.useradmin.UserAdmin;

public class MyWebApplication {

/**

 * Used to store reference to UserAdmin service

 */

private static UserAdmin userAdmin = null;

/**

 * Plug-in bundle context

 */

private BundleContext context;

/**

 * Plug-in start method

 */

public void start(BundleContext bc) throws Exception {

 String username = “Joe”;

this.context = bc;

ServiceReference ref = bc.getServiceReference(“org.osgi.service.useradmin”);

userAdmin = (UserAdmin) bc.getService(ref);

useradmin.removeRole(username);

}

/**

 * Plug-in stop method

 */

public void stop(BundleContext bc) throws Exception {

}

}

For more information on the User Admin service, please refer to the OSGi Release

3 specification and the OSGi Javadoc.

Using the Admin Utility for OSGi to create users and roles

With the Admin Utility for OSGi, you can use the User Admin Service to

manipulate user definitions. You can add, modify, or delete properties and

credentials for existing users.

To add a user:

1. Launch the WebSphere Everyplace Deployment platform.

Developing Web applications 33

2. Install the Admin Utility for OSGi feature.

3. Select Application Open > Admin Utility for OSGi to run the application

4. Once the application is started, select the User Admin label in the left-side

frame.

5. Select Create New User. The Create New User input fields display.

6. Enter a user name and select Create User.

To delete a user:

1. Launch the WebSphere Everyplace Deployment platform.

2. Install the Admin Utility for OSGi feature.

3. Select Application Open > Admin Utility for OSGi to run the application

4. Once the application is started, select the User Admin label in the left-side

frame.

5. Check the check box for the user to be deleted and select Delete. You will need

to refresh the data before removing the user from the form

To create a group:

1. Launch the WebSphere Everyplace Deployment platform.

2. Install the Admin Utility for OSGi feature.

3. Select Application Open > Admin Utility for OSGi to run the application

4. Once the application is started, select the User Admin label in the left-side

frame.

5. Select Create New Group. The Create New Group form displays.

6. Add members to the group by selecting a member in the Available Roles box

and choosing either Basic or Required to move the member to the New

Member Roles box.

7. Select Create Group to finish creating the group.

Platform integration

com.ibm.eswe.workbench.WctWebApplication

This extension point provides the definition of a web application to be launched.

Since: Enterprise Offering 5.8.0

Configuration markup:

<!ELEMENT extension EMPTY>

 <!ATTLIST extension

 point CDATA #REQUIRED

 id CDATA #IMPLIED

 name CDATA #IMPLIED>

v point - Fully qualified identifier of the target extension point

v id - ID identifying this instance of the extension point. If the web application is

using an IUrlProvider implementation to generate the URL, then the id should

not contain any decimals (’.’)..

v name - Name associated with the extension point

<ELEMENT DisplayName (#CDATA)>

DisplayName - Display Name to use for the application in the Application >

Open and Application Switcher menus. Required.

34 IBM WebSphere Everyplace Deployment: Developer’s Guide

<!ELEMENT Url (#CDATA)>

 <!ATTLIST Url

 provider CDATA #IMPLIED

 local CDATA #IMPLIED

 secured CDATA #IMPLIED>

Url - The Url text portion of the element specifies either the context root and

application specific path for a Local application, or the entire URL for a remote

application. Required.

The Url element will contain the following attributes:

v A provider attribute that specifies the name of a class that will return the Url to

be displayed. If the provider attribute is present, the text value of the Url

element is not required. Any provider must implement the IUrlProvider

interface and use the IPageDescriptor API to retrieve application information

required to construct the Url.

v A local attribute that indicates whether the content of the Url text portion is

intended to be run against the local web container, or is a full URL. Values are

true or false. This replaces the Local element that previously existed. The default

is true. If the provider attribute is specified, the workbench will do nothing with

this value (except for setting it up within the IPageDescriptor implementation)

v A secured attribute used only if local=”true” that indicates that HTTPS should

be used by the browser to connect to the web application. Values are true or

false. The default is false. If the provider attribute is specified, the workbench

will do nothing with this value (except for setting it up within the

IPageDescriptor implementation)

v The id attribute defined as part of the extension element is required if the

provider attribute of the Url is used.

Note: The value of the id attribute must be a simple string with no special

characters (e.g. ‘.’).

<!ELEMENT Icon (#CDATA)>

Icon - Relative path of icon to be used in the Application > Open and Application

> Switcher menus. Optional.

If specified, web application developers should provide both a 16x16 and a 32x32

pixel color image. If the image size is not 16x16 or 32x32 or if the <Icon> element

is not specified, then the default web application images will be used. Image name

should contain either ’16x16’ or ’32x32’ to denote the size of the image.

<!ELEMENT BrowserOptions>

 <!ATTLIST BrowserOptions

 browser CDATA #IMPLIED

 showAddressbar CDATA #IMPLIED

 showToolbar CDATA #IMPLIED

 showHistory CDATA #IMPLIED

 showHome CDATA #IMPLIED

 showPageCtrl CDATA #IMPLIED

 showPrint CDATA #IMPLIED

 showBookmark CDATA #IMPLIED

 userid CDATA #IMPLIED

 password CDATA #IMPLIED >

BrowserOptions- Configures browser options. Optional

The BrowserOptions element contains the following attributes:

Developing Web applications 35

v A browser attribute that specifies the type of browser to use. The supported

values are “platform”, “MSIE” and “Mozilla”. The default for Windows is MSIE,

the default for Linux is Mozilla.

Note: Mozilla on Windows is not supported for this release.

v A showAddressbar attribute that specifies whether or not the browser address bar

displays. The supported values are “true” or “false”. The default is “true”.

v A showToolbar attribute that specifies whether or not the browser tool bar

displays. The supported values are ″true″ or ″false″. The default is ″true″. If

showToolbar is set to ″false″, then none of the toolbar buttons (Print, Stop, etc...)

will display.

v A showHistory attribute that specifies whether or not the browser Back and

Forward buttons display. The supported values are ″true″ or ″false″. The default

is ″true″.

v A showHome attribute that specifies whether or not the browser Home button bar

displays. The supported values are “true” or “false”. The default is “true”.

v A showPageCtrl attribute that specifies whether or not the browser Stop and

Refresh buttons display. The supported values are ″true″ or ″false″. The default

is ″true″.

v A showPrint attribute that specifies whether or not the browser Print button

displays. The supported values are “true” or “false”. The default is “true”.

v A showBookmark attribute that specifies whether or not the browser Bookmark

button displays. The supported values are “true” or “false”. The default is

“true”.

v A userid attribute that specifies the username to use to replace the %USERID% tag

in the web application URL.

v A password attribute that specifies the password to use to replace the %PASSWORD%

tag in the web application URL.

Examples

1. The following example uses the Url element to specify the web application

URL, and shows the browser address bar while hiding the Home button:

<?eclipse version="3.0"?>

<plugin>

 <extension

 point="com.ibm.eswe.workbench.WctWebApplication">

 <DisplayName>%webapp.name</DisplayName>

 <Url local="true" secured="false">/OrderEntry</Url>

 <BrowserOptions browser="platform"

 showAddressBar="true"

 showHome="false"/>

 <Icon>icons/OEwctwebapp_32x32.gif</Icon>

 </extension>

</plugin>

2. The following example specifies a secured web application URL, and removes

the browser address bar and toolbar:

<?eclipse version="3.0"?>

<plugin>

 <extension

 point="com.ibm.eswe.workbench.WctWebApplication">

 <DisplayName>%webapp.name</DisplayName>

 <Url local="true" secured="true">/OrderEntry</Url>

 <BrowserOptions browser="platform"

 showAddressBar="false"

36 IBM WebSphere Everyplace Deployment: Developer’s Guide

showToolbar="false"/>

 <Icon>icons/OEwctwebapp_32x32.gif</Icon>

 </extension>

</plugin>

3. The following example uses the Mozilla browser, and removes Print button

from toolbar:

<?eclipse version="3.0"?>

<plugin>

 <extension point="com.ibm.eswe.workbench.WctWebApplication">

 <DisplayName>%webapp.name</DisplayName>

 <Url local="true">/OrderEntry</Url>

 <BrowserOptions browser="Mozilla"

 showPrint="false"/>

 <Icon>icons/OEwctwebapp_32x32.gif</Icon>

 </extension>

</plugin>

4. The following example shows how to use the UrlProvider capability:

<?eclipse version="3.0"?>

<plugin>

 <extension

 id=MyApplication point="com.ibm.eswe.workbench.WctWebApplication">

 <DisplayName>%webapp.name</DisplayName>

 <Url provider="myApplication.myProvider"/>

 <BrowserOptions browser="platform"

 showAddressBar="true"

 showToolbar="true"

 showHistory="true"

 showPageCtrl="true"

 showHome="false"

 showPrint="true"/>

<Icon>icons/OEwctwebapp_32x32.gif</Icon>

 </extension>

</plugin>

This extension point will be used to display the menu items that appear in the

Application > Open menu, and to display the web applications within the

Desktop view.

Importing and Exporting Web Application Bundles

Importing a Web Application bundle

You can import a Web Application bundle (WAB) that was exported with source.

Refer to “Exporting Client Services projects” on page 166 for information on

exporting a bundle.

If the bundle was not exported with source, it will not be eligible for import.

Perform the following procedure to import a WAB:

1. Open the Import wizard by selecting File > Import... The Import window

displays.

2. Choose WAB file, and select Next. The Import WAB window displays.

3. Choose the WAB file you want to import by selecting Browse, or by typing the

file name into the WAB file field.

4. Select Finish. A project will be created for the imported bundle. The project

name will be the bundle’s symbolic name.

Developing Web applications 37

Exporting a Web Application bundle

A Client Services Web project can be exported as a bundle by using the OSGi

bundle export wizard. Refer to “Exporting Client Services projects” on page 166 for

information on how to export a bundle.

WAB Utility

The WAB utility is a command line utility for transforming Web Application

Archive (WAR) files into Web Application Bundle (WAB) files that are suitable for

running in the WebSphere Everyplace Deployment platform. Note that the web

development tools already provide a wizard as well as an ant task for exporting

both Client Services web projects and Dynamic web projects as WABs. See

“Exporting a Web Application bundle” and “Using Ant tasks to build a deployable

bundle” on page 165. These tools should be used when you are dealing with web

projects under the WebSphere Everyplace Client toolkit. The WAB utility is a

standalone utility that can be used to transform existing WAR files independent of

any projects managed by the WebSphere Everyplace Client toolkit.

WAB Utility installation

Perform the following procedure to install the WAB utility:

1. Install a J2SE 1.4.2 JDK on your development machine, and set the environment

variable JAVA_HOME to the location of this JDK.

2. The WAB utility is delivered as one of the plug-ins installed with the

WebSphere Everyplace Client toolkit. It is located in the following directory

(where RATIONAL_HOME is the directory that your Rational Software Development

platform has been installed to):

RATIONAL_HOME/sdpisv/eclipse/plugins/com.ibm.pvc.tools.web.translator_6.0.0

You can copy this directory elsewhere on your development machine, if

desired, or use it in place. For convenience, you should add the WAB utility

directory to your system’s PATH environment variable. This will enable you to

invoke the WAB utility scripts without specifying their full path.

3. The invocation scripts for the WAB utility are within the WAB utility directory

described in step 2.

v wab.bat - Windows script for invoking the WAB utility

v wabc - Linux script for invoking the WAB utility

Refer to “WAB Utility usage and parameters” for details on how to use the

WAB utility.

WAB Utility usage and parameters

The WAB utility is invoked through a script. On Windows systems, this script is

wab.bat. On Linux systems this script is wabc. The following will use the Windows

wab.bat script in examples, and assumes that the WAB utility directory has been

added to the system’s PATH environment.

The WAB utility performs the following transformations on your web application:

v All JSP files are translated to their underlying servlet classes. In addition to the

standard J2SE libraries, the utility automatically adds requiredjavax.servlet*

class libraries to the class path during translation. Any other classes referenced

by the application’s JSPs, that are not part of the application itself (through

WEB-INF/classes or WEB-INF/lib), must be specified through the utility’s

–classpath parameter.

38 IBM WebSphere Everyplace Deployment: Developer’s Guide

v If an OSGi compliant manifest file does not exist in the web application, one will

be added. It will have the necessary package dependency statements for

supporting web applications. If your application is referencing additional

external packages, you will need to include your own custom

META-INF/MANIFEST.MF manifest file that includes these package dependencies

through either the Import-Package or Require-Bundle fields. Note that the utility

will augment an existing manifest file to contain any missing dependencies, and

will not overwrite any preexisting entries.

WAB Utility examples

The simplest use of the WAB script only specifies the war file to be translated:

wab myweb.war

The above will create a myweb.jar file in the directory from which the tool was

invoked.

You can specify the target name and location for the WAB JAR using the -o

parameter:

wab myweb.war -o /myruntime/eclipse/plugins/myweb.jar

You can add additional libraries to the translation class path using the -classpath

parameter:

wab myweb.war -classpath myLib1.jar;myLib2.jar

You can use the -g option to specify compilation with debug information.

WAB Utility parameters

WAB utility invocation has the following form:

wab <war file> [Options]

The following table describes the options parameters available to the WAB utility.

 Table 5. WAB Utility options parameters

Option Description

<war file> File name of the war file to be transformed

into a WAB file. This must be a Servlet 2.3

or 2.4 compliant war file.

-contextpath <path> Specify the context path for the web

application. By default, the base name of the

output file is used for the context path. For

example, the default context path for

inventory.jar is /inventory.

-classpath <classpath> Augment the class path to be used for the

JSP file compilation. The WAB utility

automatically includes the javax.servlet.*

packages on the class path.

-o <output file> File name of the resulting WAB file. The

default name is the base <war file> name

with .JAR file extension, placed in the same

directory as <war file>.

-includesource When specified, the WAB file will include

the original JSP source files. By default, JSP

files are removed from the WAB, since they

are translated to their underlying servlet

classes.

Developing Web applications 39

Table 5. WAB Utility options parameters (continued)

Option Description

-g When specified, JSP files are compiled with

debug information.

-id <name> Specify the bundle symbolic name. By

default, this is the base name of the output

file.

Web Container Logging

The Web Container will log all messages using the OSGi Log service. The

WebSphere Everyplace Deployment logger plug-in will redirect these messages

using JDK 1.4 logging to

<USER_HOME>\IBM\RCP\<INSTALL_ID>\<USER_NAME>\logs\rcp.log.*.

The following table shows the mapping between the Web Container log levels,

OSGi log levels and the levels used by JDK 1.4 logging:

 Table 6. Web Container log level mapping

Web Container Log Level OSGi Log Level java_util.Level

ERROR ERROR SEVERE

WARNING WARNING WARNING

INFO INFO INFO

DEBUG DEBUG FINEST

EVENT DEBUG FINEST

ENTRY DEBUG FINEST

EXIT DEBUG FINEST

Configuring the Web Container Logging

Web application developers can configure the Web Container logging mechanism

using the trace.properties file located in the RAS (com.ibm.pvc.ras) plug-in

directory. The trace.properties file allows developers to debug the Web Container

at three levels (in order of precedence) – Web Container level, Web Container

component level, and Web Container class level. Please note that whether or not

anything is logged depends on whether or not the classes you are debugging have

the requisite hooks.

Web Container level properties

v Debug.ALL

v Entry.ALL

v Event.ALL

Note: If these are set to true, they will override the rest of the settings in this file.

Note: Error, Warning and Info level messages are always logged.

Examples:

Debug.ALL=true

Entry.ALL=true

40 IBM WebSphere Everyplace Deployment: Developer’s Guide

Web Container component level properties

Component-level syntax is <Level>.<component>. The allowed components are

Webcontainer, HttpSession, and HTTP_Transport.

Examples:

Debug.Webcontainer = false

Debug.HttpSession = true

Debug.HTTP_Transport = true

Developing Web applications 41

42 IBM WebSphere Everyplace Deployment: Developer’s Guide

Developing messaging applications

IBM WebSphere Everyplace Deployment for Windows and Linux provides both

enterprise class messaging through the Java Message Service (JMS), and embedded

messaging using WebSphere MQ Everyplace (MQe) and the MicroBroker technical

preview with the MQ Telemetry Transport (MQTT) Java client APIs. MQe provides

a point-to-point JMS provider, which enables Java developers to leverage the JMS

APIs to send and receive messages from the WebSphere Everyplace Deployment

client runtime.

Technology overview

Messaging is intended to enable a wide variety of computers to exchange

information. One of the main benefits of messaging is to ’decouple’ a sending

application from a receiving application. This decoupling provides a very powerful

abstraction, enabling the exchange of information to be independent of

manufacturer, application, operating system or connectivity reliability.

Traditionally, messaging is between large computers and a server. However, with

the advent of Java messaging implementations, now a new class of device

interoperates with the messaging infrastructure. This provides opportunities for an

enterprise to broaden the reach of its networks.

Along with the transmission of simple messages, messaging is useful for

transactional updates, or where intermediate data updates or data ordering is

required. Messages containing the complete update can be sent to a server, where

transaction managers can coordinate the update of multiple resources. Messaging

can also be paired with synchronization technology, such that transactions are sent

by messages, and the resulting database updates distributed back to the client

through synchronization.

Messaging also can be used effectively in a disconnected environment (areas where

connectivity is not reliable), since a local queue manager is available to contain

messages until the connection to the server infrastructure is reestablished. After the

connection is available, the queued messages are transferred to the messaging

server for further action.

Messaging, irrespective of the particular product or product group, is separated

into two main categories:

v Point-to-point messaging

v Publish and Subscribe messaging

To take full advantage of the messaging capabilities of WebSphere Everyplace

Deployment, it is crucial to understand the differences in these two messaging

types.

Publish and Subscribe – Topics, subscriptions and brokers

The application programming model for a publish/subscribe messaging paradigm

consists of the following:

v Subscribers: Express an interest in messages containing information on a

particular subject.

© Copyright IBM Corp. 2004 43

v Subscriptions: Contain records of registered interest with the Broker from a

subscriber.

v Brokers: Act as go-betweens, receiving messages from publishers and comparing

them to the needs of subscribers. A message is delivered to all subscribers that

have expressed an interest in the subject of the message.

v Publishers: Generate messages containing information about a particular subject.

Messages are sent to a broker.

The publish and subscribe messaging paradigm provides one-to-many messaging.

The following graphic shows the topology for a publish and subscribe messaging

paradigm:

Point-to-point – queues and queue managers

Queue managers handle queues that store messages. Applications communicate

with a local queue manager, and get or put messages to queues. If a message is

put to a remote queue (a queue owned by another queue manager), the message is

transmitted over connections to the remote queue manager. In this way, messages

can hop through one or more intermediate queue managers before reaching their

final destination. You can configure queue managers with or without local

queuing. All queue managers support synchronous messaging operations. A queue

manager with local queuing also supports asynchronous message delivery.

The point-to-point messaging paradigm provides one-to-one messaging. In other

words, messages are consumed by only one receiver, unlike publish-and-subscribe

where messages are consumed by multiple receivers.

The following graphic shows the topology for point-to-point messaging:

Message

Message

Message

Message Publisher Subscriber

Subscriber

Subscriber

Message Broker

Topic

Figure 8. Publish and subscribe messaging

MessageMessage Sender Receiver

Message Server

Message
Queue

Figure 9. Point-to-point messaging

44 IBM WebSphere Everyplace Deployment: Developer’s Guide

Java Message Service

Java Message Service (JMS) is the standard Java API for messaging. It supports the

two messaging categories: point-to-point messaging and publish/subscribe

messaging. JMS is defined as part of the Java 2 Enterprise Edition 1.3 and 1.4

definitions. It defines a package of Java interfaces, which allows for

provider-independence, but does not necessarily allow for provider interoperability.

The JMS APIs are provided with the WebSphere Everyplace Deployment runtime.

This runtime also includes a point to point JMS provider based on MQe

messaging. The MQe classes for JMS are a set of Java classes that implement the

JMS interfaces to enable JMS programs to access MQe systems.

There are several benefits to using JMS as the API to write MQe applications. Some

advantages are derived from JMS being an open standard with multiple

implementations. Using an open standard provides the following benefits:

v The protection of investment, both in skills and application code

v The availability of people skilled in JMS application programming

v The ability to plug in different JMS implementations to fit different requirements

IBM has several implementations of JMS. Interoperability is provided between

them.

More information about the benefits of the JMS API is available at:

http://java.sun.com

The JMS application is written to use only references to the interfaces in the

javax.jms package. All vendor-specific information is encapsulated in

implementations of the following JMS administered objects:

v QueueConnectionFactory

v TopicConnectionFactory

v Queue

v Topic

Note: The WebSphere Everyplace Development client runtime only provides an

MQe point-to-point JMS provider, which supports the

QueueConnectionFactory and Queue objects. The WebSphere Everyplace

Development runtime does not provide a JMS provider supporting

TopicConnectionFactory or Topic objects.

These JMS administered objects are stored in a Naming Directory Interface (JNDI)

namespace. A JMS application can retrieve these objects from the namespace and

use them without needing to know which vendor provided the implementation; in

this case, the MQe JMS provider.

WebSphere MQ Everyplace

WebSphere MQ Everyplace (MQe) is a member of the IBM WebSphere MQ family

of business messaging products. It exchanges messages with various applications,

providing once and once-only assured delivery leveraging the point to point

message paradigm.

MQe provides an integrated set of security features enabling the protection of

message data both when held locally and when being transferred.

Developing messaging applications 45

http://java.sun.com

With synchronous message delivery, the application puts the message to MQe for

delivery to the remote queue. MQe simultaneously contacts the target queue and

delivers the message. After delivery, MQe returns immediately to the application. If

the message cannot be delivered, the sending application receives immediate

notification. MQe does not assume responsibility for message delivery in the

synchronous case (non-assured message delivery).

With asynchronous message delivery, the application puts the message to MQe for

delivery to a remote queue. MQe immediately returns to the application. If the

message can be delivered immediately, or moved to a suitable staging post, it is

sent. If not, it is stored locally. Asynchronous delivery provides once and once-only

assured delivery. After the message is provided to MQe, control is returned to the

application. MQe next takes responsibility for assured delivery of the message.

Delivery occurs in the background allowing the application to carry on its

processing.

MQe also has the ability to exchange messages with WebSphere MQ host queue

managers and brokers. To do this, configure a MQe queue manager with bridge

capabilities. Without the bridge, a queue manager can communicate directly only

with other MQe queue managers. However, it can communicate indirectly through

other queue managers in the network that have bridge capabilities.

As mentioned previously, a point-to-point JMS provider is included with MQe.

Initially MQe must be bootstrapped using the supplied connection factory. From

then on, standard JMS APIs can be used.

MicroBroker – Technical Preview

MicroBroker is a very small footprint, 100% Java message broker, capable of

running in resource-constrained environments. It is suitable for embedding in

applications and solutions that have a need for messaging, notification and event

services.

MicroBroker supports the publish and subscribe messaging paradigm. It provides a

messaging infrastructure, which enables lightweight messaging clients to

communicate with each other, on one host or across a network, as well as with

enterprise brokers through its bridging capabilities.

MicroBroker uses the MQ Telemetry Transport (MQTT) protocol over TCP/IP.

As part of the technical preview capabilities, MicroBroker allows for the bridging

of messages to WebSphere MQ servers. The IBM MicroBroker Technical Preview

Deployment Guide (available in “Related documentation” on page 48) provides

detailed information on the MQ bridging capability. This is accomplished by

leveraging a set of MQ JAR files from a WebSphere MQ installation. The usage of

these MQ JARs is subject to the same Technical Preview status as the MicroBroker

component. In order to provide access to the required MQ packages in our

WebSphere Everyplace Deployment environment, the JARs can be packaged as an

Eclipse plug-in using our WebSphere Everyplace Client Tooling. In order to

provide the MQ jars for the platform, we suggest the following steps:

1. Create a Client Services project choosing an appropriate project name, such as

com.ibm.mq.

2. Deselect the Create a Java project check box. Select Next, and then Finish.

46 IBM WebSphere Everyplace Deployment: Developer’s Guide

3. Copy the com.ibm.mq.jar, com.ibm.mq.jms.jar, and the connector.jar from the

<Websphere MQ installation>/Java/lib directory into the root of the new

Client Services project.

4. Open the build.properties file and select the three JARs listed in step 3 in the

Binary Build section of the build.properties editor.

5. Update the META-INF / MANIFEST.MF file as shown:

 Manifest-Version: 1.0

 Bundle-Name: IBM WebSphere MQ

 Bundle-Version: 1.0.0

 Bundle-SymbolicName: com.ibm.mq

 Import-Package: javax.jms

 Bundle-ClassPath: com.ibm.mq.jar,com.ibm.mqjms.jar,connector.jar

 Export-Package: com.ibm.mq.jms

 Provide-Package: com.ibm.mq.jms

This Client Services project can now be used in your development environment

or exported for use in a client runtime. Please refer to “Using the IBM

WebSphere Everyplace Client Toolkit” on page 169 for more information on

performing these tasks.

MQ Telemetry Transport – Technical Preview

MQ Telemetry Transport (MQTT) is an open protocol designed for

resource-constrained devices and networks, providing publish and subscribe

messaging over TCP/IP. Clients operate in conjunction with a suitable message

broker, such as the MicroBroker, WebSphere Business Integration (WBI) Message

Broker, or WBI Event Broker, which are responsible for the syndication of

messages. As a wire protocol, no device API is mandated; rather, the

implementations expose a simple semantic including: connect/disconnect, publish,

and subscribe/unsubscribe. Provision is made for assurance of message delivery

using one of three levels of service; fire and forget, at least once, and exactly once.2

The Last Will and Testament feature allows abnormal disconnection of a client to

be detected, and interested parties to be informed.

By minimizing the requirement on network bandwidth, it is practical to use in

wide area networks, which typically have lower link speeds than wired networks.

This facilitates not only using MQTT for the collection of data, but also for the

presentation of data on handheld devices.

A Java client implementation of the MQTT wire protocol is provided to simplify

MQTT client programming. For more information, see: http://www.mqtt.org

WebSphere MQ Everyplace and MicroBroker comparison

While MQe and MicroBroker products are similar in that they provide embedded

messaging capabilities; their specific set of features might make a better choice for

certain client applications.

 Table 7. MQ Everyplace and MicroBroker comparison

WebSphere MQ Everyplace MicroBroker and MQTT

JMS provider included Yes. point-to-point provider. No

Messaging paradigm point-to-point (queue-based) Publish and Subscribe

(topic-based)

2. Fire and forget is also known as ’at most once’.

Developing messaging applications 47

http://www.mqtt.org

Table 7. MQ Everyplace and MicroBroker comparison (continued)

WebSphere MQ Everyplace MicroBroker and MQTT

Implementation type Java-based

(platform-independent)

implementation

Java-based

(platform-independent)

implementation

Bridging Supports bridge to MQe and

WebSphere Business

Integration Message and

Event Brokers

Support bridge to WebSphere

MQ, and WebSphere

Business Integration (WBI)

Message and Event Brokers

Wire protocol MQe- specific MQTT standards based

Separate small footprint

client

No Yes; Java and ‘c’

QOS for message delivery At least once and exactly

once.

Fire and forget, at least once,

and exactly once

Local and remote queues Yes No

Build in security Yes No

This is not an exhaustive comparison of the two products. See the product

documentation for more complete information about these products.

Client Services platform profile components

IBM WebSphere Everyplace Client Toolkit provides Client Services platform profile

support in the Rational tooling environment. These platform profiles simplify the

creation and configuration of messaging application projects, enabling you to select

the target-embedded messaging APIs, and provide automatic management of the

requisite messaging libraries. When developing a messaging application, you can

select any of the Client Services platform profiles for your Client Services project.

The following table provides a list of tasks and the appropriate application service

selections for each profile in a Client Services project.

 Table 8. Client Services project tasks

Task Application Services

MQe programming WebSphere MQ Everyplace

JMS point-to-point messaging WebSphere MQ Everyplace using

Java Messaging Service (JMS)

MQTT programming WebSphere MQ Telemetry Transport

MicroBroker programming MicroBroker

Related documentation

WebSphere MQ Everyplace

For more information about MQe, see the following:

WebSphere_MQe.pdf

MQ Telemetry Transport Technical Preview

Documentation is also available on the MQTT Web site at: http://mqtt.org

48 IBM WebSphere Everyplace Deployment: Developer’s Guide

WebSphere_MQe.pdf
http://mqtt.org

MicroBroker Technical Preview

For more information about MicroBroker, see the following:

MicroBroker_techpreview.pdf

Developing messaging applications 49

MicroBroker_techpreview.pdf

50 IBM WebSphere Everyplace Deployment: Developer’s Guide

Developing the application user interface

This section explains the technology associated with constructing an application

user interface. Topics include:

v An overview of the technology associated with application user interfaces

v An overview of the tasks and artifacts for a user interface

v Some guidelines to help incorporate your application into the overall client

platform

Technology overview

Eclipse

The Eclipse 3.0 SDK provides an open framework to enhance functionality to the

Integrated Development Environment (IDE). These features (or plug-ins) are easily

versioned and dynamically installed or updated without restarting the IDE.

Software developers using Eclipse have often wished for a similar model for their

desktop applications. With previous versions of Eclipse, this was possible but

difficult, especially when heavily customizing menus, layouts, and other user

interface elements.

Eclipse Version 3 introduces the Rich Client Platform (RCP), a refactoring of the

fundamental parts of the UI, enabling RCP to be used as a general-purpose

application platform. Its internals are the same OSGi run time and GUI toolkit

provided by the Eclipse IDE, but now these are easily used by application

developers to provide robust, customizable, and portable Java applications.

Because of its Eclipse open source license, you can use the technologies that went

into Eclipse to create your own commercial-quality programs. The GUI toolkits

used by Eclipse RCP are the same used by the Eclipse IDE and enable applications

with optimal performance that have a native look and feel on any platform that

they run on.

The client platform provides the default product and workbench. The workbench

provides the default look-and-feel that incorporates the base menus, images, and

application launcher. Application developers can create new applications that run

within the confines of the platform. The workbench provides the facilities that

developers can use to enable applications to be launched.

There are two main application user interface types that can be hosted within the

platform. Web application based user interfaces are displayed within an embedded

browser view that is part of a predefined perspective provided by the platform.

The web application can either be locally hosted within the provided web

container environment, or be running on a remote server. For more information on

creating web applications, refer to “Developing Web applications” on page 25.

The second main application user interface type is an application built using

Java-based widgets. In order to contribute to the workbench, applications must

provide a perspective and declare the perspective to the workbench using the

WctApplication extension point. The perspective is a standard Eclipse perspective

and is composed of one or more views (or editors). Views (and editors) are

constructed from UI widgets such as tables, buttons, text fields and more. Wizards

and dialogs can also be created by the application to perform specific tasks.

© Copyright IBM Corp. 2004 51

Wizards and dialogs can be launched by widgets (buttons) within a view, or from

various menu bars that are available within the platform.

UI toolkits

The following UI toolkits are used by the Eclipse IDE and plug-ins, and work

equally well for RCP applications.

The Standard Widget Toolkit (SWT) provides a completely platform-independent

API that is tightly integrated with the operating system’s native windowing

environment. Java widgets actually map to the platform’s native widgets. This

gives Java applications a look and feel that makes them virtually indistinguishable

from native applications. In cases where native function is not provided, the SWT

emulates it in a manner in keeping with the platform’s normal look and feel. This

toolkit overcomes many of the design and implementation trade-offs that

developers face when using the Java Abstract Window Toolkit (AWT) or Java

Foundation Classes (JFC). AWT gives the least common denominator approach and

is therefore functionally limited. JFC is more flexible, but because all widgets are

painted by the toolkit, JFC always seems to have trouble precisely emulating a

native look and feel.

The JFace toolkit is a platform-independent user interface API that extends and

interoperates with the SWT. This library provides a set of components and helper

utilities that simplify many of the common tasks in developing SWT user

interfaces. For example, it provides the dialogs, wizards, and rich text editors used

by the Eclipse IDE. JFace also has tables and trees that utilize a model view

controller (MVC) architecture to separate data access login from data display logic.

JFace also provides the mechanisms by which plug-ins programmatically

contribute to the workbench, which is further discussed in the next topic.

Visual Editor for Java

The visual editor for Java is a code-centric Java editor that helps you design

applications that have a graphical user interface (GUI). The visual editor is based

on the JavaBeans™ component model and supports visual construction using the

Standard Widget Toolkit (SWT), the Abstract Window Toolkit (AWT), or Swing. A

developer can use the visual editor for Java to create SWT composites. These SWT

composites can be used inside of Eclipse views and perspectives and used in

WebSphere Everyplace Deployment.

Understanding the WebSphere Everyplace Deployment User Interface

User interaction in the WebSphere Everyplace Deployment 6.0

The default user interface provided for the Websphere Everyplace Deployment is

similar in appearance and action to other user interfaces, such as Microsoft

Windows, Macintosh, and Motif. Users employ a ″selection/action″ model to

interact with it.

In a selection/action model, selection pertains to each view and is independent of

other selections in other views. The view retains what is called selection memory.

For example, when a user selects one or more items in a list in one view, and goes

to a different view (in a different plug-in or the same one), and then returns to the

list in the original view, the selected items are still selected. This selection model

helps users remember where they were and what they were doing in the view.

52 IBM WebSphere Everyplace Deployment: Developer’s Guide

Inactive selection refers to the display of a previous selection at the same time that

the active selection is displayed. All actions only take place on active selections,

but continuing to display the inactive selection helps users remember the choices

they have made.

User interface organization

The following figure illustrates the organization of the user interface.

The following parts of the Websphere Everyplace Deployment user interface are

displayed by default:

v Title bar

v Menu bar

v Banner bar

v Status bar

v Switcher bar

The main data area contains only a default image when the client platform starts.

Once applications have been opened, then the views associated with the

application will be displayed.

Title bar

The Title bar displays the program title and icon. The displayed information is part

of the branding elements that can be changed. For information on changing the

program title, refer to “Managing client configurations” on page 222.

Menu bar

The menu bar contains the set of actions that have been provided by either the

default workbench or by other applications.

Usability guidelines recommend that all features of an application be available

from the menu items on the menu bar. They also can be available from buttons or

Title Bar

ViewView

S
w

itc
h
e
r

B
a
r

Menu Bar

Main Data Area

Status Bar

Banner Bar

Coolbar

Figure 10. User interface organization

Developing the application user interface 53

context menus. Context menus are displayed when a user right-clicks the

background of a user interface component, such as a view or document.

In general, menus should display all menu items that are applicable to the current

view.

 If Then

A menu item is not applicable to what is

currently selected, but the user can take an

action while in the same tab or window to

enable the menu item

That menu item should appear dimmed

A menu item is not applicable to what is in

the view

That menu item should be hidden

Pull-right menus should always be enabled, even if none of the items in the

pull-right menu are available. Users should be able to view the contents of the

pull-right menu, even if none of the actions are available.

Banner bar

The banner bar can optionally display a graphic and the application name. The

configuration and graphical image used by the banner bar can be changed. For

information on changing the program title, refer to “Managing client

configurations” on page 222.

Switcher bar

The switcher bar is a vertical bar on the left side of the client window that lists the

running applications, each represented by an icon, from which users can select an

application to switch to.

When a user clicks an application icon, the client switches to the application in the

main data area. Each application represented on the switcher bar has a perspective

defined for it. The perspective defines how to populate the window. The switcher

bar provides a way for a user to switch from one perspective to another. It

prevents multiple applications from having to share a single perspective. As a

result, it allows for a cleaner, less cluttered user interface.

In addition to using the switcher bar, users can switch between open applications

through the keyboard shortcuts Ctrl+F8 or Shift + Ctrl + F8. The icons on the

switcher bar are displayed in a flat list only; no nesting is supported.

Data area

The primary data area of the user interface contains the perspectives and views

associated with an application.

Coolbar/Toolbar

The Coolbar/Toolbar area is used to display icons for actions that are available.

Usability guidelines suggest that all actions available on the coolbar or toolbar are

also available via actions on the menu bars. The Coolbar/Toolbar area is optionally

displayed and is configurable by the administrator. Users can also elect to display

or hide the Coolbar/Toolbar area.

For information on changing the Coolbar/Toolbar display, refer to “Managing

client configurations” on page 222.

54 IBM WebSphere Everyplace Deployment: Developer’s Guide

Status bar

The status area can be used by applications to display information regarding the

status of their application. The components in the status area are associated with a

particular perspective and view.

The status bar is optionally displayed and is configurable by the administrator. For

information on changing the Status bar display, refer to “Managing client

configurations” on page 222.

Creating a simple Rich Client Platform application

The Rich Client Platform is the minimal set of Eclipse SDK plug-ins needed to

build an application with a UI. However, rich client applications are free to use

any API necessary for their feature set, and can require any plug-ins beyond the

bare minimum. The key differentiator of a rich client application from the standard

SDK workbench is that the application is responsible for defining which class

should be run as the main application. Your RCP application is an Eclipse plug-in.

As such, you can use a plugin.xml file to specify your application’s start-up class,

which creates the workbench window.

In order to create a Java-UI application that can be contributed to the client

platform, there is a minimal set of objects that must be created:

v A plug-in for the application

v A view to display some data

v A perspective to contain the view

v An extension point declaration of the application for WebSphere Everyplace

Deployment

Note: The above objects are enough to run an application within the development

environment. In order to deploy and install the application, a feature and an

update site are also required.

The following procedure illustrates how to create an application that can be

contributed to the client platform. In these steps, you will make use of the Plug-in

Development Environment Plug-in Project, as it provides a set of templates that

will reduce the number of steps necessary to build the application.

1. Start Rational Software Development Platform.

2. Create a plug-in project to contain the application that you are providing. You

will use a template that provides a view in order to quickly build an

application. Later, you can modify the code generated by the template to meet

your own requirements.

a. Select File > New > Other > Plug-in Development > Plug-in Project to

create the initial project, then select Next.

Note: If you do not see the Plug-in Development entry as one of the

selections, select the Show all wizards option to enable the display of

all of the new project wizards. Selecting a new Plug-in Project will

cause a dialog to display inquiring whether you want to enable

Eclipse Plug-in Development. You will need to enable this capability

to allow appropriate choices to be populated on menus.

b. On the Plug-in Project panel, enter a name for your plug-in project, such as

MyApplication. You can use the defaults already entered on the rest of the

panel. Select Next.

Developing the application user interface 55

c. Use the default information on the Plug-in Content panel. Select Next.

d. On the Templates panel, check Create a plug-in using one of the templates.

Then select Plug-in with a view. Then select Finish.

e. A project called MyApplication will now be created in your workspace.

Selected files will have already been created within the project based on

your selections to create a plug-in with a view. The MyApplication and

MyApplication.views packages will have been created in the src folder.
3. Create the initial Java class for the perspective for the application. This class

organizes the view created by the template.

a. First, create a package to contain your perspective:

1) Highlight the src folder in your plug-in project.

2) Select File > New > Package. Enter MyApplication.perspectives as the

Name, then select OK.
b. Now, create the Java class for the perspective:

1) Select the MyApplication.perspectives package that you just created.

2) Select File > New > Class.

3) Enter a Name for the class, such as MyPerspective.

4) The superclass will remain java.lang.Object.

5) Your class will implement the org.eclipse.ui.IPerspectiveFactory

interface. Select the Add... button next to Interfaces. Begin typing

IPerspectiveFactory and the panel will complete the name for you as

you type. Select OK.

6) Select Finish to complete your class creation.
c. You will need to add some code to the class that you just created in order to

layout the view created by the template:

1) Edit the MyPerspective.java file.

2) Locate the method createInitialLayout and replace the method with

this code:

public void createInitialLayout(IPageLayout layout) {

 String editorArea = layout.getEditorArea();

 layout.addView("MyApplication.views.SampleView",

 IPageLayout.BOTTOM, 0.7f,editorArea);

 layout.setEditorAreaVisible(false);

 }

This code adds the view created during the project creation to this

perspective.

3) Save and close the Java file.
4. Now add an extension point to the plug-in to define the perspective that you

just created:

a. Open the plugin.xml file contained in your project.

b. Select the Extensions tab within the editor. You should already see some

extensions defined, such as org.eclipse.ui.views and

org.eclipse.ui.perspectiveExtensions.

c. Select Add..., then select org.eclipse.ui.perspectives, then OK.

d. Once org.eclipse.ui.perspectives has been added to the All extensions

list, right click on the entry, then select New > perspective.

e. The Extension Element Details information will display. Use the default

information for the id and name.

f. Select the Browse... button next to the class and select the

MyApplication.perspectives.MyPerspective class that you created in Step 3.

56 IBM WebSphere Everyplace Deployment: Developer’s Guide

5. Create the WctApplication extension point to enable contribution of the

application to the client platform

a. Select Add... again, uncheck the box for Show only extension points from

the required plug-ins, then select

com.ibm.eswe.workbench.WctApplication, then OK.

b. Select the plugin.xml tab in the editor.

c. Replace the content:

<extension

 point="com.ibm.eswe.workbench.WctApplication">

 </extension>

with

 <extension id="MyApplication"

 point="com.ibm.eswe.workbench.WctApplication">

 <DisplayName>MyPerspective</DisplayName>

 <PerspectiveId>MyApplication.perspective1</PerspectiveId>

 <Version>1.0.0</Version>

 </extension>

d. Save and close the plugin.xml file.

At this point, you can launch the platform from the workbench including this

application. Using Application > Open will show MyApplication as one of the

selectable applications. Refer to “Debugging and testing applications” on page 157

for more information on how to launch the client platform.

These are the basic steps towards creating the initial application. Once you have

the basic application created, you can continue to enhance your application, adding

additional views, menus and menu items, preference pages, dialogs, messages, and

more. You can use the same plug-in that you created above, or you can separate

your user interface logic into additional plug-ins, depending upon your

requirements.

In step 5, you implemented an extension point that defined the perspective ID to

contribute to the WebSphere Everyplace Deployment workbench. For more

information on the WctApplication extension point (and the WctWebApplication

extension point), refer to “Extension points reference” on page 213.

Extending the capabilities of your application

There are common conventions that have been adopted in order to construct

applications that are intuitive and easy to use. By following the conventions and

guidelines, you will enable your users to become quickly productive, and will

reduce the training required and the frustrations experienced in using the

application.

The subsections of this chapter focus on specific areas with suggestions and

guidelines in how to build your application to work in a pluggable, cooperative

environment. In addition, since WebSphere Everyplace Deployment 6.0 is based on

Eclipse, you can also refer to the Eclipse User Interface Guidelines. To view the

Eclipse User Interface Guidelines, visit: http://www.eclipse.org/articles/Article-
UI-Guidelines/Contents.html.

Adding and contributing menus

The views and editors that are created and displayed will typically provide a

visual representation of data for the users. In order to control the application

Developing the application user interface 57

http://www.eclipse.org/articles/Article-UI-Guidelines/Contents.html
http://www.eclipse.org/articles/Article-UI-Guidelines/Contents.html

environment, such as opening or closing views, or performing specific actions,

such as syncing data, you will probably want to consider creating menu and menu

items to enable access to the actions.

Menu contributions

You can make a feature you have created available to users by adding it to the

menu bar as a menu item. You can create and contribute menu items by

implementing one of the following contribution types:

v Global menu contributions -- These menu contributions persist across every

application. These menu items are universal and can be used from any context.

These menu items are also ″retargetable,″ so your application can write code to

retarget these global menu items, such as Cut, Copy, and Paste, for

application-specific purposes.

v Part-associated action set contributions -- These menu contributions are specific

to a single application or view. By default, most menu items are local, meaning

that if the view associated with those menu items is not displayed, those menu

items are not displayed. Contributing view-specific menu items enables you to

create discrete menu items for a page of your application that are not shared

with other products on the client.

Global menu contributions: You can add a menu item to one of the WebSphere

Everyplace Deployment global menus using the org.eclipse.ui.actionSets

extension point. You can also associate a new action set to a specific perspective or

view to ensure that the menu contributions defined in the action set appear in the

user interface only when the specified view is active using the

org.eclipse.ui.actionSetPartAssociation extension point. See the Platform

Plug-in Developer’s Guide for more information on part associations.

For details on the ids used by the WebSphere Everyplace Deployment Top Level

Menus, refer to “WebSphere Everyplace Deployment top level menus” on page

211.

If actions are defined by the extension points within plug-ins, but are not

associated with a particular perspective, then the menu items/actions will be

displayed at all times. By associating menu items and actions with a particular

perspective through perspectiveExtension extension points, the menu items and

actions will be displayed only when the application’s perspective is displayed.

The File menu provided by the workbench contains entries for Preferences and

Exit. Usability guidelines suggest that Exit always be the last menu item. The

Preferences action is provided by the workbench, and launches a dialog that

aggregates all provided preference pages.

Part-associated action set menu contributions: In addition to having the global

menus, each product contributes its own menu items on the existing menus. A

product can also contribute entire menus to the menu system.

Context menus: A context menu is the menu that is displayed when a user

right-clicks the background of a user interface component, such as a view or editor.

Context menus should repeat pertinent menu items that are available on the menu

bar or pertinent actions on a dialog box triggered from a menu item. The contents

of the context menu must change to be appropriate to the object that has focus or

the object that is selected.

A context menu item should not be the only way a user accesses a piece of

functionality. All context menu items must have access keys for accessibility.

58 IBM WebSphere Everyplace Deployment: Developer’s Guide

Indicate the access key by underlining the key text in the menu item label. If

possible, use the same access key as the one used for the menu item in the menu

bar.

You should give context menus to the following objects:

v Objects in a navigator view, such as folders or document libraries

v Items selected in a list.

Icons in menus: If a menu item is represented by a toolbar button with an icon,

include that icon on the menu. If your application does not have a toolbar or the

toolbar does not include icons, do not include an icon on the menu. Include icons

to the left of the menu items.

Creating a top-level menu

You can write code that performs a task and enable users to trigger that task from

a corresponding menu item in the user interface by creating a menu item

contribution and adding it to the application menu. The File, Application, View

and Help menus appear at the top level. You can contribute a menu item that

displays at the top-level as well.

The following steps make use of the templates provided with the Plug-in

Development Environment to show you how to create an action, an actionSet, and

a top-level menu.

1. Start your Rational Software Development Platform.

2. Create a plug-in project to contain the menu and action that you are providing.

You will use a template that creates a Java class for the action, and adds all of

the appropriate extension points. Later, you can modify the code generated by

the template to meet your own requirements.

a. Select File > New > Other > Plug-in Development > Plug-in Project to

create the initial project, then select Next.

b. On the Plug-in Project panel, enter a name for your plug-in project, such as

MyAction. You can use the defaults already entered on the rest of the panel.

Select Next.

c. Use the defaults on the Plug-in Content panel. Select Next.

d. On the Templates panel, check Create a plug-in using one of the templates.

Select Hello, World. Then select Finish.

e. A project called MyAction will now be created in your workspace. Selected

files will have already been created within the project based on your

selections to create a plug-in with a view. The MyAction and

MyAction.actions packages will have been created in the src folder.

At this point, you can launch the platform from the workbench including this

plug-in (for more information, refer to “Debugging and testing applications” on

page 157). A new top level menu, Sample Menu, will be displayed along with File,

Application, View and Help. This menu will contain an action labeled Sample

Action.

As you launch the platform, you will notice that regardless of the application that

you open, the same Sample Menu always appears. If you want to change this

menu so that it appears only with a particular application, you will need to create

a perspectiveExtension. To illustrate these steps, the following steps assume that

the Simple Rich Client Platform application was created in “Creating a simple Rich

Client Platform application” on page 55.

1. Open the plugin.xml file for the MyAction project you just created

Developing the application user interface 59

2. Now Add an extension point to the plug-in to define the perspective Extension

that you want to create.

a. Open the plugin.xml file contained in your MyAction project.

b. Select the Extensions tab within the editor. You should already see the

org.eclipse.ui.actionSets defined.

c. Select Add..., then select org.eclipse.ui.perspectiveExtension, then select

OK.

d. Once org.eclipse.ui.perspectiveExtensions has been added to the All

extensions list, right click on the entry, then select New >

perspectiveExtension.

e. The Extension Element Details information will display. Enter

MyApplication.perspective1 as the target id. (This is the perspective

created in “Creating a simple Rich Client Platform application” on page 55).

f. Now select the MyApplication.perspective1 perspectiveExtension. Right

click and select New, then select actionSet.

g. The Extension Element Details information will display. Enter

MyAction.actionSet as the target id.

h. Expand the org.eclipse.ui.actionSets, and select the Sample Action Set.

i. The Extension Element Details information will display. Change the value of

visible from true to false.

j. Save and close the plugin.xml file.

As you launch the platform, you will notice that the Sample Menu displays only

when your application is visible.

You can further limit or associate a menu with a particular view. By using the

org.eclipse.ui.actionSetPartAssociation extension point, you can assign a

particular action set to a view or editor such that the action set displays only when

the view or editor is active. To modify the MyAction plug-in to associate with a

particular view instead of just a perspective, you would need to make the

following changes:

1. Open the plugin.xml file contained in your MyAction project.

2. Select the Extensions tab within the editor. You should already see the

org.eclipse.ui.actionSets defined.

3. Remove the org.eclipse.ui.perspectiveExtensions extension point, as it is no

longer necessary for the actionSet to be associated to the perspective.

4. Select Add....

5. Select org.eclipse.ui.actionSetPartAssociations, then OK.

6. Once org.eclipse.ui.actionSetPartAssociations has been added to the All

extensions list, right click on the entry, then select New >

actionSetPartAssocation.

7. The Extension Element Details information will display. Enter

MyAction.actionSet as the target id. This is the action set you want to associate

with a view.

8. Select the MyAction.actionSet actionSetPartAssociation. Right click and select

New, then select part.

9. The Extension Element Details information will display. Enter

MyApplication.views.SampleView as the part.

When you launch, the SampleMenu will now only display when the Sample View

is active. Since MyApplication only has the single view available, you won’t really

60 IBM WebSphere Everyplace Deployment: Developer’s Guide

notice an immediate difference. However, if you were to modify MyApplication to

add another view, then you would notice that Sample Menu only displays when

Sample View is active.

Creating views

A perspective can show one or more views simultaneously. Depending upon the

application requirements, the number of views that are simultaneously displayed

views may change in response to events occurring within the application.

Application developers may force views to maintain a specific size or location, or

to remain open, when displayed in the perspective. Alternatively, application

developers may allow users to close views. While the WebSphere Everyplace

Deployment workbench application enables the ability to “reset” a perspective to

its initial configuration, you may want to also provide menu options that enable

users to open specific views if they are inadvertently closed.

Creating preferences

Plug-in preferences are key/value pairs, where the key describes the name of the

preference, and the value is one of several different types, including Boolean,

double, float, int, long, and string. The Eclipse platform provides support for

storing plug-in preferences and showing them to the user on pages in the

workbench Preferences dialog box.

WebSphere Everyplace Deployment extends the Eclipse capabilities by including

the Configuration Admin service that can persist configuration information.

Creating preference pages

The references to Preferences in this section cover a wide range of information,

from user choices on how to display information, to configuration options needed

to connect to enterprises. The client platform framework provides built-in

capabilities to help manage preferences. You may choose to use one or both of

these options, or to construct your own mechanisms.

When you write the code that defines the content of the preference page, follow

these formatting rules:

v Use group boxes to separate areas, if you feel that grouping is necessary.

Capitalize only the first letter of the first word of the group box heading.

v Begin each preferences page with a sentence that describes what the user can do.

v Add a colon after field labels.

v Always provide the Restore Defaults and Apply buttons. You can add other

command buttons as necessary

Preference options

Eclipse preferences: The Eclipse framework provides an extensible preference

store that permits preference information to be stored at various levels. Preference

information is stored as key value pairs. Preference pages are generally provided to

set or update the preference information stored within the system. Information

stored within the Eclipse preference framework will usually be related to display

or operating characteristics that the user may change to suit his choices.

Eclipse-based preferences are not connected to the enterprise management system.

Refer to the Platform Plug-in Developer’s Guide for more information on using

Eclipse preferences.

Developing the application user interface 61

Configuration admin: The OSGi core framework also provides a configuration

management capability known as Configuration Admin. Configuration Admin

provides capabilities to store preference or configuration information based on key

value pairs.

Applications that use Configuration Admin to store information will need to

implement the ManagedService interface. By implementing this interface, the

application will be notified when configuration information changes. Applications

that use Configuration Admin to store configuration and preference information

can also use the Metatype service to provide a metadata description of the

information. The metadata can describe the parameter types, default values, and

validation logic to be applied for each parameter.

If Configuration Admin is used to store configuration information, system

administrators can query and update configuration values via the Enterprise

Management Agent.

Configuration information stored using Configuration Admin is common to all

instances (work spaces) of the WebSphere Everyplace Deployment platform using

the same installation directory (this is equivalent to the Eclipse ConfigurationScope

preferences). Since Configuration Admin values are common to all instances, it is

not recommended that user-specific configuration information be stored using

Configuration Admin. Applications requiring persistence of user specific

configuration information and preferences should use the Eclipse preferences

model.

If configuration information is stored using Configuration Admin, preference pages

can be used to provide a user interface to view and modify preferences. The

WebSphere Everyplace Deployment platform provides classes to assist in using

preference pages to interact with Configuration Admin.

The com.ibm.eswe.preferences.ConfigAdminPreferencePage has subclassed the

org.eclipse.jface.preference.FieldEditorPreferencePage to provide preference

pages for configuration information stored within Configuration Admin. The

ConfigAdminPreferencePage creates a ConfigAdminPreferenceStore, that uses

Configuration Admin and Metatype services to obtain the required data to

automatically build the preference page.

To use the ConfigAdminPreferencePage, you will need to create your own subclass

of the ConfigAdminPreferencePage, and supply the Bundle and Persistent ID for

the properties that you intend to display. Within your subclass, you can also affect

the set of properties displayed, as well as add your own validation logic to the

page. You will also need to define a preference page via the standard Eclipse

extension point for preference pages, and supply the appropriate metadata files

(i.e. METADATA.XML, METADATA.properties). Refer to “Using the Meta Type Service”

on page 183 for more information . The METADATA.XML and METADATA.properties

files are loaded from either the plug-in files or from the plug-in’s class path. The

METADATA.* files must be placed within the META-INF directory of either the project

or the src directory for the project

The ConfigAdminPreferencePage supports only scalar metatype definitions for

non-factory PIDs. Integer, String, and Boolean fields are handled by default. You

will need to provide implementations for FieldEditors for types such as Byte,

Char, Long, Float, Double, BigDecimal and BigInteger

62 IBM WebSphere Everyplace Deployment: Developer’s Guide

Refer to the Javadoc information for the com.ibm.eswe.preference package for

more information.

Applying Capitalization and punctuation guidelines

Use appropriate punctuation, such as a periods, exclamation points, or question

marks at the end of complete sentences. Add a colon at the end of labels for

controls in forms and dialog boxes.

For more information, see the Eclipse User Interface guidelines.

The following table describes when to use headline-style capitalization and when

to use sentence-style capitalization:

 Table 9.

Capitalization style Guideline Use for

Headline Capitalize the first letter of

each word, except the

following:

v Articles such as: a, an,

and, the

v Short prepositions that are

between words such as:

for, in, of, on, and to

v Command buttons (push

buttons)

v Dialog box title bars

v Menu items

v Menu titles

v Section headers (For

example, the header to a

section on a form. Section

headers should also be

bold.)

v Tabs

v Title bars

v ToolTips (When the

toolTip is for a toolbar

item; all other tooltips use

sentence-style

capitalization.)

v Window titles

Sentence Capitalize the first letter of

the first word and any

proper nouns, such as

Workplace.

v Check box labels

v Dialog box labels

v Group box or group bar

titles

v Radio buttons

v Text field labels

Creating helpful messages

Messages

Whenever possible use the standard message dialog boxes provided in the

MessageDialog class as part of the org.eclipse.jface.dialogs package. The error

message can be modeless, which means it allows the user to continue to interact

with the application or modal, which means it requires that the user respond to the

error dialog box before continuing to use the application. The following sections

describe the available Eclipse message types.

Critical: Informs users of a serious problem that prevents them from continuing

their work. Critical error messages are always modal.

Developing the application user interface 63

Example code:

MessageDialog.openError

(parent.getShell(),

"Error Title",

"Error Message");

Warning: Alerts users to a condition that requires a decision before proceeding. In

many cases you must add buttons to support the Yes, No, and Yes, No, Cancel

conditions. Warning messages are usually modal; that is, users must respond

before continuing to interact with the application.

Example code:

MessageDialog.openWarning

(parent.getShell(),

"Warning Title",

"Warning Message");

Customizing existing applications

Activities

An activity is a logical grouping of function that is centered on a certain kind of

task. For example, developing Java software is an activity commonly performed by

users of the Eclipse SDK platform, and the Java Development Tooling defines

many UI contributions (views, editors, perspectives, preferences, etc.) that are only

useful when performing this activity. Before we look at the mechanics for defining

an activity, let’s look at how they are used to help ″declutter″ the UI.

The concept of an activity is exposed to the user, although perhaps not apparent to

a new user. When an activity is enabled in the platform, the UI contributions

associated with that activity are shown. When an activity is disabled in the

platform, its UI contributions are not shown.

Activities are defined using the org.eclipse.ui.activities extension point. Refer

to the Platform Plug-in Developer’s Guide for more information on activities and how

to define them.

Activities can be used in a static manner to “hide” UI contributions that other

plug-ins may have provided.

WebSphere Everyplace Deployment supports the use of activities.

Using activities

Activities are associated with UI contributions using activity pattern bindings,

patterns that are matched against the id of the UI contributions made by plug-ins.

The process to “filter out” UI contributions is a two-step process described below:

Step 1: Defining an activity: Activities are defined using the

org.eclipse.ui.activities extension point. Activities are assigned a name and

description that provide information about an activity. The id of the activity is

used when defining pattern bindings or other relationships between activities.

An example activity definition:

<extension

 point="org.eclipse.ui.activities">

 <activity

64 IBM WebSphere Everyplace Deployment: Developer’s Guide

name="WebSphere Everyplace Deployment Specific"

description="Filters out WebSphere Everyplace Deployment UI contributions"

 id="WebSphere Everyplace Deployment Activities">

 </activity>

Step 2: Binding activities to UI contributions: Activities are associated with UI

contributions using pattern matching. The pattern matching used in activity

pattern bindings follows the rules described in the java.util.regex package for

regular expressions. The patterns used by the workbench are composed of two

parts. The first part uses the identifier of the plug-in that is contributing the UI

extension (the plug-in namespace). The second part is the id used by plug-in itself

when defining the contribution (which may or may not also include the plug-in id

as part of the identifier). The following format is used:

plug-in-identifier + "/" + local-identifier

For example, the following activity pattern binding states that all UI contributions

from the WebSphere Everyplace Deployment workbench plug-in

(com.ibm.eswe.workbench) are associated with the WebSphere Everyplace

Deployment Specific activity. When this activity is enabled or disabled, the state of

the UI contributions within the workbench are affected.

<activityPatternBinding

activityId="WebSphere Everyplace Deployment Specific"

pattern="com\.ibm\.eswe\.workbench/.*" />

</activityPatternBinding>

The next binding is more specific. It states that the contribution named install

defined in the InstallUpdate Launcher plug-in

(com.ibm.eswe.installupdate.launcher) is associated with the WebSphere

Everyplace Deployment Specific activity. As this activity is enabled or disabled, the

specific contribution will be included

<activityPatternBinding

activityId="WebSphere Everyplace Deployment Specific"

pattern="com\.ibm\.eswe\.installupdate\.launcher/install" />

</activityPatternBinding>

WebSphere Everyplace Deployment does not define any activities for use by

applications. However, applications may define activities to group WebSphere

Everyplace Deployment UI contributions. Refer to “WebSphere Everyplace

Deployment top level menus” on page 211 for specific details about the menu

identifiers defined by the client platform.

Integrating existing RCP applications into WebSphere Everyplace

Deployment

WebSphere Everyplace Deployment is based upon the Eclipse Rich Client Platform,

but has added a set of Eclipse plug-ins above and beyond the set normally part of

RCP. In addition, WebSphere Everyplace Deployment has provided a workbench

advisor and an application that can be used for many situations.

Application developers may have constructed applications based solely upon the

Eclipse Rich Client Platform (or other Eclipse-based platforms), without necessarily

targeting WebSphere Everyplace Deployment.

Generally, you can run applications which are written for generic RCP on

WebSphere Everyplace Deployment. However, there may be some differences

between the generic Eclipse RCP or SDK and WebSphere Everyplace Deployment:

Developing the application user interface 65

v Because the workbench advisor and application are already provided,

applications that include a workbench advisor or RCP application may no longer

need to use those capabilities. However, some application function may have

been included in the advisor or application. You may be able to re-use the

plug-ins without necessarily running the application

v Actions that may have been defined by the advisor class could be defined as

actionSets in a new or existing plug-in.

v WebSphere Everyplace Deployment has provided a set of menus as identified in

“WebSphere Everyplace Deployment top level menus” on page 211. Note that

applications that provide action sets may expect certain other menus to be

present. If those menus are not present, then actionSets that do not include a

menu option will not display their actions.

v To enable applications written as perspectives to contribute to WebSphere

Everyplace Deployment, you will need to update the application plug-in that

defines the perspective to also define the WebSphere Everyplace Deployment

WctApplication extension point.

v WebSphere Everyplace Deployment may not include all of the plug-ins typically

provided in the Eclipse SDK. If the Eclipse SDK was the target for application

development, then attempting to run the application on WebSphere Everyplace

Deployment may not be successful. In general, plug-ins that exist in the Eclipse

SDK could be added to WebSphere Everyplace Deployment along with the

application plug-ins. Note that IBM will not provide support for these plug-ins if

added to the platform.

66 IBM WebSphere Everyplace Deployment: Developer’s Guide

Developing data access and synchronization applications

Databases

Database application developers use JDBC, the application programming interface

that makes it possible to access relational databases from Java programs. The JDBC

API is part of the Java 2 Platform, Standard Edition (J2SE) and is not specific to

any particular database implementation, such as Cloudscape or DB2 Everyplace. It

consists of the java.sql and javax.sql packages, which are sets of classes and

interfaces that make it possible to access databases (from a number of different

vendors) from a Java application.

The JDBC specification defines several interfaces and types that application

developers use to access the database.

v A DataSource is the primary definition of a database, and typically defines

database access properties and locations.

v A Connection is the communication object that enables queries and updates to

be performed against the database. The preferred method for obtaining a

connection in JDBC 3.0 is with a DataSource object, as opposed to using

DriverManager in a JDBC 2.0 specification implementation.

v A Statement enables the application developer to affect specific actions on the

database. There are specialized types known as PreparedStatement or

CallableStatement that provide additional advantages and capabilities. A

Statement is created from a Connection object.

v A ResultSet represents the result of a query. The ResultSet object is returned

upon successful execution of a query in a Statement.

As previously mentioned, the JDBC APIs are part of the J2SE specification. In order

to get a clear picture of the current JDBC APIs it is useful to review the history of

them and their relationship to the J2SE specification. J2SE 1.2 defined JDBC 2.0,

which included definitions in the java.sql package. The main way of accessing

databases was with the java.sql.DriverManager interface. Sun then defined the

JDBC 2.0 extension package, which introduced the javax.sql package and a new

DataSource interface for accessing databases in Java, as well as support for

connection pooling. JDBC 3.0 was subsequently defined and combined the two

components of JDBC 2.0 into one JDBC specification. This was first included in

J2SE 1.4.

In addition to knowledge of the development of JDBC APIs, database application

developers also need to have a detailed understanding of the Structured Query

Language (SQL). SQL is the standard query language used with relational

databases and is not tied to a particular programming language. No matter how a

particular relational database management system (RDBMS) has been

implemented, the user can design databases and insert, modify, and retrieve data

using the standard SQL statements and well-defined data types. SQL-92 is the

version of SQL standardized by ANSI and ISO in 1992. Entry-level SQL-92 is a

subset of full SQL-92 specified by ANSI and ISO that is supported by nearly all

major DBMSs today. In 1999, another update to the SQL standard was made

available called SQL-1999 or SQL-99. You can find reference information about the

particulars of the SQL implementation in Cloudscape in the IBM Cloudscape

Reference Manual and the implementation in DB2 Everyplace in the IBM DB2

Everyplace Application Developer’s Guide.

© Copyright IBM Corp. 2004 67

Embedded databases

IBM WebSphere Everyplace Deployment provides two relational databases that are

accessible using JDBC interfaces, DB2 Everyplace and Cloudscape.

v DB2 Everyplace features a small footprint relational database and high

performance data synchronization solution that enables enterprise applications

and data to be securely extended to mobile devices such as personal digital

assistants (PDAs), smart phones, other embedded mobile devices, and desktops.

With DB2 Everyplace, the mobile work force in industries such as health care,

telecommunications, retail, distribution, transportation, and hospitality can now

easily access the information they need to perform their work from any location,

at any time, right from the palm of their hand. It is especially suitable for

embedded devices, where large databases and sophisticated queries are not

normally required, but can also be used on desktop platforms. DB2 Everyplace

provides transaction support covering updates to multiple tables within a single

transaction, encrypted tables, and zero client administration.

v Cloudscape is a 100% pure Java relational database, providing SQL-92, partial

SQL-99, and Structured Query Language for Java (SQLJ) support, indexes,

triggers, transactions, encryption, and the standard features that one expects of a

relational database.

DB2 Everyplace and Cloudscape comparison

DB2 Everyplace and Cloudscape are similar, but have features that might make

one a better choice for client needs.

 Table 10.

DB2 Everyplace Cloudscape

Implementation Type High performance native

implementation (see DB2E

documentation for a

complete list of supported

devices)

Java-based (platform

independent) implementation

On-Disk Footprint 250 KB 2 MB

Number of connections

supported

Allows multiple concurrent

connections to a database

from the same JVM

Allows multiple concurrent

connections to a database

SQL Support Limited set of SQL data

types

Full SQL-92 support, partial

SQL-99 support

Schema Support no yes

Database Creation

Requirements

Directory for database tables

must be created prior to use

Cloudscape creates directory

JDBC URL jdbc:db2e:location

If no database exists at the

location, a new database

structure is created

jdbc:derby:location

Database creation requires

the addition of an explicit

create=true attribute to the

URL

In addition, the database

location can also refer to a

zip or JAR file in the case of

a read-only database

68 IBM WebSphere Everyplace Deployment: Developer’s Guide

Refer to the product documentation for more complete information about these

products.

Creating database access application development best

practices

There are typically two reasons for creating an application that needs to make use

of database technologies. One reason for using database technologies is to create a

new lightweight client application. Another reason is to adapt an existing

server-side application for use as a lightweight client application.

Enterprise Java developers who have written applications requiring the use of

JDBC typically rely on obtaining access to the database through a DataSource

object. The DataSource object will have already been bound by the Java Naming

and Directory Interface (JNDI). The application developer simply needs to locate

the DataSource using JNDI, and obtain from the DataSource a connection to the

database. The application deployer cooperates with the system administrator to

define the mapping and access to a physical database, causing the DataSource

object to be bound into JNDI.

Also, in the server environment, database management often falls within the

administration realm of a database administrator. A database administrator is

typically responsible for creating the physical database, partitioning the database

for use among several applications, creating tables and indexes for a particular

application, managing the access rights to a database, and monitoring the

performance of the database. When the application developer has successfully

located a DataSource using JNDI, the developer can obtain a Connection, and

begin performing actions against the database.

When adapting a server-side application to run on a client, the application

developer often takes more responsibility, performing some roles typically handled

by a database administrator. The application developer might be responsible for

initially creating the database, creating tables, and configuring the database. In

addition, depending upon the set of components available on the client, the

application developer might also be responsible for creating the DataSource objects,

either directly within the application, or within a JNDI environment on the client.

If no JNDI support is available in the client runtime environment, the application

developer should use the standard JDBC 3.0 javax.sql.DataSource creation

methods. Regardless of how the DataSource object is created or located, application

developers still obtain Connection objects from the DataSource, and create

Statement objects from the Connection.

In order to ensure minimum changes to applications that use JDBC, some best

practices should be followed:

v Use DataSource objects as they exist across the JDBC 3.0 specifications;

DriverManager does not exist in the JDBC Optional Package for

CDC/Foundation Profile. Limiting the JDBC application usage to the JDBC

Optional Package for CDC Foundation Profile subset of JDBC 3.0 provides the

most portability from desktops to devices.

v Isolate the DataSource creation or location to a single class. Later, if the

environment changes, a change needs to be made in only one place.

v Ensure you close all objects (ResultSet, Statement, Connection) when you have

completed work. Servers typically include more sophisticated connection

management known as connection pooling, which can accommodate

mismanagement of connections. However, on the clients, application developers

Developing data access and synchronization applications 69

are directly responsible for the life cycle of the objects. By promptly closing

objects, memory requirements will remain at a minimum.

v Do not hard code a schema identifier during statement creation. DB2 Everyplace

does not support schema names, so all statements would need to be changed if

an application needed to be migrated to DB2 Everyplace.

v The SQL statements supported by a particular database might not match the

statements used within an existing application. The application either needs to

adapt statements depending upon database type, or obtain statement

information from externalized information.

IBM WebSphere Everyplace Deployment includes the Micro Environment Toolkit,

which provides Client Services Platform Profile support in the WebSphere Studio

or Rational tooling environment. These platform profiles simplify the creation and

configuration of database application projects, enabling you to select the

target-embedded database, and provide automatic management of the requisite

JDBC libraries. In an Eclipse SDK plug-in development environment, you can use

the standard plug-in dependency tooling to provide the necessary access to DB2e

and Cloudscape libraries during database application development. Eclipse is an

award-winning, open source platform for the construction of powerful software

development tools and rich desktop applications.

Client Services platform profile components

IBM WebSphere Everyplace Client Toolkit provides Client Services Platform Profile

support in the Rational tooling environment. These platform profiles simplify the

creation and configuration of database application projects, enabling you to select

the target-embedded database, and provide automatic management of the requisite

JDBC libraries. When developing a data access application, any of the Client

Services Platform Profiles can be selected for your Client Services project. However,

ensure you select the IBM Cloudscape application service for project access to the

Cloudscape database engine, or the DB2 Everyplace application service for the DB2

Everyplace database engine. If you are interested to developing code leveraging

the DB2 Everyplace ISync APIs, be sure to select the DB2 Everyplace ISync client

or the IBM Cloudscape Sync Client for project access to the ISync APIs. For more

information on Client Services projects, refer to “Using the IBM WebSphere

Everyplace Client Toolkit” on page 169.

Deployment and synchronization

When dealing with databases, you can choose to use a database only as a local

data repository or as a repository that actively synchronizes with another node in

the topology. In either case, if data needs to be distributed to a database, you need

to balance considerations of how much data needs to be distributed and when

(once only at initialization, one way from one node to another only on an

infrequent basis, frequent exchange between nodes), with the storage capabilities at

each node in question, and the networking requirements that would permit the

exchange to take place. In addition, if you choose synchronization, application

developers should consider database organization, filtering, and conflict resolution

policies. Synchronization is useful for exchanging the current state of data between

nodes, where transaction boundaries or the order of state changes are not

important.

When you use data synchronization, database tables are automatically created. If a

database is used only for local storage and will not be synchronized with a server

database, you must perform the additional step of creating the initial database.

70 IBM WebSphere Everyplace Deployment: Developer’s Guide

There are a few options for creating an initial database without using database

synchronization:

v Incorporate code to create the initial database within the application. The

advantage of this is that the application is fully responsible for creating the

database. In addition, if there is a need to rebuild the database, the code is

already present. No additional steps are required by the user of the database.

One disadvantage is that the code must be carried along with the application,

even though it might never be used again. Another disadvantage is that the

population of initial data into the database might be too large, or not

appropriate to include within Java code. For read-only databases, this is

generally not appropriate; if the data were available to populate into the

database, then you probably would not need a database. Database creation code

could be provided in a separate OSGi bundle that is then removed from the

framework after the database has been constructed.

v Distribute the database files with the application. The database is constructed

and populated outside of the client environment. The resulting database files are

then distributed with the application, either in directory format or in a zip or

JAR file. The advantage of this is that the code to build and populate the

database runs in another environment; it does not need to be distributed with

the application. This is an ideal choice for distribution of a read-only database,

as the data can be distributed using CD, memory cards, or other distribution

mechanisms. The disadvantages are that the distribution of the files might be

more difficult than distributing code. Also, updates to the database typically

require redistribution of database files.

v Distribute Data Definition Language (DDL) (a set of database statements) and

require the installation application or the end user to create the database. While

this overcomes some of the disadvantages of incorporating database creation

code within the application, it requires that the end user be sufficiently

knowledgeable to create the database, or the installation application becomes

more complex. In addition, this also typically requires additional tools (such as

the command-line tools DB2eCLP for DB2 Everyplace, or ij for Cloudscape) to

be present on the client or device.

Another option for database creation, and for continual update, is to use database

synchronization facilities. DB2 Everyplace and Cloudscape are both capable of

synchronizing with the DB2 Everyplace Sync Server, using the IBM ISync

technology provided with IBM WebSphere Everyplace Deployment. The initial

synchronization activity creates the local database tables and also populates the

initial set of data. As data is updated on the client device, synchronization transfers

that data to the DB2 Everyplace Sync Server and then to other client devices that

are configured to receive it. Database administrators set up the necessary

subscriptions for synchronization, and can also set up filtering of data to limit the

amount of data distributed to client devices.

Database application developers can use the ISync APIs provided with IBM

WebSphere Everyplace Deployment to control the synchronization process for their

specific databases. This includes initiating the sync, monitoring events during the

process, and managing any conflicts or errors that occur.

A simple iSync sample is available in the Rational Samples Gallery under

Technology Samples > WebSphere Everyplace Deployment.

It is also important to note some differences in database application programming

when using database synchronization:

Developing data access and synchronization applications 71

v Any changes made to the local copy might appear much later in the server.

Synchronization requires the application or user to initiate the sync to the sync

server; the replication cycle must kick in so that changes are pushed back to the

back end database server. Furthermore, the local changes can be rejected for

many reasons, for example, because conflicts were found at the database server

side.

v There is a latency between synchronizing changes from a client to the server and

then from the server to other clients. In other words, if a change was made to a

local database, these changes do not appear on another client device until the

local database is synchronized successfully to the sync server. Then the sync

server successfully replicates the changes to the back end database, the changes

come back down the sync server for other clients; the changes show up on

another client device when it successfully synchronizes.

v Database synchronization is based on row-level updates synchronized to and

from the DB2 Everyplace Sync Server and the client devices. Database

synchronization captures only the current state of data for synchronization.

Because the database row contains only the current state of the data, there are

two situations in which the application might need to provide additional

capabilities. The first situation is when the ordering of updates that were applied

to the database is important. The second situation is when a historical record of

the changes to the rows in the database is required. In either of these situations,

the application needs to provide this capability. The application can store each

change in value in a separate row in the main table, or use additional tables for

history purposes. Optionally, the application can use assured messaging to send

the various updates to the server.

Security considerations

Server databases typically reside in a well-secured zone, with limited access to

applications residing in other network topologies. As a result, data in the database

is secured because of network location and access rights. In addition, database

backup or sophisticated data management exists to protect against data loss.

Databases existing on client systems have different levels of protection. Physical

device security is the first barrier in preventing unauthorized access to databases.

This includes locking up or securing the physical device as well as providing

secure passwords to protect against others illicitly using the device to access data.

An additional way to protect the data in the database is to use the encryption

technologies provided by the databases. The entire database, or specific tables, can

be encrypted using a key (password) that must be provided by the user. This

protects against someone being able to open the database if they were to obtain the

physical media storing the database (such as a CD for read-only databases,

memory keys, Compact Flash cards, and so on).

To protect against data loss, especially for local databases or local synchronized

databases, you should put a backup or synchronization strategy in place to ensure

that data is synchronized on an appropriate schedule. Incidentally, this also

reduces the chances of data on the device becoming out of date.

DB2 Everyplace and IBM Cloudscape Documentation

For more information on DB2e, refer to the following documentation:

v DB2e Application and Development Guide.pdf

v DB2e Installation and Users Guide.pdf

For more information on Cloudscape, refer to the following documentation:

72 IBM WebSphere Everyplace Deployment: Developer’s Guide

DB2e Application and Development Guide.pdf
DB2e Installation and Users Guide.pdf

v Getting Started with IBM Cloudscape.pdf

v IBM Cloudscape Developers Guide.pdf

v IBM Cloudscape Tools and Utilities Guide.pdf

v Tuning IBM Cloudscape.pdf

v IBM Cloudscape Reference Manual.pdf

SyncML

As desktop computers, laptops, personal digital assistants (PDAs) and advanced

phones have become part of our business and personal life, the need to access

current, consistent data in multiple locations has become a pressing need. The term

synchronization, often abbreviated to sync, is broadly used to address this

requirement. This section discusses synchronization, along with a description of

SyncML4J, an IBM offering that enables ISVs and developers to implement

SyncML based applications.

Resources can either be standalone items on the file system, such a word processor

document, or items managed within an application, such as a calendar within a

Personal Information Manager (PIM) application. If a single user accesses the

resources that are required from a single location, such as when using a standalone

desktop computer, there is no synchronization issue; the user is always working

with the single, and thus current, version. In a local area network, where multiple

users access resources on a shared file system, there is no inherent synchronization

facility. If two users open and edit the same file, the last person to save the file

overwrites the content input by the other user. As applications have become more

sophisticated, they often provide support for multi-user access to the resources

they manage; however this usually assumes continuously connected devices on a

network.

Contacts, calendars, and memos are three common resources that a user might

want access to on a variety of devices, beyond the desktop. The most significant

problem with situation is that these devices often operate disconnected from the

desktop computer for significant periods and it is possible to edit the data on these

devices, as well as on the desktop. To merge the edits from both locations, the data

must be synchronized between these two devices.

Previously, these resources were synchronized between a desktop machine and

single PDA using the synchronization software that was provided with the PDA.

Often this meant data was synchronized to a desktop application provided by the

device manufacturer; this might not have been the default application used on the

desktop, particularly in a corporate scenario. Facilities were often provided to

import data to the PDA desktop counterpart application, but this was usually a

one-off activity, with no facility to update or merge ongoing edits between the

applications.

The situation became worse as the facilities of mobile phones improved. Now there

was a third device, usually from a different manufacturer, to synchronize. One

possible solution was to ensure that all three devices ran software from one

manufacturer and expect manufacturers to ensure compatibility, but this is not the

way the market evolved.

Within this context a consortium of companies began the SyncML Initiative to

develop an open synchronization standard appropriate to server, desktop, and

handheld devices. The organization developed data synchronization (DS), then

device management (DM) specifications and regularly held SyncFests, where

Developing data access and synchronization applications 73

Getting Started with IBM Cloudscape.pdf
IBM Cloudscape Developers Guide.pdf
IBM Cloudscape Tools and Utilities Guide.pdf
Tuning IBM Cloudscape.pdf
IBM Cloudscape Reference Manual.pdf

software and device manufacturers were able to test interoperability between

various servers and devices. In November 2002, the SyncML Initiative was

integrated into the Open Mobile Alliance (OMA), with the following mission:

“The mission of the Open Mobile Alliance is to facilitate global user adoption of

mobile data services by specifying market driven mobile service enablers that

ensure service interoperability across devices, geographies, service providers,

operators, and networks, while allowing businesses to compete through innovation

and differentiation.”

Technology overview

This section provides an introduction to the SyncML4J toolkit available from IBM

for the development of sync clients based on the OMA DS and DM standards.

The DS and DM standards needed to take into account the differing device and the

network characteristics. To achieve the widest adoption, the protocol had to be

suitable for implementation on resource-constrained devices. As a ‘wire’ protocol, it

does not specify either an implementation language or application programming

interface (API); rather, the protocol is a sequence of XML packages exchanged

between client and server during a sync session. Some key protocol features

defined in the specifications include support for:

v Multiple data types, including binary

v XML and WBXML encodings

v Multiple transports, including HTTP, HTTPS, OBEX, IrDA

v Client and server authentication and message integrity

The specifications are available for download on the OMA Web site. The adoption

of the specifications is progressing; some manufacturers are shipping devices that

are DS enabled, several software vendors have toolkits available, and there are

open source, C and Java toolkits available.

The latest IBM offering for DS and DM is called SyncML4J, and is part of IBM

WebSphere Everyplace Deployment v6.0. SyncML4J enables the creation of DS and

DM clients for the Java 2 Platform. SyncML4J is pure Java, delivered as an Eclipse

feature. Eclipse is an award-winning open source platform for the construction of

powerful software development tools and rich desktop applications. SyncML4J

comprises plug-ins for the runtime libraries necessary for creating data

synchronization, applications, and device management client applications.

SyncML4J common

In the same way that the DS and DM specifications are based on a common

representation and protocol, SyncML4J is built on common components for

protocol handling and transport. All mandatory wire commands are supported, as

are Basic and MD5 authentication and HMAC message integrity.

The DM device tree represents all manageable settings on the device. The DM

specification defines how the tree is used to maintain account information for the

DM agent. SyncML4J uses a similar approach to maintain account information for

the DS agent; it also uses the tree to maintain a list of data sources capable of

interacting with the DS agent. In this way, the developer has the option to manage

the client.

74 IBM WebSphere Everyplace Deployment: Developer’s Guide

The applications are loosely coupled to the agents, so there is no dependency on a

particular user interface (UI) library within the base framework. A variety of UIs

can be used to build an application, sharing the framework sync code.

SyncML4J data synchronization

SyncML4J provides support for all the mandatory DS 1.1.2 client wire commands.

As a framework, SyncML4J supports user-defined data sources (or databases).

These can range from simple opaque resources, such as memos and images, to

complex schema-aware data types such as relational databases or PIM databases.

The framework enables the data sources and their capabilities to be modeled by

implementing the SyncSource and SyncSourceCap interfaces respectively. The

implementation is then registered into the device tree as a DSSource node. A new

(or existing) DSAcc node models the account information, such as server address

and credentials and the set of local databases that can be synchronized by this

account. Within the DSAcc, for each DSSource node there is a corresponding

DSTarget node, recording the corresponding remote database URI, and credential

and anchor information. No support is provided in the framework to assist with

conflict resolution or duplicate detection; these are implicit responsibilities of

implementers of the SyncSource interface.

SyncML4J device management

SyncML4J provides support for all the mandatory DM 1.1.2 client wire commands,

together with an API for manipulating the device tree locally. Custom nodes are

created by subclassing and implementing the abstract methods in

AbstractInterior, then adding instances of the class into the device tree.

As previously noted, the device tree represents all manageable settings on the

device, including in volatile or non-volatile memory and file or I/O system.

Custom nodes enable resources that are external to the framework to be

manipulated. For example, you can implement a custom node to set the time and

declare it into the device tree as ./device/time. Subsequent commands to get and

replace the value of that node could then trigger JNI code to get and set the actual

OS system time.

You can save memory, by virtualizing sub-trees using custom nodes, rather than by

providing a one-to-one mapping between persistent device tree nodes and

resources. A reference to a URI that is a logical child to the custom node

dynamically instantiates an appropriate node, enabling it to be manipulated by the

wire commands. For example, to make the files of a computer disk drive

manageable using the device tree, rather than populate the tree with hundreds of

interior nodes and thousands of leaf nodes, you can implement and add a single

custom node to the device tree as ./device/driveC, referencing the drive root. In

this example, as wire commands to manipulate files on the drive are received, the

custom node dynamically creates nodes to model the addressed file, to which the

wire commands are forwarded.

Client Services platform profile components

IBM WebSphere Everyplace Client Toolkit provides Client Services Platform Profile

support in the Rational tooling environment. These platform profiles simplify the

creation and configuration of database application projects, enabling you to select

the SyncML components and provide automatic management of the requisite

SyncML libraries. When developing an SyncML application any of the Client

Services Platform Profiles can be selected for your Client Services project, but be

sure to select the SyncML4J application service on the Platform Profile wizard

Developing data access and synchronization applications 75

panel. For more information on Client Services projects please refer to “Using the

IBM WebSphere Everyplace Client Toolkit” on page 169.

76 IBM WebSphere Everyplace Deployment: Developer’s Guide

Developing Embedded Transaction applications

The Embedded Transaction capability of the WebSphere Everyplace Deployment

platform enables the development and deployment of business logic components

by supporting a subset of the Enterprise Java Bean (EJB) specification. These

business logic components are referred to as Embedded Transaction applications,

and are run by the platform’s Embedded Transaction Container. The WebSphere

Everyplace Deployment platform only supports execution of and access to

Embedded Transaction Applications executing within the WebSphere Everyplace

Deployment runtime.

Note: Use of the Embedded Transaction development tools requires Rational

Application Developer or Rational Software Architect. The Embedded

Transaction development tools are not supported with Rational Web

Developer

Embedded Transaction applications can be developed using many of the same EJB

development tools provided by the Rational Software Development platform. You

should therefore refer to the Rational online help section “Developing Enterprise

applications” as your initial development tools reference. The following topics

discuss the additional development considerations and tool usage required when

targeting an Embedded Transaction application for the WebSphere Everyplace

Deployment platform.

The following table provides pointers to information on tasks that are unique to, or

require special consideration when developing Embedded Transaction applications

for the WebSphere Everyplace Deployment platform.

 Table 11. Embedded Transaction application tasks

Task Reference

Understanding Embedded Transaction

concepts, including which elements of the

EJB specification are supported, and which

are not.

“Embedded Transaction concepts” on page

78

Working with Client Services Embedded

Transaction projects versus EJB projects, and

when to use one versus the other.

“Embedded Transaction projects” on page 79

Developing Embedded Transaction logic.

This encompasses any special development

considerations when coding and

constructing the embedded transaction logic.

“Embedded Transaction specific

considerations” on page 83

Performing embedded transaction

deployment. The Embedded Transaction

container requires additional deployment

information beyond that provided for an

EJB.

“Embedded Transaction Deployment” on

page 88

Importing and exporting Embedded

Transaction bundles.

“Importing an Embedded Transaction

Bundle” on page 92

“Exporting an Embedded Transaction

Bundle” on page 93

© Copyright IBM Corp. 2004 77

Table 11. Embedded Transaction application tasks (continued)

Task Reference

Debugging and testing the Embedded

Transaction application.

“Debugging and testing applications” on

page 157

Deploying the Embedded Transaction

application to a runtime.

“Deploying projects for local testing” on

page 166

Embedded Transaction concepts

The Embedded Transaction Container (ETC) provides tooling and runtime support

for local Enterprise Java Beans (EJBs). The current version supports the following

features of the EJB 2.0 specification:

v Remote and Local Homes for local EJBs

v Stateless Session Beans

v Entity Beans, both bean managed persistence (BMP) and container managed

persistence (CMP) at both the EJB 1.1 and EJB 2.0 specification levels (local

homes, use of abstract persistence schema)

v Container-managed transactions

v Entity Bean tooling container managed persistence (CMP) support for container

managed field types that implement java.io.Serializable.

v CMP Support for DB2e 8.2.1 and Cloudscape 10.0

v JDBC DataSource support

v JNDI support

v Container-managed Relationships

The following features are not supported:

v Stateful Session Beans

v Pass-by-Copy semantics for mutable serializable objects when running in a

single address space

v For EJB 1.1, the Embedded Transaction Container does not persist references to

an EJB’s remote or remote home interfaces. Note that this capability is not

required of EJB 2.0

v Message-driven Beans

v Java Security support

v EJB Query Language

v Home methods

v Bean managed transactions

v Enumeration return type for finders. Collection return type is supported.

v Specification of transaction isolation level

v Support for Collections and Iterators outside of the transactions in which they

were created

The programming models for the Embedded Transaction container and

WebSphere’s J2EE EJB server/container are very similar. But, there are differences

between the two models, primarily in how they reduce runtime resource

requirements. The development differences are covered in “Embedded Transaction

specific considerations” on page 83.

78 IBM WebSphere Everyplace Deployment: Developer’s Guide

Embedded Transaction projects

Using a Client Services Embedded Transaction project versus

an EJB project

Embedded Transaction applications can be developed using either a Client Services

Embedded Transaction project or an EJB project. The choice of which to use

depends on the application content and its primary usage. In general, applications

that primarily target the WebSphere Everyplace Deployment platform or depend

on other OSGi services besides core Embedded Transaction support should be

developed using a Client Services project.

A Client Services Embedded Transaction project is an extension of the EJB project.

Because of this, both types of projects make use of the Rational Software

Development EJB tools. In addition to this, a Client Services Embedded Transaction

project provides the following support for developing an application that is

targeting the WebSphere Everyplace Deployment platform.

v The manifest file required by WebSphere Everyplace Deployment application can

be automatically managed by the tools.

v The project’s class path is maintained to match the class path environment that

will exist in the WebSphere Everyplace Deployment runtime. This is useful for

detecting class visibility problems at development time rather than runtime.

An EJB project will not have the WebSphere Everyplace Deployment specific

tooling aids listed above, but can still be tested and run on the WebSphere

Everyplace Deployment platform. This is accomplished by targeting the project’s

server to the WebSphere Everyplace Deployment runtime through the project’s

server properties. The tooling will automatically add the proper manifest entries

for Embedded Transaction support. However, if the application references other

OSGi services or bundles, the developer will have to manually add these

dependencies to the manifest file.

A Client Services Embedded Transaction project can also be tested and run on a

platform other than WebSphere Everyplace Deployment by reassigning its targeted

runtime through the project server properties. Refer to “Debugging and testing

applications” on page 157 for further general information. Refer to “Embedded

Transaction specific debugging” on page 93 for Embedded Transaction specific

debugging information.

Creating a Client Services Embedded Transaction project

Complete the following steps to create a new Client Services Embedded

Transaction project:

1. Select File > New > Project. The new project wizard displays.

2. Expand the Client Services folder to list the Client Services project wizards.

Select Client Services Embedded Transaction Project. Then select Next. The

Client Services Embedded Transaction Project panel displays

3. Specify a project name in the Name field. Select Finish to create a project with

default settings.

The additional settings that can be configured through this wizard are described in

the following tables, along with their default values. Access the additional wizard

panels through the Next and Back buttons. Selecting Finish on any of the wizard

pages will create the project with the settings you have specified up to that point.

Developing Embedded Transaction applications 79

Client Services Embedded Transaction Project panel

 Table 12. Client Services Embedded Transaction Project panel

Option Description Default Value

Project name Enter a name for the new

Client Services Embedded

Transaction Project

None

Project location Select Browse to select a file

system location for the new

project

The default location creates

the project in your current

workspace.

EJB version The EJB version that the

project is intended to use

2.0

Add support for annotated

Java classes

Selecting this adds annotated

Java support to the project

(for more information, refer

to Developing enterprise

applications >

Annotation-based

programming overview in

the Rational online help)

Not selected

Create a default stateless

session bean

Selecting this creates a

default stateless session bean

in the project

Not selected

Client Services Content panel

 Table 13. Client Services Content panel

Option Description Default Value

Bundle ID This is a unique bundle

symbolic name. The bundle

name should be a unique

URI, following the Java

package naming conventions.

The project name is used as

the default value.

Bundle Version The bundle version. The

version is in the form of

major, minor, and micro

numbers, separated by

decimal points.

1.0.0

Bundle Name A descriptive bundle name. The default name is

constructed by appending

″Bundle″ to the project name.

Bundle Provider A description of the bundle

provider.

None

Runtime Library The name of the JAR file in

which the project’s built

contents will be placed.

deployed-ejb.jar (value

cannot be changed)

80 IBM WebSphere Everyplace Deployment: Developer’s Guide

Table 13. Client Services Content panel (continued)

Option Description Default Value

Generate the Java class that

controls the bundle’s life

cycle

Selecting this generates a

bundle activator for the

project. When unselected, the

Embedded Transaction

generic activator (“Providing

custom bundle activation” on

page 87) will be associated

with this bundle. Only select

this option if the application

requires special life cycle

processing.

Unselected

This bundle will contribute

to the Rich Client Platform

Select this option if you

intend for the bundle to use

Eclipse extension points to

contribute to the Rich Client

Platform. Selecting this

option affects the default

preference for automatically

managing manifest package

dependencies, on the Client

Services Project Options

page. If Rich Client Platform

is selected, then the

Require-Bundle preference is

set, otherwise the

Import-Package preference is

set.

Selected

Platform Profile panel

Allows the platform profile and associated application services to be selected for

the project. By default, the necessary services for supporting Embedded

Transaction projects will be selected. Refer to “Platform Profile” on page 174 for a

discussion of platform profiles and “Application Profile” on page 174 for a

discussion of application services.

 Table 14. Platform Profile panel

Option Description Default Value

Platform Profile Select from the list the

Platform Profile this Client

Services project will target.

You can change your

selection later in the Client

Services property page.

WebSphere Everyplace

Deployment (6.0.0) Default

Application Services Check the Application

Services that your Client

Services project will require.

You can change your

selection later in the Client

Services property page. Grey

entries are required by the

Platform Profile and cannot

be un-checked.

The ″Core OSGi Interfaces″

Application Service is

required by all Platform

Profiles.

Developing Embedded Transaction applications 81

Client Services Project Options panel

Selects how to manage project package dependencies. Refer to “Managing Client

Services project dependencies” on page 173 for more information on these options.

 Table 15. Client Services Project Options panel

Option Description Default Value

Attempt to automatically

resolve Manifest

dependencies

Select this option to enable

the tools to automatically

manage the package

dependency information in

the manifest file. Package

dependencies in your

project’s Java code will

automatically be reflected

through proper updates to

the manifest file. When this

option is not selected,

package dependencies that

are not properly reflected in

the manifest are flagged with

problem markers, along with

quick fixes to resolve the

problems.

Selected

Give preference to

Require-Bundle

Require-Bundle will be used

to automatically fix a

package dependency in cases

where either Require-Bundle

or Import-Package can be

used.

Selected

Give preference to

Import-Package

Import-Package will be used

to automatically fix a

package dependency in cases

where either Require-Bundle

or Import-Package can be

used.

Not selected

Converting an EJB project to a Client Services Embedded

Transaction project

You can convert an existing EJB project into a Client Services Transaction project by

using the Convert Project to Client Services project wizard. Refer to “Convert

Project to Client Services Project Wizard” on page 250 for information on how to

use this wizard.

This will retain the existing EJB logic of the project, and will add Client Services

tooling support. There is no wizard to convert a Client Services Embedded

Transaction project to an EJB project. If you wish to retain the original EJB project,

you should copy the project before converting it. This can be done as follows:

1. In the Package Explorer or Project Explorer view, right click the project to be

copied to display its context menu.

2. Select Copy.

3. Right click on an empty space in the project view.

4. Select Paste. This displays the Project Copy dialog.

5. Enter a project name for the project copy, and select OK.

82 IBM WebSphere Everyplace Deployment: Developer’s Guide

Embedded Transaction specific considerations

The Embedded Transaction container is targeted for more constrained devices than

typical J2EE EJB servers/containers. While the programming models between the

two are very similar, there are aspects that are unique to Embedded Transaction

Container.

The following tasks involve Embedded Transaction specific considerations:

v Implementing Finder Methods

v Configuring and Using Data Sources

v Locating EJBs

v Conserving JDBC Resources

v Working With User Managed Transactions

v Providing Custom Bundle Activation

There are also deployment related differences, such as the introduction of the

eejb_deploy.xml file. These differences are covered in “Embedded Transaction

Deployment” on page 88.

Implementing finder methods

The Embedded Transaction Container uses the following approach to

implementing custom finder function. For each finder method declared on the

Home interface (other than findByPrimaryKey), you must provide the business

logic required to build the corresponding collection. The tool requires that this

logic be packaged in an abstract finder helper class, which the tool extends in a

concrete JDBC finder helper class. Typically the business logic is encapsulated in a

SQL SELECT statement.

The container provides a base JDBC finder class,

com.ibm.pvc.txncontainer.BaseJDBCFinder, that provides the bulk of the required

finder functionality. By extending this class, you only need to supply the actual

finder logic. For every custom method, findXXX, defined on the Home interface,

you must code a corresponding ejbFindXXX method on the abstract finder helper

class. BaseJDBCFinder provide the methods getTableName() (returns String

specifying the database table name) and getPreparedStatement(String) (returns a

PreparedStatement derived from the appropriate DataSource).

Finders can return single items or collections of items.

The following is a sample multi-result finder implementation, which returns a

Collection:

public abstract class Customer20JDBCFinder extends BaseJDBCFinder

{

 public Customer20JDBCFinder(DataSourceHome arg0, String arg1) {

 super(arg0, arg1);

 }

public Collection ejbFindByFirstName (String firstName) throws FinderException

 {

 final String selectSQL = "select * from customer where fname = ?";

 PreparedStatement pstmt = null;

 try {

 pstmt = getPreparedStatement(selectSQL);

 pstmt.setString(1, firstName);

 }

Developing Embedded Transaction applications 83

catch (SQLException e) {

 throw new FinderException

 ("Problem executing Finder: "

 + selectSQL

 + ", Exception = "

 + e.toString());

 }

 return new BaseJDBCCollection(pstmt, this);

 }

The following is a sample single-result finder implementation, which returns a

single key:

public abstract class Customer20JDBCFinder extends BaseJDBCFinder

{

 public Customer20JDBCFinder(DataSourceHome arg0, String arg1) {

 super(arg0, arg1);

 }

 public Customer20Key ejbFindById (String Id) throws FinderException

 {

 final String selectSQL = "select id from customer where id = ?";

 PreparedStatement pstmt = null;

 try {

 pstmt = getPreparedStatement(selectSQL);

 pstmt.setString(1, Id);

 }

 catch (SQLException e) {

 throw new FinderException

 ("Finder = "

 + selectSQL

 + ", Exception = "

 + e.toString());

 }

 return (Customer20Key) singleResultFinder(pstmt, true);

 }

In addition to the SQL application logic, you should ensure the following rules are

met:

v Ensure that the finder helper is abstract.

v Ensure that the finder helper extends BaseJDBCFinder

v Code the appropriate two-parameter constructor, and invoke super()

The Boolean parameter supplied to the singleResultFinder method determines

whether only one object can match the finder criteria. If true, the container will

throw an exception if more than one object matches; if false, one object will be

returned from the result set, however, you will have no way of determining which

object is selected.

Suppose you have an entity bean to which you want to add additional

searching/lookup capabilities. For the purposes of these steps, assume you have an

entity bean representing a customer, with the Customer class representing the

remote interface, CustomerBean the actual implementation, and CustomerHome as the

home interface. In order to add additional search methods, you need to do the

following:

1. Update the CustomerHome class to define the new method (e.g. findByFirstName

(String firstName).

2. Create a new class extending BaseJDBCFinder.

84 IBM WebSphere Everyplace Deployment: Developer’s Guide

a. The constructor must call super(arg0, arg1).

b. You must implement a method ejb<findername>. For our example,

therefore, you must implement the method ejbFindByFirstName(String

firstName).

c. Use the method getPreparedStatement(sqlstring) to obtain a statement

to execute. The base class provides the appropriate setup of requesting a

connection, etc.

d. For a collection result, return a BaseJDBCCollection object.

e. For a single result finder, return the results of the singleResultFinder()

method.

Configuring and using data sources

Creating and binding DataSource instances

Data base vendors provide implementation specific DataSource classes for

connecting to their databases. The Embedded Transaction Container requires a

specific DataSource, TxnDataSource, be used when connecting to the database.

These specific DataSource are created via the TxnDataSourceFactory.

This “wrapping” of the vendor specific DataSource can be done before JNDI

binding or after lookup. Wrapping before JNDI binding is the best practice, since

this is done once, as opposed to wrapping after every lookup.

Refer to “Using declarative JNDI” on page 196 for general information about how

to handle the JNDI binding, and to “TxnDataSourceObjectFactory” on page 198 for

TxnDataSource specific information.

Note: For information on using JDBC DataSource to access JDBC data bases, refer

to “Creating database access application development best practices” on

page 69.

Advanced topics: While the declarative JNDI means of wrapping and binding is

the preferred method, this can also be handled programmatically, as follows:

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.sql.DataSource;

import com.ibm.db2e.jdbc.DB2eDataSource;

import com.ibm.pvc.txncontainer.TxnDataSourceFactory;

private void createAndBindDataSource() throws NamingException {

 // create DB2e specific Datasource object and set it’s jdbc url

 DB2eDataSource db2eDS = new DB2eDataSource();

 db2eDS.setUrl("jdbc:db2e:" + EJBDB_LOC);

 // wrap and bind the vendor specific data source

 DataSource ds = TxnDataSourceFactory.create(db2eDS);

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.pvc.jndi.provider.java.InitialContextFactory");

 InitialContext context = new InitialContext(env);

 context.bind(DATASOURCE_NAME, ds);

}

Where EJBDB_LOC is the physical location of the database, and DATASOURCE_NAME is

the JNDI name of the DataSource.

Developing Embedded Transaction applications 85

Locating and connecting to a DataSource

Session beans and client applications typically require a database connection, and,

according to the EJB specification, acquire the DataSource from JNDI in the same

way that it does when finding EJB homes (for more information, refer to “Finding

EJB homes.” The following sample shows how Session Beans and client

applications can acquire a Connection in the Embedded Transaction Container

environment.

import java.sql.Connection;

import javax.sql.DataSource;

import javax.naming.InitialContext;

 protected Connection getConnection() throws SQLException

 {

 DataSource ds = null;

 try {

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.pvc.jndi.provider.java.InitialContextFactory");

 InitialContext context = new InitialContext(env);

 ds = (DataSource) context.lookup(DATASOURCE_NAME);

 }

 catch (Exception e) {

 e.printStackTrace();

 throw new IllegalArgumentException("Cannot lookup DataSource:" + e);

 }

 return ds.getConnection();

 }

Where DATASOURCE_NAME is the JNDI name of the DataSource.

Locating EJBs

The EJB deployment descriptor includes information about the EJB’s JNDI binding.

As with J2EE EJBs, the JNDI related values can be set via the Deployment

Descriptor editor.

The actual timing of EJB binding is handled by the WebSphere Everyplace

Deployment JNDI provider (for more information, refer to “WebSphere Everyplace

Deployment JNDI overview” on page 195) and Declarative JNDI (for more

information, refer to “EJBObjectFactory” on page 197).

Finding EJB homes

Client applications perform the following operation to access deployed EJBs:

// Import the JNDI InitialContext class

import javax.naming.InitialContext;

// Name of the Home

final String jndiName = "java:comp/env/EmployeeFromJDBC";

// Get the reference to the Home

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.pvc.jndi.provider.java.InitialContextFactory");

InitialContext context = new InitialContext(env);

final EmployeeHome localHome = (EmployeeHome)context.lookup(jndiName);

Conserving JDBC resources

EJBs provide abstractions that shield the programmer from the technical details of

the underlying data stores. These abstract layers need help managing the

underlying data base resources to work within the constraints of the embedded

86 IBM WebSphere Everyplace Deployment: Developer’s Guide

data base engines. For example, DB2e v8.2 supports a maximum of 20 open

statements. When working with Container Managed Persistence (CMP) Beans,

statements may be opened when a finder method creates a collection and when an

iterator is used to walk the contents of that collection. When an iterator has

reached its end, the corresponding statement can be closed. While the CMP

abstraction layer will automatically close statements when it is certain they are no

longer needed, it is up to the application programmer to explicitly dispose of all

Collections and Iterators to ensure that the corresponding statements are closed

prior to commit or garbage collection implicitly closing them. When a program no

longer needs a Collection or Iterator, if that object is an instance of IDisposable,

the dispose method should be called on it.

For example:

 if (myCollection instanceof IDisposable) {

 ((IDisposable)myCollection).dispose();

}

Working with user managed transactions

The Embedded Transaction Container provides an implementation of a transaction

manager. This TransactionManager is used for automatically handling transaction

management issues.

Note: Unlike a J2EE TranactionManager, the embedded transaction container’s

transaction manager does not provide an implementation of

javax.transaction.TransactionManager, nor does it support two phase

commit.

Advanced topics

Applications generally do not work directly with the transaction manager. For the

advanced cases, the Embedded Transaction Container does provide a User

Transaction Factory (UTFactory) that enables applications to work with user

transactions.

The UTFactory provides a static getUserTransaction() method that will return an

implementation of the javax.transaction.UserTransaction interface. This

UserTransaction instance is used by developers for handling typical

transaction-related actions:

v begin() – creates a new transaction and associated it with the current thread

v commit() – completes the transaction associated with the current thread

v rollback() – rolls back the transaction associated with the current thread

v setRollbackOnly – after calling this method, a “rollback” is the only possible

outcome of the transaction associated with this thread

v getStatus() – obtains the status of the transaction associated with this thread

v setTransactionTimeout() – is not supported

Providing custom bundle activation

The Embedded Transaction Container tooling provides a default bundle activator if

the application does not already contain one. The default bundle activator,

com.ibm.pvc.txncontainer.GenericActivator, registers the EJB’s home interface.

Advanced topics

A custom bundle activator would be required if the application needs to perform

OSGi specific operations. A custom bundle activator can be created at project

creation by selecting Generate the Java class that controls the bundle’s life cycle

Developing Embedded Transaction applications 87

in the Client Services Embedded Transaction Project wizard (For more information,

refer to “Creating a Client Services Embedded Transaction project” on page 79) To

create a custom bundle activator for an existing project, you can perform the

following steps:

1. Add the custom bundle activator class to the package in which the other EJB

classes (home, interface, implementation, finders) are located.

Note: The custom bundle activator class must extend the

com.ibm.pvc.txncontainer.GenericActivator class and call the

start()and stop() methods of GenericActivator inside its own start()

and stop() methods.

2. Open the Bundle Manifest editor on the project’s META-INF/MANIFEST.MF file,

and enter the custom bundle activator class in the Class field of the Overview

page. This will update the EJB manifest file META-INF/MANIFEST.MF, by setting

the Bundle-Activator property to the custom bundle activator class.

Custom bundle activator example:

import org.osgi.framework.BundleContext;

import com.ibm.pvc.txncontainer.GenericActivator;

/**

* Minimum bundle activator for EJBs

*/

public class MyBundleActivator extends GenericActivator {

 public void start(BundleContext context) throws Exception{

 // custom tasks here

 super.start(context);

 }

 public void stop(BundleContext context){

 // custom tasks here

 super.stop(context);

 }

}

Embedded Transaction Deployment

Embedded Transaction applications require a deployment step before they can be

run. This is analogous to the deployment step performed on an Enterprise Java

Bean (EJB), and should not be confused with the concept of deploying a bundle to

the runtime (which involves methods of packaging and delivering the bundle to

the runtime). Embedded Transaction deployment involves specifying the proper

deployment information in deployment descriptors, and subsequently performing

a deployment operation which performs the necessary transformations on the

project to enable it to be run by the Embedded Transaction container.

Embedded Transaction applications require additional deployment information

beyond that typically provided when deploying an EJB. The standard EJB

deployment descriptor, ejb-jar.xml , must contain proper deployment information.

The Rational Software Development tools automatically manage this in many

cases, and provide an EJB Deployment Descriptor editor. For more information,

refer to Developing enterprise applications > EJB Deployment Descriptor in the

Rational help. Refer to “Embedded Transaction Deployment Descriptor” on page

89 for the additional deployment information you must add for Embedded

Transaction applications, and “Embedded Transaction Deployment Editor” on page

90 for information on using the editor to update this information.

88 IBM WebSphere Everyplace Deployment: Developer’s Guide

Once the proper deployment information is specified, a deployment operation can

be carried out to enable the application to be run. “Invoking deployment”

describes how and when the deployment operation is carried out.

Invoking deployment

Embedded Transaction deployment can be carried out in the following ways:

v Automatically when running or exporting a project

v Manually through the deploy action

v Through an ant script

Automatic deployment when running or exporting a project

Deployment is automatically run whenever an Embedded Transaction project is

selected to be run on a WebSphere Everyplace Deployment runtime that is

launched through the tools. Refer to “Debugging and testing applications” on page

157 for information on launching WebSphere Everyplace Deployment runtimes

through the tools.

Manual deployment through the Deploy action

Deployment can be manually invoked from the J2EE perspective by right clicking

on the project to bring up its context menu. Then select Deploy.

Ant script deployment

A Deployment Ant script can be used for batch deployment of projects. It can also

be used to customize the deployment operation. For information about tailoring

this file, refer to “Customizing the deployment Ant script (ejb-build.xml)” on page

91.

By default, the deployment operation is performed internally by the tools.

However, if the project contains a deployment ant script, this Ant script will be run

to perform the deployment operation. This provides a means for customizing the

deployment operation, by customizing the deployment Ant script.

Perform the following procedure to generate a deployment Ant script:

1. From the Project Explorer or Package Explorer view, right click the target

project to display its context menu.

2. Select Client Services > Create ANT Deploy File.

3. This creates the deployment Ant script as the file ejb-build.xml in the project.

4. Optionally, tailor the Ant script.

5. You can run this script from the tools Explorer view by right clicking on file

ejb-build.xml, and selecting Run > Ant Build.

Embedded Transaction Deployment Descriptor

The Embedded Transaction Container Tooling plug-in auto-generates the XML

deployment file. The XML deployment file contains the custom deployment

information required to deploy the EJB. The information provided in the

deployment file supplements the information already included in the EJB

deployment descriptor (ejb-jar.xml). To deploy the embedded EJB, you must

supply this information as an XML file that conforms to the schema file

eejb-deployment.xsd, which is shipped with the tooling. Information included is as

follows:

Developing Embedded Transaction applications 89

jndi-name

The name through which the deployed Home is accessed via the naming

service (e.g., JNDI). It is not assumed that the Home will be bound to a

java:/comp/env/ejb Context, so the name supplied in the deployment

information is used exactly “as is”. Required for both session and entity

beans.

jdbc-bean

Supplies the information needed to deploy an entity bean to the Embedded

Transaction Container using a JDBC-based DataSource. In this element, the

user specifies the name of the abstract-finder-helper class that the user

has supplied for the EJB, and also specifies the name of the deployed

finder-helper class that the tooling will generate. Required by container

managed persistence (CMP) entity beans only.

datasource-name

Specifies the name through which the DataSource providing a connection

to the data store can be accessed from the naming service. Required by

entity beans only.

table-name

Specifies the name of the relational database table that provides persistence

for the container-managed persistence (CMP) entity bean. This element is

not required by bean-managed persistence (BMP) entity beans.

deployed-class

Specifies the name of the deployed bean implementation class. Required

for both session and entity beans.

ejbivar

Specifies the name of the table column that provides persistence for the

entity beans fields.

cmp-field

The name of the entity bean field to be persisted. The value of this field

should match the value specified in the EJB deployment descriptor,

ejb-jar.xml.

Note: You must complete the database information (DataSource name, table name,

column names) for entity beans. All other information is completed by the

tooling. No update to the deployment file is necessary for stateless session

beans.

Embedded Transaction Deployment Editor

Information in the “Embedded Transaction Deployment Descriptor” on page 89

can be managed through the Embedded Transaction Deployment Editor. This

editor can be opened as follows:

1. Locate the project’s Embedded Transaction Deployment descriptor file in the

Explorer view. This is file eejb_deploy.xml in the project’s ejbModule/META-INF

folder.

2. Open the deployment descriptor by double clicking it, or right clicking and

selecting Open. The Embedded Transaction Deployment editor displays.

The editor will display all of the project’s defined beans in the Beans view. Select a

bean from the Beans view, and its associated Embedded Transaction deployment

information will display on the right hand side for editing.

90 IBM WebSphere Everyplace Deployment: Developer’s Guide

Customizing the deployment Ant script (ejb-build.xml)

While much of the generated deployment Ant script is specific to the project being

deployed, some values are defaulted and can be changed by editing the generated

ejb-build.xml file.

Customizing for target data base (DB2e and Cloudscape)

Different code is generated based on what data base support is available on the

platform to which the EJB will be deployed. The database.mode property in the

ejb-build.xml is used to specify this. The default value is “DB2e”. To use

Cloudscape, you must modify this property in the <target name="init"> section,

as in the example below:

<property name="database.mode" value="derby"/>

Advanced topics

The following discusses parameters that would typically only be modified for

advanced customization purposes.

As discussed in the EJB specification, bean providers and application assemblers

supply a set of ejb-jar files containing a J2EE application to a deployer . The

deployer deploys the enterprise beans contained in the ejb-jar files in a specific

operational environment. This deployment step for the Embedded Transaction

Container is provided by the IntegratedDriver.

The parameter settings necessary to run the Integrated Driver tool are

pre-configured in the Ant script, and the default values usually do not need to be

specified by the EJB developer. The Integrated Driver and its required arguments

are described below. The end-to-end.args property in the ejb-build.xml file is

used to pass parameters to the Integrated Driver.

Integrated Driver required arguments

The following arguments are required and have the specified defaults.

 Table 16. Required arguments

Argument Description Example

-cmpJar=<ejb-jar filename> Specifies the input ejb-jar file

(from the Bean Developer).

This file must include all

necessary .class files and the

EJB deployment descriptor

per the EJB specification.

-cmpJar =

c:/tmp/lib/employee.jar

-deployedJar=<output JAR

filename

Contains original bean

classes and generated code.

This is the deployed EJB Jar.

-deployedJar =

c:/tmp/lib/deployed-
employee.jar

Developing Embedded Transaction applications 91

Table 16. Required arguments (continued)

Argument Description Example

-dbType=<database that

emitted code will access>

The current valid values are:

DB2e, derby and none.

The latter value is used when

deploying only stateless

session beans and

bean-managed Entity beans

to denote the fact that

emitted code is database

independent. If no dbType

argument is supplied, a

default value of none is

assumed.

-dbType = DB2e (defaults to

none)

-findersRootDir=<root

directory of all finder

classes>

The directory from which all

the EJB finder

implementations (.java files)

are rooted.

″-findersRootDir =src″

-deploymentXMLFile =

<extra deployment

information XML file>

An XML file containing

deployment information

beyond that available in the

spec-defined EJB deployment

descriptor.

-deploymentXMLFile =

eejb_deploy.xml

-deploymentXMLSchemaFile

= <XML Schema file for

deploymentXMLFile>

Name of the XML Schema

file describing

deploymentXMLFile.

-deploymentXMLSchemaFile

= eejb_deployment.xsd

-classpath=<CLASSPATH to

use for tooling-invoked

compilations>

The CLASSPATH to use

when the tooling is

compiling its generated code.

Include at least ″-classpath =

jta.jar; txncontainer.jar;

<undeployed EJB jar>″, plus

any other dependencies your

EJB requires

Importing and Exporting Embedded Transaction Bundles

Importing an Embedded Transaction Bundle

You can import an Embedded Transaction bundle that was exported with source.

Refer to “Exporting Client Services projects” on page 166 for information on

exporting a bundle. If the bundle was not exported with source, it will not be

eligible for import.

Complete the following steps to import an Embedded Transaction bundle:

1. Open the Import wizard by selecting File > Import... The Import window

displays.

2. Select Embedded Transaction Bundle, then select Next. The Import Client

Services Embedded Transaction plug-in/bundle window displays.

3. Select the Embedded Transaction bundle file that you want to import by either

selecting Browse, or by typing the file name into the Client Services Embedded

Transaction plug-in/bundle field.

4. Select Finish. A project will be created for the imported bundle. The project

name will be the bundle’s symbolic name.

92 IBM WebSphere Everyplace Deployment: Developer’s Guide

Exporting an Embedded Transaction Bundle

An Embedded Transaction project can be exported as a bundle by using the OSGi

bundle export wizard. Refer to “Exporting Client Services projects” on page 166 for

directions on how to export a bundle.

Embedded Transaction specific debugging

This section includes Embedded Transaction Container specific debugging

information.

For general debugging information, refer to “Debugging and testing applications”

on page 157.

Saving source for viewing during debugging

The default behavior specified in the general ejb-build.xml file is to delete the

auto-generated source code for CMP entity beans. This behavior can be changed if

the application programmer would like to keep the source code for debugging

purposes. Without this source code, the programmer can not visually step through

the code when running the debugger. The following two steps will persist the

auto-generated source code, and point the debugger to the source location.

1. The ejb-build.xml file within an EJB project contains a “clean” tag that signal

which files/directories are to be deleted at the end of a build. The default tag is

the following:

<target name="clean">

 <delete dir="temp"/>

 <delete dir="tempfiles"/>

</target>

To persist the source files needed for debugging, the “delete” tags must be

removed or commented out. If commented out, the tags after the needed

modifications will look as follows:

<target name="clean">

 <!--

 <delete dir="temp"/>

 <delete dir="tempfiles"/>

 -->

</target>

2. In order for the debugger to display the source code to be stepped through, it

must know the location of that source code. Setting the source code location is

one of the options when launching an Eclipse workbench in debug mode. One

typical way of setting this is to:

a. Select Debug... The Create, Manage, and Run Configurations Panel

displays.

b. Select the Source tab.

c. Select the Add button. The Add Source panel displays.

d. Select directory. The directory with the source files is located within the

tempfiles folder in the associated EJB project.

Enabling logging and tracing with the Embedded Transaction

Container

Embedded Transaction Container logging enables a developer to associate logged

messages with one of six logging levels: fatal, error, warning, info, debug, and

trace. These logging levels are ordered in decreasing severity. At runtime, the user

can configure the Embedded Transaction Container to specify, on a per-class basis,

Developing Embedded Transaction applications 93

the level of logging that is enabled. Enabling a given log level implies that all log

messages associated with that level, or a higher log level, should be logged.

Messages associated with a lower log level are ignored.

If you would like to enable logging of the Embedded Transaction Container, add

the following options to the VM arguments section of your launch configuration:

-Deejb.logging.priority.com=debug

-Deejb.logging.logwriters=com.ibm.pvc.utils.logger.ConsoleLogWriter=debug

This will turn on debug for all components of the Embedded Transaction

Container, and send the output to the console.

94 IBM WebSphere Everyplace Deployment: Developer’s Guide

Developing Mobile Web Services

Mobile Web Services overview

The IBM WebSphere Everyplace Client Toolkit extends the Rational Software

Development Platform through plug-ins that enable you to build applications

targeting the WebSphere Everyplace Deployment runtime platform. The IBM

WebSphere Everyplace Client Toolkit Web Services plug-in suite enables you to

develop applications that consume and are exposed as Web Services targeting the

OSGi-based WebSphere Everyplace Deployment runtime platform. For more

information on the Rational Software Development Platform, visit

http://www.ibm.com/pvc.

The IBM WebSphere Everyplace Client Toolkit Web Services runtime plug-in suite

provides functionality similar to libraries that implement the Java 2 Micro Edition

Web Services Specification (JSR-172).

To enable you to develop Web Services applications, the Web Services Tools allows

you to generate client code that consumes Web Services as well as exposes OSGi

services as Web Services providers.

An application that will consume a Web Service needs to identify the service

end-point, typically a URL to a Web Services Description Language (WSDL)

document and use the interface to invoke the Web Services provider. An

application that will be exposed as a Web Services provider must implement a Java

interface that defines the Web Service calls.

Technologies

Web Services Description Language (WSDL)

A WSDL document provides the description of the Web Services interface. Web

Services can be created using a top-down or bottom-up approach. A top-down

approach is used to generate code from a WSDL (typically used for developing

Web services clients), whereas a bottom-up approach is used to generate a WSDL

from code (typically used for developing Web Services providers). However, the

IBM WebSphere Everyplace Client Toolkit Web Services plug-in currently supports

only the top-down approach.

For more information about WSDL, please visit http://www.w3.org/TR/wsdl.

Simple Object Access Protocol (SOAP)

SOAP is the message format of the transaction that takes place when a Web

Services client that communicates with a Web Services provider. The WSDL defines

the restrictions on the format of these messages.

For more information about SOAP please see http://www.w3.org/TR/soap.

JAX-RPC

The Java API for XML-Based Remote Procedure Call (JAX-RPC) enables developers

to build Web Services using XML-based RPC functionality according to the SOAP

1.1 specification.

© Copyright IBM Corp. 2004 95

http://www.ibm.com/pvc
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap

For more information about JAX-RPC, please visit

http://java.sun.com/xml/jaxrpc.

The Web Services Client Programming Model

Similar to the programming model specified in the Web Services for J2ME

specification (JSR-172), the WebSphere Everyplace Client Toolkit provides the

following capabilities:

1. A generated stub from the Web Services Description Language (WSDL)

description of the service operation.

The Mobile Web Services Client wizard generates a static client stub class using

the WSDL that is exported from the Web Services provider as its input. The

stub is then used to invoke the Web Services provider.

In addition to the static stub, the Web Services Gateway proxy library

(com.ibm.pvcws.osgi), a component of WebSphere Everyplace Deployment can

be used to generate a dynamic client stub on-the-fly. This dynamic client stub

may be used in place of the static client stub, which hard-codes the SOAP

message definitions and method calls, in order to build Web Services clients

dynamically. Other functionality provided by this proxy library is the ability to

provide custom marshallers (serializers) for types that are incompatible with

JSR-172.

2. WSDL-defined API.

The WSDL document defines an application programming interface (API) that

makes up the complete Web Services client application. This API must be

present on both the server and client side to allow the endpoints to

communicate properly.

3. Instantiation of the stub

The client application uses an instance of the static or dynamic stub to

indirectly access the Web service defined by a given WSDL.

It is imperative that the WSDL definition reflects the actual interface to the Web

service at runtime. The JAX-RPC subset does not perform any version control.

Any differences between the defined WSDL and the instance of the Web Service

may produce unpredictable results.

4. Invocation of stub methods that correspond to the implementation of service

endpoint operations.

The Web Services client application can use an instance of the stub to set stub

properties, including the service endpoint. The methods generated in the stub

are used to call service endpoint operations.

5. Packaging the stub with the client application.

The generated stub is provided in source form. It is used during application

development.

Tools

Tools for Mobile Web Services development

The IBM WebSphere Everyplace Client Toolkit provides tools for creating Mobile

Web Services client code, as well as code for exposing an OSGi service as a Web

services provider.

The tools provided include:

v A Web Services client wizard that includes a wizard to configure security

v A Web Services provider wizard to expose OSGi services as Web Services

providers

96 IBM WebSphere Everyplace Deployment: Developer’s Guide

http://java.sun.com/xml/jaxrpc

v A Web Services provider security wizard to configure security

v Editors to modify WS-Security configurations

Creating Mobile Web Services

Creating Mobile Web Services providers

Any OSGi service can be exposed on the WebSphere Everyplace Deployment

Client as a Web Services provider using the IBM WebSphere Everyplace Client

Toolkit, provided that the service implements a Java interface.

To create a Web Services provider from scratch, perform the following procedure:

1. Create a new Client Services project named MyWebServicesProvider:

a. Select File > New > Project.

b. Select Client Services > Client Services Project.

c. Select Next.

d. Type a name for the new project (for example, MyWebServicesProvider).

e. Select Next.

f. Select Next.

g. Select Finish.
2. Create the code that will be exposed as a Web services provider:

a. Create a simple Java interface with a method declaration.

b. Create a Java bean class that implements the interface, and then select it in

the workspace.

c. Select File > New > Other.

d. Select Client Services > Mobile Web Services > Mobile Web Services

Provider.

e. Select the Java interface implemented by the selected file.

f. Select Finish.

After selecting Finish, the IBM WebSphere Everyplace Client Toolkit will modify

the Bundle Activator of the targeted project by adding two methods:

getProvider() and exposeService(). Also, the start() method of the Bundle

Activator will be modified to invoke exposeService() so that the bundle is

exposed as a Web services provider at startup time. Please note that this call is not

restricted to be on the start() method, and can be moved to execute at any time

as long as the BundleContext is available.

Unlike the WebSphere Application Server Web Services tools, the IBM WebSphere

Everyplace Client Toolkit does not generate a WSDL document. Instead, the user

will select an OSGi service class in a project and run the tools, to generate code

that calls the com.ibm.pvcws.osgi plug-in APIs to expose the OSGi service as a

Web Services provider. Generation of a WSDL-document occurs at runtime using

Java reflection into the OSGi service class.

If the Web Services provider needs to handle non-bean classes or types that are

incompatible with JSR-172, custom marshallers need to be implemented. Please

refer to the section “Custom serialization (marshalling)” on page 103 for more

information.

Developing Mobile Web Services 97

Creating Mobile Web Services clients

The IBM WebSphere Everyplace Client Toolkit can be used to create Web Services

client code that calls Web Services providers via a static or dynamic stub. The IBM

WebSphere Everyplace Client Toolkit supports the creation of Web Services clients

using the WSDL of the Web Services provider. If the Web Services client will target

a WebSphere Everyplace Deployment Client Web Services provider, it is best to

create and deploy the Web Services provider first, prior to creating the Web

Services client so that its WSDL is available.

Following are the steps to create a Web services client from scratch:

1. Create a new bundle project named MyWebServicesClient:

a. Select File > New > Project.

b. Select Client Services > Client Services Project.

c. Select Next.

d. Type a name for the new project (for example, MyWebServicesClient).

e. Select Next.

f. Select Next.

g. Select Finish.
2. Create a new client interface and optional stub:

a. Select File > New > Other.

b. Select Client Services > Mobile Web Services > Mobile Web Services

clients.

c. Select Browse to select the source folder or project for your client

application.

d. Optionally, enter the package you wish to use for the static stubs or leave it

blank to use a default package instead. Please note that this option will not

be enabled if you select the Create Dynamic Stub check box, as the Web

Services runtime component requires that the package name match the

WSDL namespace.

Note: If you intend to deploy a Web service client and a Web service

provider in the same runtime, place the Web service client stub in a

package that is different from the package of the Web service

provider to prevent a runtime conflict.

e. Enter the URL of the WSDL exposed by the Web Services provider.

Please note that if the URL is secured with SSL (e.g. HTTPS), you will need

to start the Rational Software Development Platform with the appropriate

VM arguments to provide a valid client certificate. For example, the

following VM arguments can be used:

-Djavax.net.ssl.keyStore=<path_to_keystore_file>

-Djavax.net.ssl.keyStoreType=<keystore_type>

-Djavax.net.ssl.keyStorePassword=<keystore_password>

-Djavax.net.ssl.trustStore=<path_to_truststore_file>

-Djavax.net.ssl.trustStoreType=<truststore_type>

-Djavax.net.ssl.trustStorePassword=<truststore_password>

Optionally, select the Create Dynamic Stub check box to use dynamic stubs

rather than create static stubs.

A dynamic stub allows the Web Services client to create and use custom

marshallers for WSDL types that are non-bean classes or are incompatible

with JSR-172.

f. Optionally, select the Configure Security check box to configure Web

Services Security for the client.

98 IBM WebSphere Everyplace Deployment: Developer’s Guide

g. Select Next.

h. If there are any types in the WSDL that may require custom marshalling,

you will be presented with the option of generating custom marshaller

stubs for each type. This will only be true if the Create Dynamic Stub

check box is checked.

For each type selected in the list, two classes will be generated;

MarshalFactory and Marshaller. These classes are implementations of the

corresponding classes in the com.ibm.pvcws.osgi plug-in. Please refer to the

section “Custom serialization (marshalling)” on page 103 for information on

how to complete the implementation of custom marshallers.

i. If Configure Security was checked on the first page, select Next and refer to

the section “Securing Mobile Web Services” on page 109 for information on

how to configure Web services security. Otherwise, select Finish.

Note: If you receive an exception with the message “Parsing of the specified

WSDL failed”, followed by an explanation, ensure that the WSDL is

accessible through a browser. This exception could either be the result

of a firewall message in HTML-form requiring authentication, or

could be due to an invalid WSDL. Please consult with your

administrator.

Static Mobile Web Services clients

If you generated Web Services client code to use a static stub (i.e., you did not

check the Create Dynamic Stub box), you will see that a *Soap_Stub class was

generated. To invoke the Web services provider, you simply need to instantiate a

*Soap_Stub object and then call the Web services provider methods you wish to

exercise. For example:

MyWebServiceSoap_Stub stub=new MyWebServiceSoap_Stub();

System.out.println("Name=" + stub.getName());

Please note that this release of the IBM WebSphere Everyplace Client Toolkit does

not support custom marshalling with static Web Services clients.

Note: The generated stub will contain the URL of the WSDL specified in the tools.

However, this is only ideal for consuming Web services at fixed locations. If

you intend to host a Web services client in the same WebSphere Everyplace

Deployment runtime of the Web services provider, and the Web container is

selecting a port dynamically, you must register the Web services client

BundleActivator as an HttpSettingListener (package

com.ibm.pvc.webcontainer.listeners.HttpSettingListener) in order to

obtain the port that the Web container is listening on at startup. Then set the

endpoint address accordingly. Following is a listing of the changes that need

to be made on the project MANIFEST.MF file and the BundleActivator class,

including a sample implementation of the HttpSettingListener interface:

MANIFEST.MF:

Require-Bundle: ..., com.ibm.pvc.sharedbundle

import com.ibm.pvc.webcontainer.listeners.HttpSettingListener;

public class MyBundleActivator

extends implements BundleActivator, HttpSettingListener

{

 String endpoint = null;

 public void start(BundleContext context) throws Exception

Developing Mobile Web Services 99

{

 /* *** */

 /* when running a web service client on the same host as a web */

 /* service provider, we must change the endpoint so that it */

 /* matches the port!! */

 /* *** */

 context.registerService(HttpSettingListener.class.getName(),

 this, null);

 /* *** */

 /* create the endpoint URL; please note that you will need to */

 /* make some changes to prevent a race condition with the set- */

 /* ting of httpPort as the registerService call from above is */

 /* asynchronous so it may not be properly set by the time we */

 /* execute the line below. */

 /* *** */

 endpoint = "http://localhost:" + httpPort + "/ws/pid/echoSvc";

 /* *** */

 /* if using a static client, use the following code */

 /* *** */

 // change the endpoint to use the dynamic port which is set below

 EchoServiceSoap_Stub stub = new EchoServiceSoap_Stub();

 stub._setProperty(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,

 endpoint);

 /* *** */

 /* if using a dynamic client, use the following code */

 /* *** */

 String service = "com.ibm.pvcws.osgi.proxy.WSProxyService";

 ServiceReference ref = bundleContext.getServiceReference(service);

 if (ref == null)

 {

 System.err.println("Error: WSProxyService does not “ +

 “exist.");

 return;

 }

 WSProxyService wsManImpl =

 (WSProxyService)context.getService(ref);

 try

 {

 /* register the wsdl at the new endpoint */

 wsManImpl.register(endpoint + "?wsdl");

 }

 catch (Exception e)

 {

 e.printStackTrace();

 return;

 }

 }

 /**

 * Implement the Web Container Listener interfaces */

 */

 private static boolean validSetting = false;

 private static int httpPort = 0, httpsPort = 0;

 private static final String PROPERTY_HTTP_PORT = "http.port";

 private static final String PROPERTY_HTTPS_PORT = "https.port";

 private static Map settingsMap = new HashMap();

 public void settingsAdded(String pid, Dictionary properties)

 {

 Map settings = new HashMap();

 Enumeration enum = properties.keys();

100 IBM WebSphere Everyplace Deployment: Developer’s Guide

while (enum.hasMoreElements())

 {

 String key = (String)enum.nextElement();

 settings.put(key, properties.get(key));

 }

 settingsMap.put(pid, settings);

 if (!validSetting)

 {

 scanSettings();

 }

 }

 public void settingsModified(String pid, Dictionary properties)

 {

 Map settings = (Map)settingsMap.get(pid);

 if (settings == null)

 {

 settings = new HashMap();

 }

 Enumeration enum = properties.keys();

 while (enum.hasMoreElements())

 {

 String key = (String)enum.nextElement();

 settings.put(key, properties.get(key));

 }

 settingsMap.put(pid, settings);

 scanSettings();

 }

 public void settingsRemoved(String pid)

 {

 settingsMap.remove(pid);

 scanSettings();

 }

 private void scanSettings()

 {

 boolean found = false;

 Iterator iter = settingsMap.keySet().iterator();

 while (!found && iter.hasNext())

 {

 Map settings = (Map)settingsMap.get((String)iter.next());

 Integer httpPort_ = (Integer)settings.get(

 PROPERTY_HTTP_PORT);

 if (httpPort_ != null)

 {

 httpPort = httpPort_.intValue();

 validSetting = true;

 found = true;

 }

 Integer httpsPort_ = (Integer)settings.get(

 PROPERTY_HTTPS_PORT);

 if (httpsPort_ != null)

 {

 httpsPort = httpsPort_.intValue();

Developing Mobile Web Services 101

validSetting = true;

 found = true;

 }

 }

 if (!found)

 {

 validSetting = false;

 httpPort = 0;

 }

 }

}

Dynamic Mobile Web Services clients

If you generated Web Services client code to use a dynamic stub (i.e., you checked

Create Dynamic Stub) you will need to register the WSDL of the Web Services

provider using the Gateway plug-in. In order to do this, use the

WSProxyServiceFactory class to get a new instance of WSProxyService and invoke

one of the following methods at runtime:

boolean register(String url);

boolean register(String url, Dictionary properties);

Both methods take the URL of a WSDL resource that describes the Web Services

provider. The WSDL will be retrieved and parsed to determine the end point of the

Web Services provider, the names of the interface to register, and the data

structures and methods used by the interface. An automatically generated ″virtual″

OSGi service will then be registered by the Web Services Gateway-using the class

name of the interface derived from the WSDL-defined operation.

After the OSGi service is registered, it can be retrieved from the OSGi service

registry and used just as any other local OSGi service. The OSGi service will stay

registered until the virtual bundle for that service is stopped or uninstalled. If the

unregister() method of WSProxyService is used, the virtual bundle registering the

service will be stopped.

Note: When running a dynamic Web services client and a Web services provider in

the same runtime, there will be two implementers of the Web service

interface (the client and the provider). As a result, the call to retrieve the

OSGi service will return one reference to each. You may set a property on

the Web services provider exposeService method in order to differentiate

between the two. Following is as an example on how to set this property on

the Web services provider side:

private void exposeService(BundleContext context)

{

 Hashtable props = new Hashtable();

 props.put(org.osgi.framework.Constants.SERVICE_PID,

 “MyWebServiceImpl");

 props.put("com.ibm.pvcws.wsdl", "");

 props.put(“NAME”, “PROVIDER”);

 context.registerService(MyWebService.class.getName(),

 new MyWebServiceImpl(), props);

 WebServiceProvider provider = getProvider(context);

 provider.exportPid("MyWebServiceImpl");

}

Following is a Web services client side code example using a dynamic stub that

differentiates between invoking the Web services provider directly or through the

Web services runtime stubs:

102 IBM WebSphere Everyplace Deployment: Developer’s Guide

public void start(BundleContext context) throws Exception

{

WSProxyService wsManImpl = WSProxyServiceFactory.newInstance(context, null);

try

{

 // NOTE: since by default the web container listens on a random port,

 // refer to the section Static Web Services clients for information on

 // how to obtain the chosen port programmatically and use that

 // information to form the WSDL URL.

 wsManImpl.register("http://localhost:8777/ws/pid/MyWebServicesImpl?wsdl);

 ServiceTracker tracker = new ServiceTracker(context,

 MyWebService.class.getName(), null);

 tracker.open();

 ServiceReference refs[] = tracker.getServiceReferences();

 for (int i=0; i<refs.length; i++)

 {

 String name = refs[i].getProperty(“NAME”);

 MyWebService stub = (MyWebService)context.getService(refs[i]);

 if ((name != null) && (name.equals(“PROVIDER”)))

 {

 /* this is a direct call into the service and is more

 efficient as it would not execute the web services

 stubs

 */

 System.out.println("NAME= + stub.getName());

 }

 else

 {

 /* this is an indirect call into the service which is

 less efficient as it would execute the web services

 stubs

 */

 System.out.println("NAME= + stub.getName());

 }

 }

 tracker.close();

}

catch (Exception e)

{

 e.printStackTrace();

}

If the Web Services client needs to handle non-bean classes or types that are

incompatible with JSR-172 style Web Services, custom marshallers need to be

implemented. Please refer to the section “Custom serialization (marshalling)” for

more information.

Editing Mobile Web Services

Custom serialization (marshalling)

Custom marshalling is required for handling non-bean classes as well as types that

are incompatible with JSR-172. Custom marshalling can be implemented for both

Web Services providers and Web Services clients. However, this release of the IBM

Developing Mobile Web Services 103

WebSphere Everyplace Client Toolkit does not automatically generate custom

marshaller stubs for Web Services providers; it only does for Web Services clients.

When custom marshalling is required, the developer is responsible for completing

the code within the generated MarshalFactory and Marshaller classes on the Web

services client. If custom marshallers are needed for a Web Services provider, the

Web Services client custom marshaller code can be reproduced on the Web Services

provider without change.

This section describes the Application Program Interfaces (API) used in the

serialization of data structures that cannot be automatically serialized by the Web

Services engine for OSGi.

The current Web Services engine uses Java reflection and conventions similar to the

functionality described in JSR 101 to automatically generate a WSDL to describe

services and to serialize data structures for wire transmission. However, in order

for the conventions to work, the data structures must have a bean-like structure.

Unfortunately, not all data structures have this structure and require specific logic

to be serialized and described.

The serialization API has the following features:

v The programmer does not deal with XML processing

v Only the structures that need special processing need custom marshallers

Using the WebSphere Everyplace Client Toolkit, it is easy to write classes that can

automatically be serialized. However, when working with legacy classes and

classes that contain logic, complications arise. Very few of the standard Java classes

lend themselves to automatic serialization. For example, consider the

java.util.Properties class and the java.util.Calendar class. Neither of these two

classes follows the WebSphere Everyplace Deployment Web Services conventions.

Furthermore, there is a standard mapping of the Calendar class into the XML

Schema namespace, so even the namespace mapping conventions do not apply.

The serialization API allows data structures to be introspected.

It has three parts:

v Class name to QName mapping

v Enumeration of the members that make up a class

v Extractions of members from an instance of a class

As it is an introspection API, the programmer does not need to be involved in the

generation of XML for the WSDL or the SOAP messages. In fact, the actual

encoding can be changed since none of the encoding constructs manifest

themselves in the API.

Another design feature of the serialization API is that it is only needed for those

classes that cannot be processed using the standard conventions. For example,

when the marshaller of the Properties class is written, it is represented as an array

of PropertyEntry objects where PropertyEntry is a class that has two public

members, a key and a value, both of type String. Because PropertyEntry follows

the normal convention for writing serializable data structures it is not necessary to

write a custom marshaller for it.

Custom marshallers implement the ClassDescriberMarshalFactory interface and

are registered in the OSGi service registry. The Web services engine dynamically

104 IBM WebSphere Everyplace Deployment: Developer’s Guide

looks up the marshallers and invokes them when needed. This allows for easy

deployment of new marshallers and non-disruptive removal of unnecessary

marshallers.

Note: Automatic generation of custom marshallers is not possible when creating

Web Services providers, only when creating Web Services clients. However,

the same code can be reused on the Web Services provider without change.

MarshalFactory

When the Web Services engine needs to map a class to a QName or get a Marshal for

a QName, it relies on the MarshalFactory class for help. The MarshalFactory class

consists of two methods:

public interface MarshalFactory {

 Class getClassForQName(ClassLoader cl, QName qtype);

 Marshal getMarshaller(QName qtype);

}

Marshal

The Marshal interface has only one method and should not be implemented

directly. Either a SimpleMarshal or ComplexMarshal should be implemented instead.

Each time a new object needs to be serialized, the Web Services engine will call

MarshalFactory.getMarshaller(). When servicing the call, the MarshalFactory can

create a Marshal object to handle the specific object, or it can reuse an already

created object. The Web Services engine interacts with the two Marshal types in

different ways. The engine selects the appropriate behavior by checking the class of

the Marshal returned from getMarshaller().

ClassDescriberMarshalFactory

The ClassDescriberMarshalFactory is an interface that extends both

MarshalFactory and CustomClassDescriber. It does not add any new methods.

Bundles must register services using the ClassDescriberMarshalFactory in the

service registry to provide custom serializers. Serializers that only register services

under the MarshalFactory and CustomClassDescriber interfaces will be ignored by

the web service engine. Examination of the information provided by the

CustomClassDescriber and the MarshalFactory shows that there is some overlap

between the information provided by the two interfaces. It is the responsibility of

the implementer to ensure that the information is consistent.

Examples

This section contains two examples of custom marshallers. The first example shows

a SimpleMarshal for Calendar, and highlights the use of QName mapping to map

Calendar to xsd:dateTime, a mapping defined in JAX-RPC. The second example

shows a ComplexMarshal for Properties, and also illustrates the use of an

intermediate class and the use of QName mapping to return a non imported class.

Calendar example: The serialization of Calendar is illustrated in two parts: the

implementation of CalendarMarshalFactory, and the implementation of

CalendarMarshal.

CalendarMarshalFactory

You must register a service of type ClassDescriberMarshalFactory, so that it is the

interface that the CalendarMarshalFactory implements. First, you must setup static

member variables to aid in your processing:

static QName calendarType = new QName(NamespaceConstants.NSURI_SCHEMA_XSD,

 "dateTime");

Developing Mobile Web Services 105

static ClassDescriptor cdCalendar = new ClassDescriptor(calendarType, 1, 1, true);

static ClassDescriptor cdCalendarArray = new ClassDescriptor(calendarType, 1,

 Integer.MAX_VALUE, true);

static PartsDescriptor parts = new PartsDescriptor

 (new QName[] { new QName("entries")],

 new Class[] { PropertyEntry[].class });

Now you can write the methods that correspond to ClassDescriber:

public boolean canDescribe(Class c) {

 if (c.isArray()) c =

 c.getComponentType();

 return c.equals(Calendar.class);

}

In the canDescribe() method you can describe both Calendar and Calendar[].

Ensure you check for both.

public ClassDescriptor getQType(Class c) {

 boolean isArray = false;

 if (c.isArray()) {

 c = c.getComponentType();

 isArray = true;

 }

 if (c.equals(Calendar.class)) {

 return isArray ? cdCalendar :

 cdCalendarArray;

 }

 return null;

}

This checks to see if the class in question is Calendar and returns the precomputed

ClassDescriptors if appropriate. Observe that the only difference between

cdCalendar and cdCalendarArray is that the maxOccurs value is 1 in the non-array

case, and MAX_VALUE in the array case.

public PartsDescriptor getParts(Class c) {

 return null;

}

getParts() always returns null since even if c == Calendar.class. The Calendar

class is a simple class and therefore has no parts.

public Class getClassForQName(ClassLoader cl, QName qtype)

{

 return calendarType.equals(qtype) ?

 Calendar.class : null;

}

This method handles QName mapping. It simply returns the Calendar class if the

qtype matches xsd:dateTime.

static SimpleMarshal calMarshal = new CalendarMarshal();

Marshal getMarshaller(QName qType)

{

 return calendarType.equals(qType) ?

 calMarshal : null;

}

This is the final method to be implemented. In this method, the system returns a

precomputed SimpleMarshal for Calendar if the qType is xsd:dateTime. The

CalendarMarshal has no reusable state, even if it is used concurrently.

106 IBM WebSphere Everyplace Deployment: Developer’s Guide

CalendarMarshal

When Calendar is encoded as xsd:dateTime it has no members, so you must use a

SimpleMarshal.

public Object deserialize(String value) {

 try {

 Date date = new SimpleDateFormat().parse(value);

 Calendar cal = new GregorianCalendar();

 cal.setTime(date);

 return cal;

 } catch (ParseException e) {

 e.printStackTrace();

 }

 return null;

}

To deserialize a Calendar object, take the given string and use SimpleDateFormat to

create a Calendar. Note that even though the return value is Object, we must

return a Calendar since that is the type this Marshal handles.

public String serialize(Object o)

{

 Calendar cal = (Calendar)o;

 String date = new SimpleDateFormat().format(cal.getTime());

 return date;

}

In the serialize() method we know that o is of type Calendar since that is the

type this Marshal handles. You must convert the string to use SimpleDateFormat()

and return the result.

public Object newArray(int size)

{

 return new Calendar[size];

}

The final method returns an array of the correct size. The Calendar serializer is

ready to register in the service registry.

Properties example: The serialization of Properties is illustrated in two parts: the

implementation of PropertiesMarshalFactory, and then of PropertyMarshal.

This example covers the serializer for Properties. As explained, the Properties class

is serialized using an intermediate class called PropertyEntry:

public class PropertyEntry {

 public String key;

 public String value;

}

Because PropertyEntry is a class that is easily serialized, you don’t need to write a

serializer for it. However, since it is an intermediate class, you must return the

PropertyEntry.class in the QName mapping. In addition, since the conventional

class name is used for QName mapping, you don’t need a mapping for Properties.

It is easy to get confused because the PropertiesMarshalFactory maps

PropertyEntry, a class it is only using internally, but not Properties, the class it is

actually serializing. Remember from the QName mapping discussion that mapping

is used when the QName doesn’t correspond to the convention or the class isn’t a

class that will normally be imported by the virtual bundle or the service.

Properties does not meet either case, but PropertyEntry meets the second case. The

getClassForQName is defined as follows:

Developing Mobile Web Services 107

static QName propertyEntryQType = DefaultMarshalFactory.defaultGetClassQName

 (PropertyEntry.class.getName());

public Class getClassForQName(ClassLoader cl, QName qtype)

{

 return qtype.equals

 (propertyEntryQType) ?

 PropertyEntry.class:null;

}

Because the PropertyMarshalFactory is almost exactly the same as

CalendarMarshalFactory, only the getParts() method is shown. It differs

substantially:

static PartsDescriptor parts = new PartsDescriptor(new QName[]

 { new QName("entries") },

 new Class[] { PropertyEntry[].class });

public PartsDescriptor getParts(Class c) {

 if (c.isArray()) c = c.getComponentType();

 if (c.equals(Properties.class)) {

 return parts;

 }

 return null;

}

The Properties class is encoded as a complex type with one member (entries) that

is an array of PropertyEntrys. As a result, the PartsDescriptor for Properties is

made up of two arrays of one entry. The first array has the name of the members,

and the second the class of the members. The PropertiesMarshal implements

ComplexMarshal and has the following members:

public Object newArray(int length)

{

 return new Properties[length];

}

As with Calendar, this is a simple method that returns an array of the specified

size.

public Object newHandle() {

 return new Properties();

}

Since Properties has a default constructor and has methods to add to it, it can

return an instance of Properties.

{

 PropertyEntry entries[] = (PropertyEntry[])value;

 for(int i = 0; i < entries.length; i++) {

 ((Properties)handle).put(entries[i].key, entries[i].value);

 }

}

As there is only one member for Properties, there is no need to check the index.

You must only put the received entries into the Properties object.

public Object newInstance(Object handle) {

 return handle;

}

There is nothing to do in this routine since handle is already a Properties object.

public Object getMember(Object obj, int index) {

 Properties props = (Properties)obj;

 Vector entries = new Vector();

 Enumeration en = props.keys();

108 IBM WebSphere Everyplace Deployment: Developer’s Guide

while(en.hasMoreElements()) {

 PropertyEntry entry = new PropertyEntry();

 entry.key = (String)en.nextElement();

 entry.value = props.getProperty(entry.key);

 entries.add(entry);

 }

 return entries.toArray(new PropertyEntry[0]);

}

As there is only one member, the index does not need to be checked. Since you are

generating the entries member, you must build a PropertyEntry[] and return it.

public int getMemberCount() {

 return 1;

}

There is only one member.

QPart entriesPart = new QPart(new QName("entries"),

 DefaultMarshalFactory.defaultGetClassQName(PropertyEntry.class.getName()), 0,

 Integer.MAX_VALUE, true, true);

public QPart getPart(int index) {

 return entriesPart;

}

Return the QPart that describes the entries member. The first argument of the

Qpart constructor is the standard mapping of the QName. The second says that the

array can be an empty array. The third says that it is an unbounded array. The

fourth says it can be null. The fifth indicates whether the QPart needs to be

qualified (always set it to true).

Final steps: Now that the serializers are prepared, you must register them in the

service registry so that they can be used. This is done by putting the classes in a

bundle and writing a BundleActivator for the bundle:

public class MarshalBundleActivator implements BundleActivator {

 public void start(BundleContext bc) throws Exception {

 bc.registerService(

 ClassDescriberMarshalFactory.class.getName(),

 new PropertyMarshalFactory(),

 null);

 bc.registerService(

 ClassDescriberMarshalFactory.class.getName(),

 new CalendarMarshalFactory(),

 null);

 }

 public void stop(BundleContext bc) {}

}

To register the serializers, construct the two factories and register them as

ClassDescriberMarshalFactory services.

Securing Mobile Web Services

Securing Mobile Web Services providers

In order to secure Web Services providers, you must first create the Web Service

provider following the instructions in “Creating Mobile Web Services providers”

on page 97 and deploy the Web Services provider locally following the instructions

in “Deploying Mobile Web Services providers” on page 141. This is required

Developing Mobile Web Services 109

because the WSDL of the Web Service provider is needed to enable security. Once

the Web Services provider is running in a local instance of the WebSphere

Everyplace Deployment, follow these instructions to secure the Web Services

provider:

1. Launch the Web Services provider security configuration wizard:

a. Select File > New > Other.

b. Select Client Services > Mobile Web Services > Mobile Web Services

Provider Security Configuration.

c. Select Next.

d. Enter the source folder containing the Java source code for the Web Services

provider application.

e. Enter the URL of the WSDL exposed by the Web Services provider.

f. Click Next.
2. Configure Web Services Security:

a. Select the Web Services name and port from the drop down menu.

b. Under ’How to create Web Services Security configuration’, select the

appropriate choice. For a test case, select Template configuration, then select

the Client type and the Security template from the drop down menus.

v Use other WebSphere Everyplace Deployment configuration

If you browse a folder including the existing WS-Security configurations

for the WebSphere Everyplace Deployment under the other existing

project, you can import the configurations into the working project.

v Import WAS 6.0 configuration

If you browse a folder including the existing WS-Security configurations

for the WAS 6.0 client, you can import the configurations into the

working project.

v Use template configuration

If you select both the appropriate server type and the appropriate

security template, you can use the predefined configurations in the

working project.
c. Select Finish.

After completing the above procedure, the WS-Security Provider Editor appears.

Some files may be created or modified, as follows:

v WS-Security-related code is inserted in the file BundleActivator.java under the

working project

v The files ibm-webservices-ext.xmi, ibm-webservices-bnd.xmi, serverSample.jks,

and wssecurity.xml are generated in the export directory of the package

containing the file BundleActivator.java.

At this point, you may re-deploy your Web Services provider with security

enabled, but if you want to change the WS-Security configurations in the working

project, you can edit them with the WS-Security Provider Editor. To understand

more details of how to edit the WS-Security configurations, please refer to “Editing

the Mobile Web Services security configuration” on page 112.

Securing Mobile Web services clients

In order to secure Web services clients, refer to “Creating Mobile Web Services

clients” on page 98. Ensure that you check Configure Security. Perform the

following procedure to configure Web services security for a secure Web services

client:

110 IBM WebSphere Everyplace Deployment: Developer’s Guide

1. Select the Web services name and port from the drop down menu.

2. Under ’How to create Web Services Security configuration’, select the

appropriate choice. For a test case, select Template configuration, then select

the Client type and the Security template from the drop down menus.

v Use other WebSphere Everyplace Deployment configuration

If you browse a folder including the existing WS-Security configuration for

the WebSphere Everyplace Deployment under the other existing project, you

can import the configurations into the working project.

v Import WAS 6.0 configuration

If you browse a folder including the existing WS-Security configurations for

the WAS 6.0 client, you can import the configurations into the working

project.

v Convert WCTME 5.8 class-based configuration

If you browse a WS-Security configuration java file for WCTME 5.8 or 5.7,

you can convert the configuration for use with the WebSphere Everyplace

Deployment 6.0.

v Use template configuration

If you select both the appropriate server type and the appropriate security

template, you can use the predefined configurations in the working project.
3. Select Finish.

After completing the above procedure, the WS-Security Client Editor appears.

Some files may be created or modified, as follows:

If the Web services client is static and you specified a package in the Mobile

Web Services Client wizard

v The port files ’*.java’ and ’*_Stub.java’ are generated in the specified package.

The name of the port file is taken from the portType in the WSDL file

v WS-Security related code is inserted in ’*_Stub.java’

v The files ibm-webservicesclient-ext.xmi, ibm-webservicesclient-bnd.xmi,

clientSample.jks, and wssecurityclient.xml are generated in the export

directory in the specified package

If the Web services client is static and you did not specify a package in the

Mobile Web Services Client wizard

v The port files ’*.java’ and ’*_Stub.java’ are generated in the package specified

from the contents of the WSDL file

v WS-Security-related code is inserted in the file ’*_Stub.java’

v The files ibm-webservicesclient-ext.xmi, ibm-webservicesclient-bnd.xmi,

clientSample.jks, and wssecurityclient.xml are generated in the export

directory in the package specified from the WSDL file

If the Web services client is dynamic

v A port file is generated in the package specified in the WSDL file

v WS-Security-related code is inserted in the file BundleActivator.java under the

working project

v The files ibm-webservicesclient-ext.xmi, ibm-webservicesclient-bnd.xmi,

clientSample.jks, and wssecurityclient.xml are generated in the export

directory in the package specified from the WSDL file

Developing Mobile Web Services 111

Editing the Mobile Web Services security configuration

In order to understand how to edit the Mobile Web Services security configuration

in the working project, this section introduces seven scenarios described by OASIS

Web Services Security (WSS) TC. These seven message exchange scenarios are

intended to test the interoperability of different implementations performing

common operations, and to test the clarity of their meaning and proper

application. To avoid confusion, they are called Scenario #1 through Scenario #7.

v Scenario #1: Basic Authentication

The request header contains a Username and Password. The response does not

contain a security header.

v Scenario #2: Basic Authentication with Encryption

The request header contains a Username and Password that have been

encrypted using a public key provided out-of-band. The response does not

contain a security header.

v Scenario #3: Sign and Encrypt

The request body contains data that has been signed and encrypted. The

certificate used to verify the signature is provided in the header. The certificate

associated with the encryption is provided out-of-band. The response body is

also signed and encrypted, reversing the roles of the key pairs identified by the

certificates.

v Scenario #4: Session Key

The request body contains data that has been signed and encrypted. The

certificate used to verify the signature is provided in the header. The symmetric

key used to perform the encryption is provided out-of-band. The response body

is also signed and encrypted. The same symmetric key is used to perform the

encryption. The certificate used to verify the signature is provided out-of-band.

v Scenario #5: Overlapping Signature

The request body contains data that has been signed twice. First the ticket

element is signed. The certificate used to verify this signature is provided

out-of-band. Next the entire body is signed. The certificate used to verify this

signature is provided in the header. The response body is not signed or

encrypted.

v Scenario #6: Encrypt and Sign

The request body contains data that has been encrypted and signed. The

certificate associated with the encryption is provided out-of-band. The certificate

used to verify the signature is provided in the header. The response body is also

encrypted and signed, reversing the roles of the key pairs identified by the

certificates.

v Scenario #7: Signed Token

The request body contains data that has been signed and encrypted. The

signature also protects an enclosed security token by means of the STR

Dereference Transform. The certificate used to verify the signature is provided in

the header. The certificate associated with the encryption is provided

out-of-band. The response body is also signed and encrypted, reversing the roles

of the key pairs identified by the certificates.

To understand more details of the scenarios, see the following materials:

v Web Services Security Interop 1 Scenarios (Scenario #1 through Scenario #3):

http://www.oasis-open.org/committees/download.php/2362/wss-intero

v Web Services Security Interop 2 Scenarios (Scenario #4 through Scenario #7):

http://www.oasis-open.org/committees/download.php/11375/wss-inter

112 IBM WebSphere Everyplace Deployment: Developer’s Guide

http://www.oasis-open.org/committees/download.php/2362/wss-intero
http://www.oasis-open.org/committees/download.php/11375/wss-inter

WebSphere Everyplace Deployment Web Services runtimes and the WebSphere

Everyplace Client Toolkit Web Services tools do not support Scenario #4, #5, and

#7. As a result, this section only describes how to edit Mobile Web Services

Security Configuration for scenarios #1, #2, #3, and #6.

Prerequisites

This section assumes that you have removed all Web Services Security

configurations. To do so, perform the following procedures as necessary:

To remove the Mobile Web Services Security Configuration for the Web Services

Provider:

1. Open the WS-Security Provider Editor.

2. Expand Server Service Configuration on the WS extension tab, and delete the

Actor URI.

3. Expand WebSphere Application Server 5.x on the WS extension tab, and

uncheck the Access the WebSphere Application Server 5.x client check box.

4. Expand Request Consumer Service Configuration Details on the WS

extension tab:

a. Expand Required Integrity and remove all items in the list.

b. Expand Required Confidentiality and remove all items in the list.

c. Expand Required Security Token and remove all items in the list.

d. Expand Caller Part and remove all items in the list.

e. Expand Add Timestamp and uncheck the Use Add Timestamp check box.

f. Expand Property and remove all items in the list.
5. Expand Response Generator Service Configuration Details on the WS

extension tab:

a. Expand Details and delete the Actor.

b. Expand Integrity and remove all items in the list.

c. Expand Confidentiality and remove all items in the list.

d. Expand Security Token and remove all items in the list.

e. Expand Add Timestamp and uncheck the Use Add Timestamp check box.

f. Expand Property and remove all items in the list.
6. Expand Request Consumer Binding Configuration Details on the WS binding

tab:

a. Expand Trust Anchor and remove all items in the list.

b. Expand Token Consumer and remove all items in the list.

c. Expand Key Locators and remove all items in the list.

d. Expand Key Information and remove all items in the list.

e. Expand Signing Information and remove all items in the list.

f. Expand Encryption Information and remove all items in the list.

g. Expand Property and remove all items in the list.
7. Expand Response Generator Binding Configuration Details on the WS

binding tab:

a. Expand Token Generator and remove all items in the list.

b. Expand Key Locators and remove all items in the list.

c. Expand Key Information and remove all items in the list.

d. Expand Signing Information and remove all items in the list.

e. Expand Encryption Information and remove all items in the list.

Developing Mobile Web Services 113

f. Expand Property and remove all items in the list.

To remove the Mobile Web Services Security Configuration for the Web Services

Client:

1. Open the WS-Security Client Editor.

2. Expand Client Service Configuration Details on the WS extension tab, and

delete the Actor URI.

3. Expand WebSphere Application Server 5.x on the WS extension tab, and

uncheck the Access the WebSphere Application Server 5.x provider check box.

4. Expand Request Generator Configuration on the WS extension tab:

a. Expand Details and delete the Actor.

b. Expand Integrity and remove all items in the list.

c. Expand Confidentiality and remove all items in the list.

d. Expand Security Token and remove all items in the list.

e. Expand Add Timestamp and uncheck the Use Add Timestamp check box.

f. Expand Property and remove all items in the list.
5. Expand Response Consumer Configuration on the WS extension tab:

a. Expand Required Integrity and remove all items in the list.

b. Expand Required Confidentiality and remove all items in the list.

c. Expand Required Security Token and remove all items in the list.

d. Expand Add Timestamp and uncheck the Use Add Timestamp check box.

e. Expand Property and remove all items in the list.
6. Expand Security Request Generator Binding Configuration on the WS

binding tab:

a. Expand Token Generator and remove all items in the list.

b. Expand Key Locators and remove all items in the list.

c. Expand Key Information and remove all items in the list.

d. Expand Signing Information and remove all items in the list.

e. Expand Encryption Information and remove all items in the list.

f. Expand Property and remove all items in the list.
7. Expand Security Response Consumer Binding Configuration on the WS

binding tab:

a. Expand Trust Anchor and remove all items in the list.

b. Expand Token Consumer and remove all items in the list.

c. Expand Key Locators and remove all items in the list.

d. Expand Key Information and remove all items in the list.

e. Expand Signing Information and remove all items in the list.

f. Expand Encryption Information and remove all items in the list.

g. Expand Property and remove all items in the list.

Editing a Mobile Web Services security configuration for basic

authentication (scenario #1)

To edit a Mobile Web Services security configuration in this scenario for the Web

Services client, perform the following procedure:

1. Open the WS-Security Client Editor.

2. Expand the Request Generator Configuration section of the WS extension tab.

3. Expand the Security Token section and select Add. From the next menu:

114 IBM WebSphere Everyplace Deployment: Developer’s Guide

a. Input an appropriate Name.

b. Select Username token as a Token type.

c. Select OK.
4. Expand the Security Request Generator Binding Configuration section of the

WS binding tab.

5. Expand the Token Generator section and select Add.

a. Input an appropriate Token generator name.

b. Select com.ibm.pvcws.wss.internal.token.UsernameTokenGenerator as a

Token generator class.

c. Select the security token name you specified as the Security token.

d. Select

com.ibm.pvcws.wss.internal.auth.callback.NonPromptCallbackHandler as

a Call back handler.

e. Input an appropriate User ID and Password.

f. Select OK.
6. Save your changes.

To edit a Mobile Web Services security configuration in this scenario for the Web

Services provider, perform the following procedure:

1. Open the WS-Security Provider Editor.

2. Expand the Request Consumer Service Configuration Details section of the

WS extension tab.

3. Expand the Required Security Token section and select Add. From the next

menu:

a. Input an appropriate Name.

b. Select Username token as a Token type.

c. Select Required as a Usage type.

d. Select OK.
4. Expand the Caller Part section and select Add. From the next menu:

a. Input an appropriate Name.

b. Select Username token as a Token type.

c. Select OK.
5. Expand the Request Consumer Binding Configuration Details section of the

WS binding tab.

6. Expand the Token Consumer section and select Add. From the next menu:

a. Input an appropriate Token consumer name.

b. Select com.ibm.pvcws.wss.internal.token.UsernameTokenConsumer as a

Token consumer class.

c. Select the security token name you specified as the Security token.

d. Check the Use value type check box.

e. Select Username token as a Value type.

f. Select OK.
7. Save your changes.

Editing a Mobile Web Services security configuration for basic

authentication with encryption (scenario #2)

To edit the Mobile Web Services security configuration in this scenario for the Web

services client, perform the following procedure:

Developing Mobile Web Services 115

1. Open the WS-Security Client Editor.

 2. Expand the Request Generator Configuration section of the WS extension

tab.

 3. Expand the Security Token section and select Add. From the next menu:

a. Input an appropriate Name.

b. Select Username token as a Token type.

c. Select OK.
 4. Expand the Confidentiality section and select Add: From the next menu:

a. Input an appropriate Confidentiality Name.

b. Select 1 as an Order.

c. Select Add.

d. Select usernametoken as a Message parts keyword.

e. Select OK.
 5. Expand the Security Request Generator Binding Configuration of the WS

binding tab.

 6. Expand the Token Generator section and select Add. From the next menu:

a. Input an appropriate Token generator name.

b. Select com.ibm.pvcws.wss.internal.token.UsernameTokenGenerator as a

Token generator class.

c. Select the security token name you specified as the Security token.

d. Select

com.ibm.pvcws.wss.internal.auth.callback.NonPromptCallbackHandler as

a Call back handler.

e. Input an appropriate User ID and Password.

f. Select OK.
 7. Expand the Key locators section and select Add to create a key locator used

for encryption:

a. Input an appropriate Key locator name.

b. Select com.ibm.pvcws.wss.internal.keyinfo.KeyStoreKeyLocator as a Key

locator class.

c. Check the Use key store check box.

d. Input an appropriate Key store storepass and Key store path.

e. Select JKS or JCEKS as a Key store type.

f. Select Add to specify the key used for encryption.

g. Input an appropriate Alias and Key name for the encryption key.

h. Select OK.
 8. Expand the Key information section and select Add to create the key

information used for encryption:

a. Input an appropriate Key information name.

b. Select KEYID as the Key information type.

c. Select ‘com.ibm.pvcws.wss.internal.keyinfo.KeyIdContentGenerator’ as a

Key information class.

d. Check Use key locator check box.

e. Select the key locator name you specified as the Key locator.

f. Select the key name you specified as the Key.

g. Select OK.

116 IBM WebSphere Everyplace Deployment: Developer’s Guide

9. Expand the Encryption Information section and select Add. From the next

menu:

a. Input an appropriate Encryption name.

b. Select http://www.w3.org/2001/04/xmlenc#tripledes-cbc as a Data

encryption method algorithm.

c. Select http://www.w3.org/2001/04/xmlenc#rsa-1_5 as a Key encryption

method algorithm.

d. Input an appropriate Key information name.

e. Select the key information name you specified as the Key information

element.

f. Select the confidentiality name you specified as the Confidentiality

element.

g. Select OK.
10. Save your changes.

To edit the Mobile Web Services security configuration in this scenario for the Web

services provider, perform the following procedure:

 1. Open the WS-Security Provider Editor.

 2. Expand the Request Consumer Service Configuration Details section of the

WS extension tab.

 3. Expand the Required Security Token section and select Add. From the next

menu:

a. Input an appropriate Name.

b. Select Username token as a Token type.

c. Select Required as a Usage type.

d. Select OK.
 4. Expand Caller Part section and select Add. From the next menu:

a. Input an appropriate Name.

b. Select Username token as a Token type.

c. Select OK.
 5. Expand Required Confidentiality section and select Add. From the next menu:

a. Input an appropriate Required Confidentiality Name.

b. Select Required as a Usage type.

c. Select Add.

d. Select usernametoken as a Message parts keyword.

e. Select OK.
 6. Expand the Request Consumer Binding Configuration Details section of the

WS binding tab

 7. Expand the Token Consumer section and select Add. From the next menu:

a. Input an appropriate Token consumer name.

b. Select com.ibm.pvcws.wss.internal.token.UsernameTokenConsumer as a

Token consumer class.

c. Select the security token name you specified as the Security token.

d. Check the Use value type check box.

e. Select Username token as a Value type.

f. Select OK.
 8. Expand the Token Consumer section and select Add. From the next menu:

Developing Mobile Web Services 117

a. Input an appropriate Token consumer name.

b. Select com.ibm.pvcws.wss.internal.token.X509TokenConsumer as a Token

consumer class.

c. Check the Use value type check box.

d. Select the X509 certificate token as a Value type.

e. Check the User certificate path settings check box.

f. Check the Trust any certificate radio button.

g. Select OK.
 9. Expand the Key Locators section and select Add to create a key locator used

for decryption. From the next menu:

a. Input an appropriate Key locator name.

b. Select com.ibm.pvcws.wss.internal.keyinfo.KeyStoreKeyLocator as a Key

locator class.

c. Check the Use key store check box.

d. Input the appropriate Key store storepass and Key store path.

e. Select JKS or JCEKS as a Key store type.

f. Select Add to specify the key used for decryption.

g. Input the appropriate Alias, Key pass, and Key name to specify the

decryption key.

h. Select OK.
10. Expand the Key Information section and select Add to create the key

information used for decryption. From the next menu:

a. Input an appropriate Key information name.

b. Select KEYID as a Key information type.

c. Select com.ibm.pvcws.wss.internal.keyinfo.KeyIdContentConsumer as a

Key information class.

d. Check the Use key locator check box.

e. Select the key locator name you specified as the Key locator.

f. Check the Use token check box.

g. Select the token consumer name you specified as the Token Consumer.

h. Select OK.
11. Expand the Encryption Information section and select Add. From the next

menu:

a. Input an appropriate Encryption name.

b. Select http://www.w3.org/2001/04/xmlenc#tripledes-cbc as a Data

encryption method algorithm.

c. Select http://www.w3.org/2001/04/xmlenc#rsa-1_5 as a Key encryption

method algorithm.

d. Select Add to add the key information.

e. Input an appropriate Key information name.

f. Select the key information name you specified as the Key information

element.

g. Select the required confidentiality name you specified as the Required

Confidentiality element.

h. Select OK.
12. Save your changes.

118 IBM WebSphere Everyplace Deployment: Developer’s Guide

Editing a Mobile Web Services security configuration for sign

and encrypt (scenario #3)

To edit a Mobile Web Services security configuration in Scenario 3 for the Web

Services client, perform the following procedure:

 1. Open the WS-Security Client Editor.

 2. Expand the Request Generator Configuration section from the WS extension

tab.

 3. Expand the Integrity section and select Add. From the next menu:

a. Input an appropriate Integrity Name.

b. Select 1 as the Order.

c. Select Add.

d. Select body as the Message parts keyword.

e. Select OK.
 4. Expand the Confidentiality section and select Add. From the next menu:

a. Input an appropriate Confidentiality Name.

b. Select 2 as the Order.

c. Select Add.

d. Select bodycontent as the Message parts keyword.

e. Select OK.
 5. Expand the Add Timestamp section. From the next menu:

a. Check the Use Add Timestamp check box.

b. Expand the Property section from the Add Timestamp section and select

Add.

c. Input com.ibm.pvcws.wss.timestamp.dialect as a Property Name and

http://www.ibm.com/wct/webservices/wssecurity/dialect-predefined as a

Property Value.

d. Expand the Property section from the Add Timestamp section and select

Add.

e. Input com.ibm.pvcws.wss.timestamp.keyword as a Property Name and

SOAPHeaderFirst as a Property Value.
 6. Expand the Request Consumer Configuration section from the WS extension

tab.

 7. Expand the Required Integrity section and select Add. From the next menu:

a. Input an appropriate Required Integrity Name.

b. Select ‘Required as the Usage type.

c. Select Add.

d. Select body as the Message parts keyword.

e. Select OK.
 8. Expand the Required Confidentiality section and select Add. From the next

menu:

a. Input an appropriate Required Confidentiality Name.

b. Select Required as the Usage type.

c. Select Add.

d. Select bodycontent as the Message parts keyword.

e. Select OK.
 9. Expand the Add Timestamp section and check the Use Add Timestamp check

box. From the next menu:

Developing Mobile Web Services 119

a. Expand the Property section from the Add Timestamp section and select

Add.

b. Input com.ibm.pvcws.wss.timestamp.dialect as a Property Name and

http://www.ibm.com/wct/webservices/wssecurity/dialect-predefined as

a Property Value.

c. Expand the Property section from the Add Timestamp section and select

Add.

d. Input com.ibm.pvcws.wss.timestamp.keyword as a Property Name and

SOAPHeaderFirst as a Property Value.
10. Expand the Security Request Generator Binding Configuration section from

the WS binding tab.

11. Expand the Token Generator section and select Add to insert the certificate

for digital signature verification. From the next menu:

a. Input an appropriate Token generator name.

b. Select com.ibm.pvcws.wss.internal.token.X509TokenGenerator as the

Token generator class.

c. Check the Use value type check box.

d. Select X509 certificate token as the Value type.

e. Select com.ibm.pvcws.wss.internal.auth.callback.X509CallbackHandler as

the Call back handler.

f. Check the Use key store check box.

g. Input an appropriate Key store storepass and Key store path.

h. Select JKS or JCEKS as a Key store type.

i. Select Add to specify the certificate to be inserted into the message.

j. Input the appropriate Alias and Key name to specify the certificate to be

inserted into the message.

k. Select OK.
12. Expand the Key locators section and select Add to create a key locator used

for digital signature. From the next menu:

a. Input an appropriate Key locator name.

b. Select com.ibm.pvcws.wss.internal.keyinfo.KeyStoreKeyLocator as a Key

locator class.

c. Check the Use key store check box.

d. Input an appropriate Key store storepass and Key store path.

e. Select JKS or JCEKS as a Key store type.

f. Select Add to specify the key used for digital signature.

g. Input an appropriate Alias, Key pass , and Key name to specify the key

used for digital signature.

h. Select OK.
13. Expand the Key locators section and select Add again to create a key locator

used for encryption. From the next menu:

a. Input an appropriate Key locator name.

b. Select com.ibm.pvcws.wss.internal.keyinfo.KeyStoreKeyLocator as a Key

locator class.

c. Check the Use key store check box.

d. Input an appropriate Key store storepass and Key store path.

e. Select JKS or JCEKS as a Key store type.

f. Select Add to specify the key used for encryption.

120 IBM WebSphere Everyplace Deployment: Developer’s Guide

g. Input an appropriate Alias and Key name to specify the key used for

encryption.

h. Select OK.
14. Expand the Key information section and select Add to create the key

information used for a digital signature. From the next menu:

a. Input an appropriate Key information name.

b. Select STRREF as a Key information type.

c. Select com.ibm.pvcws.wss.internal.keyinfo.STRRefContentGenerator as a

Key information class.

d. Check the Use key locator check box.

e. Select the key locator name you specified as the Key locator.

f. Select the key name you specified as the Key name.

g. Check the Use token check box.

h. Select the token name you specified as the Token generator.

i. Select OK.
15. Expand the Key information section and select Add again to create the key

information used for encryption:

a. Input an appropriate Key information name.

b. Select KEYID as a Key information type.

c. Select com.ibm.pvcws.wss.internal.keyinfo.KeyIdContentGenerator as a

Key information class.

d. Check the Use key locator check box.

e. Select the key locator name you specified as the Key locator.

f. Select the key name you specified as the Key.

g. Select OK.
16. Expand the Signing Information section and select Add. From the next menu:

a. Input an appropriate Signing information name.

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as a Canonicalization

method algorithm.

c. Select http://www.w3.org/2000/09/xmldsig#rsa-sha1 as a Signature method

algorithm.

d. Input an appropriate Key information name.

e. Select the key information name you specified for the digital signature as

the Key information element.

f. Select OK.
17. Expand the Part References section from the Signing Information section and

select Add. From the next menu:

a. Input an appropriate Part reference name.

b. Select the integrity name you specified as the Integrity part.

c. Select http://www.w3.org/2000/09/xmldsig#sha1 as a Digest method

algorithm.

d. Select OK.
18. Expand the Transforms section from the Signing Information section and

select Add. From the next menu:

a. Input an appropriate Name.

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as a Algorithm.

c. Select OK.

Developing Mobile Web Services 121

19. Expand the Encryption Information section and select Add. From the next

menu:

a. Input an appropriate Encryption name.

b. Select http://www.w3.org/2001/04/xmlenc#tripledes-cbc as a Data

encryption method algorithm.

c. Select http://www.w3.org/2001/04/xmlenc#rsa-1_5 as a Key encryption

method algorithm.

d. Input an appropriate Key information name.

e. Select the key information name you specified for encryption as the Key

information element.

f. Select the confidentiality name you specified as the Confidentiality part.

g. Select OK.
20. Expand the Security Response Consumer Binding Configuration section

from the WS binding tab.

21. Expand the Trust Anchor section and select Add. From the next menu:

a. Input an appropriate Trust anchor name.

b. Input appropriate Key store storepass and Key store path.

c. Select JKS or JCEKS as a Key store type.

d. Select OK.
22. Expand the Token Consumer section and select Add to create a token

consumer used to validate the certificate for digital signature verification.

From the next menu:

a. Input an appropriate Token consumer name.

b. Select com.ibm.pvcws.wss.internal.token.X509TokenConsumer as a Token

consumer class.

c. Check the Use value type check box.

d. Select the X509 certificate token as the Value type.

e. Check the User certificate path settings check box.

f. Select the Certificate path reference radio button.

g. Select the trust anchor name you specified as the Trust anchor reference.

h. Select OK.
23. Expand the Token Consumer section and select Add to create a token

consumer used to validate the certificate for decryption. From the next menu:

a. Input an appropriate Token consumer name.

b. Select com.ibm.pvcws.wss.internal.token.X509TokenConsumer as a Token

consumer class.

c. Check the Use value type check box.

d. Select the X509 certificate token as a Value type.

e. Check the User certificate path settings check box.

f. Select the Trust any certificate radio button.

g. Select OK.
24. Expand the Key locators section and select Add to create a key locator used

for digital signature verification. From the next menu:

a. Input an appropriate Key locator name.

b. Select com.ibm.pvcws.wss.internal.keyinfo.KeyStoreKeyLocator as the

Key locator class.

c. Check the Use key store check box.

122 IBM WebSphere Everyplace Deployment: Developer’s Guide

d. Input the appropriate Key store storepass and Key store path.

e. Select JKS or JCEKS as a Key store type.

f. Select Add to specify the key used for digital signature verification.

g. Input an appropriate Alias and Key name to specify the key used for

digital signature verification.

h. Select OK.
25. Expand the Key locators section and select Add to create a key locator used

for decryption. From the next menu:

a. Input an appropriate Key locator name.

b. Select com.ibm.pvcws.wss.internal.keyinfo.X509TokenKeyLocator as a

Key locator class.

c. Check the Use key store check box.

d. Input an appropriate Key store storepass and Key store path.

e. Select JKS or JCEKS as a Key store type.

f. Select Add to specify the key used for decryption.

g. Input an appropriate Alias, Key pass , and Key name to specify the key

used for decryption.

h. Select OK.
26. Expand the Key information section and select Add to create key information

used for digital signature verification. From the next menu:

a. Input an appropriate Key information name.

b. Select KEYID as a Key information type.

c. Select com.ibm.pvcws.wss.internal.keyinfo.KeyIdContentConsumer as a

Key information class.

d. Check the Use key locator check box.

e. Select the key locator name you specified for digital signature verification

as the Key locator.

f. Check the Use token check box.

g. Select the token consumer name you specified for digital signature

verification as the Token Consumer.

h. Select OK.
27. Expand the Key information section and select Add to create a key

information used for decryption. From the next menu:

a. Input an appropriate Key information name.

b. Select STRREF as the Key information type.

c. Select com.ibm.pvcws.wss.internal.keyinfo.STRRefContentConsumer as

the Key information class.

d. Check the Use key locator check box.

e. Select the key locator name you specified for decryption as the Key

locator.

f. Check the Use token check box.

g. Select the token consumer name you specified for decryption as the Token

Consumer.

h. Select OK.
28. Expand the Signing Information section and select Add. From the next menu:

a. Input an appropriate Signing information name.

Developing Mobile Web Services 123

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as the Canonicalization

method algorithm.

c. Select http://www.w3.org/2000/09/xmldsig#rsa-sha1 as the Signature

method algorithm.

d. Select Add to configure key information.

e. Input an appropriate Key information name.

f. Select the key information name you specified for digital signature

verification as the Key information element.

g. Select OK.
29. Expand the Part References section under Signing Information section and

select Add. From the next menu:

a. Input an appropriate Part reference name.

b. Select the required integrity name you specified as the Required Integrity

part.

c. Select http://www.w3.org/2000/09/xmldsig#sha1 as the Digest method

algorithm.

d. Select OK.
30. Expand the Transforms section from the Signing Information section and

select Add. From the next menu:

a. Input an appropriate Name.

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as the Algorithm.

c. Select OK.
31. Expand the Encryption Information section and select Add. From the next

menu:

a. Input an appropriate Encryption name.

b. Select http://www.w3.org/2001/04/xmlenc#tripledes-cbc as the Data

encryption method algorithm.

c. Select http://www.w3.org/2001/04/xmlenc#rsa-1_5 as the Key encryption

method algorithm.

d. Select Add to configure the key information.

e. Input an appropriate Key information name.

f. Select the key information name you specified for encryption as the Key

information element.

g. Select the required confidentiality name you specified as the Required

Confidentiality part.

h. Select OK.
32. Save your changes.

To edit a Mobile Web Services security configuration in Scenario 3 for the Web

Services provider, perform the following procedure:

 1. Open the WS-Security Provider Editor.

 2. Expand the Request Consumer Service Configuration Details section on the

WS extension tab.

 3. Expand the Required Integrity section and select Add. From the next menu:

a. Input an appropriate Required Integrity Name.

b. Select Required as a Usage type.

c. Select Add.

d. Select body as a Message parts keyword.

124 IBM WebSphere Everyplace Deployment: Developer’s Guide

e. Select OK.
 4. Expand the Required Confidentiality section and select Add. From the next

menu:

a. Input an appropriate Required Confidentiality Name.

b. Select Required as a Usage type.

c. Select Add.

d. Select bodycontent as a Message parts keyword.

e. Select OK.
 5. Expand the Add Timestamp section and check the Use Add Timestamp check

box. From the next menu:

a. Expand the Property section from the Add Timestamp section and select

Add.

b. Input com.ibm.pvcws.wss.timestamp.dialect as a Property Name and

http://www.ibm.com/wct/webservices/wssecurity/dialect-predefined as

a Property Value.

c. Expand the Property section under the Add Timestamp section and select

Add.

d. Input com.ibm.pvcws.wss.timestamp.keyword as a Property Name and

SOAPHeaderFirst as a Property Value.
 6. Expand the Response Generator Service Configuration Details section from

the WS extension tab.

 7. Expand the Integrity section and select Add. From the next menu:

a. Input an appropriate Integrity Name.

b. Select 1 as the Order.

c. Select Add.

d. Select body as the Message parts keyword.

e. Select OK.
 8. Expand the Confidentiality section and select Add. From the next menu:

a. Input an appropriate Confidentiality Name.

b. Select 2 as the Order.

c. Select Add.

d. Select bodycontent as a Message parts keyword.

e. Select OK.
 9. Expand the Add Timestamp section and check the Use Add Timestamp check

box. From the next menu:

a. Expand the Property section under the Add Timestamp section and select

Add.

b. Input com.ibm.pvcws.wss.timestamp.dialect as a Property Name and

http://www.ibm.com/wct/webservices/wssecurity/dialect-predefined as

a Property Value.

c. Expand the Property section under the Add Timestamp section and select

Add.

d. Input com.ibm.pvcws.wss.timestamp.keyword as a Property Name and

SOAPHeaderFirst as a Property Value.
10. Expand the Request Consumer Binding Configuration Details section from

the WS binding tab.

11. Expand the Trust Anchor section and select Add. From the next menu:

a. Input an appropriate Trust anchor name.

Developing Mobile Web Services 125

b. Input an appropriate Key store storepass and Key store path.

c. Select JKS or JCEKS as a Key store type.

d. Select OK.
12. Expand the Token Consumer section and select Add to create a token

consumer used to validate the certificate for digital signature verification:

a. Input an appropriate Token consumer name.

b. Select com.ibm.pvcws.wss.internal.token.X509TokenConsumer as a Token

consumer class.

c. Check the Use value type check box.

d. Select X509 certificate token as a Value type.

e. Check the User certificate path settings check box.

f. Select the Certificate path reference radio button.

g. Select the trust anchor name you specified as the Trust anchor reference.

h. Select OK.
13. Expand the Token Consumer section and select Add to create a token

consumer used to validate the certificate for decryption:

a. Input an appropriate Token consumer name.

b. Select com.ibm.pvcws.wss.internal.token.X509TokenConsumer as a Token

consumer class.

c. Check the Use value type check box.

d. Select X509 certificate token as a Value type.

e. Check the User certificate path settings check box.

f. Select the Trust any certificate radio button.

g. Select OK.
14. Expand the Key locators section and select Add to create a key locator used

for digital signature verification:

a. Input an appropriate Key locator name.

b. Select com.ibm.pvcws.wss.internal.keyinfo.X509TokenKeyLocator as a

Key locator class.

c. Select OK.
15. Expand the Key locators section and select Add to create a key locator used

for decryption:

a. Input an appropriate Key locator name.

b. Select com.ibm.pvcws.wss.internal.keyinfo.KeyStoreKeyLocator as a Key

locator class.

c. Check the Use key store check box.

d. Input an appropriate Key store storepass and Key store path.

e. Select JKS or JCEKS as a Key store type.

f. Select Add to specify the key used for decryption.

g. Input an appropriate Alias, Key pass , and Key name to specify the key

used for decryption.

h. Select OK.
16. Expand the Key information section and select Add to create a key

information used for digital signature verification:

a. Input an appropriate Key information name.

b. Select STRREF as a Key information type.

126 IBM WebSphere Everyplace Deployment: Developer’s Guide

c. Select com.ibm.pvcws.wss.internal.keyinfo.STRRefContentConsumer as a

Key information class.

d. Check the Use key locator check box.

e. Select the key locator name you specified for digital signature verification

as the Key locator.

f. Check the Use token check box.

g. Select the token consumer name you specified for digital signature

verification as the Token Consumer.

h. Select OK.
17. Expand the Key information section and click Add to create a key

information used for encryption:

a. Input an appropriate Key information name.

b. Select KEYID as a Key information type.

c. Select com.ibm.pvcws.wss.internal.keyinfo.KeyIdContentConsumer as a

Key information class.

d. Check the Use key locator check box.

e. Select the key locator name you specified for encryption as the Key

locator.

f. Check the Use token check box.

g. Select the token consumer name you specified for encryption as the Token

Consumer.

h. Select OK.
18. Expand the Signing Information section and select Add. From the next menu:

a. Input an appropriate Signing information name.

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as a Canonicalization

method algorithm.

c. Select http://www.w3.org/2000/09/xmldsig#rsa-sha1 as a Signature method

algorithm.

d. Select Add to select a key information.

e. Input an appropriate Key information name.

f. Select the key information name you specified as the Key information

element.

g. Select OK.
19. Expand the Part References section under Signing Information section and

select Add. From the next menu:

a. Input an appropriate Part reference name.

b. Select the required integrity name you specified as the Required Integrity

part.

c. Select http://www.w3.org/2000/09/xmldsig#sha1 as a Digest method

algorithm.

d. Select OK.

e. Expand the Transforms section under Signing Information section and

select Add:

f. Input an appropriate Name.

g. Select http://www.w3.org/2001/10/xml-exc-c14n# as a Algorithm.

h. Select OK.
20. Expand the Encryption Information section and select Add. From the next

menu:

Developing Mobile Web Services 127

a. Input an appropriate Encryption name.

b. Select http://www.w3.org/2001/04/xmlenc#tripledes-cbc as a Data

encryption method algorithm.

c. Select http://www.w3.org/2001/04/xmlenc#rsa-1_5 as a Key encryption

method algorithm.

d. Select Add to select a key information.

e. Input an appropriate Key information name.

f. Select the key information name you specified as the Key information

element.

g. Select the required confidentiality name you specified as the Required

Confidentiality part.

h. Select OK.
21. Expand the Response Generator Binding Configuration Details section from

the WS binding tab.

22. Expand the Token Generator section and select Add to insert the certificate

for decryption. From the next menu:

a. Input an appropriate Token generator name.

b. Select com.ibm.pvcws.wss.internal.token.X509TokenGenerator as a Token

generator class.

c. Check the Use value type check box.

d. Select X509 certificate token as a Value type.

e. Select com.ibm.pvcws.wss.internal.auth.callback.X509CallbackHandler as

a Call back handler.

f. Check the Use key store check box.

g. Input an appropriate Key store storepass and Key store path.

h. Select JKS or JCEKS as a Key store type.

i. Select Add to specify the certificate to be inserted into the message.

j. Input an appropriate Alias and Key name to specify the certificate to be

inserted into the message.

k. Select OK.
23. Expand the Key locators section and select Add to create a key locator used

for digital signature:

a. Input an appropriate Key locator name.

b. Select com.ibm.pvcws.wss.internal.keyinfo.KeyStoreKeyLocator as a Key

locator class.

c. Check the Use key store check box.

d. Input an appropriate Key store storepass and Key store path.

e. Select JKS or JCEKS as a Key store type.

f. Select Add to specify the key used for digital signature.

g. Input an appropriate Alias, Key pass , and Key name to specify the key

used for digital signature.

h. Select OK.
24. Expand the Key locators section and select Add to create a key locator used

for encryption:

a. Input an appropriate Key locator name.

b. Select com.ibm.pvcws.wss.internal.keyinfo.SignerCertKeyLocator as a

Key locator class.

c. Select OK.

128 IBM WebSphere Everyplace Deployment: Developer’s Guide

25. Expand the Key information section and select Add to create a key

information used for digital signature. From the next menu:

a. Input an appropriate Key information name.

b. Select KEYID as a Key information type.

c. Select com.ibm.pvcws.wss.internal.keyinfo.KeyIdContentGenerator as a

Key information class.

d. Check the Use key locator check box.

e. Select the key locator name you specified for the digital signature as the

Key locator.

f. Select the key name you specified for the digital signature as the Key

name.

g. Select OK.
26. Expand the Key information section and select Add to create a key

information used for encryption:

a. Input an appropriate Key information name.

b. Select STRREF as a Key information type.

c. Select com.ibm.pvcws.wss.internal.keyinfo.STRRefContentGenerator as a

Key information class.

d. Check the Use key locator check box.

e. Select the key locator name you specified for encryption as the Key locator.

f. Check the Use token check box.

g. Select the token generator name you specified for encryption as the Token

Consumer.

h. Select OK.
27. Expand the Signing Information section and select Add:

a. Input an appropriate Signing information name.

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as a Canonicalization

method algorithm.

c. Select http://www.w3.org/2000/09/xmldsig#rsa-sha1 as a Signature method

algorithm.

d. Input an appropriate Key information name.

e. Select the key information name you specified for the digital signature as

the Key information element.

f. Select OK.
28. Expand the Part References section under Signing Information section and

select Add. From the next menu:

a. Input an appropriate Part reference name.

b. Select the integrity name you specified as the Integrity part.

c. Select http://www.w3.org/2000/09/xmldsig#sha1 as a Digest method

algorithm.

d. Select OK.
29. Expand the Transforms section under Signing Information section and select

Add. From the next menu:

a. Input an appropriate Name.

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as a Algorithm.

c. Select OK.
30. Expand the Encryption Information section and select Add. From the next

menu:

Developing Mobile Web Services 129

a. Input an appropriate Encryption name.

b. Select http://www.w3.org/2001/04/xmlenc#tripledes-cbc as a Data

encryption method algorithm.

c. Select http://www.w3.org/2001/04/xmlenc#rsa-1_5 as a Key encryption

method algorithm.

d. Input an appropriate Key information name.

e. Select the key information name you specified for encryption as the Key

information element.

f. Select the confidentiality name you specified as the Confidentiality part.

g. Select OK.
31. Save your changes.

Editing a Mobile Web Services security configuration for encrypt

and sign (scenario #6)

To edit a Mobile Web Services security configuration in Scenario #6 for the Web

services client, perform the following procedure:

 1. Open the WS-Security Client Editor.

 2. Expand the Request Generator Configuration section on the WS extension

tab.

 3. Expand the Integrity section and select Add. From the next menu:

a. Input an appropriate Integrity Name.

b. Select 2 as the Order.

c. Select Add.

d. Select body as a Message parts keyword.

e. Select OK.
 4. Expand the Confidentiality section and select Add. From the next menu:

a. Input an appropriate Confidentiality Name.

b. Select 1 as the Order.

c. Select Add.

d. Select bodycontent as a Message parts keyword.

e. Select OK.
 5. Expand the Add Timestamp section and check the Use Add Timestamp check

box.

 6. Expand the Request Consumer Configuration section on the WS extension

tab.

 7. Expand the Required Integrity section and select Add. From the next menu:

a. Input an appropriate Required Integrity Name.

b. Select Required as a Usage type.

c. Select Add.

d. Select body as a Message parts keyword.

e. Select OK.
 8. Expand the Required Confidentiality section and select Add. From the next

menu:

a. Input an appropriate Required Confidentiality Name.

b. Select Required as a Usage type.

c. Select Add.

d. Select bodycontent as a Message parts keyword.

130 IBM WebSphere Everyplace Deployment: Developer’s Guide

e. Select OK.
 9. Expand the Add Timestamp section and check the Use Add Timestamp check

box.

10. Expand the Security Request Generator Binding Configuration section on

the WS binding tab.

11. Expand the Token Generator section and select Add to insert the certificate

for digital signature verification. From the next menu:

a. Input an appropriate Token generator name.

b. Select com.ibm.pvcws.wss.internal.token.X509TokenGenerator as a Token

generator class.

c. Check the Use value type check box.

d. Select X509 certificate token as a Value type.

e. Select com.ibm.pvcws.wss.internal.auth.callback.X509CallbackHandler as

a Call back handler.

f. Check the Use key store check box.

g. Input an appropriate Key store storepass and Key store path.

h. Select JKS or JCEKS as a Key store type.

i. Select Add to specify the certificate to be inserted into the message.

j. Input an appropriate Alias and Key name to specify the certificate to be

inserted into the message.

k. Select OK.
12. Expand the Key locators section and select Add to create a key locator used

for digital signature:

a. Input an appropriate Key locator name.

b. Select com.ibm.pvcws.wss.internal.keyinfo.KeyStoreKeyLocator as a Key

locator class.

c. Check the Use key store check box.

d. Input an appropriate Key store storepass and Key store path.

e. Select JKS or JCEKS as a Key store type.

f. Select Add to specify the key used for digital signature.

g. Input appropriate Alias, Key pass , and Key name to specify the key used

for digital signature.

h. Select OK.
13. Expand the Key locators section and select Add again to create a key locator

used for encryption:

a. Input an appropriate Key locator name.

b. Select com.ibm.pvcws.wss.internal.keyinfo.KeyStoreKeyLocator as a Key

locator class.

c. Check the Use key store check box.

d. Input an appropriate Key store storepass and Key store path.

e. Select JKS or JCEKS as a Key store type.

f. Select Add to specify the key used for encryption.

g. Input an appropriate Alias and Key name to specify the key used for

encryption.

h. Select OK.
14. Expand the Key information section and select Add to create a key

information used for digital signature:

Developing Mobile Web Services 131

a. Input an appropriate Key information name.

b. Select STRREF as a Key information type.

c. Select com.ibm.pvcws.wss.internal.keyinfo.STRRefContentGenerator as a

Key information class.

d. Check the Use key locator check box.

e. Select the required confidentiality name you specified as the Key locator.

f. Select the key name you specified for the digital signature as the Key

name.

g. Check the Use token check box.

h. Select the required integrity name you specified as the Token Generator.

i. Select OK.
15. Expand the Key information section and select Add to create a key

information used for encryption:

a. Input an appropriate Key information name.

b. Select KEYID as a Key information type.

c. Select com.ibm.pvcws.wss.internal.keyinfo.KeyIdContentGenerator as a

Key information class.

d. Check the Use key locator check box.

e. Select the key locator name you specified for encryption as the Key

locator.

f. Select the key name you specified for encryption as the Key name.

g. Select OK.
16. Expand the Signing Information section and select Add. From the next menu:

a. Input an appropriate Signing information name.

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as a Canonicalization

method algorithm.

c. Select http://www.w3.org/2000/09/xmldsig#rsa-sha1 as a Signature method

algorithm.

d.

e. Input an appropriate Key information name.

f. Select the key information name you specified as the Key information

element.

g. Select OK.
17. Expand the Part References section under the Signing Information section and

select Add. From the next menu:

a. Input an appropriate Part reference name.

b. Select the integrity name you specified as the Integrity part.

c. Select http://www.w3.org/2000/09/xmldsig#sha1 as a Digest method

algorithm.

d. Select OK.
18. Expand the Transforms section under the Signing Information section and

select Add. From the next menu:

a. Input an appropriate Name.

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as an Algorithm.

c. Select OK.
19. Expand the Encryption Information section and select Add. From the next

menu:

132 IBM WebSphere Everyplace Deployment: Developer’s Guide

a. Input an appropriate Encryption name.

b. Select http://www.w3.org/2001/04/xmlenc#tripledes-cbc as a Data

encryption method algorithm.

c. Select http://www.w3.org/2001/04/xmlenc#rsa-1_5 as a Key encryption

method algorithm.

d. Input an appropriate Key information name.

e. Select the key information name you specified for encryption as the Key

information element.

f. Select the confidentiality name you specified as the Confidentiality part.

g. Select OK.
20. Expand the Security Response Consumer Binding Configuration section on

the WS binding tab.

21. Expand the Trust Anchor section and select Add. From the next menu:

a. Input an appropriate Trust anchor name.

b. Input appropriate Key store storepass and Key store path.

c. Select JKS or JCEKS as a Key store type.

d. Select OK.
22. Expand the Token Consumer section and select Add to create a token

consumer used to validate the certificate for digital signature verification:

a. Input an appropriate Token consumer name.

b. Select com.ibm.pvcws.wss.internal.token.X509TokenConsumer as a Token

consumer class.

c. Check the Use value type check box.

d. Select X509 certificate token as a Value type.

e. Check the User certificate path settings check box.

f. Select the Certificate path reference radio button.

g. Select the trust anchor name you specified as the Trust anchor reference.

h. Select OK.
23. Expand the Token Consumer section and select Add to create a token

consumer used to validate the certificate for decryption:

a. Input an appropriate Token consumer name.

b. Select com.ibm.pvcws.wss.internal.token.X509TokenConsumer as a Token

consumer class.

c. Check the Use value type check box.

d. Select X509 certificate token as a Value type.

e. Check the User certificate path settings check box.

f. Select the Trust any certificate radio button.

g. Select OK.
24. Expand the Key locators section and select Add to create a key locator used

for digital signature verification:

a. Input an appropriate Key locator name.

b. Select com.ibm.pvcws.wss.internal.keyinfo.KeyStoreKeyLocator as a Key

locator class.

c. Check the Use key store check box.

d. Input an appropriate Key store storepass and Key store path.

e. Select JKS or JCEKS as a Key store type.

f. Select Add to specify the key used for digital signature verification.

Developing Mobile Web Services 133

g. Input an appropriate Alias and Key name to specify the key used for

digital signature verification.

h. Select OK.
25. Expand the Key locators section and select Add to create a key locator used

for decryption:

a. Input an appropriate Key locator name.

b. Select com.ibm.pvcws.wss.internal.keyinfo.X509TokenKeyLocator as a

Key locator class.

c. Check the Use key store check box.

d. Input an appropriate Key store storepass and Key store path.

e. Select JKSor JCEKS as a Key store type.

f. Select Add to specify the key used for decryption.

g. Input an appropriate Alias, Key pass , and Key name to specify the key

used for decryption.

h. Select OK.
26. Expand the Key information section and Select Add to create a key

information used for digital signature verification:

a. Input an appropriate Key information name.

b. Select KEYID as a Key information type.

c. Select com.ibm.pvcws.wss.internal.keyinfo.KeyIdContentConsumer as a

Key information class.

d. Check the Use key locator check box.

e. Select the key locator name you specified for digital signature verification

as the Key locator.

f. Check the Use token check box.

g. Select the token consumer name you specified as the Token Consumer.

h. Select OK.
27. Expand the Key information section and select Add to create a key

information used for decryption:

a. Input an appropriate Key information name.

b. Select STRREF as a Key information type.

c. Select com.ibm.pvcws.wss.internal.keyinfo.STRRefContentConsumer as a

Key information class.

d. Check the Use key locator check box.

e. Select the key locator name you specified for decryption as the Key

locator.

f. Check the Use token check box.

g. Select the token consumer name you specified for decryption as the Token

Consumer.

h. Select OK.
28. Expand the Signing Information section and select Add. From the next menu:

a. Input an appropriate Signing information name.

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as a Canonicalization

method algorithm.

c. Select http://www.w3.org/2000/09/xmldsig#rsa-sha1 as a Signature method

algorithm.

d. Select Add to select a key information.

134 IBM WebSphere Everyplace Deployment: Developer’s Guide

e. Input an appropriate Key information name.

f. Select the key information name you specified for digital signature

verification as the Key information element.

g. Select OK.
29. Expand the Part References section from the Signing Information section and

select Add. From the next menu:

a. Input an appropriate Part reference name.

b. Select the required integrity name you specified as the Required Integrity

part.

c. Select http://www.w3.org/2000/09/xmldsig#sha1 as a Digest method

algorithm.

d. Select OK.
30. Expand the Transforms section under the Signing Information section and

select Add. From the next menu:

a. Input an appropriate Name.

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as a Algorithm.

c. Select OK.
31. Expand the Encryption Information section and select Add. From the next

menu:

a. Input an appropriate Encryption name.

b. Select http://www.w3.org/2001/04/xmlenc#tripledes-cbc as a Data

encryption method algorithm.

c. Select http://www.w3.org/2001/04/xmlenc#rsa-1_5 as a Key encryption

method algorithm.

d. Select Add to select a key information.

e. Input an appropriate Key information name.

f. Select the key information name you specified for decryption as the Key

information element.

g. Select the required confidentiality name you specified as the Required

Confidentiality part.

h. Select OK.
32. Save your changes.

To edit a Mobile Web Services security configuration in Scenario #6 for the Web

services provider, perform the following procedure:

 1. Open the WS-Security Provider Editor.

 2. Expand the Request Consumer Service Configuration Details section on the

WS extension tab.

 3. Expand the Required Integrity section and select Add. From the next menu:

a. Input an appropriate Required Integrity Name.

b. Select Required as the Usage type.

c. Select Add.

d. Select body as a Message parts keyword.

e. Select OK.
 4. Expand the Required Confidentiality section and select Add. From the next

menu:

a. Input an appropriate Required Confidentiality Name.

b. Select Required as a Usage type.

Developing Mobile Web Services 135

c. Select Add.

d. Select bodycontent as a Message parts keyword.

e. Select OK.
 5. Expand the Add Timestamp section and check the Use Add Timestamp check

box.

 6. Expand the Response Generator Service Configuration Details section on the

WS extension tab.

 7. Expand the Integrity section and select Add. From the next menu:

a. Input an appropriate Integrity Name.

b. Select 2 as the Order.

c. Select Add.

d. Select body as a Message parts keyword.

e. Select OK

 8. Expand the Confidentiality section and select Add. From the next menu:

a. Input an appropriate Confidentiality Name.

b. Select 1 as the Order.

c. Select Add.

d. Select bodycontent as a Message parts keyword.

e. Select OK.
 9. Expand the Add Timestamp section and check the Use Add Timestamp check

box.

10. Expand the Request Consumer Binding Configuration Details on the WS

binding tab.

11. Expand the Trust Anchor section and select Add. From the next menu:

a. Input an appropriate Trust anchor name.

b. Input an appropriate Key store storepass and Key store path.

c. Select JKS or JCEKS as a Key store type.

d. Select OK.
12. Expand the Token Consumer section and select Add to create a token

consumer used to validate the certificate for digital signature verification:

a. Input an appropriate Token consumer name.

b. Select com.ibm.pvcws.wss.internal.token.X509TokenConsumer as a Token

consumer class.

c. Check the Use value type check box.

d. Select X509 certificate token as a Value type.

e. Check the User certificate path settings check box.

f. Select the Certificate path reference radio button.

g. Select the trust anchor name you specified as the Trust anchor reference.

h. Select OK.
13. Expand the Token Consumer section and select Add to create a token

consumer used to validate the certificate for decryption:

a. Input an appropriate Token consumer name.

b. Select com.ibm.pvcws.wss.internal.token.X509TokenConsumer as a Token

consumer class.

c. Check the Use value type check box.

d. Select X509 certificate token as a Value type.

136 IBM WebSphere Everyplace Deployment: Developer’s Guide

e. Check the User certificate path settings check box.

f. Select the Trust any certificate radio button.

g. Select OK.
14. Expand the Key locators section and select Add to create a key locator used

for digital signature verification:

a. Input an appropriate Key locator name.

b. Select com.ibm.pvcws.wss.internal.keyinfo.X509TokenKeyLocator as a

Key locator class.

c. Select OK.
15. Expand the Key locators section and select Add to create a key locator used

for decryption:

a. Input an appropriate Key locator name.

b. Select com.ibm.pvcws.wss.internal.keyinfo.KeyStoreKeyLocator as a Key

locator class.

c. Check the Use key store check box.

d. Input an appropriate Key store storepass and Key store path.

e. Select JKS or JCEKS as a Key store type.

f. Select Add to specify the key used for decryption.

g. Input an appropriate Alias, Key pass, and Key name to specify the key

used for decryption.

h. Select OK.
16. Expand the Key information section and select Add to create key information

used for digital signature verification:

a. Input an appropriate Key information name.

b. Select STRREF as a Key information type.

c. Select com.ibm.pvcws.wss.internal.keyinfo.STRRefContentConsumer as a

Key information class.

d. Check the Use key locator check box.

e. Select the key locator name you specified for the digital signature

verification as the Key locator.

f. Check the Use token check box.

g. Select the token consumer name you specified for the digital signature

verification as the Token Consumer.

h. Select OK.
17. Expand the Key information section and select Add to create key information

used for decryption:

a. Input an appropriate Key information name.

b. Select KEYID as a Key information type.

c. Select com.ibm.pvcws.wss.internal.keyinfo.KeyIdContentConsumer as a

Key information class.

d. Check the Use key locator check box.

e. Select the key locator name you specified for decryption as the Key

locator.

f. Check the Use token check box.

g. Select the token consumer name you specified for decryption as the Token

Consumer.

h. Select OK.

Developing Mobile Web Services 137

18. Expand the Signing Information section and select Add. From the next menu:

a. Input an appropriate Signing information name.

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as a Canonicalization

method algorithm.

c. Select http://www.w3.org/2000/09/xmldsig#rsa-sha1 as a Signature method

algorithm.

d. Select Add to choose the key information.

e. Input an appropriate Key information name.

f. Select the key information name you specified for digital signature

verification as the Key information element.

g. Select OK.
19. Expand the Part References section from the Signing Information section and

select Add. From the next menu:

a. Input an appropriate Part reference name.

b. Select the required integrity name you specified as the Required Integrity

part.

c. Select http://www.w3.org/2000/09/xmldsig#sha1 as a Digest method

algorithm.

d. Select OK.
20. Expand the Transforms section from the Signing Information section and

select Add. From the next menu:

a. Input an appropriate Name.

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as an Algorithm.

c. Select OK.
21. Expand the Encryption Information section and select Add. From the next

menu:

a. Input an appropriate Encryption name.

b. Select http://www.w3.org/2001/04/xmlenc#tripledes-cbc as a Data

encryption method algorithm.

c. Select http://www.w3.org/2001/04/xmlenc#rsa-1_5 as a Key encryption

method algorithm.

d. Select Add to choose the key information.

e. Input an appropriate Key information name.

f. Select the key information name you specified for decryption as the Key

information element.

g. Select the required confidentiality name you specified as the Required

Confidentiality part.

h. Select OK.
22. Expand the Response Generator Binding Configuration Details section on

the WS binding tab.

23. Expand the Token Generator section and select Add to insert the certificate

for decryption. From the next menu:

a. Input an appropriate Token generator name.

b. Select com.ibm.pvcws.wss.internal.token.X509TokenGenerator as a Token

generator class.

c. Check the Use value type check box.

d. Select X509 certificate token as a Value type.

138 IBM WebSphere Everyplace Deployment: Developer’s Guide

e. Select com.ibm.pvcws.wss.internal.auth.callback.X509CallbackHandler as

a Call back handler.

f. Check the Use key store check box.

g. Input an appropriate Key store storepass and Key store path.

h. Select JKS or JCEKS as a Key store type.

i. Select Add to specify the certificate to be inserted into the message.

j. Input an appropriate Alias and Key name to specify the certificate to be

inserted into the message.

k. Select OK.
24. Expand the Key locators section and select Add to create a key locator used

for digital signature:

a. Input an appropriate Key locator name.

b. Select com.ibm.pvcws.wss.internal.keyinfo.KeyStoreKeyLocator as a Key

locator class.

c. Check the Use key store check box.

d. Input an appropriate Key store storepass and Key store path.

e. Select JKS or JCEKS as a Key store type.

f. Select Add to specify the key used for digital signature.

g. Input an appropriate Alias, Key pass , and Key name to specify the key

used for digital signature.

h. Select OK.
25. Expand the Key locators section and select Add to create a key locator used

for encryption:

a. Input an appropriate Key locator name.

b. Select com.ibm.pvcws.wss.internal.keyinfo.SignerCertKeyLocator as a

Key locator class.

c. Select OK.
26. Expand the Key information section and select Add to create a key

information used for digital signature:

a. Input an appropriate Key information name.

b. Select KEYID as a Key information type.

c. Select com.ibm.pvcws.wss.internal.keyinfo.KeyIdContentGenerator as a

Key information class.

d. Check the Use key locator check box.

e. Select the key locator name you specified for the digital signature as the

Key locator.

f. Select the key name you specified for the digital signature as the Key

name.

g. Select OK.
27. Expand Key information section and) click Add again to create a key

information used for encryption:

a. Input an appropriate Key information name.

b. Select ‘STRREF’ as a Key information type.

c. Select ‘com.ibm.pvcws.wss.internal.keyinfo.STRRefContentGenerator’ as a

Key information class.

d. Check Use key locator check box.

e. Select the key locator name you specified for encryption as the Key

locator.

Developing Mobile Web Services 139

f. Check Use token check box.

g. Select the token generator name you specified for encryption as the Token

Generator.

h. Click OK.
28. Expand the Signing Information section and select Add. From the next menu:

a. Input an appropriate Signing information name.

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as a Canonicalization

method algorithm.

c. Select http://www.w3.org/2000/09/xmldsig#rsa-sha1 as a Signature method

algorithm.

d. Input an appropriate Key information name.

e. Select the key information name you specified for the digital signature as

the Key information element.

f. Select OK.
29. Expand the Part References section from the Signing Information section and

select Add. From the next menu:

a. Input an appropriate Part reference name.

b. Select the integrity name you specified as the Integrity part.

c. Select http://www.w3.org/2000/09/xmldsig#sha1 as a Digest method

algorithm.

d. Select OK.
30. Expand the Transforms section from the Signing Information section and

select Add. From the next menu:

a. Input an appropriate Name.

b. Select http://www.w3.org/2001/10/xml-exc-c14n# as a Algorithm.

c. Select OK.
31. Expand the Encryption Information section and select Add. From the next

menu:

a. Input an appropriate Encryption name.

b. Select http://www.w3.org/2001/04/xmlenc#tripledes-cbc as a Data

encryption method algorithm.

c. Select http://www.w3.org/2001/04/xmlenc#rsa-1_5 as a Key encryption

method algorithm.

d. Input an appropriate Key information name.

e. Select the key information name you specified for encryption as the Key

information element.

f. Select the confidentiality name you specified as the Confidentiality part.

g. Select OK.
32. Save your changes.

Deploying Mobile Web Services

Web services applications are deployed as OSGi bundles / Eclipse plug-ins. They

run in the IBM WebSphere Everyplace Deployment runtime platform and require

no extra special handling.

Note: If you intend to deploy a Web service client and a Web service provider in

the same runtime, place the Web service client stub in a package that is

different from the package of the Web service provider to prevent a runtime

140 IBM WebSphere Everyplace Deployment: Developer’s Guide

conflict. Please refer to “Creating Mobile Web Services clients” on page 98

for information on how to provide a different package name.

Note: If your Web service provider or client needs to handle XML control

characters, the data must not be encoded as a string or a runtime exception

will occur. To allow your Web service provider or client to handle XML

control characters, you must use a different encoding such as byte[].

Deploying Mobile Web Services providers

In order to deploy a Web Services provider, launch an instance of the WebSphere

Everyplace Deployment runtime with the Web Services provider plug-in installed.

Following are the steps to deploy a Web services provider from the IDE:

1. From the IDE, run the Web services provider plug-in:

a. Select Run > Run.

b. Create a new WebSphere Everyplace Deployment instance if necessary.

c. In the Plug-ins tab, ensure that your Web services provider plug-in is

checked.

d. Select Run.

e. At the osgi> prompt in the Console view, type ss to display a list of all

registered bundles and their associated IDs. From the list, find the bundle

ID for your Web services provider plug-in.

f. At the osgi> prompt in the Console view, type start <bundle ID>, where

<bundle ID> is the bundle ID for your Web services provider plug-in. This

results in a call to the exposeService() method of the Web services provider,

and its WSDL will be immediately available for client use.
2. Verify that the Web services provider has started successfully:

From a browser, enter the following URL:

http://<machine>:<port>/ws/pid/<servicepid>?wsdl

where <machine> is the name of the machine hosting the Web services provider,

<port> is the port used by the Web container (see Note below), and

<servicepid> is the name used to register the Web services provider (by default

it is the base name of the class that implements the exposed Java interface).

For example, if the machine hosting the Web service is the local host, the Web

container is listening on port 1477, and the Java interface used to expose the

Web service provider is MyWebServiceImp, the WSDL URL will be:

http://localhost:1477/ws/pid/MyWebServiceImpl?wsdl

Note: Since by default the Web container port is dynamically selected by the

IBM WebSphere Everyplace Deployment runtime, refer to the Web

Container Configuration section in the WebSphere Everyplace

Deployment for Windows and Linux System Administrator’s Guide in

order to find the chosen port or to bind the Web container to a static

port instead. If the service is deployed in the same runtime environment,

and a dynamic port is preferred, you can refer to the section Static

Mobile Web Services clients to learn how to write a Web services client

that can programmatically retrieve the chosen port.

There are two properties you may change in the OSGi service:

v com.ibm.pvcws.wsdl: The value for this property is either an empty String, or a

String containing the actual WSDL (not a URL to the WSDL, as above).

Developing Mobile Web Services 141

When set as an empty String, it indicates that the service should be exposed as a

Web Service, and the WSDL should be generated dynamically. You can also pass

a String containing the WSDL that describes the Web Service if the WSDL must

be of a form that cannot be auto generated.

If you do not use the empty String, the WSDL must have a location attribute.

The value of the location attribute is unimportant since the Gateway will correct

the location when it is served to clients.

v org.osgi.framework.Constants.SERVICE_PID: This is an optional String that can

be used to change the service PID URL part of the Web service WSDL. If

changed, make sure to pass the same string to the exportPid invocation within

the exposeService method.

Deploying Mobile Web Services clients

In order to deploy a Web Services client, you must ensure that the client

implementation has been completed prior to launching an instance of the IBM

WebSphere Everyplace Deployment runtime with the Web Services client plug-in

installed.

If you generated Web Services client code that is static you must instantiate the

generated Soap_Stub object and then call the methods you wish to exercise. Please

refer to the section “Static Mobile Web Services clients” on page 99 for information

on how to complete a static Web Services client.

If you generated Web Services client code that is dynamic or that requires custom

marshalling, you will need to access the Web Service using the Gateway plug-in.

Please refer to the sections “Dynamic Mobile Web Services clients” on page 102

and “Custom serialization (marshalling)” on page 103 for information on how to

complete a dynamic Web Services client.

Once the client code is complete, launch an instance of the IBM WebSphere

Everyplace Deployment runtime with the Web Services client plug-in installed and

ensure that the appropriate code gets executed to invoke the Web Services

provider.

Note: If you get an exception with the message “Parsing of the specified WSDL

failed” followed by an explanation, ensure that the WSDL is accessible

through a browser. This exception could either be the result of a firewall

message in HTML-form requiring authentication, or could be due to an

invalid WSDL. Please consult with your administrator.

Note: When deploying a Mobile Web service client for communicating with a Web

service provider that references byte arrays, you may need to differentiate

between WSDLs that map byte arrays to either byte unbounded or to

base64Binary. You can set the javax.xml.rpc.Stub.BYTE_ARRAY_ENCODING

property to byteUnbounded or base64Binary depending on your needs. If the

property is not set, the client will encode byte arrays using base64Binary.

For example:

// static client

stub._setProperty(javax.xml.rpc.Stub.BYTE_ARRAY_ENCODING,

 javax.xml.rpc.Stub.BYTE_UNBOUNDED);

// dynamic client

Dictionary props = new Hashtable();

props.put(javax.xml.rpc.Stub.BYTE_ARRAY_ENCODING,

 javax.xml.rpc.Stub.BYTE_UNBOUNDED);

142 IBM WebSphere Everyplace Deployment: Developer’s Guide

WSProxyService wsImpl =

(WSProxyService)bundleContext.getService(serviceReference);

if (wsImpl == null) {

 System.err.println("Unable to find service Web service proxy");

 return;

}

if (!wsImpl.register(wsdl, props)) {

 System.err.println("Unable to consume WSDL");

 return;

}

Note: When deploying a Mobile Web service client for communicating with a Web

service provider hosted in WebSphere Application Server 5.1 that references

Hashtables or HashMaps, you may need to set the

javax.xml.rpc.Stub.KEY_VAL_FULLY_QUALIFIED property to “false” (see the

previous Note for an example). This will allow the proper SOAP decoding

of the mentioned types. By default, this property is not set.

Validating Mobile Web Services using the Web Services Gateway

Utility

Accessing the Mobile Web Services Gateway Utility

In order to access the Web Services Gateway Utility, the com.ibm.pvcws.wsosgi,

com.ibm.pvcws.osgi.ui, and standard HttpService plug-ins must be installed and

started. The com.ibm.pvcws.osgi.ui plug-in creates a servlet using the HttpService

and registers itself as wsman.

To install the Mobile Web Services Gateway Utility:

1. Launch the WebSphere Everyplace Deployment.

2. Add the Mobile Web Services Gateway Utility to your workbench:

a. Select Application > Install > Add Folder Location.

b. Browse to the updates/eval directory in your WebSphere Everyplace

Deployment distribution media and select OK.

c. At the Edit Local Location, select OK.

d. Select Next to list all available features.

e. Check the Web Services Gateway Utility check box, and select Next.

f. Read the License Agreement. If you accept, select Next.

g. Select the installation location to be

<WED_INSTALL_DIRECTORY>/WED/shared/eclipse, where

<WED_INSTALL_DIRECTORY> is the directory you chose to install WebSphere

Everyplace Deployment.

h. Select Finish.

i. Select Install.

Select Yes when asked to restart the workbench.

To access the utility, select Application > Open > Web Services Gateway Utility

from the WebSphere Everyplace Deployment workbench.

Developing Mobile Web Services 143

Consuming Mobile Web Services

From the Web Services Gateway Utility, you may consume a Web service and

exercise its calls. The WSDL for the Web service must be accessible via a valid

URL. The WSDL is parsed by the Web Services runtime component, and it is used

to created and install a virtual OSGi bundle that proxies the Web service.

To consume a Web service:

1. Select the Consume a Web Service link.

You must specify the URL to the WSDL of the Web service. This can be an

HTTP or a file based URL. You can either paste the WSDL URL into the Web

Service Description (URL) field or use the Quick Selection recall drop-down

menu. Every WSDL that is successfully consumed will go into the Quick

Selection drop-down menu for future access. You can use the Clear Selected or

Clear All to remove items from the quick selection box.

2. Select the Create button to retrieve the WSDL, and create and install a virtual

OSGi bundle that will serve as a proxy to the Web service.

3. Once the proxy to the Web service is available, you may invoke the Web service

calls by selecting the test or dynamic test links. You may also remove the proxy

to the Web service by selecting the remove link.

Exposing Mobile Web Services providers

From the Web Services Gateway Utility, you may expose existing OSGi services as

Web Services providers.

To expose an existing OSGi bundle as a Web service:

1. Select the Create a Mobile Web Services Provider link.

2. Select the OSGi bundle from the list that you wish to expose as a Web service

and select the create by sid or create by pid link.

3. Once the OSGi bundle is exposed as a Web Services provider, you may

consume its WSDL and exercise its calls.

Listing Mobile Web Services client OSGi bundles

From the Web Services Gateway Utility, you may list all dynamic Web Services

clients registered with the Web Services runtime component. Simply select the List

Mobile Web Services Client OSGi Bundles link to generate the list.

For each Web Services client, the following actions can be performed:

 remove Stops and uninstalls the virtual bundle for this Web Service.

test If a com.ibm.wsosgi.proxy.test.WSProxyTestService is registered

for this service then this allows you to use that to interactively

test the Web Service. If none is registered then this reverts to

dynamic test.

dynamic test This allows you to run a dynamically created test for any of the

methods of the Web Service. You will be able to choose which

method to run and then fill in all of parameters via HTML forms.

You can then execute the method and view the results.

144 IBM WebSphere Everyplace Deployment: Developer’s Guide

Listing Mobile Web Services provider OSGi bundles

From the Web Services Gateway Utility, you may list all Web Services providers

registered with the Web Services runtime component. Simply select the List

Mobile Web Services Provider OSGi Bundles link to generate the list.

For each Web Services provider listed, the following actions can be performed:

 View WSDL Displays the WSDL for the Web service.

remove Removes the Web service from the Web services runtime registry.

Developing Mobile Web Services 145

146 IBM WebSphere Everyplace Deployment: Developer’s Guide

Creating client runtime images

Getting started building platforms

Use the Platform Builder tool to create a custom runtime image of the WebSphere

Everyplace Deployment platform.

To get started, use the Platform Builder Project Wizard to guide you through the

process of building an initial target runtime image. Choose which plug-ins,

bundles, features, and application components you want so that you can build the

smallest runtime footprint. If you want to refine the runtime image at a later date,

you can use the Profile Editor to update the platform.properties file and rebuild

the image.

Follow these basic steps to build a target platform:

 Step Refer to:

1 Ensure that your development

system meets all software and

hardware requirements and that

you are aware of any Platform

Builder limitations at the time of

this release.

WebSphere Everyplace Deployment Release

Notes

2 Set the plug-in development target

platform location to the WebSphere

Everyplace Deployment runtime.

“Setting up the target platform”

3 Use the Platform Builder wizard to

create a new platform builder

project. You can also use this

wizard to build the target runtime

image.

“Creating a Platform Builder project” on

page 148

4 Update the platform.properties

file, if necessary.

“Updating a Platform Builder project” on

page 149

5 Build the target platform. “Building a target runtime image” on page

149

6 Export the target runtime image to

a local directory.

“Exporting a target runtime image” on

page 150

7 Run the target runtime image. “Running a target runtime image” on page

150

Attention: Use of runtime platforms generated with the WebSphere Everyplace

Client Toolkit in a production environment requires a separate license. Contact

your IBM sales representative for deployment licensing.

Setting up the target platform

To enable the plug-ins provided with WebSphere Everyplace Deployment for use

with the Rational Software Development Platform, you must re-target your

workspace to use WebSphere Everyplace Deployment runtime platform. Because of

this requirement, it is recommended that you create a new workspace to use when

you develop plug-ins for this product.

© Copyright IBM Corp. 2004 147

For information about configuring and registering the target platform, see “Using

the IBM WebSphere Everyplace Client Toolkit” on page 169.

Creating a Platform Builder project

To create a Platform Builder project, follow these steps:

Note: When using the Platform Builder wizard, press the F1 key at any time to get

help with option descriptions and default values. At any time during the wizard

process, you can click Finish to accept default values and build a runtime image.

1. Start the IBM Rational Software Development Platform and select File > New >

Project. The New Project page is displayed.

2. Double-click to expand Client Services, select Platform Builder Project and

click Next. The Platform Builder Project Wizard is displayed.

3. Type a name for your project. Accept the default directory for your new project

or clear the Use default check box and select a workspace of your own. Click

Next to continue. The “Platform Options page” on page 151 is displayed.

4. Accept default platform options or update fields and click Next. Operating

System and Processor type fields are not selectable. Click Next to continue. The

“Plug-ins/Bundles page” on page 155 is displayed.

5. To select the plug-ins and/or bundles that you want to add to the target

platform, do the following:

a. Select one of the following:

v Choose features from list (feature based startup) to view all feature

projects in the current workspace (workspace features) and all WebSphere

Everyplace Deployment core components (external features).

v Choose plug-ins/fragments from list to (plug-in based startup) to view

all workspace and external plug-ins and fragments.

Note: You cannot switch between radio buttons to select list items from

both lists. If you want to add a standalone workspace plug-in that

does not belong to a feature, you must first create a feature project in

a workspace and add this plug-in to the feature. To do so, click File >

New > Project > Plug-in Development > Feature Project.

b. Select the list items that you want to add to the target runtime image.

c. Click Add Required Plug-ins to resolve any dependencies for selected

plug-ins. Please wait.

d. Resolve all dependency messages and click Next to continue. The “Startup

Options page” on page 156 page is displayed.
6. Configure WebSphere Everyplace Deployment runtime startup options. Click

Next. The “Languages page” on page 156 is displayed.

7. Select the languages that you want the target platform to support. Click Next.

The Summary page is displayed.

8. Review the configuration options that you selected. To change any of your

selections, click Back. Do one of the following:

v To generate the platform files and build the runtime image, select the Build

Platform check box and click Finish. A runtime image is built, packaged in

the format you specified (zip, tar, or tar.gz), and copied into the project

directory.

148 IBM WebSphere Everyplace Deployment: Developer’s Guide

v To generate the initial platform files only, click Finish. Platform Builder

generates the initial platform files. You can now edit the

property.properties, where user settings are stored or build the runtime

image.

Errors are located in the .metadata/.log file relative to the workspace.

Updating a Platform Builder project

When you create a project using the Platform Builder Wizard, a

platform.properties file is created. This properties file stores the configuration

information associated with the Platform Builder project. Use the Profile Editor to

edit the key-value pairs stored in the platform.properties file. Each page in the

editor provides the same controls and behaviors as specified in the Platform

Builder wizard.

To edit the platform.properties file, follow these steps:

1. Start the Rational Software Development Platform. If you have not already

done so, create a Platform Builder project.

2. Locate the project in the Package Explorer view (Window > Show View >

Project Explorer). If you cannot locate the project in the Package Explorer view,

click File > Refresh.

3. Expand the project folder and double-click to open the platform.properties

file. The Platform Options page is displayed.

4. Modify options on one or more of the following pages: “Platform Options

page” on page 151, “Plug-ins/Bundles page” on page 155, “Startup Options

page” on page 156, and “Languages page” on page 156.

5. Click File > Save for changes to take effect.

6. Rebuild the platform, if necessary. To do so, from the Navigator view,

right-click the Platform Builder project name and select Client Services > Build

Platform.

Building a target runtime image

After you create a Platform Builder project and customize it, you must run a build

operation to generate the target runtime image.

You can build a target runtime image in the following ways:

v When creating a new project, select the Build platform check box on the

Platform Builder Wizard Summary page and click Finish.

v If a project already exists, do one of the following:

– Right-click the Platform Builder project name and select Client Services >

Build Platform. The Build Platform dialog is displayed. Review the output

location for the build and edit if necessary. Changes are updated in the

platform.properties configuration file. Click Finish to start the platform

build operation.

– Right-click the build.xml file in the Platform Builder project and select Run >

Ant Build. Modify options (if necessary) and click Run to run an Ant build

file. When the build is started, Ant uses the build.xml file to read the

platform.properties file and manipulate the necessary files to result in a

target platform package.

Note: When using the Run Ant function for the first time, the build.xml file

is preset to use the same JRE as the workspace.

Creating client runtime images 149

After the build completes, the build file named platform.xxx is stored in the

output location you specified (where xxx specifies the file type extension you

specified (.tar, .tar gz. or .zip).

Exporting a target runtime image

After you build a custom runtime image, you can export the file to a local

directory on your system and use local tools, such as pkzip, gzip, or tar, to extract

the runtime from the archive based on your chosen format.

If your output directory is in the workspace, copy the file to a local directory. The

default output location is as follows: your_project/output. To do so, follow these

steps:

1. In the Navigator view, select the file that you want to export.

2. From the main menu, select File > Export. The Export wizard opens.

3. Select File System and click Next.

4. By default, the resource that you selected is exported. Optionally, use the check

boxes, in the left and right panes to select the set of resources to export and,

and use push buttons, such as Select Types to filter the types of files that you

want to export.

5. Click Browse on the next page of the wizard to select the directory where you

want to export the file.

6. Click Finish.

Running a target runtime image

To launch the target runtime image, do one of the following:

v On Windows systems, run the startup.bat file.

v On Linux systems, run the startup.sh file.

Note: Do not install a platform into a directory that contains a semicolon in the

directory name.

Platform Builder page options

Platform Builder option descriptions are as follows:

Platform Builder page

 Table 17. Platform Builder page

Option Description Default value

Project name Type a name for your new

Platform Builder project.

None

Project contents You can de-select ″Use

default″ and click Browse to

select a directory for your

new Platform Builder project.

The ″Use default″ check box

is selected. This creates the

project in your current

workspace.

150 IBM WebSphere Everyplace Deployment: Developer’s Guide

Platform Options page

 Table 18. Platform Options page

Option Description Default value

Platform Profile

Device Specifies the type of device

on which the target platform

runs. Values are as follows:

v PC (Windows XP)

v PC (Red Hat Enterprise

Linux 3.0)

The default value is the

operating system on which

the Rational Software

Development Platform is

running.

Operating System Specifies the operating

system installed on the target

device. This option cannot be

changed (WindowsXP or

Linux).

Based on the Device type

selected

Processor Specifies the OSGi-supported

processor type. This option

cannot be changed (x86).

Based on the Device type

selected

Target Platform Specifies the target platform

runtime—WebSphere

Everyplace Deployment 6.0.

WebSphere Everyplace

Deployment 6.0

Creating client runtime images 151

Table 18. Platform Options page (continued)

Option Description Default value

Configuration WebSphere Everyplace

Deployment (6.0.0) Core:

This WebSphere Everyplace

Deployment profile defines

services that are available

and applicable for a minimal

runtime environment

consisting of an OSGi

framework.

WebSphere Everyplace

Deployment (6.0.0) Default:

This IBM WebSphere

Everyplace Deployment

profile defines services that

are available and applicable

for a runtime environment

consisting of an Eclipse Rich

Client Platform framework.

The runtime environment

defined includes only the

minimal set of plug-ins

necessary to run the Eclipse

Rich Client Platform.

WebSphere Everyplace

Deployment (6.0.0) RCP:

This IBM WebSphere

Everyplace Deployment

profile defines services that

are available and applicable

for a runtime environment

consisting of the IBM

WebSphere Everyplace

Deployment framework. The

runtime environment defined

includes the set of plug-ins

corresponding to the typical

installation of this product.

WebSphere Everyplace

Deployment (6.0.0) Default

152 IBM WebSphere Everyplace Deployment: Developer’s Guide

Table 18. Platform Options page (continued)

Option Description Default value

JVM Specifies the type of Java

Virtual Machine (JVM) that

the target runtime image

contains. Values are as

follows:

v J2SE – Specifies the

OS-specific J2SE JVM

packaged with this

product.

It is recommended that

you use the J2SE default

value since the platform

has been qualified with

this JVM.

v Custom – Specifies that

you want to use a custom

JVM. Launches are created

to use the JVM specified.

v None – Specifies not to

include a JVM. To use this

image you must specify

the JVM prior to executing

the platform for the first

time. To do so, follow

these steps:

1. Extract your image

from the image

archive.

2. Edit the

platform.props file in

the root of the

extracted image.

Replace the value for

the @vm attribute pair

with the java or javaw

executable for the

appropriate JVM.

3. Execute the startup

script normally to

configure the JVM.

Notes:

– This operation must be

performed prior to

launching startup script

to be effective.

Subsequent changes to

this data are ignored.

– The platform startup

performs some level of

validation against the

configured JVM. Errors

may result in the

platform failing to start.

– When no JVM is

specified, the existing

JVM might not provide

the needed functions to

run the platform

correctly.

J2SE

Creating client runtime images 153

Table 18. Platform Options page (continued)

Option Description Default value

JVM Location Specifies the location of the

JVM that the target runtime

image contains.

Based on the JVM selected.

Click Browse to select the

location of the custom JVM.

This value typically points to

a file system location that

contains bin and lib

directories.

Build Output

Output Format Specifies the file type of the

target platform build

operation. Available package

formats are as follows:

v zip – Specifies the

compressed ZIP format

used primarily for

Windows devices.

v tar – Specifies the standard

TAR format used on Linux

devices.

v tar.gz – Specifies a zipped

version of the TAR format

used on Linux devices.

zip

Output Location Specifies the location where

Platform Builder stores the

target platform after a

successful project build.

The default output location

is the output directory of the

Platform Builder project.

154 IBM WebSphere Everyplace Deployment: Developer’s Guide

Plug-ins/Bundles page

 Table 19. Plug-ins/Bundles page

Option Description Default value

Check boxes:

v Choose features from list

(feature based startup)

v Choose plug-in/fragments

from list (plug-in based

startup)

Choose feature-based startup

to view all feature projects in

the current workspace

(workspace features) and all

WebSphere Everyplace

Deployment core

components (external

features).

Choose plug-in-based startup

to view all workspace and

external plug-ins and

fragments.

Note: You cannot switch

between radio buttons to

select list items from both

lists. If you want to add a

standalone workspace

plug-in that does not belong

to a feature, you must first

create a feature project in a

workspace and add this

plug-in to the feature. To do

so, click File > New >

Project > Plug-in

Development > Feature

Project.

The plug-ins, bundles, and

fragments projects included

in the current configuration

are selected.

Tree view for check box

includes the following

entries:

v Workspace Plug-ins (or

Features)

v External Plug-ins (or

Features)

Lists WebSphere Everyplace

Deployment runtime

components and user-defined

plug-ins and fragments.

Select one or more check

boxes to specify the items

that you want to add to the

target platform.

Click Add Required

Plug-ins to add dependent

plug-ins, bundles, or

fragments for selected

entries. The wizard attempts

to resolve any discrepancies

and prompts you to add or

remove selections as needed.

Note: The Add Required

Plugins option adds to the

selected list any fragments

associated with selected

bundles, and any

dependencies driven by

those fragments.

None

External Plug-ins are initially

configured based on the

configuration from the prior

panel and the plug-ins are

located in the Target

Platform. You cannot remove

plug-ins/features that are

added from the

configuration. You can add

to the configuration only.

Workspace plug-ins are

never preconfigured.

Creating client runtime images 155

Startup Options page

 Table 20. Startup Options page

Option Description Default value

Program to Run

Workbench Type Specify the workbench type

for the target platform.

None

Command Setting

JVM Arguments Optional: Type JVM

arguments, if necessary.

Note: The Platform Builder

wizard does not validate

these arguments.

None

Program Arguments Optional: Type Program

arguments, if necessary.

Note: The Platform Builder

wizard does not validate

these arguments.

None

Bootstrap Entries Optional: Type bootstrap

entries, if necessary.

Note: The Platform Builder

wizard does not validate

these arguments.

None

Profiling If selected, includes the

–Xprof option in the JVM

Arguments field to enable

profiling.

Disabled

Verbose If selected, includes the

–verbose option in the JVM

Arguments field to enable

verbose output.

Disabled

Console If selected, includes the

–console option in the

Program Arguments field to

enable output to the console.

Disabled

Languages page

Select one or more check boxes to specify the languages that you want the target

platform to support. You are defaulted to the language of your system, if available.

You must select at least one language.

Note: If one language in a fragment is selected, the entire language fragment is

added to the target runtime image.

156 IBM WebSphere Everyplace Deployment: Developer’s Guide

Debugging and testing applications

You can use either the WebSphere Everyplace Deployment Server or the

WebSphere Everyplace Client Toolkit’s WebSphere Everyplace Deployment

Launcher to run and debug applications. Typically, the debugging mechanism you

have used in the past will be the easiest to use for debugging plug-ins.

Regardless of the launch mechanism used for debugging, the critical requirements

for successful debugging are access to the source for your applications, and Java

class files that contain debugging information.

Local debugging and testing

There are two methods available for running and debugging applications in a local

instance of the IBM WebSphere Everyplace Deployment runtime. Both are equally

capable of running applications, but they have individual capabilities which may

make one more preferable.

The WebSphere Everyplace Deployment Launcher is ideal if you are familiar with

Eclipse Plug-in development tools. It is also recommended if you are developing

bundles that are not J2EE projects, as the WebSphere Everyplace Deployment

launcher lets you easily select all bundle projects in your workspace.

The WebSphere Everyplace Deployment Server is ideal if you are familiar with

Rational J2EE development tools. It is also recommended if you are developing

non-Client Services EJB or Web projects, as the WebSphere Everyplace Deployment

Server can easily add them to the list of configured projects to run. Since the server

framework coincides with the existing RAD J2EE tools, it may be more natural to

use if you are primarily doing J2EE development, especially if you are running the

project on both WebSphere Everyplace Deployment and non-WebSphere

Everyplace Deployment runtimes.

WebSphere Everyplace Deployment Launcher

The launcher supports the ability to run and debug Client Services projects from

your workspace. The IBM WebSphere Everyplace Deployment runtime launch

extends the Eclipse runtime workbench launch. It is suggested that you use the

WebSphere Everyplace Deployment launcher rather than the Eclipse runtime

workbench launcher for running Client Services projects, since it automatically

handles setting other parameters for the WebSphere Everyplace Deployment

runtime.

Perform the following procedure to run or debug a project using the WebSphere

Everyplace Deployment runtime launch:

1. Select either Run > Run... or Run > Debug... to run or debug using the

WebSphere Everyplace Deployment runtime.

2. Select WebSphere Everyplace Deployment under configurations, and select

New to create a new configuration.

Note: If WebSphere Everyplace Deployment runtime configurations have

already been created, you can directly select one.

© Copyright IBM Corp. 2004 157

3. On the arguments tab, ensure that the JRE selected is WebSphere Everyplace

Deployment v6 JRE (or the JRE defined in step 2 on page 170 of “Setting up

the WebSphere Everyplace Client Toolkit” on page 170).

4. By default, the launcher selects all the external plug-ins/application services

from the WebSphere Everyplace Deployment default platform profile. To

change the external plug-ins/application services in your WebSphere

Everyplace Deployment instance, select the Profile tab.

5. By default, the launcher selects all your workspace plug-ins and Client Services

projects. To change the project selection, select the Workspace Plug-ins section

from the Plug-ins tab.

6. Select the appropriate check box to include any fragments with translated

properties files. For Group 1 languages, check Group 1. For Group 2 languages,

check Group 2.

For a list of IBM language groups, refer to “IBM language groups” on page 201.

7. Select either the Run or Debug button to launch the runtime.

Note: This launcher works best for Client Services projects. If you have non

Client Services EJB or Web projects you can select them to run in Step 5

if you have first set the target runtime of the project.

Note: If you choose to manually select plug-ins, do not include fragments from

Linux in your Windows environment, or fragments from Windows in

your Linux environment. If both operating system fragment types are

included, the platform will not work correctly. To avoid this problem,

use the Profiles tab to select your plug-ins.

Note: If your machine is disconnected from the network (Linux only), then you

must manually add the following entry to the /etc/hosts file:

127.0.0.1 <your_machine_hostname>

This allows the Web Container to function correctly when you are

disconnected from the network.

For more information on launch option, refer to the section Running a Plug-in of

the PDE Guide.

For more information on debugging, refer to the section Using the Java integrated

development environment > Concepts > Local Debugging of the Developing Java

Applications Guide.

WebSphere Everyplace Deployment Server

The server supports the ability to run and debug J2EE projects from your

workspace, including Client Services Web projects and Client Services Embedded

Transaction as well as existing Rational Web projects and EJB projects. The IBM

WebSphere Everyplace Deployment server extends the Rational server framework

to launch a WebSphere Everyplace Deployment runtime.

Note: You should be developing in the J2EE or Web perspective when using the

Rational server tools to run J2EE applications.

Creating a server

Perform the following procedure to create an IBM WebSphere Everyplace

Deployment server:

1. Select New > Server > Server... to show the New Server creation dialog

158 IBM WebSphere Everyplace Deployment: Developer’s Guide

2. Select IBM > WebSphere Everyplace Deployment v6.0 as the server type and

select either Next to choose a Platform Profile or Finish to use the default.

3. If modifying the profile, perform your selections on this page then select

Finish.

4. A new server will be created with the default name WebSphere Everyplace

Deployment v6.0 @ localhost and will be visible from the Servers view.

5. On the arguments tab, ensure that the JRE selected.

Editing a server

You can view the server editor by double-clicking it from the servers view. To

modify the Platform Profile, or a set of Application Services, navigate to the Profile

tab. To modify the advanced features of the launch, select Advanced on the main

tab. For descriptions of the tabs and fields in this dialog, refer to Running a

Plug-in of the PDE Guide.

Adding projects to a server

Projects that are associated with a server are automatically loaded onto the

WebSphere Everyplace Deployment runtime when it is started.

To view the list of J2EE projects associated with a server, or to modify the projects

on the server, right-click the server in the Servers view and choose Add and

Remove Projects... to display the Add and Remove Projects dialog.

If you are working with one J2EE project that you want to test, you can right-click

the project and choose Run on Server. The wizard adds that project to a new or

existing server, and automatically starts the server.

In order to add a non-J2EE Client Services project to a server, you must go to the

advanced editing screen (refer to “Editing a server”). You will be able to select

Client Services projects from the set of Workspace plug-ins on the Plug-ins tab.

Starting a server

From the Servers view, right click the server and select Start to run the server

using the IBM WebSphere Everyplace Deployment runtime. Or, select Debug to

debug using the IBM WebSphere Everyplace Deployment runtime.

Remote debugging and testing

Remote debugging using Rational Software Development

Platform

Rational Software Development Platform also provides capabilities to debug code

executing within the IBM WebSphere Everyplace Deployment platform. Using

Rational Software Development Platform is effective if you have created Client

Services projects and will need to debug them remotely.

In order to debug the IBM WebSphere Everyplace Deployment platform, you will

need to launch it using specific debug options. You can launch using either a

Launch Configuration from the WebSphere Everyplace Deployment launcher in the

toolkit, or by using the command line.

To launch a WebSphere Everyplace Deployment platform using a Launch

Configuration in the toolkit, create a Launch Configuration as described in

“WebSphere Everyplace Deployment Launcher” on page 157. Be sure to use the

Debugging and testing applications 159

Run > Run... option in step 1. Before launching the runtime, enter the following

arguments into the VM Arguments field on the Arguments tab:

-Xdebug -Xnoagent -Xrunjdwp:transport=dt_socket,server=y,address=zzzz

Where zzzz is an available port on your system.

You can also launch the WebSphere Everyplace Deployment platform for

debugging using the command line. Add the parameters

-vmargs -Xdebug -Xnoagent

-Xrunjdwp:transport=dt_socket,server=y,address=zzzz

to the command line, where zzzz is an available port on your system. Refer to

“Starting from the command line” for more information on launching via the

command line.

In the Rational Software Development Platform, select Debug..., then create a new

Remote Java Application launch configuration. Enter the name of any project, and

select a Connection Type of Standard (Socket Attach). For the Connection

Properties, you can use localhost as the host (or supply the IP address or host

name for a remote system), and specify the same port number as you specified

when launching the WebSphere Everyplace Deployment platform.

Starting from the command line

To start the WebSphere Everyplace Deployment platform from a command line,

switch to the WED_RUNTIME/rcp directory, and run the rcplauncher.exe file on

Windows, or the rcplauncher file on Linux. You can add additional parameters

following the file name, such as

rcplauncher -console -nosplash

to start the platform with a console window and suppress the splash screen. If you

need to supply any Java virtual machine specific arguments, such as when

specifying debug options, use the -vmargs parameter. The -vmargs, followed by

any virtual machine specific arguments, must be the last parameter on the

command line. Application specific arguments must not follow the -vmargs

parameter on the command line.

160 IBM WebSphere Everyplace Deployment: Developer’s Guide

Packaging and deploying applications

This section assumes you have completed some level of code development and are

interested in one of the two situations below:

v You have completed code development and are now prepared to start

constructing installation artifacts to turn over to an administrator or IT team for

distribution to client systems.

v You want to run your code in an actual installed instance of the client platform

on your local development system (and not within an instance launched from

the workspace)

For information on constructing installation artifacts for distribution, refer to

“Packaging applications for distribution.”

For information on performing quick deployments of plug-ins to local instances for

test purposes, refer to “Deploying projects for local testing” on page 166.

Packaging applications for distribution

Updates to the client platform are provided in the form of features. Features may

contain other features, or a set of related plug-ins. The Update Manager

component of the client platform handles the installation of the features, and a

user interface is provided to manage the installed features.

Features may be provided to the Update Manager by connecting to an update site,

or by the included Enterprise Management agent. Update sites organize features

for installation. The Update Manager typically connects to an update site to

determine the features that are available for installation.

The Enterprise Management agent enables the client platform to be managed

remotely. Administrators create software distribution jobs that define the artifacts

to be installed, and the Enterprise Management agent handles the installation

tasks.

Understanding methods of installation

There are two mechanisms to install applications via features. The application can

either be installed from each system by using the Update Manager, or by using an

enterprise distribution system.

Local installation

To enable local installation, you will need to provide an update site configuration

to the platform. If you provide an installation program, in addition to any other

tasks that you perform, you should provide an update site for the users to use to

install your application. The update site could be provided on the distribution

media, or could be created on the hard drive of the system on which you execute

the installation program.

The customers will need to start their client platform, and use the Update Manager

to connect to the site, and install the application.

© Copyright IBM Corp. 2004 161

Enterprise installation

In addition to a local installation process, you should also consider providing an

installation process to enable enterprise distribution. To enable the enterprise

installation, you should clearly identify each file that should be installed, and the

appropriate installation location.

The client platform provides an Enterprise Management Agent that connects to

Tivoli® Device Manager provided by WebSphere Everyplace Device Manager.

Tivoli Device Manager provides for software distribution as well as configuration

jobs to be applied to the client platform. Tivoli Device Manager uses bundles as

the distribution artifacts for the Enterprise Management Agent.

While the Enterprise Management Agent is capable of accepting a distribution at a

plug-in or bundle level, it is strongly recommended that Eclipse update sites

packaged as a bundle using the NativeAppBundle tool be used as the distribution

artifact.

The update site provided to an administrator for distribution is the same update

site that is built for local installation. Therefore, developers can create the same

artifacts for enterprise installation as they would create for local installation.

Understanding the types of install artifacts

For any successful application installation, you need to provide the appropriate set

of installation artifacts from the following:

Installer/Uninstaller

A program to handle installation (and uninstallation of your application) may be

needed if you need to do anything more than provide an update site to allow

installation of your application.

Update site

An Update Site is the key mechanism to enable installation of the application. The

Rational Software Development Platform provides templates for creating Update

Sites.

For more information on update sites, including how to create one, please see the

Getting Started > Update Sites section of the PDE Guide.

Features

A feature is the only level of installable unit that exists. You cannot choose to

install only certain plug-ins from a feature. The Plug-in Development Platform

provides wizards for creating Features.

Once the feature project is created, you can make additional updates to the feature

definition by editing the feature.xml file.

Additionally, if a feature has already been created, you can import the feature as a

binary project into your workspace. Select File > Import > External Features to

launch the wizard. Enter the name of an update site to browse, and you can select

the features to import.

Importing External Features is useful if you are attempting to create an Update

Site, and someone else has already created the features that need to be installed.

162 IBM WebSphere Everyplace Deployment: Developer’s Guide

To enable WebSphere Everyplace Deployment users to use the Scan for Updates

action within the Application Management dialog, you must add an update URL

to the feature.xml file. Using the Feature Manifest Editor, on the Overview tab,

right click on the Update URLs entry in the Feature URLs section, then select New

> Update URL. You can then enter the appropriate update site information in the

Properties view that is displayed.

If no update URLs are provided in the feature.xml file, the Scan for Updates

action will still be displayed as an available action, but will not return any update

information.

WebSphere Everyplace Deployment uses the eclipse directory to contain all of the

features and plug-ins from Eclipse. The rcp directory contains the remainder of the

features and plug-ins that are part of the client platform. The shared directory can

be used to install features that are to be used by all users on the client system.

Additionally, there is a feature install directory in the workspace associated with

each user.

When new versions of features are provided, they will be installed into the same

directory as the previous version. The installation directory for a feature upgrade

cannot be changed.

Versions for features are specified using major.minor.service.qualifier. For

example, a version of 4.0.1 has a major version of 4, a minor version of 0, and a

service version of 1. An equivalent version is a version that differs first at the

service level. A compatible version is a version that differs first at the minor level.

For example, using our version 4.0.1 above, a version of 4.0.2 would be an

equivalent version, since the service value is the first value that changed. A version

of 4.1.2 would be a compatible version, since the minor value is the first value that

changed.

The Scan for Updates capability provided as part of the Application Management

dialog enables updates of only equivalent or compatible versions, according to the

preferences selected in the Manage > Preferences > Install/Update dialog. The

default value is for Equivalent feature updates.

A feature version that changes at the major level, for example, a version 5.0.0 that

would replace our version 4.0.1, must be installed through the Application > Install

mechanism. Scan for Updates will not show this feature as being available.

For additional information on versioning, refer to the Feature manifest section of

the Platform Plug-in Developer’s Guide.

Plug-ins

Plug-ins provide the core logic capability for the application, but they must be

grouped into features in order to be installed via the Update Manager.

If you choose to use a Feature project, or an Update Site project within your

workspace, you will need to provide the plug-ins within the workspace as well.

These plug-ins can either be in source form - if you are responsible for developing

the plug-ins - or they can be in binary form - if another person will be providing

these artifacts to you. If another person is providing the artifacts, then you can

import these artifacts as binary plug-ins so that you can use the Feature and

Update Site project capabilities. Select File > Import > External Plug-ins and

Fragments to launch the Import Wizard. Once plug-ins exist in projects within the

Packaging and deploying applications 163

workspace, you can use the Feature Manifest Editor to add plug-ins to the Feature,

and the Site Manifest Editor to add features to the Update Site.

Native libraries

Plug-ins may use the Java Native Interface (JNI) to access native library code.

Native libraries are by convention placed in a fragment specific to an operating

system or architecture to the plug-in providing the Java classes (native libraries can

all be placed within a single plug-in). The organization of the fragment is the

following:

directory\fragment.xml

directory\os\<osgi.os>\<osgi.arch>*.dll or *.so

Where directory is typically <fragment_name>_<fragment_version>

The value of the osgi.os value above is the value corresponding to the value of

the Java System property, osgi.os. The value of the osgi.arch corresponds to the

value of the Java System property, osgi.arch.

The osgi.os value is generally based on the os.name property value, although the

value of osgi.os may alias a set of values for os.name. For example, the osgi.os

value of win32 is used to represent an os.name value of Windows 2000.

The osgi.arch value is generally based on the os.arch property value.

For the runtime environment, since it is targeting Windows 2000, Windows XP, and

Linux, the values of osgi.os would be either win32 or linux.

The value for arch will be x86.

As an example, the DB2 Everyplace component requires native libraries. The

plug-in id is com.ibm.db2e and the version is 8.2.0. The native libraries required for

Windows reside in a fragment for this plug-in, com.ibm.db2e.win32_8.2.0. Within

this fragment, the directory os\win32\x86 contains the DLLs required by DB2

Everyplace.

If there is a single native library required by the plug-in, and it is loaded via the

System.loadLibrary() method, then packaging the fragment or plug-in in this

organization is sufficient.

If there are multiple native libraries required by the plug-in, and each one is

individually loaded by the System.loadLibrary() method, and the DLLs do not

depend on each other or statically or dynamically load each other, this

organization is sufficient.

If there are multiple native libraries required by the plug-in, and there are

dependencies between the libraries such that a System.loadLibrary() method call

loads one of the libraries, but that library statically or dynamically loads the other

libraries, then an additional step is required. Because these directories are not

provided on the System PATH or LIBPATH, the operating system is unable to handle

the loading of the shared library. To cause these directories to be added to the

system PATH or LIBPATH so that the operating system can load these libraries,

update the rcpinstall.properties file to add the appropriate plug-in or fragment

directory to the library.path.prepend or library.path.append properties. Refer to

“Configuring native library references” on page 223 for more information.

164 IBM WebSphere Everyplace Deployment: Developer’s Guide

As an example, there are multiple native libraries required for DB2 Everyplace.

Because these libraries have dependencies between them, they must be present on

the system PATH or LIBPATH. Therefore, the fragment directory, C:/Program

Files/IBM/WED/rcp/eclipse/plugins/com.ibm.db2e.win32.x86_8.2.1.20050620/

os/win32/x86, has been added to the library.path.append property in the

rcpinstall.properties file.

Code that behaves differently between operating systems that are aliased to win32,

such as Windows 2000 or Windows XP, should be handled within the native

libraries, and should not be placed into separate plug-ins/fragments, or separate

osgi.os directories, since changing the operating system name for the runtime

environment will prevent proper loading of components such as DB2 Everyplace

or SWT.

Configuration file updates

Most of the changes required when installing an application can be accomplished

by providing the appropriate plug-ins. However, some of the configuration files

used by the WebSphere Everyplace Deployment platform may need to be updated.

Changes to these files can be made either by installation programs, or by using an

Install Handler associated with the application Feature being installed. An Install

Handler is invoked at certain checkpoints within the installation process. During

the applicable checkpoints, code provided within the Install Handler can make the

required changes to the configuration files.

Installation instructions

You should make sure that any installation instructions for your application are

clearly provided to your customers. Your customers will need to know, for

example, the location of the update site from which to install the application, any

preferences that may need to be updated, how to start your application, and so on.

Enterprise distribution instructions

You should also consider the needs of enterprises to use an enterprise distribution

mechanism to install the application. Any artifacts that must be installed should be

clearly identified. This will allow the administrator to easily define the necessary

steps to distribute your application. You should supply Eclipse update sites to the

enterprise administrator to allow for distribution of your application.

Using Ant tasks to build a deployable bundle

ANT is a scripting framework often used in task automation for Java. It is

commonly used to automate the building of code from source into the resulting

binary artifacts.

The WebSphere Everyplace Client Toolkit provides an ANT task to assist in

building workspace projects. Projects containing EJBs and Web Applications require

more pre-deployment processing than other types of Client Services or plug-in

projects. The bde.exportJarBundle ANT task (“bde.exportJarBundle” on page 220)

is provided to perform those steps. The output of the ANT task is a JAR file that

can be used directly within the Eclipse framework, or placed on an update site for

distribution.

The Plug-in Development Environment (PDE) within the Rational Software

Development Platform provides a framework for building features and plug-ins

using ANT technology. For most plug-in type projects, the automated PDE build

technology will dynamically create build scripts based upon the build.properties

file associated with a project. For projects containing EJBs or Web Applications, the

default generated build script is not sufficient. To prevent the PDE build

Packaging and deploying applications 165

framework from generating an incorrect script, you will need to configure the

build.properties to indicate that a custom build script is being used:

1. Select the plugin.xml or the MANIFEST.MF for the project, right click, and then

select PDE Tools > Create ANT Build File. A build.xml file is created in the

project.

2. Open the build.properties file in the project (using the Build Properties

Editor).

3. In the upper right of the Build page, select the Custom Build option.

4. Save the build.properties file. The build.properties will now contain a line

custom = true.

Once you have created the build.xml file, you will need to edit the build.xml file

to modify the build.jars and gather.bin.parts tasks to produce the correct

output for an ANT build. The build.jars task typically compiles the project

source, and puts the resulting class files into a JAR within the directory indicated

by the ANT script variable ${build.result.folder}. The garther.bin.parts task

typically creates a plug-in folder in the directory specified by the

${destinationation.temp.folder}, and copies all the required files for the binary

export into the plug-in folder. For EJB and Web Application projects you want to

build for the client platform, you can use the bde.exportJarBundle task from

within the build.jars task, and then unzip the resulting output jar during the

gather.bin.parts task.

Deploying projects for local testing

In order to run your application plug-ins in a locally installed instance of the client

platform, and not an instance started from the workspace application launcher, you

will need to export your plug-ins to the local file system.

This section covers how to export your projects to the local file system for local

testing. The steps suggested here provide the quickest route for exporting your

projects to the local file system. Please note the following:

v Using this method to deploy your plug-ins to the local instance does not allow

the plug-ins to be removed through the Application Management menu

v Removing the plug-in requires that you use local system tools to physically

remove the directory or directories that contain the plug-ins

v The preferred method for creating binaries for distribution to others is to create

features and/or update sites (as covered in “Packaging applications for

distribution” on page 161

Exporting Client Services projects

Select File > Export > OSGI bundle files. This wizard will allow you to select

multiple projects for export. You can select to export bundle (select Export Jar as

Export Type) or export directory structure which will be understood by both the

WebSphere Everyplace Deployment platform and the Plug-in Development

Environment. Specify the output directory, and/or any other options. Select the

Finish button.

Note: The name of the exported file will be named, by default,

Bundle-SymbolicName_Bundle-Version.jar. If you prefer to use a different

naming mechanism, you can change it. Go to Windows > Preferences >

WebSphere Everyplace Client Toolkit > Export to specify a different

naming mechanism.

166 IBM WebSphere Everyplace Deployment: Developer’s Guide

Exporting plug-ins from the Rational Software Development

Platform

The Rational Software Development Platform provides an Export wizard that will

allow you to export a Client Services plug-in project to a local runtime for

deployment.

Select File > Export > Deployable Plug-ins and fragments. This wizard will allow

you to select multiple projects for deployment. You will also be able to select

different output formats:

v A single ZIP file containing all plug-ins

v Individual JARs for each plug-in for use on an update site

v A directory structure

The directory structure option is the preferred approach for deployment to a local

runtime, as the export format is understood by both the WebSphere Everyplace

Deployment platform and the Plug-in Development Environment of the Rational

Software Development Platform.

When using the directory structure option, you should refer to an eclipse directory,

such as <installation_root>/rcp/eclipse. The export process will automatically

put your plug-in into the plug-ins directory.

Notes:

1. While your plug-in may build successfully in the workspace, the Export

mechanism runs a separate compilation of your plug-in. If you have

added entries to the Java build path for your plug-in, you should also

make sure that the build.properties file in your plug-in project

contains any required extra JAR files in the jars.extra.classpath

property. The build.properties file can be updated either through the

Build Properties Editor or the Bundle Manifest Editor.

2. If you will be debugging these plug-ins from another IDE, then you

should make sure that you check the Include source code option in the

Export Wizard, and that the Compile source with debug information

option is selected in the Build Options available in the Export Wizard.

Packaging and deploying applications 167

168 IBM WebSphere Everyplace Deployment: Developer’s Guide

Using the IBM WebSphere Everyplace Client Toolkit

Getting started with the IBM WebSphere Everyplace Client Toolkit

The information in this section guides you through the process of setting up the

IBM WebSphere Everyplace Client Toolkit and creating a sample bundle with IBM

WebSphere Everyplace Client Toolkit. After you create a sample bundle, refer to

“Roadmap of major tasks” on page 170 for instructions on how to create your own

bundle.

IBM WebSphere Everyplace Client Toolkit overview

The IBM WebSphere Everyplace Client Toolkit provides the tools necessary to

create and test OSGi bundles, Web Applications, and Embedded Transaction

Applications for use on the WebSphere Everyplace Deployment platform.

WebSphere Everyplace Deployment is built on Eclipse 3.0, which is built on top of

OSGi. For this release, Eclipse 3.0 plug-ins run as OSGi bundles. The Plug-in

Developer Environment (PDE) provided with Eclipse 3.0 provides many features

that are useful in the development of OSGi bundles. The WebSphere Everyplace

Toolkit is built upon the solid base provided by the Eclipse PDE.

WebSphere Everyplace Client Toolkit allows developers to focus on the creation of

bundles, without requiring them to become OSGi bundle internals experts. In its

simplest form, the toolkit is designed for the developer who wants to develop and

store ten or twenty bundles with automated assistance purely within the Eclipse

environment.

The primary WebSphere Everyplace Client Toolkit features include:

v Enhanced Bundle Manifest Editor - Provides graphical editing of the

MANIFEST.MF file

v OSGi validation - The toolkit provides an OSGi manifest header validation logic

based on the OSGi implementation in Eclipse 3.0. This logic maximizes the

errors caught at development time, rather than at deployment

v Automatic management of Java Build Path and OSGi Manifest fields

v Run / Debug support for Local and Remote Runtimes

Using the IBM WebSphere Everyplace Client Toolkit, developers build applications

and services as ″bundles″ that run on WebSphere Everyplace Deployment runtime.

A bundle may be packaged as a JAR file with information in the manifest file that

relates information to IBM WebSphere Everyplace Client Toolkit about the bundle,

such as the services and packages the bundle imports and/or exports. A bundle

may also be packaged in a plug-in structure. For more information, see “Packaging

and deploying applications” on page 161 for more information.

Supported platforms

The WebSphere Everyplace Client Toolkit runs on the following platforms and

supports application development for the WebSphere Everyplace Deployment

runtime on these same platforms.

v Windows XP

v Red Hat Enterprise Linux WS 3.0 with GNOME desktop

© Copyright IBM Corp. 2004 169

The WebSphere Everyplace Client toolkit feature must be installed in Rational

Application Developer, Rational Software Architect, or Rational Web Developer 6.0.

Roadmap of major tasks

The following table provides a reference to documentation covering important

bundle development tasks and considerations.

 Table 21. Bundle Development Documentation

Task Reference

Create a new Client Services project “New Client Services Project Wizard” on

page 245

“New Client Services Fragment Project

Wizard” on page 248

Convert an existing project to a Client

Services project

“Convert Project to Client Services Project

Wizard” on page 250

Edit the manifest file “Bundle Manifest editor” on page 244

Update Client Services project properties “Client Services Project Properties page” on

page 252

Exporting Client Services projects “Deploying projects for local testing” on

page 166

Run and debug a Client Services project “WebSphere Everyplace Deployment

Runtime Launch Configuration dialog” on

page 253

Setting up the WebSphere Everyplace Client Toolkit

Before you use the IBM WebSphere Everyplace Client Toolkit, verify that you have

done the following:

Note: Upon the first startup of a workspace, you will see a dialog that prompts

you to automatically set the preferences for the WebSphere Everyplace

Client Toolkit. Selecting yes in this dialog, causes steps 1 and 2 below to be

done automatically. You may also skip them when performing a manual set

up.

1. Set the plug-in development target platform location to the WebSphere

Everyplace Deployment development runtime.

a. Select Window > Preferences > Plug-in Development > Target Platform.

b. Set the Location field for the target platform to

RATIONAL_HOME/sdpisv/eclipse/plugins/com.ibm.pvc.wct.runtimes_ 6.0.0/

eclipse.

c. Select OK.
2. Set the default workbench JRE to be the IBM WebSphere Everyplace Client JRE.

WebSphere Everyplace Deployment runtime ships with J2SE 1.4.2.

a. Select Window > Preferences > Java > Installed JREs.

b. Click Add...

c. Set JRE type to Standard VM.

d. Enter a JRE name of your choosing, such as J2SE 1.4.2.

e. Set the JRE home directory to

RATIONAL_HOME/spdisv/plugins/com.ibm.pvc.wct.runtimes.

j2se.win32.x86_1.4.2.SR2/rcp/eclipse/plugins/

com.ibm.rcp.j2se.win32.x86_1.4.2.SR2/jre.

170 IBM WebSphere Everyplace Deployment: Developer’s Guide

f. The JRE system libraries view should now display the JRE libraries.

g. Click OK.

h. Click the check box next to the JRE you just created to select it as the

default workbench JRE.

i. Click OK.
3. Insure that the bundle manifest problem markers are enabled. This will need to

be done the first time a preexisting workspace is used with the WebSphere

Everyplace Client toolkit.

a. Click the Filters icon on the Problems view toolbar.

b. In the problem type checklist, ensure that the following types are selected:

v Bundle Manifest Problem

v Bundle Manifest Reference Problem

Creating a sample Client Services project

Refer to the following instructions to create a sample Client Services project that

includes the Client Services Pizza JSP Web Application Sample project:

1. Select Window > Open Perspective > Other > Plug-in Development from the

menu bar.

2. Select Help > Samples Gallery.

3. Select Application Samples > WebSphere Everyplace Deployment > Pizza JSP

Web Application.

4. Select Finish on the Pizza JSP Web Application Sample project naming dialog.

The Pizza JSP Web Application Sample project appears in the Package Explorer

view.

5. Launch the WebSphere Everyplace Deployment runtime.

a. Select Run > Run...

b. Select WebSphere Everyplace Deployment under Configurations. Click

New.

c. Open the Profile tab and select the WebSphere Everyplace Deployment

(6.0.0) Default profile.

d. Click Run.

Note how you did not have to explicitly install the Pizza JSP Web Application

into WebSphere Everyplace Deployment runtime. This is because, as part of

standard Eclipse behavior, the WebSphere Everyplace Deployment runtime

launches all bundles in the user’s workspace (plus any enabled external

plug-ins found in the Target Platform folder).This behavior is controlled by the

Plug-ins tab of your WebSphere Everyplace Deployment.

6. Now, with the Pizza JSP Web Application already running on the WebSphere

Everyplace Deployment runtime, verify its behavior by launching the

application in the runtime’s browser. Select Application > Open > Pizza JSP

Web Application from the WebSphere Everyplace Deployment runtime:

Setting Manifest Editor preferences

Validation of the bundle manifest file can be controlled via the WebSphere

Everyplace Client Toolkit preferences. You can access this panel by selecting

Window > Preferences > WebSphere Everyplace Client Toolkit. On this panel

you can set the notification level for different possible problems in the manifest

editor. You can set the notification level to error, warning, or ignore.

Using the IBM WebSphere Everyplace Client Toolkit 171

If error is selected, the problem will be marked as an error in the problems view

and compilation of the bundle will not succeed.

If warning is selected, the problem will be marked as a warning in the problems

view and compilation will proceed.

If ignore is selected, the problem will be ignored and no notification will be

displayed.

The following preferences can be set

 Table 22. Manifest editor preferences

Option Description Default value

Incorrect manifest syntax The syntax of the manifest

header is incorrect or invalid

Error

Unresolved bundle references The specified bundle

reference does not exist in

the PDE target platform or

workspace

Error

Invalid reference values The specified reference is

invalid for the given

manifest headers

Error

Invalid fragment references The specified reference is

invalid in the fragment

manifest file

Warning

Required attributes not

defined

A required attribute for the

manifest header is missing

Error

Unknown attributes The specified attribute of the

manifest is not defined in the

OSGi specification

Warning

Unknown attribute values The attribute value defined

in the manifest is incorrect or

invalid

Warning

Secondary dependencies The secondary dependency is

referenced, but is not defined

in the bundle’s manifest file

Warning

Unused references The given reference is

defined but not used in the

bundle

Warning

Unknown resources The given resource cannot be

resolved

Error

Turning on build automatically

For optimum launch performance, the ’build automatically’ preference should be

enabled. To enable ’build automatically’, select Project from the main menu bar. If

Build Automatically is checked, the preference is already enabled. If it is not

checked, select the option to enable it.

Concepts

The WebSphere Everyplace Client Toolkit extends the RSDP integrated

development environment to support the development, testing, and deployment of

Eclipse plug-ins and OSGi™ bundles. The WebSphere Everyplace Client Toolkit

172 IBM WebSphere Everyplace Deployment: Developer’s Guide

adds wizards and editors that collectively provide an OSGi bundle developer with

the tools needed to complete the following tasks:

v Identify bundle package and service imports and exports.

v Construct the OSGi manifest to include package and service imports and

exports.

v Launch the WebSphere Everyplace Deployment runtime from the Integrated

Development Environment (IDE).

Client Services Project

A Client Services project contains a bundle and an associated Application Profile.

In addition, Client Services projects can:

v Automatically update the Java Build Path.

WebSphere Everyplace Client Toolkit can automatically update the project’s Java

Build Path to reflect the project’s Platform Profile and Application Services

settings. Refer to “Platform Profile” on page 174 and “Application Services” on

page 174 for more information.

v Provide a default bundle activator.

The toolkit can create a default bundle activator class. You can tailor the default

bundle activator class by editing the source file for the class folder.

v Automatically update the Manifest file.

The toolkit can automatically update the Manifest file in the Client Services

project to contain appropriate OSGi metadata for the project. Client Services

manages or provides initial default values for the metadata fields by:

– Setting Bundle-Name to the project name on project creation

– Setting Bundle-Version to 1.0.0 on project creation

– Setting Bundle-Activator to the default bundle activator if one was created

– Updating Import-Packages and Require-Bundle to reflect the packages

imported by the project’s classes. Refer to “Automatic management of

manifest package dependencies” on page 175 for more information

– Setting Import-Services to include all of the services from the Application

Services selected for the project. Refer to “Platform Profile” on page 174 for

more information.

Bundle Manifest Editor

The existing Eclipse plug-in manifest editor packaged with the Eclipse PDE is used

to edit the plugin.xml, MANIFEST.MF, and build.properties files. It provides a user

interface for entering plug-in data, and specific manifest headers. WebSphere

Everyplace Client Toolkit provides a Bundle Manifest Editor, which extends the

PDE plug-in manifest editor to include graphical editing of the MANIFEST.MF file.

Certain fields stored in the MANIFEST.MF file are edited (graphically) on tabs of the

existing Eclipse plug-in manifest editor. The fields managed include such fields as

importing/exporting services and import/export package. The manifest editor

provides a Graphical User Interface to modify OSGi Manifest Headers.

Managing Client Services project dependencies

The following describes how to best use the tooling provided by the WebSphere

Everyplace Client Toolkit to manage the dependencies in a Client Services project.

These dependencies include the Java Build Path and the manifest file. When

developing Eclipse plug-ins or OSGi bundles, the Java Build Path, the packages

used by the bundle’s code, and the manifest are all related.

v The Java Build Path must contain the necessary libraries and bundles (plug-ins)

that contribute the packages and classes used by the project’s bundle code

Using the IBM WebSphere Everyplace Client Toolkit 173

during the compilation process. If this is not the case, the tools will tag the code

with problem markers indicating that a referenced package or class cannot be

found.

v The manifest must contain references to the packages and bundles that the

bundle code is using. This is how the OSGi framework manages the class path

of the bundle at runtime. A reference to a particular bundle implementation is

done through a Require-Bundle manifest entry. A reference to a required package

is done through an Import-Package manifest entry. Failure to properly resolve

these dependencies in the manifest can cause the bundle to fail at runtime with

a “class not found” error (NoClassDefFoundError).

The following mechanisms are available to help manage both the Java Build Path

and the manifest file:

Platform Profile

The Platform Profile provides a method for you to define the Application Services

used by the runtime environment, the build-time environment for a Client Services

project, and the set of bundles that can run on the platform.

A Platform Profile defines a set of Application Services. Application Services enable

you to focus on the logical service requirements of the service instead of the

requirements of the actual underlying bundles.

When you create a Client Services project, you select a Platform Profile and a set of

Application Services for the project. The WebSphere Everyplace Client Toolkit

updates the Java Build Path for the project to reflect the Java Runtime Environment

(JRE) of the platform, based on the Platform Profile you selected. The Application

Services you selected are automatically added to the Java Build Path of the project.

“Application Profile” refers to the Platform Profile and the set of Application

Services you selected for the project.

The WebSphere Everyplace Client Toolkit provides Platform Profiles that represent

the bundles available in the WebSphere Everyplace Deployment runtime.

Application Services

An Application Service represents a logical service, such as an XML parser or

logging service that consists of one or more bundles. Application Services enable

you to focus on the logical requirements of the service instead of the requirements

of the actual underlying bundles.

Application Profile

Application Profile refers to the Platform Profile and the set of Application Services

that you selected for the project. The Platform Profile and Application Services you

select define the runtime and build time environment for the project. WebSphere

Everyplace Client Toolkit can optionally update the Java Build Path for the project

to reflect the Java Runtime Environment (JRE) of the platform, based on the

Platform Profile you selected. WebSphere Everyplace Client Toolkit places the

bundles from the Application Services you selected into the Java Build Path of the

project.

Secondary Dependencies

Secondary Dependencies allow users to include bundles in the build path without

adding references to the Manifest. By using this mechanism to include these

bundles in the build path, users can compile and develop their code with the

convenient features of Eclipse JDT. Once the user references one of the packages in

a bundle in the Secondary Dependency list, WebSphere Everyplace Client Toolkit

174 IBM WebSphere Everyplace Deployment: Developer’s Guide

can display a warning to inform the user the project is compiling against classes

which are not available during runtime (For information on how to change the

severity of this notification, see “Setting Manifest Editor preferences” on page 171).

The WebSphere Everyplace Client Toolkit also provides “quick fixes” to resolve this

problem by adding corresponding references to the Manifest. The user may also set

the tool to automatically add dependencies to the Manifest, whenever they are

found.

The Application Services dependencies selected from a project’s Platform Profile

are added to the Secondary Dependencies for dependency management. For more

information on how to add Secondary Dependencies manually, please refer to

“Bundle Resources page” on page 245.

Note: Plug-in dependencies can be selected through both the Plug-in Manifest

editor and the Bundle Manifest editor through the Dependencies page.

Selecting a plug-in dependency adds the plug-in to the project’s Java Build

Path and updates the manifest with a Require-Bundle entry. This is

appropriate for code that is extending the Rich Client Platform, but does not

properly handle bundles that export their packages using Export-Package. If

you are not strictly developing against RCP plug-ins, it is suggested that

you represent your bundle dependencies using Secondary dependencies.

Automatic management of manifest package dependencies

Manifest package dependencies are automatically managed for Client Services

projects by default. This capability can be disabled through the new project wizard

when creating a Client Services project and through the Client Services properties

page of an existing project. When enabled, this option automatically updates the

Require-Bundle and Import-Package entries in the project’s manifest file based on

changes in the project’s Java code. When new package dependencies are added to

the project’s Java code, the manifest file is automatically updated with the proper

entries. It is important to note that this mechanism requires the developer to use

the Platform Profile or secondary dependencies to represent the project’s bundle

dependencies. Bundles that are placed on the Java Build Path through the project’s

Java properties page will not be handled by this mechanism.

If this option is disabled, the tools will flag the manifest file with error markers if

packages are used in the Java code without being referenced in the manifest file.

These errors can then be selectively fixed through the quick fix mechanism.

WebSphere Everyplace Client Toolkit will search for manifest package

dependencies by default. This capability can be disabled through the new project

wizard when creating a Client Services project and through the Client Services

properties page of an existing project. If this option is disabled, the user can still

manually search the project for manifest dependencies by using the Compute

button in the Secondary Dependencies panel on the Bundle Resource Page of the

Bundle Manifest Editor.

Bundle registration job

The WebSphere Everyplace Client Toolkit provides more advanced prerequisite

dependency checking than found in the Eclipse PDE. This dependency checking

requires the toolkit to register the bundles, plug-ins and fragments in your target

platform.

Using the IBM WebSphere Everyplace Client Toolkit 175

You will see a registration job window when you reset your target platform. This

job is required to finish in order to load the dependency checking with all the

required information. You can select Run in Background to use the toolkit during

this registration process.

Until the database has been loaded completely, the dependency checking, along

with the functionality that uses the dependency checking, will not be available.

Both the Platform Builder wizard and the WebSphere Everyplace Deployment

Launcher utilize the dependency checking and will not be available until all the

bundles, plug-ins and fragments have been registered.

Advanced PDE export

The export functionality for plug-ins, features, and update sites can be extended to

include Client Services Web projects and Embedded Transaction Container projects.

To enable or disable this extended functionality, perform the following procedure:

1. Go to Windows > Preferences > WebSphere Everyplace Client Toolkit >

Export.

2. To enable the functionality, check the Use Advanced PDE Export check box. To

disable it, deselect the check box to use the basic PDE Export.

If you choose not to utilize the advanced export, you cannot export plug-ins

and features, or build update sites that reference Client Services Web projects or

Embedded Transaction Container projects.

Creating and using Client Services applications

This section describes the tasks for creating and using Client Services projects to

create bundles.

Creating a Client Services project

Complete the following steps to create a new Client Services project:

 1. Select File >New >Project.

The new project wizard is displayed.

 2. Select Client Services > Client Services Project.

 3. Click Next.

The New Client Services Project panel is displayed.

 4. Specify a project name in the Project name field.

 5. Click Next.

The second New Client Services Project panel is displayed.

 6. Modify the bundle properties as necessary.

 7. Select whether or not the application is being designed for the Rich Client

Platform. By default, the option to contribute to the RCP is pre-selected.

 8. Click Next.

 9. Select a Platform Profile from the pull-down menu.

A description of the platform profile you selected is displayed in the

Description field.

10. Select the boxes next to the Application Services you want to use.

Note: If the platform that you selected in step 9 requires specific services, the

services are automatically selected in the Application Services field.

You can select any additional services that the application uses.

176 IBM WebSphere Everyplace Deployment: Developer’s Guide

11. Click Next.

The Client Services Options page is displayed. See the table, Client Services

Project Options in “New Client Services Project Wizard” on page 245 for

additional information.

Note: In some cases, a Client Services Project cannot automatically determine

the correct Manifest dependency settings. For example, if your code

uses the java.lang.Class.forName(...) API, the tool cannot correctly

calculate the required Manifest dependency settings at compile time. In

this case you should disable the Attempt to automatically resolve

Manifest dependencies option and configure the dependency section of

the Manifest manually by using the Manifest Editor.

12. Click Finish.

WebSphere Everyplace Client Toolkit creates a Client Services project.

Creating a Client Services fragment project

 1. Select File >New >Project.

The new project wizard is displayed.

 2. Select Client Services on the left panel and Client Services Fragment Project

on the right panel.

 3. Click Next.

The New Client Services Fragment Project panel is displayed.

 4. Specify a project name in the Project name field.

 5. Select the Parent Bundle for the project by selecting the Browse button next to

the Bundle ID input box in the Parent Bundle Section.

 6. If the fragment is intended for the Rich Client Platform, select Next.

Otherwise deselect This fragment will contribute to the Rich Client Platform

and select Next.

 7. Select a Platform Profile from the pull-down menu.

A description of the platform profile you selected is displayed in the

Description field.

 8. Select the boxes next to the Application Services you want to use.

Note: If the platform that you selected above requires specific services, the

services are automatically selected in the Application Services field.

You can select any additional services that the application uses.

 9. Click Next.

The Client Services Options page is displayed. See the table, Client Services

Project Options in “New Client Services Project Wizard” on page 245 for

additional information.

Note: In some cases, a Client Services project cannot automatically determine

the correct Manifest dependency settings. For example, if your code

uses the java.lang.Class.forName(...) API, the tool cannot correctly

calculate the required Manifest dependency settings at compile time. In

this case you should disable the Attempt to automatically resolve

Manifest dependencies option and configure the dependency section of

the Manifest manually by using the Manifest Editor.

10. Click Finish.

The IBM WebSphere Everyplace Client Toolkit creates a Client Services

Fragment project.

Using the IBM WebSphere Everyplace Client Toolkit 177

Converting a Java project into a Client Services project

Complete the following steps to convert a Java project into a Client Services

project:

1. Select File->New->Other....

The New project wizard is displayed.

2. Select Client Services > Convert Project to Client Services Project.

3. Select Next.

The Convert Project to Client Services panel is displayed.

4. Select the Java project that you want to convert.

5. Click Next.

The second Convert Project to Client Services window is displayed.

6. Select a Platform Profile from the pull-down menu.

A description of the platform profile you selected is displayed in the

Description field.

7. Select the boxes next to the Application Services you want to use.

Note: If the platform that you selected in step 5 above requires specific

services, the services are automatically selected in the Application

Services field. You can select any additional services that the application

uses.

8. Click Next.

The Client Services Options page is displayed. See the table, Client Services

Project Options in “Convert Project to Client Services Project Wizard” on page

250 for additional information.

Note: In some cases, a Client Services Project cannot automatically determine

the correct Manifest dependency settings. For example, if your code uses

the java.lang.Class.forName(...) API, the tool cannot correctly

calculate the required Manifest dependency settings at compile time. In

this case you should disable the Attempt to automatically resolve

Manifest dependencies option and configure the dependency section of

the Manifest manually by using the Manifest Editor.

9. Click Finish.

The IBM WebSphere Everyplace Client Toolkit converts the Java project into a

Client Services project.

Setting Client Services project properties

Client Services projects have some project-specific properties. To modify the project

properties, complete the following steps:

1. Right-click on your project and select Properties.

2. Select Client Services.

The Application Profile tab allows you to choose the Platform Profile that you

want to use with this project. You may also select the Application Services that

you want to be made available to this bundle.

The Options tab allows you to control the behavior of the WebSphere

Everyplace Client Toolkit for this project.

See the table, Client Services Project Options in “New Client Services Project

Wizard” on page 245 for additional information.

3. Make the changes you desire and click OK to commit your changes.

178 IBM WebSphere Everyplace Deployment: Developer’s Guide

Using Platform Services

Using the HTTP Service

WebSphere Everyplace Deployment provides two methods to enable content

serving via an HTTP Server. The Web Container provides the ability to run web

applications serving content via servlets and JSPs. For more information on the

Web Container, refer to “Developing Web applications” on page 25.

In addition, the WebSphere Everyplace Deployment platform enables you to

provide services on the Internet by providing an HTTP Web server. The basic Web

Server model is the HttpService, which is an implementation of the OSGi

specification for HttpService. The HttpService implements an HTTP 1.0 Web

server with a Servlet 2.1 engine. The HttpService provides a complete

implementation of the Servlet 2.1 specification.

The com.ibm.osg.service.http plug-in provides the implementation of the HTTP

Service.

The HTTP Service enables other bundles to dynamically register and unregister

servlets and other static resources such as GIF files. You can register HTML files,

GIF files, class files, or any resources found via a URL.

handleSecurity plug-in

You must provide an HTTP Context when you register a resource or a servlet with

the HTTP Service. The HTTP Context defines how resources are accessed and how

access to the resources is authenticated. The handleSecurity method of HTTP

Context performs the authentication for servlets and resources.

IBM’s HTTP Service implementation supports a pluggable default handleSecurity

method. This method defines the behavior of the default HTTP Context

handleSecurity method.

Configuring HTTP Service

HTTP Service configurations described here are specific to the IBM implementation

of HTTP Service that is included with WebSphere Everyplace Deployment.

The HTTP Service can use either Java system properties for simple configuration,

or it can use ConfigurationAdmin for more sophisticated configuration. The

following Java system properties govern the configuration of the HTTP Service:

 Table 23.

com.ibm.osg.service.http.address HttpService property, which if set defines

the host address for the default ports that

the HttpService listens on. If this property is

defined then the HttpService will only listen

for requests that come through this IP

address. The default value is ALL, which

indicates all available IP addresses on the

device will be used. The value of this

property may be a resolved name or IP

address (e.g. www.ibm.com, 192.168.0.101,

local host)

© Copyright IBM Corp. 2004 179

Table 23. (continued)

com.ibm.osg.service.http.defaultports If this property is set, and no HTTP Service

port configuration exists in Configuration

Admin, then HTTP Service will listen on the

default port specified by

org.osgi.service.http.port. If this

property is not set and no HTTP Service

port configurations exist in Configuration

Admin, then HTTP Service will not listen on

any ports.

org.osgi.service.http.port Default HTTP port. See

com.ibm.osg.service.http.defaultports.

org.osgi.service.http.port.secure Default HTTPS port. See

com.ibm.osg.service.http.defaultports. If

not set then no port will be opened to listen

for HTTPS requests. The default is not to

listen for HTTPS requests.

The IBM implementation of HTTP Service has several configuration parameters.

There are general configuration parameters that affect all of HTTP Service and

there are additional parameters for configuring individual ports. These additional

parameters enable you to configure the HTTP Service to listen on multiple ports.

The HTTP Service manages its configuration parameters with the Configuration

Admin Service. The Configuration Admin Service relies on a PID (Persistent

Identity) to identify which service to configure. The PID resides in a service

property called service.pid.

General configuration

These parameters affect all of HTTP Service and are configured with a Managed

Service.

The PID for the Managed Service for HTTP Service’s general configuration is:

com.ibm.osg.service.http.Http

 Table 24. HTTP Service General Configuration Parameters

Parameter Name Java Type Definition Valid Values

http.minThreads Integer Specifies the minimum

number of threads in

the thread pool.

Valid values are between

0 and 63. The default

value is 4.

http.maxThreads Integer Specifies the maximum

number of threads in

the thread pool.

Valid values are between

0 and 63. The default

value is 20.

http.threadPriority Integer Specifies the priority of

threads in the thread

pool.

A valid value is any

integer with a valid

Thread priority. Refer to

the Thread class for

valid values. The default

value is

Thread.NORM_PRIORITY.

Port configuration

A Managed Service Factory configures these individual ports. A Managed Service

Factory allows multiple instances of a configuration for a given service. Each

180 IBM WebSphere Everyplace Deployment: Developer’s Guide

configuration that you make under the Managed Service Factory PID directs HTTP

Service to register another HTTP Service object with the configured parameters.

Note: If no individual configuration exists, then HTTP Service will not register an

HTTP Service object and therefore, will not listen on any port unless the

property, com.ibm.osg.service.http.defaultports, is set.

The PID for the Managed Service Factory for the individual port configuration is:

com.ibm.osg.service.http.HttpFactory

 Table 25. HTTP Service Individual instance parameters

Parameter

Name

Java Type Definition Valid Values

http.port Integer Specifies the port to

listen to for HTTP

requests.

The default value is 80.

http.scheme String Specifies the scheme

to use.

Valid values are http and https. The

default value is https.

Note: To configure a port to use

HTTPS, a java.net.ssl.

SSLServerSocketFactory must be

registered as an OSGi service.

http.timeout Integer Specifies the number

of seconds to wait

before reclaiming a

Keep-Alive thread.

Valid values are between 0 and 600.

The default value is 30. Specify 0 to

disable Keep-Alive support.

http.address String Specifies the host

address to listen to

for HTTP requests.

A host name or IP address that is a

valid address for the device. A value

of ″ALL″ indicates all valid

addresses on the device should be

used. The default value is ″ALL″.

service.ranking Integer Specifies the service

ranking for the

configuration

Valid values are 0

tointeger.MAX_VALUE

Configuring the parameters using Admin Utility for OSGi

Bundles configure the parameters with the Configuration Admin API. You can also

configure the parameters with the Admin Utility for OSGi User Interface. Refer to

“Using Admin Utility for OSGi” on page 192 for more information on installing

and launching the admin utility. To configure HTTP Service using the admin

utility, under Bundles find and click the bundle file with the name HTTP Service.

On the HTTP Service page you will see HTTP Service General Settings and HTTP

Service Settings that you can configure.

Configuring the HTTPService for multiple ports

You can configure the HTTPService for multiple ports. A different HttpService

registration represents each configured port. An application that uses the

HTTPService must register with each port to be accessible on that port.

Using Platform Services 181

For example, you might only want to register a Servlet with sensitive data with the

HttpService which supports HTTPS on port 443. You might want to register a

Servlet that does not contain sensitive data with both the 80 and the 443 port

HttpServices.

To ensure that you register a servlet with the correct HttpService instance, use a

ServiceTracker with a Filter. A Filter enables your bundle to specify exactly which

services you want to know about to the ServiceTracker. Your BundleActivator can

extend the ServiceTracker class or implement the ServiceTrackerCustomizer

interface to provide the addingService(), modifiedService(), and removingService()

methods. ServiceTracker will call these methods to notify your bundle when these

service registration events occur. For example, if your bundle is tracking

HttpService registrations, it would be notified when HttpServices are registered

and unregistered and your bundle can then use these services accordingly.

The following example shows how to create the Filter and ServiceTracker:

//To track any HttpService registrations using port 80. We would look for the property

 "http.port=80".

public void start(BundleContext context)

{

 Filter filter = context.createFilter("(&(objectClass=org.osgi.service.http.HttpService)

 (http.port=80))");

 ServiceTracker httpServiceTracker = new ServiceTracker(context,filter,this);

}

//To track any HttpService registrations using HTTPS. We would look for the property

"http.scheme=https".

public void start(BundleContext context)

{

 Filter filter = context.createFilter("(&(objectClass=org.osgi.service.http.HttpService)

(http.scheme=https))");

 ServiceTracker httpServiceTracker = new ServiceTracker(context,filter,this);

}

For an example on how to use a ServiceTracker, refer to the Samples Gallery >

Technology Samples > WebSphere Everyplace Deployment > OSGi > Service

Tracker.

For additional documentation, please see the OSGi™ Service Platform release 3

specification.

Using the Log Service and Log Reader Services

IBM WebSphere Everyplace Deployment provides an implementation of the OSGi

Log Service specification in the com.ibm.osg.service.log plug-in. In addition to

the Log Service implementation, this bundle contains an implementation of the

OSGi Log Reader service. The Log Reader service enables applications to register a

LogListener and receive notifications of all LogEvents.

The WebSphere Everyplace Deployment platform, through its log redirection

capabilities, registers a LogListener to receive notification of the LogEvents, and

records the events using the JDK logger into platform log files.

Configuring Log Service

Log Service configurations described here are specific to the IBM implementation

of Log Service. Log Service has a number of configuration options. You can control

the log size and the log threshold (Error, Warning, Informational, or Debug

182 IBM WebSphere Everyplace Deployment: Developer’s Guide

severity level). When you specify a threshold level, only entries that are less than

or equal to the current threshold are logged. Error is the lowest threshold level

and Debug is the highest level.

The Log Service manages its configuration parameters with the Configuration

Admin Service.

The PID for the Managed Service for Log Service’s configuration parameters is:

com.ibm.osg.service.log.Log

 Table 26. Log Service Configuration Parameters

Parameter Name Java Type Definition Valid Values

log.size Integer Specifies the maximum

number of entries in

the log. Old entries are

discarded after the log

reaches this number.

Valid values are between 10

and 2000. The default value is

100.

log.threshold Integer Specifies the lowest

level that you want to

retain entries in the

log. Any level higher

than what is specified

will not be kept in the

log.

Valid values are:

 LogService.LOG_ERROR

LogService.LOG_WARNING

LogService.LOG_INFO

LogService.LOG_DEBUG

Configuring the parameters using Admin Utility for OSGi

Bundles configure the parameters with the Configuration Admin API. You can also

configure the parameters with the Admin Utility for OSGi User Interface. Refer to

the section on Using the Admin Utility for OSGi for more information on installing

and launching the admin utility. To configure Log Service using Admin Utility for

OSGi, under Bundles find and click the bundle file with the name Log Service.

On the LogService page you will see Log Service Settings. You can configure the

log size and level of logging.

Using the Meta Type Service

The OSGi Configuration Admin Service allows bundles to persistently store their

configurations. The OSGi Meta Type Specification allows for a programmatic

description of a bundle’s metadata. The IBM-defined MetaType Service ties those

two pieces together and enables an administrative bundle to dynamically discover

what another bundle’s configuration looks like and make changes to it. For

example, the Admin Utility for OSGi utility uses the Meta Type Service to

dynamically generate the configuration screens for the LogService, HttpService,

and WebContainer. Likewise, the Configuration Admin Preferences pages use

Configuration Admin and the Meta Type Service to automatically build preference

pages based on the configuration information.

The MetaType Service acts as a middle-man between an administrative bundle and

a configurable bundle. The admin bundle may ask the MetaType Service for a

MetaType Provider for a given bundle object. The MetaType Provider can then be

queried to discover the Object Class Definitions and Attribute Definitions

contained within.

Using Platform Services 183

For this scheme to work, configurable bundles must provide a way for the

MetaType Service to discover the bundle’s configuration information. Each

configurable bundle must have a METADATA.XML file in the/META-INF directory of

their plug-in/bundle. This METADATA.XML file contains a description of the

configuration in XML format and is packaged in the bundle’s JAR file.

This file describes the data in a format defined by METADATA.DTD. Within the

METADATA.XML file is a list of all supported Locales. An additional set of files,

METADATA_<locale>.properties should contain the translatable strings for a locale

in key=value format. The METADATA.XML file contains strings for the default

language only, which are used by default if the properties file for the desired locale

can not be found.

The Meta Type Service is registered with OSGi under the class name

com.ibm.osg.service.metatype.MetaTypeServiceand provides a way to define and

retrieve org.osgi.service.metatype.MetaTypeProvider objects for an OSGi bundle.

For more information on the package org.osgi.service.metatype see the OSGi

Release 3 specification. The MetaTypeProvider data for each bundle is stored as a

bundle resource at /META-INF/METADATA.XML.

The Meta Type data stored in /META-INF/METADATA.XML is used to define

information on how to configure a bundle using the OSGi service

org.osgi.service.cm.ConfigurationAdmin. For example, the Managed Service

PIDs, the Managed Service Factory PIDs, and the Attributes associated are defined

in the METADATA.XML file.

MetaData XML sample

The following is an example of the XML syntax for the file /META-
INF/METADATA.XML.

The DTD for the METADATA.XML file is provided in the <Rational SDP

Install>\sdpisv\eclipse\plugins\com.ibm.pvc.wct.runtimes_<version>\rcp\

eclipse\plugins\com.ibm.osg.service.metatype_1.1.0.<version>\schema

directory. In addition, a sample template for the METADATA.XML file is provided.

Using the XML capabilities of the Rational Software Development Platform, you

can link the METADATA.DTD to any METADATA.XML file that you create.

For a complete definition of the XML format see the METADATA.DTD and the

METADATA_TEMPLATE.XML in the API document directory:

TECHHOME/smf/client/docs/metatype/apidoc

<?xml version="1.0" encoding="UTF-8"?>

<METADATA>

 <ATTRIBUTEDEFINITION ID=’log.size’ TYPE=’Integer’ DEFAULTVALUE=’100’>

 <NAME>

 <STRING KEY=’LOG_SIZE’ DEFAULT=’Log Size’/>

 </NAME>

 <DESCRIPTION>

 <STRING KEY=’LOG_SIZE_DESC’ DEFAULT=’The size of the log, in number of

 entries’/>

 </DESCRIPTION>

 <CARDINALITY TYPE=’SCALAR’ SIZE=’’ />

 <VALIDATE>

 <RANGE MIN=’10’ MAX=’2000’ />

 </VALIDATE>

 </ATTRIBUTEDEFINITION>

 <OBJECTCLASSDEFINITION

 ID=’com.ibm.osg.service.log.Log’

184 IBM WebSphere Everyplace Deployment: Developer’s Guide

TYPE=’PID’>

 <NAME>

 <STRING KEY=’LOG_SETTINGS’ DEFAULT=’Log Service Settings’/>

 </NAME>

 <DESCRIPTION>

 <STRING KEY=’LOG_SETTINGS_DESC’ DEFAULT=’The Log Service settings that may

 be configured’/>

 </DESCRIPTION>

 <ATTRIBUTE ID=’log.size’ REQUIRED=’yes’/>

 <ATTRIBUTE ID=’log.threshold’ REQUIRED=’yes’/>

 </OBJECTCLASSDEFINITION>

 <LOCALES>

</METADATA>

Using the XML parser services

Applications requiring use of XML Parsers should use the XML Parser Service

interface. By using the XML Parser Service interface, applications are able to

dynamically select the parser at runtime, and are notified of parser service events

by the XML Parser Service. However, to use the XML Parser service, you must

modify existing applications.

Applications can use the standard JAXP calls without using the service interfaces.

The APIs providing the parser factories use the underlying service interfaces. In

this situation, applications will not be able to dynamically choose their parser at

runtime, and they will not receive event notifications if parser services are

removed. Applications might receive

javax.xml.parsers.FactoryConfigurationError if parser actions are attempted and

no parsers exist.

Typical usage of a SAX Parser involves obtaining a reference to the SAX Parser

Factory, and then obtaining a new parser:

 SAXParserFactory factory = SAXParserFactory.newInstance();

 SAXParser parser = factory.newSAXParser();

The following example shows how you can obtain a reference to the SAX Parser

Factory using XML Parser Services:

 ServiceReference ref =

 context.getServiceReference(SAXParserFactory.class.getName());

 SAXParserFactory factory = context.getService(ref);

 SAXParser parser = factory.newSAXParser();

It is not necessary to issue the newInstance call once the factory reference is

obtained.

Similarly, when using the DocumentBuilderFactory, the typical sequence using

JAXP is:

 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

 DocumentBuilder builder = factory.newDocumentBuilder();

The following example shows how you use the DocumentBuilderFactory using the

XML Parser Service.

ServiceReference ref =

 context.getServiceReference(DocumentBuilderFactory.class.getName());

DocumentBuilderFactory factory = context.getService(ref);

DocumentBuilder builder = factory.newDocumentBuilder();

Using Platform Services 185

It is not necessary to issue the newInstance call once the factory reference is

obtained.

SAX interfaces permit setting properties on the SAXParser object. Since MicroXML

does not support validation, attempting to set the validation property on

MicroXML will result in a org.xml.sax.SAXNotSupportedException being thrown. If

your code is not specific to either parser, then you should be prepared to receive

exceptions when attempting to set features, and handle them appropriately.

Attempts to set other features can result in exceptions if different parser

implementations have been plugged in. If specific parser attributes are required,

you can specify them when requesting the parser factory service.

It is possible to perform validation of XML using DTD or XSD when the XML

resources are loaded from a plug-in. Because the resource is loaded from a plug-in,

you need to provide indication of the location of the DTD file. Create an

InputSource object for the XML document that requires parsing. Use the

Bundle.getEntry() or Bundle.getResource() method to obtain a URL or load the

resource from a stream. Set the System ID for the InputSource to the URL used to

load the file. By using this process, you do not need to create an EntityResolver

instance to locate the DTD.

Use the following approach to permit DTD or Schema validation against files

contained within bundles:

1. Set up an InputSource to specify the stream and the desired URL.

2. Do not use only an input stream, because an attempt to find a DTD or Schema

file will result in unexpected URLs.
ServiceReference ref =

 context.getServiceReference(SAXParserFactory.class.getName());

SAXParserFactory factory = context.getService(ref);

SAXParser parser = factory.newSAXParser();

 XMLReader xmlReader = parser.getXMLReader();

 xmlReader.setContentHandler(this);

 xmlReader.setErrorHandler(this);

 xmlReader.setFeature("http://xml.org/sax/features/namespaces", true);

 xmlReader.setFeature("http://xml.org/sax/features/validation", true);

 xmlReader.setFeature("http://apache.org/xml/features/validation/schema",

true);

 URL url = getClass().getResource(uri);

 java.io.InputStream is = url.openStream();

[1] InputSource input = new InputSource(is);

[2] input.setSystemId(url.toExternalForm());

 xmlReader.parse(input);

Creating help for the application

If you are creating a set of Help information for your application, and you intend

on using the built-in WebSphere Everyplace Deployment help plug-ins, you should

use the Eclipse PDE to create a help plug-in. The Help Plug-in provides for XML

configuration of the Table of Contents, and content specified as HTML.

For more information on creating a help plug-in, refer to the section Plug-in Help

in the Platform Plug-in Developer’s Guide located in the Eclipse Help system.

186 IBM WebSphere Everyplace Deployment: Developer’s Guide

Using logging and tracing

WebSphere Everyplace Deployment provides three methods for logging and

tracing messages for developers - via the Eclipse provided logging interfaces, the

OSGi LogService interface, or the java.util.logging interface of the JRE.

Eclipse logging

For plug-in developers the Eclipse logging and tracing mechanism consists of just a

few objects and methods. The following code provides a simple example of

logging from a plug-in:

 import org.eclipse.core.runtime IStatus;

 import org.eclipse.core.runtime Status;

 import org.eclipse.core.runtime Platform

 IStatus status= new Status (IStatus.ERROR,

 "Test",

 0,

 "Testing Eclipse Error Logging",

 (Throwable) null);

 getDefault().getLog().log(status);

In order to send a message to the Eclipse logging system, a Status object must be

constructed and populated with all required data. Once the Status object is

instantiated it is then passed to the Eclipse logger via the log() method. The

handle to the Eclipse log is located via the getLog() method of the Plugin class

(the Plugin class is accessed via the getDefault() method here).

All messages logged via the Eclipse logging mechanism are stored in the

<workspace>/.metadata/.log file.

Note: If you are running your target platform out of the PDE, then the workspace

that is being used can be determined by reviewing the launch configuration

for the Run-time Workbench. On the first panel of the configuration screen

the location can be found on the Arguments tab, in the Workspace Data

section, in the Location field.

Eclipse tracing

Eclipse’s tracing mechanism is based on methods from the Eclipse Platform class,

inDebugMode() and getDebugOption(String) and one tracing configuration file

called ″.options″ located in the plug-in directory. Details on Eclipse tracing can be

found in the online help at Running with Tracing in the PDE Guide > Getting

Started > Basic Plug-in Tutorial > Running a plug-in >Running with tracing.

Once the trace files have been setup appropriately for the plug-in and tracing has

been enabled via the workbench configuration screens, the following code shows

an example of how the tracing setup is used by the developer:

 if (Platform.inDebugMode()) {

 if ("true".equalsIgnoreCase (Platform.getDebugOption("T2")) {

 IStatus status= new Status(IStatus.INFO,

 "Test",

 0,

 "Testing Eclipse Error Logging",

 (Throwable)null);

 getDefault().getLog().log(status);

 }

 }

Using Platform Services 187

The above example begins by checking to see if debugging has been enabled for

this plug-in, if it has been enabled, then the example confirms that trace level ″T2″

is set to ″true″, if and only if these two checks are true will the Status object be

created and logged to the Eclipse logger.

While the above example illustrates the trace check and a log entry created to the

Eclipse logger, plug-in developers often use System.out or System.err to write out

trace information. The Eclipse log file is typically reserved for Error or Warning

conditions that occur during application execution.

OSGi logging

OSGi provides a service based interface for logging for OSGi applications. By

obtaining a LogService object from the Framework service registry, a bundle can

start logging messages to the Log Service object by calling on the LogService

methods. A Log Service object can log any message, but it is primarily intended for

reporting events and error conditions.

The following example demonstrates the use of a log method to write a message

into the log:

logService.log(LogService.LOG_INFO, "Test");

There are four levels of messages defined by the OSGi LogService interface:

ERROR(1), WARNING(2), INFO(3) and DEBUG(4). The number in parenthesis is the

integer value for each of the levels.

For more detailed information on the OSGi LogService interface please refer to the

Platform Plug-in Developer’s Guide > Reference > OSGi API Reference in

Eclipse 3.0.

For information on managing the logging levels of the runtime platform, please see

“Troubleshooting” on page 205.

Enabling your plug-in for startup

Plug-ins in the Eclipse framework generally take on one of the following status:

v INSTALLED - The plug-in has been recognized, but either has not been

requested to start, or is incapable of starting because of missing pre-requisites

v RESOLVED - all of the pre-requisites exist and the plug-in is ready to start

v ACTIVE - The plug-in has been started and its capabilities are available to the

workbench.

The framework uses settings known as Start Levels to organize the startup of the

plug-ins. The framework exists at a specified level and the plug-ins are assigned to

start at a specific level. The framework begins at level 0 with no plug-ins started.

Next, the Framework will move to start level 1. All bundles assigned to start level

1 will then be started in some order. The framework will progress through each of

the levels until it reaches the designated framework start level.

A specific set of plug-ins must always be started (ACTIVE) for the platform to

execute properly. The plug-ins required at startup are specified in the config.ini file

in the configuration directory. The osgi.bundles property defines the set of

bundles required at startup. For any plug-in specified in this property, it must be

able to resolve and start based upon the other plug-ins at the same start level.

Plug-ins in this property should generally be limited to those essential for startup.

188 IBM WebSphere Everyplace Deployment: Developer’s Guide

To improve startup performance, the WebSphere Everyplace Deployment platform

will typically only activate (move to the ACTIVE state) plug-ins as they are

referenced. A plug-in will automatically start when referenced if it contains the

property Eclipse-Autostart:true in its META-INF\MANIFEST.MF file. You can enable

or disable this value by updating the values in the Plug-in Activation section of the

Runtime within the Plug-in Manifest Editor.

Plug-ins that do not provide packages for use by other plug-ins will not start on

first usage. These plug-ins must be explicitly started.

The Workbench will perform the task of starting all bundles that do not contain

the Eclipse-AutoStart attribute.

Web Applications are a special case. Since the Web Applications will appear in the

application drop-down menu, or in the desktop perspective, when web

applications are requested, then they will be started. Because of this, Web

Applications could contain the Eclipse-AutoStart attribute to defer startup until

requested.

The startup state of plug-ins that do not contain the Eclipse-AutoStart attribute is

retained when the WebSphere Everyplace Deployment platform is shut down.

Once a plug-in moves to ACTIVE state, it will start in all successive launches. You

should not, however, depend upon this mechanism to make sure that your

plug-ins are started, as the workspace location that saves this information could be

removed due to problems. Plug-ins that contain Eclipse-AutoStart attributes will

be stopped when the framework shuts down.

This table summarizes the settings of Eclipse-AutoStart attribute and the

associated startup actions:

 Table 27.

Eclipse-AutoStart attribute Startup action

Eclipse-Autostart attribute not present in the

MANIFEST.MF file

Workbench will automatically start plug-in

during startup processing

Eclipse-AutoStart: true present in

MANIFEST.MF

Eclipse will automatically activate the

plug-in when used. Plug-in will be stopped

when the workbench exits

Eclipse-AutoStart:false present in

MANIFEST.MF

Plug-in will not be automatically started by

any means. Plug-in will be stopped when

the workbench exits. (Generally not used)

This table summarizes the various plug-in types and the recommended settings for

the Eclipse-AutoStart attribute:

 Table 28.

Plug-in type Recommended Eclipse-Autostart Settings

Plug-in implementing extension points Eclipse-AutoStart:true

Plug-in providing services for use by other

bundles

Do not set Eclipse-AutoStart attribute

Plug-in providing packages for other

plug-ins to use

Do not set Eclipse-AutoStart attribute

Using Platform Services 189

Table 28. (continued)

Plug-in type Recommended Eclipse-Autostart Settings

Web Application appearing in the

application list

Eclipse-AutoStart:false (The workbench will

automatically start the web application when

requested)

Web Application not appearing in the

application list, but referred to from other

web applications

Do not set Eclipse-AutoStart attribute

The cases where a plug-in would not be started automatically by one of the rules

would include the plug-in that contains Eclipse-AutoStart:false, or it contains

Eclipse-AutoStart:true, but does not provide any packages. In these cases,

applications will be responsible for explicitly starting the required plug-ins. This

can be done by using the org.eclipse.core.runtime.Platform object to locate a

bundle by its symbolic name, and issuing methods such as startup against the

resultant Bundle object.

It is not recommended that the osgi.bundles property be updated to include

application specific bundles.

Using runtime developer tools

Using the Platform Manager

The Platform Manager tool is a troubleshooting tool which can be used to view the

applications and features installed on the WebSphere Everyplace Deployment

runtime. In case a particular application or feature does not function as desired the

user can use the tool to view the status of application/feature dependencies

(plug-ins) and start or stop them as desired.

The Platform Manager provides a single view which lists the installed applications,

web applications, features and runtime plug-ins.

Installing the Platform Manager

The Platform Manager tool is available on the update site provided with the

installation media. Perform the following procedure to install the Platform

Manager troubleshooting tool:

 1. Start WebSphere Everyplace Deployment.

 2. Select Application > Install.

 3. You should see two sites already configured. Make sure that the updates/eval

site is checked.

 4. If you do not have the media or a network attached drive, you will need to

obtain the Update Site address from your IT personnel.

a. Select New Remote Site.

b. Add a name to identify the site, and enter the URL that you were

provided.

c. Click OK.
 5. In the Sites to include in search list, select only the site that you just added,

then click Next.

 6. From the list presented, select the Platform Manager feature, then click Next.

 7. Read the license terms provided, and if acceptable, then click Next.

190 IBM WebSphere Everyplace Deployment: Developer’s Guide

8. Select the appropriate installation site.

 9. Select Finish.

10. When prompted to install features that are unsigned, click Install.

11. When prompted to restart your workbench, save your work and select Yes.

Configuration view

The Configuration view provides the user with the list of plug-ins installed on the

runtime. For each plug-in the following information is provided - the plug-in ID,

status of the plug-in, the plug-in name and the location where the plug-in was

installed. After you have installed the Platform Manager tool, starting and

stopping any plug-in is easy:

1. Select Plug-ins.

2. Select the plug-in to start or stop.

3. To start a plug-in, click the Start button.

If the plug-in is in the Resolved state it will be started and the status of the

plug-in will be updated to Active to reflect the change. If an error occurs during

plug-in activation the Platform Manager tool will display an error message to

inform the user and log the error to the platform log.

4. To stop a plug-in, click the Stop button.

If the plug-in is in the Active state it will be stopped and the status of the

plug-in will be updated to Resolved to reflect the change. If an error occurs

during plug-in de-activation the Platform Manager tool will display an error

message to inform the user and log the error to the platform log.

Note: There are certain plug-ins which, if stopped, will cause the WebSphere

Everyplace Deployment runtime to not function correctly. It is recommended

that users not stop the following set of plug-ins:

v org.eclipse.core.runtime ″Core Runtime″

v org.eclipse.core.resources ″Core Resource Management″

v org.eclipse.osgi ″OSGi System Bundle″

v org.eclipse.osgi.services ″OSGi Release 3 Services″

v org.eclipse.osgi.util ″OSGi R3 Utility Classes″

v org.eclipse.ui ″Eclipse UI″

v org.eclipse.ui.forms ″Eclipse Forms″

v org.eclipse.ui.workbench ″Workbench″

v org.eclipse.jface ″JFace″

v org.eclipse.swt ″Standard Widget Toolkit″

v org.eclipse.update.core ″Install/Update Core″

v org.eclipse.update.ui ″Install/Update UI″

v org.eclipse.update.configurator ″Install/Update Configurator″

In addition to the Start and Stop actions for each plug-in, additional actions are

provided for each plug-in:

v Headers – Displays the contents of the headers of the MANIFEST.MF file. If the

plug-in id not originally contain a MANIFEST.MF file, then this action shows the

contents of the platform generated MANIFEST.MF file.

v Diagnostics – Displays an errors that may cause a bundle to not resolve

properly in the platform. If used on a bundle in the RESOLVED or ACTIVE

statue, it will display “No unresolved constraints”.

v Services – Displays the services registered by the plug-in

Using Platform Services 191

v Packages – Displays the packages exported and imported by the plug-in.

Two other actions apply to the entire platform:

v Garbage Collection – Causes the Garbage Collection daemon to run on the

platform

v Platform Properties – Provides a dialog to display, create, edit, and remove Java

system properties.

The Configuration view also provides the user with the list of applications, web

applications and features installed on the runtime. For each application or feature

installed the tool will also list the plug-in dependencies and allow the user to start

or stop plug-ins as desired. Viewing the list of plug-in dependencies for an

installed application, web application or feature is easy:

1. Select Applications (for non-web applications), Web Applications (for web

applications) or Features (for features)

2. Expand the tree to view the list of applications and web applications. For

features, the Platform Manager tool will list the plug-ins provided by the

feature.

3. Select the application or feature plug-in to view the list of application/feature

dependencies.

4. To start a plug-in, click the Start button.

If the plug-in is in the Resolved state it will be started and the status of the

plug-in will be updated to Active to reflect the change. If an error occurs during

plug-in activation the Platform Manager tool will display an error message to

inform the user and log the error to the platform log. The platform log is

located into the <user workspace>\.metadatadirectory.

5. To stop a plug-in, click the Stop button.

If the plug-in is in the Active state it will be stopped and the status of the

plug-in will be updated to Resolved to reflect that. If an error occurs during

plug-in de-activation the Platform Manager tool will display an error message

to inform the user and log the error to the platform log.

Using Admin Utility for OSGi

The Admin Utility for OSGi is a web application that provides simple

administrative access to the WebSphere Everyplace Deployment platform focusing

on its OSGi capabilities. It enables you to manage the life cycle of bundles, view

the installed bundles and registered services, and manage framework and bundle

start levels. You can also use Admin Utility for OSGi to configure the IBM

implementation of HTTP Service, Log Service and WebContainer.

The following sections describe the tasks you can perform within Admin Utility for

OSGi.

Installing the Admin Utility for OSGi

To install the Admin Utility for OSGi, perform the following procedure:

 1. Start WebSphere Everyplace Deployment.

 2. Select Application > Install. You should see two sites already configured.

Make sure that the updates/eval site is checked.

 3. If you do not have the media or a network attached drive, you will need to

obtain the Update Site address from your IT personnel.

a. Select New Remote Site.

192 IBM WebSphere Everyplace Deployment: Developer’s Guide

b. Add a name to identify the site, and enter the URL that you were

provided.

c. Select OK.
 4. In the Sites to include in search list, select only the site that you just added,

then click Next.

 5. From the list presented, select the Admin Utility for OSGi feature, then click

Next.

 6. Read the license terms provided, and, if acceptable, select Next.

 7. Select the appropriate installation site.

 8. Select Finish.

 9. When prompted to install features that are unsigned, select Install.

10. When prompted to restart your workbench, save your work and select Yes.

Starting Admin Utility for OSGi

To access the admin utility, select Application > Open > Admin Utility for OSGi.

This starts the admin utility in a browser window.

The Admin Utility for OSGi initially displays all of the bundles that are installed

on the client.

Managing start levels

The admin utility provides another way to manage start levels of both the

framework and the individual bundles. From the main page of Admin Utility for

OSGi you can view and edit the framework active start level and the initial bundle

start levels. You can also view the start level values for each individual bundle.

To change the start level of a bundle, you must go into the bundle’s information

page by selecting the bundle’s name in the list.

Managing bundles

You can start, stop, update, or uninstall bundles with Admin Utility for OSGi.

1. Select a bundle by checking the Select check box.

2. Click Start, Stop, Update, or Uninstall. Messages display in the Admin

Messages area.

The admin utility prevents you from unintentionally disabling bundles that are

directly needed to run the utility. For example, you can not perform bundle

operations on Admin Utility for OSGi itself, or any bundle that provides an

implementation of the OSGi Http Service, such as HTTP Service or Web HTTP

Service.

Use care when manipulating bundles that the HTTP Service implementation

depends on, because it might cause the admin utility to stop functioning properly.

Viewing a bundle’s information

Using Admin Utility for OSGi, you can view information about a specific bundle

by clicking on the bundle name.

Configuring a bundle

Some bundles are configurable through Admin Utility for OSGi. Select the bundle

from the list to view the bundle’s information. If a bundle is configurable,

configuration input fields display at the bottom of the form. If the bundle is not

configurable the text ″No Configuration Information″ displays.

Using Platform Services 193

A bundle is configurable if it contains a METADATA.XML file as one of its resources.

When using Admin Utility for OSGi to configure bundles, the ConfigurationAdmin

and MetaType bundles must be active. For more information, see “Using the Meta

Type Service” on page 183.

Viewing registered services

Each bundle contains registered services. You can view the services that a bundle

has registered, or the services on which a bundle depends, on the bundle’s

information page. To view a list of services and the bundles that own them, select

Services from the admin utilitymenu.

User administration

With Admin Utility for OSGi, you can use the User Admin Service to manipulate

user definitions. You can add, modify, or delete properties and credentials for

existing users.

To add a user: Click Create New User. The Create New User input fields display.

Enter a user name and click Create User.

To delete a user: First select the check box for that user and click Delete. You will

need to refresh the data before removing the user from the form.

To create a new group: Click Create New Group. The Create New Group form

displays.

Add members to the group by selecting a member in the Available Roles box and

clicking either Basic or Required to move the member to the New Group Roles

box.

Click Create Group to finish creating the group.

Using the log viewer

You can view logs using the admin utility by selecting Log Viewer from the menu.

The log displays the log level, time, message, and the name of the service or

bundle for which the log entry was created.

You can install multiple Log Reader Services at a time. Log Readers can display

different types of log messages. Select the desired Log Reader Service from the

drop-down list at the top of the window.

The size of the log and the types of events it collects can be configured through the

admin utility.

Using the JNDI Manager

The JNDI Manager is a IBM WebSphere Everyplace Client Toolkit rich client

application consisting of one perspective and two views – the Binding List view

and the Binding Detail view. The purpose of the Binding List view is to provide

easy access to controls which allow for looking up objects bound within the JNDI

on the platform. It also provides controls to add, edit or remove those objects. The

Binding Detail view is where specific binding information is entered if a binding is

to be added or edited.

Installing the JNDI Manager

To install the JNDI Manager, perform the following procedure:

 1. Start WebSphere Everyplace Deployment.

194 IBM WebSphere Everyplace Deployment: Developer’s Guide

2. Select Application > Install. You should see two sites already configured.

Make sure that the updates/eval site is checked

 3. If you do not have the media or a network attached drive, you will need to

obtain the Update Site address from your IT personnel.

a. Select New Remote Site.

b. Add a name to identify the site, and enter the URL that you were

provided.

c. Select OK.
 4. In the Sites to include in search list, select only the site that you just added,

then select Next.

 5. From the list presented, select the JNDI Manager feature, then select Next.

 6. Read the license terms provided, and, if acceptable, select Next.

 7. Select the appropriate installation site.

 8. Select Finish.

 9. When prompted to install features that are unsigned, select Install.

10. When prompted to restart your workbench, save your work and select Yes.

Starting the JNDI Manager

To access the admin utility, select Application > Open > JNDI Manager. This will

open the main view of the utility.

The main view is the Binding List view, which provides controls to choose which

JNDI provider to utilize and which location to view within the selected JNDI

provider. Both of these controls are editable drop down selection controls that are

automatically pre-populated with default values. The values of these selection

controls can be edited by the user.

If there is an error in connecting to the provider or retrieving the bindings from

the specified location, there is a red message shown in the button of the Binding

List View to notify the connection failure, the table which shows the bindings will

be empty, and all action buttons will be disabled.

You can create new bindings for the specific provider, or you can select existing

bindings and edit or remove them. The bindings are listed in sorted order.

Selecting the header for the Name column switches the sort order from ascending

to descending and vice versa.

The Binding Detail view provides controls to add or update a binding in the JNDI

provider. The Name and Value fields allow the user to specify (or edit) a binding

name and value (simple String object value) in the JNDI provider. When adding a

new binding, the user (and is selected by default) will add the binding to the

currently selected location (shown in the Binding List view).

Configuring Enterprise Definitions (JNDI)

WebSphere Everyplace Deployment JNDI overview

The WebSphere Everyplace Deployment runtime provides a simple Java object

JNDI registry to support the enterprise object definition needs of web applications,

EJB applications, and messaging applications. The WebSphere Everyplace

Deployment JNDI provider enables a local naming directory for objects running in

the client platform to communicate via standard Java naming APIs. The runtime

client JNDI implementation is very lightweight and does not support federation of

Using Platform Services 195

other name spaces, rather it provides a simple hierarchical name space for client

applications. In most cases, applications leveraging JNDI do not need to interact

directly with JNDI Name objects and simply use String representations of the

names to be bound or located. If your application needs to directly interact with

JNDI CompoundName objects, please note that due to the lightweight implementation,

only a restricted set of JNDI syntax properties is supported for use when creating a

CompoundName object. In order to ensure the correct JNDI syntax properties are used,

simply use the provided NameParser implementation from the WebSphere

Everyplace Deployment JNDI provider when a CompoundName object is needed.

The WebSphere Everyplace Deployment JNDI provider can be directly accessed via

the provider’s InitialContextFactory class as shown below:

try {

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.pvc.jndi.provider.java.InitialContextFactory");

 InitialContext context = new InitialContext(env);

} catch (NamingException e) {

 e.printStackTrace();

}

This JNDI provider is also registered as the default JNDI provider for the

WebSphere Everyplace Deployment platform so even if no provider is specified it

will still use the above InitialContextFactory to generate the InitialContext

object.

The WebSphere Everyplace Deployment JNDI provider does not persist objects or

their state information across platform restarts, so the platform administrator is

responsible for binding the objects each time the platform starts and configuring

those objects as needed before binding them into the JNDI registry. While the

application itself could programmatically register the objects that it needs each

time the platform starts, the WebSphere Everyplace Deployment client provides

another declarative model for JNDI bindings.

Objects that need to be bound into JNDI can be declared using Eclipse extension

points, to be described in detail shortly, so that when a lookup request is made for

a specific object via its JNDI name the JNDI provider will locate the declarative

definition, create the object and return it to the client application on-demand. This

“lazy” creation of objects provides for faster platform startup and memory

allocation based on actual need, rather than expected need.

This capability is based on two characteristics of the bundles/plug-ins:

1. A plugin.xml must exist and must provide an entry for the

com.ibm.pvc.jndi.provider.java.binding extension point

2. If the bundle/plug-in has a Manifest.mf file, it must contain the

Eclipse-AutoStart: true entry.

The WebSphere Everyplace Client Toolkit leverages this declarative JNDI capability

to automatically generate the required plugin.xml, and Manifest.mf entries for

EJBs so that the WebSphere Everyplace Deployment JNDI provider can locate their

declarative information upon a lookup of their JNDI name.

Using declarative JNDI

The declarative JNDI component is based on an Eclipse extension point. The use of

the Eclipse extension point registry provides the ability for objects to dynamically

196 IBM WebSphere Everyplace Deployment: Developer’s Guide

be added and removed from the JNDI registry by providing extension points as a

part of the plugin.xml files of installation artifacts.

This JNDI binding extension point is called

com.ibm.pvc.jndi.provider.java.binding.

An example of the usage of this extension point would be similar to the following:

<extension

 point = "com.ibm.pvc.jndi.provider.java.binding”>

 <binding

 jndi-name=”java:comp/env/jdbc/dsname”

 objectFactory-id=”com.ibm.pvc.jndi.provider.java.genericobjectfactory”>

 </binding>

 </extension>

Note that a required component of the com.ibm.pvc.jndi.provider.java.binding

extension point is the objectFactory-id. The WebSphere Everyplace Deployment

client provides three ObjectFactory implementations:

v EJBObjectFactory

v GenericObjectFactory

v TxnDataSourceObjectFactory

The EJBObjectFactory is used exclusively for embedded transaction container

bundles, while the GenericObjectFactory allows for an XML description of any

Java object, including primitive constructor parameters, and the ability to call

methods on the object once it has been created, but before it is bound into the

JNDI registry and returned to a client application. The

TxnDataSourceObjectFactory provides the ability to create and bind into JNDI

transaction capable DataSource objects that are required by the embedded

transaction container.

Note: No matter what specific object factory is used, all JNDI objects declaratively

described are required to provide the

com.ibm.pvc.jndi.provider.java.binding in their plugin.xml files. Some

object factories may also provide another extension point to that needs to be

implemented as well, such as the GenericObjectFactory.

EJBObjectFactory

The EJBObjectFactory is responsible for managing the life-cyle of EJBs in the

WebSphere Everyplace Deployment runtime. Upon a client lookup of an EJB, the

JNDI provider will use the EJBObjectFactory to locate the EJB and start it, which

in turn will cause the EJB to register with the EJB container and be bound into

JNDI. The WebSphere Everyplace Client Toolkit will automatically generate the

appropriate plugin.xml entries for EJBs as a part of the deployment process, and

will also add the Eclipse-AutoStart: true entry into the Manifest file to ensure that

the EJB will not be started automatically upon platform start, rather it will be

started by the EJBObjectFactory upon JNDI client lookup.

GenericObjectFactory

This factory provides an Eclipse extension point (described via a schema definition

file) that will allow for the description of Java objects to bound into JNDI upon a

client JNDI lookup. An example of the use of the new extension point to

instantiate a DB2 Everyplace DataSource object is as follows:

<extension point="com.ibm.pvc.jndi.provider.java.genericobject">

 <object

 jndi-name="java:comp/env/jdbc/dsname"

 class="com.ibm.db2e.DB2eDataSource">

Using Platform Services 197

<method name="setUrl">

 <method-parameter

 type="String"

 value="jdbc:db2e:oedb">

 </method-parameter>

 </method>

 </object>

 </extension>

The com.ibm.pvc.jndi.provider.java.genericobject extension point definition

allows for:

v the jndi-name of the object

v one class name to be specified per object entry,

v a list of parameters including type (supported types listed below) and value to

be used to create the constructor call to be executed to create this object,

v a list of methods to be called against this object including parameters with type

(supported types listed below) and value to be used in the method calls.

The jndi-name and class attributes are the only required attributes.

The list of valid types for the parameters is as follows:

v Objects: Boolean, String, Integer, Short, Long, Float, Double

v Primitives: boolean, int, short, long, float, double

TxnDataSourceObjectFactory

In order to create transaction capable data sources which are required by the

embedded transaction container of the WebSphere Everyplace Deployment

runtime, standard DataSource objects, such as the com.ibm.db2e.DB2eDataSource

are passed to the com.ibm.pvc.txnconatiner.TxnDataSourceFactory.create()

method and a suitable DataSource for use in embedded transactions is returned.

The TxnDataSourceObjectFactory declarative JNDI component allows for this

object transformation to be declaratively described via eclipse extension points. It

leverages the same com.ibm.pvc.jndi.provider.java.genericobject extension

point as the com.ibm.pvc.jndi.provider.java.genericobjectfactory, so the

definition of the data source is the same, but in the definition of the binding itself,

the TxnDataSourceObjectFactory is used.

Note: Since the point of this ObjectFactory it to create transaction capable

DataSources, the value for the class element of the genericobject extension

point must implement javax.sql.DataSource. If the class provided does not,

the Factory will throw an InvalidObjectException and the JNDI object

being located will not be found.

The following examples shows how to create a DB2eDataSource that can be used by

the embedded transaction container.

extension point="com.ibm.pvc.jndi.provider.java.binding">

 <binding

 jndi-name="java:comp/env/jdbc/txndsname"

 objectFactory-id="com.ibm.pvc.txncontainer.TxnDataSourceObjectFactory">

 </binding>

 </extension>

<extension point="com.ibm.pvc.jndi.provider.java.genericobject">

 <object

 jndi-name="java:comp/env/jdbc/txndsname"

 class="com.ibm.db2e.DB2eDataSource">

 <method name="setUrl">

 <method-parameter

198 IBM WebSphere Everyplace Deployment: Developer’s Guide

type="String"

 value="jdbc:db2e:oedb">

 </method-parameter>

 </method>

 </object>

</extension>

Packaging

The schema files needed for development are included in the

com.ibm.pvc.wct.extension.schemas plug-in which is part of the WebSphere

Everyplace Client Toolkit installation package and therefore is available for use in

the Rational development environment. These schema files are not needed at

runtime and are therefore not shipped as a part of the WebSphere Everyplace

Deployment runtime.

The ObjectFactory implementations are delivered via 2 different plug-ins. The

GenericObjectFactory is shipped as a part of the JNDI provider

(com.ibm.pvc.jndi.provider.java) plug-in, while the EJBObjectFactory and the

TxnDataSourceObjectFactory implementations are packaged with the Embedded

Transaction Container runtime (com.ibm.pvc.txncontainer) - since it is only useful

when dealing with the embedded transaction container.

The availability of these object factory implementations in terms of platform

deployment is inconsequential, as they are delivered with the base components as

needed. If other object factory implementations are developed, care will need to be

taken to ensure that they are available on the client runtime as needed, as the

plugin.xml references alone will not cause any dependencies to be registered

during deployment which could result in JNDI definitions on the runtime platform

with no associated object factory to bind the object into JNDI.

Extending declarative JNDI

The declarative JNDI solution leverages the Eclipse extension point registry to

provide a means to declare a list of objects that should be bound in JNDI if/when

a client application attempts to locate them. In order to provide an extensible

mechanism for this the declarative JNDI component makes use of the JNDI

ObjectFactory interface as a way of abstracting the JNDI provider from the specific

implementation code needed to instantiate different objects to be bound in JNDI.

The javax.naming.spi.ObjectFactory interface is very simple and contains only

one method getObjectInstance().

getObjectInstance() is called by the lookup() method of our JNDI provider

implementation if it is unable to locate the object requested in it’s current registry

of JNDI objects. The JNDI provider will first read the list of object factories from an

Eclipse extension point. It will then read the list of descriptions of objects to be

bound into JNDI. With this information, the JNDI provider will determine if the

name that is attempting to be located is in the list of names to be lazily bound, if it

is, it will instantiate the ObjectFactory based on the id provided in the extension

point registry for that name and call getObjectInstance() with a null object, the

current name and context. The returned object from this method invocation will

then be bound into the JNDI object registry and returned from the lookup method

of the JNDI provider.

In the WebSphere Everyplace Deployment runtime Object factories are registered

via the Eclipse extension point registry which allows for any number of

ObjectFactory implementations to be registered and available to the JNDI

Provider.

Using Platform Services 199

This extension point is com.ibm.pvc.jndi.provider.java.objectfactory and an

example of the usage of this extension point would be similar to the following:

<extension

point="com.ibm.pvc.jndi.provider.java.objectfactory">

 </extension>

Life cycle Management of JNDI registry

It is required that JNDI be notified when a lazily bound object is removed from the

environment so that it can be sure to unbind the object from the JNDI registry. This

requirement will be met by registering a listener with the extension registry which

will notify JNDI when new objects are registered and also when currently

registered objects are unregistered. When this notification occurs the JNDI provider

will add the new object or remove the existing object from its registry.

It is the responsibility of the JNDI provider to manage the life cycle of the binding,

not of the instantiated object. The ObjectFactory implementation is responsible for

managing the life cycle of the created object by registering any appropriate

listeners, and managing the cleanup of any associated resources if the contributing

bundle artifact is de-activated. It may do so by registering its own Extension

Registry listener (org.eclipse.core.runtime.IRegistryChangeListener) for the

exposed extension point.

Globalizing your application

You can globalize an application that you build on the WebSphere Everyplace

Deployment platform by using the International Components for Unicode (ICU)

technology. ICU4J is a set of Java classes that extend the capabilities provided by

the J2SE class libraries in the areas of Unicode and internationalization support.

The ICU4J classes (at version 3.2.0) are provided in the com.ibm.icu.icu4j, and

enable you to:

v Support multiple locales

v Support bidirectional text layouts

v Create translatable plug-ins

The following Web site provides more information about the icu4j package:

http://www-306.ibm.com/software/globalization/icu/index.jsp

Support for multiple locales

A locale represents a geographic place. A user‘s geographic location implies certain

preferences for operating system and application settings, such as language

character sets, date, time, and currency formats, and the direction in which text is

displayed.

The default locale for a WebSphere Everyplace Deployment application is the same

as the locale for the operating system of the machine on which the client is

running. If you design your application to support multiple locales, the user can

specify -nl <locale code> as a command line option when starting the client to

change the default locale for the client application running on their machine.

Things to keep in mind when implementing support for multiple locales:

v Call java.util.Locale.getDefault() to get the current locale. If a user supplies

the -nl parameter when starting the client, it resets the default locale value.

Calling java.util.Locale.getDefault() would return the newly specified locale

code.

200 IBM WebSphere Everyplace Deployment: Developer’s Guide

http://www-306.ibm.com/software/globalization/icu/index.jsp

v Use icu4j whenever possible to generate locale-sensitive data dynamically. The

ICU4J classes provide the following objects among others:

– DateFormat

– MeasureFormat

– MessageFormat

– NumberFormat
v Do not expect the same behavior you witness in the locale you are developing in

to occur in another locale. For example, ″i″.to UpperCase() does not return ″I″ in

the Turkish locale.

v Keep in mind that sort orders vary in each locale. Call

com.ibm.icu.text.Collator to compare international text.

Note: The Javadoc information for the icu4j.jar package is available from the

following Web site: http://oss.software.ibm.com/icu4j/doc/index.html

IBM language groups

IBM identifies the following language groups:

 Table 29. Group 1 languages

Locale code Language

de German

es Spanish

fr French

it Italian

ja Japanese

ko Korean

pt_BR Portuguese (Brazil)

zh Chinese (Simplified)

zh_TW Chinese (Traditional)

 Table 30. Group 2 languages

Locale code Language

ar Arabic

cs Czech

da Danish

el Greek

fi Finnish

hu Hungarian

iw Hebrew

nl Dutch

no Norwegian

pl Polish

pt Portuguese

ru Russian

sv Swedish

Using Platform Services 201

http://oss.software.ibm.com/icu4j/doc/index.html

Table 30. Group 2 languages (continued)

Locale code Language

tr Turkish

 Table 31. Group 3 languages

Locale code Language

be Belorussian

bg Bulgarian

ca Catalan

et Estonian

hi Hindi

hr Croatian

is* Icelandic

lt Lithuanian

lv Latvian

mk Macedonian

ro Romanian

sk Slovak

sl Slovenian

sq Albanian

sr Serbian

th Thai

uk Ukrainian

*Applies to selected OS/400® requirements only.

Supporting preferred fonts and bidirectional layouts

Each locale has a preferred set of fonts. Display your application text using these

fonts whenever possible to maintain a unified look and feel for the user.

Bi-directional (bi-di) support is important for Arabic and Hebrew.

To support preferred fonts and bi-di:

1. Instead of using a hard-coded font to format the text you display in the

application, retrieve the font that is preferred for a specific locale by calling the

org.eclipse.jface.resource.JFaceResources class. The JFaceResources class

provides the following methods for retrieving preferred fonts:

v getBannerFont()

v getDialogFont()

v getHeaderFont()

v getTextFont()

v getViewerFont()
2. Test your plug-in in RTL mode to be sure it responds correctly.

Creating translatable plug-ins

Customize your plug-in to display appropriately to an international audience by:

202 IBM WebSphere Everyplace Deployment: Developer’s Guide

v Separating out all hard-coded text strings that appear in the user interface, in

error messages, message boxes, or titles that display in title bars

v Enabling the date and number objects you use to be formatted based on the

user‘s preferred locale

To ensure that a plug-in is translatable, do the following:

1. Define all translatable strings in a .properties file associated with the plug-in.

For example, instead of defining the name of the plug-in in the plugin.xml file,

define it in a file called plugin.properties, which associates the .properties

file to the plugin.xml file. For example, define the name of the plug-in in the

plugin.xml file as follows:

<plugin name="%plugin.name"

2. In the plugin.properties file, include the following text to define the

%plugin.name keyword:

plugin.name = My Super-useful Plugin

3. Use the Rational Software Development Platform or a similar product to search

your source code for all translatable strings. Replace each string with a

keyword and define the keyword in a .properties with the same name as the

file that contained the translatable string.

4. Identify the locale-specific objects in your plug-in, then organize them into

categories and store them in different ResourceBundle objects accordingly. For

example, you can store a series of String objects in a PropertyResourceBundle,

which is backed up by a set of properties files, or you can manage all

locale-specific objects using a ListResourceBundle, which is backed up by a

class file. Though the ListResourceBundle object requires you to code and

compile a new source file to support any additional locales,

ListResourceBundle objects are useful because unlike properties files, they can

store any type of locale-specific object, not just text objects.

5. Use the standard Java library classes that localize the formatting for numbers,

dates, times, and currencies. None of these object types can be displayed or

printed without first being converted to a String. The formatting classes enable

you to use the proper format for the user‘s locale when converting an object

into a String object. For example, if you use the factory methods provided by

the icu4j.jar package NumberFormat class, you can get locale-specific formats

for numbers, currencies, and percentages. The DateFormat class provides

predefined formatting styles for dates and times that are locale-specific and

easy to use.

6. Create a plug-in fragment to contain all .properties files associated with a

specific language group. IBM uses the following convention when naming the

language fragments:

Language pack fragment containing IBM Group 1 languages =

 <plugin id>.nl1_<version>

Language pack fragment containing IBM Group 2 languages =

 <plugin id>.nl2_<version>

7. Provide a feature to group the Language packs you are including in your

application. Use the following convention when naming the features:

Language pack feature containing IBM Group 1 languages =

 <feature id>.nl1_version

Language pack feature containing IBM Group 2 languages =

 <feature id>.nl2_version

Specify any translatable text in the feature.xml file in an associated

feature.properties file.

Using Platform Services 203

See the eclipse.org Web site for more details on internationalizing a plug-in at

http://www.eclipse.org/articles/Article-Internationalization/how2I18n.html.

204 IBM WebSphere Everyplace Deployment: Developer’s Guide

http://www.eclipse.org/articles/Article-Internationalization/how2I18n.html

Troubleshooting

Logging

You use logs to gather information about problems that might happen while using

WebSphere Everyplace Deployment for Windows and Linux. This section describes

how to access logs, adjust logging levels, and configure how WebSphere

Everyplace Deployment manages log files.

Logging framework

The OSGi framework, Eclipse framework and the 1.4 JDK (JSR47) all provide

different systems for logging messages. Applications in some cases also leverage

standard error and standard out for message delivery, and these messages must

also be captured to ensure all data is available during the problem determination

stage. The WebSphere Everyplace Deployment runtime

com.ibm.pvc.wct.internal.logredirector plug-in, hereafter referred to as

logRedirector, provides the ability to collect all messages logged in the WebSphere

Everyplace Deployment runtime into one persistent log file. The logRedirector

captures messages logged from the OSGi logService, the Eclipse logging APIs, and

standard error and standard out and redirects them to the JDK 1.4

java.util.logging. A java.utils.logging log file manager is also provided with the

WebSphere Everyplace Deployment runtime (<installation

directory>/rcp/loggerboot.jar) which supports configuration of the JDK logging

and manages the persistent log file in

<USER_HOME>\IBM\RCP\<INSTALL_ID>\<USER_NAME>\logs\rcp.log.* where *

represents the different generations of log files, such as rcp.log.0.

Each of the logging systems available in the WebSphere Everyplace Deployment

runtime has its own definition of logging levels. In order to bring all of the

messages from these disparate systems together a mapping was needed between

the logging levels. The following section describes this mapping.

OSGi to JDK level mapping:

Because java.util.Level doesn’t provide a DEBUG level, OSGi DEBUG messages

will be written as FINEST messages. ERROR messages are mapped to SEVERE

messages. INFO and WARNING messages are mapped directly.

 Table 32. Log level mapping between the OSGi log and the java.util.Level

OSGi Log Level java.util.Level

ERROR SEVERE

WARNING WARNING

INFO INFO

DEBUG FINEST

Eclipse to JDK level mapping:

 Table 33. Log level mapping between the Eclipse log and the java.util.Level

Eclipse Log Level java.util.Level

CANCEL SEVERE

© Copyright IBM Corp. 2004 205

Table 33. Log level mapping between the Eclipse log and the java.util.Level (continued)

Eclipse Log Level java.util.Level

ERROR WARNING

WARNING INFO

OK FINEST

Manually adjusting the logging level

The logging framework default java.util.logging configuration properties are

stored in the plugin_customization.ini file, which resides in the <installation

directory>/rcp directory. The properties are in <key, value> format, and are set

to the following by default:

 Table 34. Default log properties at startup time

Properties plugin_customization.ini default values

Handlers java.util.logging.ConsileHandler

com.ibm.rcp.core.logger.boot.RCPFileHandler

level WARNING

com.ibm.rcp.core.logger.boot.

RCPFileHandler.level

FINEST

com.ibm.pvc.wct.internal.logredirector.level FINEST

The plugin_customization.ini file allows one level of customization of the

WebSphere Everyplace Deployment runtime logging framework. All properties

defined for java.util.logging.LogManager are supported. This file can be used to

set additional or alternate handlers, log levels for handlers and for loggers. Default

handlers are: java.util.logging.ConsoleHandler and

com.ibm.rcp.core.logging.RCPFileHandler. To replace these handlers use a

property such as:

handlers=<a list of handlers separated by white spaces>

To add additional handlers to the default simply include the default handlers in

the list.

Logger namespaces are hierarchical so com.ibm.level=Severe will turn off all of

our logging below SEVERE by default and then you can override this for

individual points in the hierarchy that you are interested in. The following is an

example of typical levels:

com.level=INFO

com.ibm.level=FINEST

The first entry sets the level for the logger for the com package and all loggers

created from packages that are children of it to INFO. The second entry overrides

this setting for the logger created for the package com.ibm, setting it to FINEST.

For more information on configuring the JDK logger please refer to the JDK

documentation for the java.util.logging package.

The logRedirector component of the WebSphere Everyplace Deployment runtime

also allows for configuration of the level of Eclipse Log and OSGi Log Service

messages that are sent to the console and to the persistent log file. The system

206 IBM WebSphere Everyplace Deployment: Developer’s Guide

property -Dlogredirector.level is read to configure the logging level of the

logredirector. This can be added into the <installation

directory>\rcp\rcpinstall.properties file in order to have the property set at

platform launch time. If this property cannot be accessed, the loggerRedirector will

use the default setting ″WARNING″.

The standard error and standard out messages are also logged to the persistent log

file and sent to the console. To configure what level the standard error and

standard out messages should be logged to the JDK logger, the following 2

properties can be set: logredirector.err.level and logredirector.out.level.

These can be set in the rcpinstall.properties listed above, and both default to

INFO.

Log file management

This section provides information on how WebSphere Everyplace Deployment

manages the log file.

The persistent log file for the WED platform is managed by a java.util.logging

FileHandler. The logger.properties file located in the <installation

directory>/rcp/ directory can be used to change the management policy for the

log file. The default settings for the log file manage are shown in the following

table.

 Table 35. Log properties and their default values

Configuration variables logger.properties default values

log.append false

log.generations 12

log.size 2000000

logfile.formatter java.util.logging.SimpleFormatter

If log.append is set true, the new messages will be written from the end of the log

file, while the default is to create a new log file each time the runtime is started.

The maximum number of generations of log files is 12. Any setting that is bigger

than 12 is treated as 12. The maximum size of log file is 2000000. Any setting that

is bigger than 2000000 is treated as 2000000.

Note: A value of 0 for the size will be treated as an unlimited file size. If you

would like to stop all logging from the WebSphere Everyplace Deployment

runtime to the file system, you can change the

com.ibm.rcp.core.logger.boot.RCPFileHandler.level entry of the

<installation directory>/rcp/plugin_customization.ini file from its

default of FINEST to OFF. When you have updated this setting, and

restarted the platform, logging data will no longer be written to a persistent

file.

The logfile.formatter sets the log file format, which defaults to the

SimpleFormatter. For more information on these configuration options, please refer

to the java.util.logging.FileHandler JDK documentation.

Tracing

Several of the WebSphere Everyplace Deployment runtime components, such as

the Embedded Transaction Container, and the Web Container, have detailed tracing

capabilities for enhanced problem determination in specific areas of the runtime.

Troubleshooting 207

For specific trace enablement information for the WebSphere Everyplace

Deployment runtime components please refer to the specific documentation for

each component.

The Enterprise Management Agent provides extensive tracing for debugging

purposes. For WebSphere Everyplace Deployment 6.0 a Java system property is

used by the agent to enable the debug tracing.

Add the following system property to enable debug tracing.

com.ibm.osg.service.osgiagent.osgiagent.debug=true

For the changes to take effect, the runtime client must be restarted.

Refer to “Configuring Java system properties” on page 223 for more information.

Using the IBM Support Assistant

IBM Support Assistant is designed to help answer questions and gather data for

service personnel if needed.

IBM Support Assistant provides the following functions:

v The ability to perform a federated search across information repositories

v Convenient access to support-related web resources

v A way to automate data collection and transmission to IBM to expedite problem

resolution.

The search component can be used to execute a federated search that concurrently

accesses multiple search locations and returns results in a hierarchical arrangement.

The support links component is a consolidated list of IBM web links organized by

brand and product. The service component allows for the gathering of problem

determination data and assists in the process of creating a problem management

record with IBM Support.

You access the IBM Support Assistant from the WebSphere Everyplace Client

Toolkit by selecting the Help menu option, then selecting IBM Support Assistant. A

User’s Guide is available from the Help tab on the navigation bar of the IBM

Support Assistant page.

To capture problem determination:

1. When you have opened the IBM Support Assistant select the Service tab.

2. Click Invoke Collector. ISA gathers the problem determination information.

When the collector completes a panel is displayed noting the location of the

archive that was created that contains all of this information. This archive will

be needed for detailed problem determination with IBM Support.

3. From the Service tab, you can send the collected information to IBM Support

using the Send System Data option. You select a geographic location, and the

data is sent to one of the following destination servers depending upon your

selection:

North America and Asia Pacific:testcase.boulder.ibm.com\ps\toibm\pvc

EMEA: ftp.emea.ibm.com

Data collection details:

208 IBM WebSphere Everyplace Deployment: Developer’s Guide

When the collector is invoked from the Service tab of the IBM Support Assistant,

the collected data is the same as that collected with a Rational product. Included in

the collected data is:

v Installation configurations, properties and logs

v RAD/RWD/RSM logs

v Performance Tester configurations and logs

v User workspace log

v RAD/RWD/RSM/Performance Tester Workspace files

v System Data

v Network data

For more information refer to the IBM Support Assistant User’s Guide, which is

available via the WebSphere Everyplace Deployment runtime at Help > IBM

Support Assistant.

Troubleshooting 209

210 IBM WebSphere Everyplace Deployment: Developer’s Guide

Reference information

WebSphere Everyplace Deployment top level menus

The WebSphere Everyplace Deployment platform defines a set of default menu

items. This section provides the identifiers that are required to be used for either of

the following cases:

v You want to add additional menu items in a specific location to one of the

pre-existing menus

v You want to define activities to allow you to group menu items within an

activity group.

The Top Level Menu Items as shown in the table below are defined by WebSphere

Everyplace Deployment. These menu items cannot be removed through the use of

activities.

 Table 36. Top level menus

Menu Name Menu ID Plug-in ID

File file com.ibm.eswe.workbench

Application application com.ibm.eswe.workbench

View view com.ibm.eswe.workbench

Help help com.ibm.eswe.workbench

File menu

The menu items, markers, and separators defined for the File menu are defined in

the following table.

 Table 37. File menu

Menu Group Menu Item ID Plug-in ID

group marker fileStart

group marker fileEnd

separator

group marker prefStart

prefStart Preferences preferences com.ibm.eswe.workbench

group marker prefEnd

separator

group marker additions

separator

Exit quit com.ibm.eswe.workbench

Application menu

The menu items, markers, and separators defined for the Application menu are

defined in the following table.

© Copyright IBM Corp. 2004 211

Table 38. Application menu

Menu Group Menu Item ID Plug-in ID

group marker applicationStart

applicationStart Open open com.ibm.eswe.workbench

applicationStart Close closePerspective com.ibm.eswe.workbench

applicationStart Close All closeAll com.ibm.eswe.workbench

applicationStart Reset ResetPerspective com.ibm.eswe.workbench

group marker applicationEnd

separator

group marker additions

install Install install com.ibm.eswe.installupate.launcher

management Application

Management

management com.ibm.eswe.installupate.launcher

View menu

The menu items, markers, and separators defined for the View menu are defined

in the following table.

 Table 39. View menu

Menu Group Menu Item ID Plug-in ID

group marker viewStart com.ibm.eswe.workbench

viewStart Show Icon Labels show_iconlabels com.ibm.eswe.workbench

viewStart Show Large Icons show_largeicons com.ibm.eswe.workbench

viewStart Show Small Icons show_smallicons com.ibm.eswe.workbench

viewStart Show Application Switcher show_switcher com.ibm.eswe.workbench

viewStart Show Banner show_banner com.ibm.eswe.workbench

viewStart Show Coolbar show_coolbar com.ibm.eswe.workbench

group marker viewEnd

Separator

group marker additions

Help menu

The menu items, markers, and separators defined for the Help menu are defined in

the following table:

 Table 40. Help menu

Menu Group Menu Item ID Plug-in ID

group marker helpStart

helpStart Help Contents helpContents com.ibm.eswe.workbench

group marker helpEnd

separator

group marker additions

separator

escGroup IBM Support Assistant com.ibm.esupport.client.Browser com.ibm.esupport.client

212 IBM WebSphere Everyplace Deployment: Developer’s Guide

Table 40. Help menu (continued)

Menu Group Menu Item ID Plug-in ID

About WebSphere Everyplace

Deployment

about

Extension points reference

This section describes the extension points WebSphere Everyplace Deployment

provides for application development. The following extension points can be used

to extend the capabilities of the platform infrastructure:

Applications

v “com.ibm.eswe.workbench.WctApplication”

Web applications

v “com.ibm.eswe.workbench.WctWebApplication” on page 214

JNDI Binding

v “JNDI Binding” on page 217

JNDI generic object

v “JNDI generic object” on page 218

JNDI object factory

v “JNDI object factory” on page 219

Applications

com.ibm.eswe.workbench.WctApplication

This extension point provides for the definition of an application to be launched.

Since: WCTME Enterprise Offering 5.8.0

Configuration markup:

 <!ELEMENT extension EMPTY>

 <!ATTLIST extension

 point CDATA #REQUIRED

 id CDATA #IMPLIED

 name CDATA #IMPLIED>

v point - Fully qualified identifier of the target extension point

v id - ID identifying this instance of the extension point.

v name - Name associated with the extension point

<!ELEMENT DisplayName (#CDATA)>

DisplayName - Display Name to use for the application in the Application > Open

and Application Switcher menus, or on the Desktop perspective. Required.

<!ELEMENT PerspectiveId (#CDATA)>

PerspectiveId - ID for the perspective to be launched when the application is

selected.

Reference information 213

<!ELEMENT Icon (#CDATA)>

Icon - Relative path of icon to be used in the Application > Open and

Application > Switcher menus. Optional.

If specified, application developers should provide both a 16x16 and a 32x32 pixel

color image. If the image size is not 16x16 or 32x32 or if the <Icon> element is not

specified, then the default web application images will be used. Image name

should contain either ’16x16’ or ’32x32’ to denote the size of the image.

Examples:

1. This application shows a rich client application to run on the WebSphere

Everyplace Deployment runtime.

<extension point="com.ibm.eswe.workbench.WctApplication">

 <DisplayName>Order Entry Rich Client sample</DisplayName>

 <PerspectiveId>com.ibm.eswe.orderentry.OrderEntryPerspective

 </PerspectiveId>

</extension>

2. This application shows a rich client application that defines an icon.

<extension point="com.ibm.eswe.workbench.WctApplication">

 <DisplayName>Order Entry Rich Client sample</DisplayName>

 <PerspectiveId>com.ibm.eswe.orderentry.OrderEntryPerspective

 </PerspectiveId>

 <Icon>OEWctApp_32x32.gif</Icon>

</extension>

Web applications

com.ibm.eswe.workbench.WctWebApplication

This extension point provides the definition of a web application to be launched.

Since: Enterprise Offering 5.8.0

Configuration markup:

<!ELEMENT extension EMPTY>

 <!ATTLIST extension

 point CDATA #REQUIRED

 id CDATA #IMPLIED

 name CDATA #IMPLIED>

v point - Fully qualified identifier of the target extension point

v id - ID identifying this instance of the extension point. If the web application is

using an IUrlProvider implementation to generate the URL, then the id should

not contain any decimals (’.’)..

v name - Name associated with the extension point

<ELEMENT DisplayName (#CDATA)>

DisplayName - Display Name to use for the application in the Application >

Open and Application Switcher menus. Required.

<!ELEMENT Url (#CDATA)>

 <!ATTLIST Url

 provider CDATA #IMPLIED

 local CDATA #IMPLIED

 secured CDATA #IMPLIED>

214 IBM WebSphere Everyplace Deployment: Developer’s Guide

Url - The Url text portion of the element specifies either the context root and

application specific path for a Local application, or the entire URL for a remote

application. Required.

The Url element will contain the following attributes:

v A provider attribute that specifies the name of a class that will return the Url to

be displayed. If the provider attribute is present, the text value of the Url

element is not required. Any provider must implement the IUrlProvider

interface and use the IPageDescriptor API to retrieve application information

required to construct the Url.

v A local attribute that indicates whether the content of the Url text portion is

intended to be run against the local web container, or is a full URL. Values are

true or false. This replaces the Local element that previously existed. The default

is true. If the provider attribute is specified, the workbench will do nothing with

this value (except for setting it up within the IPageDescriptor implementation)

v A secured attribute used only if local=”true” that indicates that HTTPS should

be used by the browser to connect to the web application. Values are true or

false. The default is false. If the provider attribute is specified, the workbench

will do nothing with this value (except for setting it up within the

IPageDescriptor implementation)

v The id attribute defined as part of the extension element is required if the

provider attribute of the Url is used.

Note: The value of the id attribute must be a simple string with no special

characters (e.g. ‘.’).

<!ELEMENT Icon (#CDATA)>

Icon - Relative path of icon to be used in the Application > Open and Application

> Switcher menus. Optional.

If specified, web application developers should provide both a 16x16 and a 32x32

pixel color image. If the image size is not 16x16 or 32x32 or if the <Icon> element

is not specified, then the default web application images will be used. Image name

should contain either ’16x16’ or ’32x32’ to denote the size of the image.

<!ELEMENT BrowserOptions>

 <!ATTLIST BrowserOptions

 browser CDATA #IMPLIED

 showAddressbar CDATA #IMPLIED

 showToolbar CDATA #IMPLIED

 showHistory CDATA #IMPLIED

 showHome CDATA #IMPLIED

 showPageCtrl CDATA #IMPLIED

 showPrint CDATA #IMPLIED

 showBookmark CDATA #IMPLIED

 userid CDATA #IMPLIED

 password CDATA #IMPLIED >

BrowserOptions- Configures browser options. Optional

The BrowserOptions element contains the following attributes:

v A browser attribute that specifies the type of browser to use. The supported

values are “platform”, “MSIE” and “Mozilla”. The default for Windows is MSIE,

the default for Linux is Mozilla.

Note: Mozilla on Windows is not supported for this release.

Reference information 215

v A showAddressbar attribute that specifies whether or not the browser address bar

displays. The supported values are “true” or “false”. The default is “true”.

v A showToolbar attribute that specifies whether or not the browser tool bar

displays. The supported values are ″true″ or ″false″. The default is ″true″. If

showToolbar is set to ″false″, then none of the toolbar buttons (Print, Stop, etc...)

will display.

v A showHistory attribute that specifies whether or not the browser Back and

Forward buttons display. The supported values are ″true″ or ″false″. The default

is ″true″.

v A showHome attribute that specifies whether or not the browser Home button bar

displays. The supported values are “true” or “false”. The default is “true”.

v A showPageCtrl attribute that specifies whether or not the browser Stop and

Refresh buttons display. The supported values are ″true″ or ″false″. The default

is ″true″.

v A showPrint attribute that specifies whether or not the browser Print button

displays. The supported values are “true” or “false”. The default is “true”.

v A showBookmark attribute that specifies whether or not the browser Bookmark

button displays. The supported values are “true” or “false”. The default is

“true”.

v A userid attribute that specifies the username to use to replace the %USERID% tag

in the web application URL.

v A password attribute that specifies the password to use to replace the %PASSWORD%

tag in the web application URL.

Examples

1. The following example uses the Url element to specify the web application

URL, and shows the browser address bar while hiding the Home button:

<?eclipse version="3.0"?>

<plugin>

 <extension

 point="com.ibm.eswe.workbench.WctWebApplication">

 <DisplayName>%webapp.name</DisplayName>

 <Url local="true" secured="false">/OrderEntry</Url>

 <BrowserOptions browser="platform"

 showAddressBar="true"

 showHome="false"/>

 <Icon>icons/OEwctwebapp_32x32.gif</Icon>

 </extension>

</plugin>

2. The following example specifies a secured web application URL, and removes

the browser address bar and toolbar:

<?eclipse version="3.0"?>

<plugin>

 <extension

 point="com.ibm.eswe.workbench.WctWebApplication">

 <DisplayName>%webapp.name</DisplayName>

 <Url local="true" secured="true">/OrderEntry</Url>

 <BrowserOptions browser="platform"

 showAddressBar="false"

 showToolbar="false"/>

 <Icon>icons/OEwctwebapp_32x32.gif</Icon>

 </extension>

</plugin>

3. The following example uses the Mozilla browser, and removes Print button

from toolbar:

216 IBM WebSphere Everyplace Deployment: Developer’s Guide

<?eclipse version="3.0"?>

<plugin>

 <extension point="com.ibm.eswe.workbench.WctWebApplication">

 <DisplayName>%webapp.name</DisplayName>

 <Url local="true">/OrderEntry</Url>

 <BrowserOptions browser="Mozilla"

 showPrint="false"/>

 <Icon>icons/OEwctwebapp_32x32.gif</Icon>

 </extension>

</plugin>

4. The following example shows how to use the UrlProvider capability:

<?eclipse version="3.0"?>

<plugin>

 <extension

 id=MyApplication point="com.ibm.eswe.workbench.WctWebApplication">

 <DisplayName>%webapp.name</DisplayName>

 <Url provider="myApplication.myProvider"/>

 <BrowserOptions browser="platform"

 showAddressBar="true"

 showToolbar="true"

 showHistory="true"

 showPageCtrl="true"

 showHome="false"

 showPrint="true"/>

<Icon>icons/OEwctwebapp_32x32.gif</Icon>

 </extension>

</plugin>

This extension point will be used to display the menu items that appear in the

Application > Open menu, and to display the web applications within the

Desktop view.

JNDI Binding

com.ibm.pvc.jndi.provider.java.binding

This extension point provides the ability to define objects to be bound into JNDI

upon client JNDI lookup.

Since: WebSphere Everyplace Deployment for Windows and Linux 6.0

Configuration markup:

 <!ELEMENT extension (binding+)>

 <!ATTLIST extension

 point CDATA #REQUIRED

 id CDATA #IMPLIED

 name CDATA #IMPLIED>

 <!ELEMENT binding EMPTY>

 <!ATTLIST binding

 jndi-name CDATA #IMPLIED

 objectFactory-id CDATA #IMPLIED>

v jndi-name - The location in JNDI where this object should be bound

v objectFactory-id - The javax.naming.spi.ObjectFactory implementation

responsible for creating and binding this object into JNDI

Examples:

 <extension point="com.ibm.pvc.jndi.provider.java.binding">

<binding

Reference information 217

jndi-name="java:comp/env/jdbc/dsname"

 objectFactory-id="com.ibm.pvc.jndi.provider.java.genericobjectfactory">

 </binding>

 </extension>

API information: No Java code is required for this extension point.

Supplied implementation: No implementations of this extension point are

provided with the platform.

JNDI generic object

com.ibm.pvc.jndi.provider.java.genericobject

This extension point provides the ability to define Java objects in a declarative

XML way such that they can be created and bound into JNDI upon client JNDI

lookup.

The application using this extension point is responsible for providing:

v the jndi-name of the object

v one class name to be specified per object entry

v a list of parameters including type (supported types listed below) and value to

be used to create the constructor call to be executed to create this object

v a list of methods to be called against this object including parameters with type

(supported types listed below) and value to be used in the method calls

The jndi-name and class attributes are the only required attributes.

The list of valid types for the parameters is as follows:

v Objects: Boolean, String, Integer, Short, Long, Float, Double

v Primitives: boolean, int, short, long, float, double

Since: WebSphere Everyplace Deployment for Windows and Linux 6.0

Configuration markup:

 <!ELEMENT extension (object+)>

 <!ATTLIST extension

 point CDATA #REQUIRED

 id CDATA #IMPLIED

 name CDATA #IMPLIED>

 <!ELEMENT object (constructor-parameter* , method*)>

 <!ATTLIST object

 jndi-name CDATA #IMPLIED

 class CDATA #IMPLIED>

v jndi-name - The location in JNDI where this object should be bound

v class - The Java class to be instantiated

<!ELEMENT constructor-parameter EMPTY>

<!ATTLIST constructor-parameter

type CDATA #IMPLIED

value CDATA #IMPLIED>

v type - The type of the parameter to the constructor

v value - The value for the constructor parameter

218 IBM WebSphere Everyplace Deployment: Developer’s Guide

<!ELEMENT method (method-parameter*)>

 <!ATTLIST method

 name CDATA #IMPLIED>

v name - The name of the method on the Java object to call once the object has

been instantiated

...<!ELEMENT method-parameter EMPTY>

.......<!ATTLIST method-parameter

.......type CDATA #IMPLIED

.......value CDATA #IMPLIED>

v type - The type of the parameter to the method

v value - The value for the method parameter

Examples:

The following example shows the use of the new extension point to instantiate a

DB2 Everyplace DataSource object:

<extension point="com.ibm.pvc.jndi.provider.java.genericobjectfactory">

 <object

 jndi-name="java:comp/env/jdbc/dsname"

 class="com.ibm.db2e.DB2eDataSource">

 <methods name="setUrl">

<method-parameter

 type="String"

 value="jdbc:db2e:oedb">

</method-parameter>

 </method>

 </object>

 </extension>

API information: No Java code is required for this extension point.

Supplied implementation: No implementations of this extension point are

provided with the platform.

JNDI object factory

com.ibm.pvc.jndi.provider.java.objectfactory

This extension point provides a way to extend the list of available ObjectFactories

to be used by JNDI to dynamically bind objects into the JNDI object registry upon

client JNDI lookup.

Since: WebSphere Everyplace Deployment for Windows and Linux 6.0

Configuration markup:

 <!ELEMENT extension (objectfactory+)>

 <!ATTLIST extension

 point CDATA #REQUIRED

 id CDATA #IMPLIED

 name CDATA #IMPLIED>

<!ELEMENT objectfactory EMPTY>

<!ATTLIST objectfactory

class CDATA #REQUIRED

id CDATA #REQUIRED>

Reference information 219

v class - The name of the class that implements javax.naming.spi.ObjectFactory

to be instantiated and used to dynamically bind objects into the JNDI registry.

v id - The id that binding extension point implementors will use to reference this

ObjectFactory

Examples:

<extension point="com.ibm.pvc.jndi.provider.java.objectfactory">

<objectfactory

 id="com.ibm.pvc.txncontainer.EJBObjectFactory"

 class="com.ibm.pvc.txncontainer.EJBObjectFactory">

 </objectfactory>

 </extension>

API information: Classes that leverage this extension point must implement the

javax.naming.spi.ObjectFactory interface.

Supplied implementation: There are 2 implementations of this extension point

provided with the platform:

v The Generic Object Factory - used to instantiate Java objects and bind them into

the JNDI registry

v The EJB Object Factory - used to instantiate and bind EJBs into the JNDI registry

WebSphere Everyplace Client Toolkit ANT task and types

The toolkit provides an ANT task and types that can be used to export projects

into JAR files compatible with update sites. This ANT task can be used with any

Client Services project.

bde.exportJarBundle

Description

The bde.exportJarBundle task provides the capability to export any Client Services

project to a JAR that can be included in an update site.

Parameters

 Table 41. Parameters

Attribute Description Required

projects Comma separated list of

projects to be exported by

this task invocation

yes

exportFileNames Comma separated list of file

names, with a one-to-one

correspondence with the list

of projects to export. If this

attribute is not specified,

then the default naming

scheme is

<Bundle-
SymbolicName>_<Bundle-
version>.jar

optional

220 IBM WebSphere Everyplace Deployment: Developer’s Guide

Nested elements

“filedirectory” - This required element is used to specify a target directory to

contain the exported JAR file(s).

“buildpolicyinfo” - - This optional element can be used to specify properties to

apply during the export process.

Examples

The following example invokes the task to export two projects from the workspace.

The resulting file names will be com.ibm.pvc.tools.samples.db2e_1.0.0.jar and

com.ibm.pvc.tools.samples.mqeclient_1.0.0.jar (since both projects have

versions of 1.0.0). This is the default export file name format. Both JARs will be

exported to the current directory.

<bde.exportJarBundle projects="com.ibm.pvc.tools.samples.db2e,

 com.ibm.pvc.tools.samples.mqeclient">

 <filedirectory path="." />

 <buildpolicyinfo includeSource="false"

 abortOnErrors="false"

 isDebugCompilation="true"

 isVerboseCompilation="true" />

</bde.exportJarBundle>

filedirectory

Description

Defines the target directory to contain the exported JAR file(s).

Parameters

 Table 42. Parameters

Attribute Description Required

path Specifies the file directory

location to contain the

exported JAR files

yes

buildpolicyinfo

Description

Defines a set of properties to apply during the compilation and export process.

Parameters

 Table 43. Parameters

Attribute Description Required

includeSource Specifies whether to include

source in the output jar. A

value of true indicates source

should be included.

optional

Reference information 221

Table 43. Parameters (continued)

Attribute Description Required

abortOnErrors Specifies whether to

immediately stop the process

when errors are encountered.

A value of true indicates that

errors should terminate

processing.

optional

isVerboseCompilation Specifies whether

compilation should be

performed in verbose mode.

A value of true indicates that

verbose compilation should

be used.

optional

isDebugCompilation Specifies whether debug

information should be

included in the compiled

class files. A value of true

indicates the debug

information should be

included.

optional

Managing client configurations

This section describes the tasks you can perform to configure the WebSphere

Everyplace Deployment runtime on the user’s machine.

Understanding the client file layout

When WebSphere Everyplace Deployment is installed on a machine, the installer

creates a directory structure in the installation directory. This section describes the

layout of the installation directory.

This section describes the layout of the files installed on the runtime.

<installation directory>/

 _uninst/ - Files required for uninstalling the product

 eclipse/ - Platform components

 .eclipseproduct

 configuration

 features/

 links/

 plugins/

 rcp/ - Platform components

 eclipse/

 .eclipseproduct

 features/

 plugins/

 shared/ -Site to contain applications shared across multiple

 configurations

 eclipse/

 features/

 plugins/

 license/ - Product licenses in multiple languages

 migration/ - WCTME EO 5.8.1 migration utility

The .eclipseproduct marker files are used by the installupdate plug-in. When an

installation site is marked with .eclipseproduct marker it is filtered so that a use

222 IBM WebSphere Everyplace Deployment: Developer’s Guide

cannot uninstall it. A user is allowed to install into these directories, but only after

a warning. An ISV should add the .eclipseproduct marker to their installation

directories to obtain the same filtering.

You can also control how these features are updated by adding these base features

to your features. The root features has the ability to control the update site that is

used. See <includes> <search-location> in the feature manifest documentation for

more information.

Configuring Java system properties

Applications might require specific system properties to be set at startup when

running the WebSphere Everyplace Deployment platform. To minimize the number

of parameters that you must specify on the command line, you can add

configuration lines to the rcpinstall.properties file, which resides in the

<installation directory>/rcp/ directory.

Refer to “Updating the rcpinstall.properties file” on page 228 for detailed

information.

You can also specify properties on the command line when you launch the

platform. Refer to “Configuring the platform launcher” on page 236 for more

information.

Configuring Java VM arguments

Applications might require the addition of JVM specific arguments when the

platform starts. To minimize the number of parameters that must be specified on

the command line, you can add vmarg.* configuration lines to the <installation

directory>/rcp/rcpinstall.properties file.

Refer to “Updating the rcpinstall.properties file” on page 228 for detailed

information.

You can also specify VM arguments on the command line when you launch the

platform. Refer to “Configuring the platform launcher” on page 236 for more

information.

Configuring native library references

The recommended approach is that all native library objects be included in

operating system/processor specific fragments. In general, this is sufficient to allow

the application code and the operating system to locate the desired library.

However, there might be cases where it is not possible to organize the libraries

within a fragment, or the library loading requirements inhibit this approach.

Therefore, library search path must be updated.

You will need to update the library.path.append or library.path.prepend lines in

the rcpinstall.properties file to specify the directory locations containing the

libraries.

Refer to “Updating the rcpinstall.properties file” on page 228 for detailed

information.

Configuring Java Bootclasspath libraries

The recommended approach is that all class libraries that are needed by

applications reside within plug-ins or fragments. If there are cases in which the

Reference information 223

libraries must be placed on the Java bootclasspath, then you will need to update

the –Xbootclasspath line(s) in the rcpinstall.properties file.

Refer to “Updating the rcpinstall.properties file” on page 228 for detailed

information.

Configuring workbench options

The default WebSphere Everyplace workbench provides configuration options that

control the display of the Banner Bar, Cool Bar, and Status Bar in the user interface.

You can modify the display options for each bar.

To enable or disable the display of these objects in the user interface, you will need

to edit the plugin_customization.ini file, which resides in the

<installation_directory>/rcp/eclipse/plugins/com.ibm.pvc.wct.platform_

<version_no> directory.

Use a text editor to open and edit this file. Change the values for bannerVisibile,

coolBarVisible, and statusLineVisibile to true or false as appropriate.

Setting bannerVisible=true and coolBarVisible=true provides the capability to

display these areas. The user will also have options to display or hide these areas.

If these are set to false, they will not be displayed and the user will not be able to

change the settings

statusLineVisible either hides or displays the status bar. If this is set to true, it

will always be displayed, and the user will not be able to hide this area.

The other content in this file controls the appearance of the banner that is

displayed in the Banner Bar. Refer to “Specifying platform branding” on page 231

for more information.

Configuring the web container

The default configuration for the web container listens only for HTTP requests

received on localhost on a port dynamically selected during platform startup. If

you need to make changes to this configuration, refer to the contents of this

section.

The following properties are available for configuration of the web container.

 Table 44. Java system properties

Option Default Description Java System Property

HTTP Port 0 Defines the port used by

the HTTP Service

listener to listen for

requests

com.ibm.pvc.webcontainer.port or

com.ibm.osg.webcontainer.port

HTTPS Port -1 com.ibm.pvc.webcontainer.port.secure or

com.ibm.osg.webcontainer.port.secure

HTTP

Timeout

60 sec Defines the value used

for socket time-outs

com.ibm.pvc.webcontainer.http.timeout or

com.ibm.osg.webcontainer.http.timeout

224 IBM WebSphere Everyplace Deployment: Developer’s Guide

Table 44. Java system properties (continued)

Option Default Description Java System Property

HTTP Address localhost Defines the host address

for the default ports that

the Web Container

listens on. If this

property is defined then

the Web Container will

only listen for requests

that come through this

IP address. The special

value ALL indicates all

available IP addresses on

the device will be used.

The value of this

property may be a

resolved name or IP

address (e.g.

www.ibm.com,

192.168.0.101, localhost).

com.ibm.pvc.webcontainer.http.address or

com.ibm.osg.webcontainer.http.address

HTTP redirect

port

-1 com.ibm.pvc.webcontainer.http.redirectPort

Min HTTP

Threads

4 com.ibm.pvc.webcontainer.http.minThreads

Max HTTP

Threads

20 com.ibm.pvc.webcontainer.http.maxThreads

Max Keep

Alive

Connections

20 com.ibm.pvc.webcontainer.http.maxKeepAliveConnections

Max Keep

Alive

Requests

50 com.ibm.pvc.webcontainer.http.maxKeepAliveRequests

Keep Alive

Timeout

20 sec com.ibm.pvc.webcontainer.http.keepAliveTimout

 Table 45. ConfigurationAdmin keys

Option ConfigurationAdmin key

HTTP Port http.port

HTTPS Port https port

HTTP Timeout http.timeout

HTTP Address http.address

HTTP redirect port http.redirectPort

Min HTTP Threads http.minThreads

Max HTTP Threads http.maxThreads

Max Keep Alive Connections http.maxKeepAliveConnections

Max Keep Alive Requests http.maxKeepAliveRequests

Keep Alive Timeout http.keepAliveTimeout

Reference information 225

Configuring the web container to use a dynamic port

If the value of either the com.ibm.pvc.webcontainer or com.ibm.osg.webcontainer

Java system properties is equal to 0, then the web container selects a random port

when the web container plug-in is started. This allows for multiple instances of the

Web Container to be running at the same time on the same machine.

Note: This port will be broadcast to all plug-ins that register an

HttpSettingListener service.

Configuring with system properties

For simple configuration changes, you can effect the changes by adding Java

system properties to the platform. For each of the configuration properties

identified in “Configuring the web container” on page 224, add the appropriate

Java System Property to the rcpinstall.properties file. Refer to “Configuring Java

system properties” on page 223 for information on adding Java System Properties.

Configuring with ConfigurationAdmin

The Web Container is configurable using the OSGi Configuration Admin service.

The PID of the Web Container ManagedServicefactory is

com.ibm.pvc.webcontainer.

Using the Admin Utility for OSGi tool to access

ConfigurationAdmin

Applications can configure the Web Container using the Configuration Admin

service API. You can also configure these parameters using the Admin Utility tool.

To configure the Web Container using the Admin Utility tool, perform the

following steps:

1. Launch the WebSphere Everyplace Deployment platform.

2. Install the Admin Utility for OSGi feature. The Admin Utility for OSGi feature

is located on the evaluation site.

3. Select Application > Open > Admin Utility for OSGi to run the application.

4. When the application is started, select the Web Container from the list of

installed plug-ins. The Http Service Settings will display a list of configurable

options.

Users can configure the following Web Container settings:

v HTTP Port

v HTTPS Port

v HTTP Timeout

v HTTP Address

v HTTP Redirect Port

v Minimum HTTP Threads

v Maximum HTTP Threads

v Maximum Keep-Alive Connections

v Maximum Keep-Alive Requests

v Maximum Keep-Alive Timeout
5. If you want to use settings other than the default, enter the new value for the

setting and click Configure.

226 IBM WebSphere Everyplace Deployment: Developer’s Guide

Configuring HTTPS

The secure hypertext transfer protocol (HTTPS) is a communications protocol used

to encrypt data between computers over the internet. HTTPS uses a Secure Socket

Layer (SSL) to transfer encrypted HTTP data.

Configuring client plug-ins with the Enterprise Management

Agent

You can change the configuration of a client plug-in that has registered itself as a

Managed Service with the framework using the Enterprise Management Agent. A

Managed Service represents a client of the Configuration Admin service. Plug-ins

which have registered themselves as a Managed Service (e.g., Web Container) will

receive configuration update notifications from the ConfigurationAdmin service.

The Enterprise Management Agent provides administrators with a means to

discover these types of plug-ins and change their configuration.

Note:

v Registration as a Managed Service does not guarantee that a plug-in can

be discovered by the Enterprise Management Agent. ConfigurationAdmin

must be populated with the plug-ins configuration data. Refer to the OSGi

specification for more details.

v Administrators choosing to configure the client plug-in using the

Enterprise Management Agent must populate the ConfigurationAdmin

with the plug-ins configuration data. This can be done either

programmatically or by using a tool like Admin Utility for OSGi.

The following steps describe how to change the configuration of a client plug-in,

making use of multiple jobs to perform the task. These tasks should be performed

on a system running a Device Management Server using the DM Console

application.

 1. Click Devices.

 2. Select Use New Query and Return anything as your search criteria, and then

click OK. The DM console will show a list of enrolled devices.

 3. Select your device, right click and select Submit Job.

 4. Click Next, then select the Job Type as Node Discovery (use the default

settings for all the other job attributes).

 5. Select Next, then select Add Group.

 6. Type ./OSGi/BundleConfiguration/<Plugin_PID> as the Target URL.

where <Plugin_PID> is the PID of the plug-in. For example,

com.ibm.pvc.webcontainer is the PID of the Web Container

 7. Enter a search depth of 5, then click Next.

 8. Click OK. The job has been submitted. Click Close.

 9. You will need to wait for the job to complete (this will depend upon the

configured polling interval). Once the job has completed, select the device,

then click View Inventory.

10. Then select Management Tree.

11. Select the configuration entry you wish to configure and click Submit Job.

12. Click Next. Leave the defaults as supplied in the panel, then click Next.

13. Enter 1 for the Command Number Field.

14. Set the Data value for the configuration entry, then click Next.

15. Click OK.

Reference information 227

16. Click Close, then click Close again. and wait for the job to complete.

Configuring platform configuration files

Specifying other platform configuration properties

The following system properties can be specified as with any other Java system

properties. These will control operation of the platform. Some of the properties are

not currently set and can be specified if the platform behavior needs to be

changed.

com.ibm.osg.service.deviceagent.nativeinstall.default

 Defines the target update site used by the Enterprise Management Agent

when installing updates created by the NativeAppBundle tool with a

-Eclipse=default parameter. The first configured site that ends with this

value will be the target installation site for the distributed features. This

value is case sensitive, and must end with a slash.

 Current Setting: /apps/eclipse/

 Default Setting: <none>

provisioning.configFile

Defines the path to the provisioning config file that lists the features to

install and the sites to install from.

provisioning.errorFile

Defines the file where provisioning errors will be written. The installer

uses this file to log any errors that occur during provisioning. If no errors

occurred, then this file is not created.

Updating the rcpinstall.properties file

This section describes how you can update one or more element of a user’s

WebSphere Everyplace Deployment client platform by modifying the

rcpinstall.properties file. The installer creates and populates the

rcpinstall.properties file. Users should not make changes to this file. Only ISVs

and developers should make changes to the file, however, they should not change

the installed values.

The rcpinstall.properties file resides in the same directory as the launcher,

which is <installation directory>/rcp. This file must meet all requirements of a

Java property file. Any non-ASCII characters must be escaped with \uxxxx. You

can generate these values with your favorite Unicode 16 editor and converting

with the Java program native2ascii. The rcpinstall.properties file can contain the

following properties:

Note: Unless indicated otherwise, all properties should appear only once within

the rcpinstall.properties file. If a property appears more than once, only

the first occurrence of the property is used.

 Table 46. rcpinstall.properties

Property Description

vm=<JVM executable file> REQUIRED. This must point to a JVM

executable file. The preference is javaw .

rcp.install.id=<id> REQUIRED. This is a unique id that the

installer creates for each installation.

cp=<classpath> REQUIRED. This must include

<install_directory>/eclipse/startup.jar

228 IBM WebSphere Everyplace Deployment: Developer’s Guide

Table 46. rcpinstall.properties (continued)

Property Description

Xbootclasspath.prepend=<path> Specifies the -Xbootclasspath/p:path See the

documentation for the Java application

launcher.

Xbootclasspath.append=<path> Specifies the -Xbootclasspath/a:path See the

documentation for the Java application

launcher.

-D<prop>=<value> See the documentation for the Java

application launcher. Additional System

properties may be added at the bottom of

the file.

library.path.append=<path> Modifies PATH (on Windows) or

LD_LIBRARY_PATH (on Linux)

library.path.prepend=<path> Modifies PATH (on Windows) or

LD_LIBRARY_PATH (on Linux)

application=<application plugin id> REQUIRED. This is equivalent to the eclipse

runtime property –data. You can override

this for the user and serial.multiuser

configurations by using the -data argument

on the command line.

install.configuration={serial.multiuser,

service, user}

REQUIRED. Specifies whether the

installation is a service, serial multi-user, or

a user. After a platform has been installed,

this value should not be changed.

vmarg.<name>=<value> You can provide VM specific arguments

here. The <value> is passed unaltered as a

vmarg to the JVM. The <name> is only used

as a unique identifier of the vmarg within

this file. Syntax of the argument is not

checked.

library.preload=<value> REQUIRED for Linux. This will have been

populated by the installer if needed.

An example of a typical rcpinstall.properties file might look like the following:

#Fri Jun 03 10:22:45 CDT 2005

install.configuration=user

vm=C\:/Program Files/IBM/WEDMGMT/rcp/eclipse/plugins/com.ibm.rcp.j2se.win32.

 x86_1.4.2.SR1/jre/bin/javaw.exe

library.path.append=;C\:/Program Files/IBM/WEDMGMT/rcp/eclipse/plugins/com.

 ibm.tivoli.agentext.win32.x86_1.8.0.20050601/InventoryScanner;

 C\:/Program Files/IBM/WEDMGMT/rcp/eclipse/plugins/com.ibm.db2e.win32.

 x86_8.2.1-20050601/os/win32/x86;C\:/Program Files/IBM/WEDMGMT/rcp/

 eclipse/plugins/com.ibm.mobileservices.isync.win32.x86_8.2.1-20050601/

 os/win32/x86;C\:/Program Files/IBM/WEDMGMT/rcp/eclipse/plugins/

 com.ibm.tivoli.agentext.win32.x86_1.8.0.20050601/InventoryScanner

-Dprovisioning.errorFile=C\:/Program Files/IBM/WEDMGMT/rcp/deploy/error.log

rcp.installId=1117812134309

Xbootclasspath.append=C\:/Program Files/IBM/WEDMGMT/rcp/loggerboot.jar

rcp.install.id=1117812134309

vmarg.com.ibm.jre.Xj9=-Xj9

-Dprovisioning.configFile=C\:/Program Files/IBM/WEDMGMT/rcp/deploy/

 install.propertiesapplication=com.ibm.eswe.workbench.WctWorkbenchApplication

cp=C\:/Program Files/IBM/WEDMGMT/eclipse/startup.jar

Reference information 229

-Djava.util.logging.config.class=com.ibm.rcp.core.logger.boot.LoggerConfig

-Dcom.ibm.osg.service.osgiagent.logfileloc=C\:/Program Files/IBM/WEDMGMT/rcp

-Dcom.ibm.osg.service.deviceagent.nativeinstall.default=C\:/Program Files/IBM/

 WEDMGMT/shared/eclipse

Updating the config.ini file

The config.ini file is located in the <installation

directory>/eclipse/configuration directory. The installer provides information

and values for this file that the platform needs. The remaining configuration files

are located in the .config directories. You can add a config.ini file to the .config

directory. Values in the .config/config.ini file will override the values in the

global eclipse/configuration/config.ini file.

The location of the .config directory is dependent upon the installation

configuration you chose:

If the installation configuration is service, then the location of the .configdirectory

is: <installation directory>/eclipse/.config/config.ini.

If the installation configuration is serial multiuser, then the location is:

<installation directory>/eclipse/.config/config.ini.

If the installation configuration is user, then the location is:

<user.home>/IBM/RCP/<rcp.install.id>/<user.name>/.config/config.ini.

<user.home> and <user.name> are Java system properties.

<rcp.install.id> is from the rcpinstall.properties file.

The following is a list of the properties found in the config.ini file:

osgi.framework.extensions

Extensions to the base Eclipse framework.

 Current Setting: =com.ibm.jxesupport

 Default setting: <none>

osgi.parentClassloader

The definition of the parent class loader for OSGi bundles.

 Current Setting: ext

 Default setting: boot

osgi.splashPath

 The comma separated list of URLs to search for the file named splash.bmp.

 Current Setting:

platform:/base/../rcp/eclipse/plugins/com.ibm.pvc.wct.platform,

platfomr:/base/../rcp/eclipse/plugins/com.ibm.pvc.wct.platfomr.nl1,

platfomr:/base/../rcp/eclipse/plugins/com.ibm.pvc.wct.platfomr.nl2

Default Setting: <none>

osgi.frameworkClassPath

 A comma separated list of class path entries that define the OSGi

framework implementation.

 Current Setting: core.jar, console.jar, osgi.jar, resolver.jar,

defaultAdaptor.jar, eclipseAdaptor.jar.

230 IBM WebSphere Everyplace Deployment: Developer’s Guide

Default Setting: <none>

osgi.bundles

 A comma separated list of bundles that will be installed and optionally

started once the system is up and running. For more information on the

syntax for this property, refer to the Platform Plug-in Developer’s Guide.

 Current Setting:

org.eclipse.core.runtime@2:start,

org.eclipse.update.configurator@3:start

com.ibm.pvc.wct.platform.autostart@3:start

Default Setting: <none>

osgi.bundles.defaultStartLevel

 Assigns the default start level to any bundles that do not explicitly have a

start level assigned.

 Current Setting: 4

 Default Setting: 4

eclipse.exitOnError

 Indicates whether the workbench should exit immediately if it receives a

Framework ERROR event.

 Current Setting: false

 Default Setting: true

eclipse.product

 Sets the identifier of the product being run, which identifies the branding

information associated with the workbench.

 Current Setting: com.ibm.pvc.wct.platform.WctWorkbenchProduct

 Default Setting: <none>

java.protocol.handler.pkgs

Java System property that specifies classes that will be used to handle

different URL types.

 Current Setting: com.ibm.net.ssl.www.protocol

 Default Setting: <not set>

Specifying platform branding

You can modify the user interface of the client workbench to include your own

branding. Use the instructions in this section to modify such elements as the title

bar, splash screen, icons and images, and the About dialog.

Note: In this section we indicate the changes that need to be made relative to the

installed com.ibm.pvc.wct.platform plug-in and its files. Refer to

“Distributing branding updates” on page 235 for additional considerations

on how to make these changes.

The following diagram depicts the location of various objects that you can modify

when specifying platform branding.

Reference information 231

Changing the title bar

The title bar appears at the top of the client platform and usually contains the

name of the workbench, and a small graphic.

To modify the product title bar, you modify the name attribute of the product

extension in the plugin.properties file. The plugin.properties file resides in the

following directory:

<installation

directory>/rcp/eclipse/plugins/com.ibm.pvc.wct.platform_<version_no>

The following is an example of the product extension in the plugin.properties

file. To rename the title bar, you can specify the new name in the product name

attribute:

<extension

 id="WctWorkbenchProduct"

 point="org.eclipse.core.runtime.products">

 <product

 name="%product.name"

 application ...

Changing the splash screen

When a user launches the workbench, a splash screen image is displayed. You can

replace the splash screen image with your own image. The splash screen image is a

file called splash.bmp. The splash screen must have the file extension .bmp. There

are no constraints regarding the size of the image, but for reference, the standard

Eclipse splash screen image is 500 x 300 pixels.

You can have a different splash screen for each locale that the product supports.

When the application starts, the launcher determines the locale of the machine, and

then selects the splash screen image from the appropriate language directory in the

plugins directory. For example, a splash screen for the French locale would reside

in the nl/fr directory.

Title Bar

ViewView

S
w

itc
h
e
r

B
a
r

Menu Bar

Main Data Area

Status Bar

Banner Bar

Coolbar

Figure 11. platform branding options

232 IBM WebSphere Everyplace Deployment: Developer’s Guide

To replace the splash screen image, replace the spash.bmp file that resides in the

<installation

directory>/rcp/eclipse/plugins/com.ibm.pvc.wct.platform.nl1_<version_no>

/nl//<locale> directory. If the launcher does not find a splash screen image for

your locale, then the launcher selects the default image from the <installation

directory>/rcp/eclipse/plugins/com.ibm.pvc.wct.platform_<version_no>

directory.

Changing the product images

On Windows systems, a small image is associated with the product and is

displayed in the title bar, next to the product title. You can modify this image to be

consistent with your branding.

Standard Widget Tools (SWT) allows a set of images to be associated with a shell

with the expectation that all the images in the set will have the same appearance

but be rendered at different sizes. These images are provided to the SWT shell,

which is then able to select the most appropriate one for each specific use. For

example, the smaller image (16 X 16) is used for the title and task bars while the

larger image (32 X 32) is used in the Alt-Tab application switcher.

To modify the images, replace images 16.gif, 32.gif and 48.gif files, which reside in

the <installation

directory>/rcp/eclipse/plugins/com.ibm.pvc.wct.platform.nl1_<version_no>

directory.

Changing the About dialog

To specify branding of the About dialog, you must replace the image shown in the

About Dialog box, and also the text that displays next to the image.

Changing the About dialog image:

The image shown in the About dialog is supplied by a file called about.bmp. You

can replace this file with the image you want to use, but it must be a file with a

.bmp extension.

You can have a different About dialog images for each locale that the product

supports. When a user opens the About dialog, the system detects the locale of the

machine, and then selects the About dialog image from the appropriate language

directory in the plugins directory. For example, a splash screen for the French

locale would reside in the nl/fr directory.

To replace the About dialog image, replace the about.bmp file in the <installation

directory>/rcp/eclipse/plugins/com.ibm.pvc.wct.platform.nl1_<version_no>/

nl//<locale> directory. If the system does not find a About dialog image for your

locale, then the system selects the default image from the <installation

directory>/rcp/eclipse/plugins/com.ibm.pvc.wct.platform_<version_no>

directory.

Changing the About dialog text:

The text that is displayed next to the image in the About dialog is contained in the

plugin.properties file. The plugin.properties file is locale-specific. For each

locale, you can modify the productAboutText property in the plugin.properties

file, which resides in the <installation

directory>/rcp/eclipse/plugins/com.ibm.pvc.wct.platform_<version_no>/

nl/<locale> directory. If there is no plugin.properties file for your locale, then

Reference information 233

you can modify the default plugin.properties file, which resides in the

<installation

directory>/rcp/eclipse/plugins/com.ibm.pvc.wct.platform_<version_no>

directory.

Changing the background image

The background image is the image that displays in the main data area of the

workbench when no applications are opened. You can modify the background to

display your own image.

To display your own image, replace the default_background.gif file in the

<installation

directory>/rcp/eclipse/plugins/com.ibm.pvc.wct.platform_<version_no>/

nl/<locale> directory. If there is no default_background.gif file for your locale,

then you can modify the default_background.gif file, which resides in the

<installation

directory>/rcp/eclipse/plugins/com.ibm.pvc.wct.platform_<version_no>

directory.

You can also change the image path and file name by modifying the

defaultBackgroundImage property in the plugin_customization.ini file, which

resides in the <installation

directory>/rcp/eclipse/plugins/com.ibm.pvc.wct.platform_<version_no>

directory.

To point to an image in the nl directory, you can set the value of

defaultBackgroundImage to nl/new_default_background.gif.

Changing the Switcher Bar

You can change the image that is displayed in the switcher bar to an image of your

choice. The image that you provide will need to be tiled to fill in the full area of

the switcher bar.

To display your own image, replace the switcherbar_background.gif file in the

<installation

directory>/rcp/eclipse/plugins/com.ibm.pvc.wct.platform_<version_no>/

nl/<locale> directory. If there is no switcherbar_background.gif file for your

locale, then you can modify the switcherbar_background.gif file, which resides in

the<installation

directory>/rcp/eclipse/plugins/com.ibm.pvc.wct.platform_<version_no>

directory.

You can also change the image path and file name by modifying the

switcherBarImage property in the plugin_customization.ini file, which resides in

the <installation

directory>/rcp/eclipse/plugins/com.ibm.pvc.wct.platform_<version_no>

directory.

To point to an image in the nl directory, you can set the value of switcherBarImage

to nl/new_switcherbar_background.gif.

Changing the Banner bar

The banner area resides at the top of the workbench window, directly below the

menu bar. You can customize all of the visual elements of the banner to suit your

needs. You can change the default height of the banner, or hide the banner in

environments where screen real estate are a concern.

234 IBM WebSphere Everyplace Deployment: Developer’s Guide

You modify the banner area by setting properties in the plugin_customization.ini

file, which resides in the <installation

directory>/rcp/eclipse/plugins/com.ibm.pvc.wct.platform_<version_no>

directory.

The banner area consists of an image on the right, an image on the left, and a tiled

background image. Switching between applications will change the name and

images displayed in the banner area. The system derives the application name to

use from the WctWebApplication and WctApplication extension points within each

application.

The following table lists all of the properties that you can configure for your

banner in the plugin_customization.ini file:

 Table 47. banner properties

Preference Type Default Description

bannerVisible Boolean true Determines whether or

not the banner is visible.

bannerHeight Integer 60 Determines the height of

the banner area in pixels

bannerBackgroundColor n:n:n where 0

<=n <=255

0:0:0 RGB value for the banner

background. Visible if no

bannerTileImage is

specified.

bannerTileImage string Filename of the

horizontally tiled

background image (for

example a texture).

bannerRightImage string Filename of the

right-aligned image on the

banner.

bannerLeftImage string Filename of the

left-aligned image on the

banner.

applicationTitleVisible Boolean true Determines whether the

application title is

displayed.

applicationTileXpos integer 61 x offset in pixels for the

page title (measured from

the left).

applicationTitleYpos n | centered

where n=0

5 y offset in pixels for the

page title (measured from

the left)

applicationTitleColor n:n:n where 0

<=n <=255

255:255:255 RGB value for the page

title text.

applicationTitleFontSize N 14 Size of the page title text

in points.

Distributing branding updates

While each of the changes discussed here can be made to the actual files located on

disk, you will most likely want to distribute these changes to all clients that you

are responsible for. If you want to make branding changes, it is recommended that

Reference information 235

you make the changes prior to distributing the client. The recommended approach

for making these changes is the following:

v Make a copy of the com.ibm.pvc.wct.platform plug-in, and any language

fragments of that plug-in that you require, creating a new symbolic name for the

plug-in (and updating the host plug-in for each of the fragments)

v Follow the instructions above in order to make any branding changes that you

require

v Create a feature to include your new plug-in

v Update the rcpinstall.properties file to remove the com.ibm.pvc.wct.platform

feature and replace it with your new feature.

v Provide access to the updated distribution site for your users.

Configuring the platform launcher

The options that you might want to configure are:

-console

-debug

-consoleLog

-application

-vmargs

-configuration

-data

-nosplash

-console enables your to debug and display the OSGi console. You can add

logredirector.level=INFO to the rcpinstall.properties file. These two options

work well together when you need to debug problems.

-consolelog will cause every console message to be duplicated. It is better to use

the -console option instead.

-application temporarily overrides the rcpinstall.properties file.

-configuration temporarily override the rcpinstall.properties file.

Arguments based on Java VM, Eclipse, or OSGi are passed through, except for the

following:

v The -vm property is required in the rcpinstall.properties file. When the -vm

argument is passed to the rcplauncher.exe the argument is stripped.

v If either the -console or -consoleLog argument is specified, then javaw.exe

specified in the rcpinstall.properties file will be converted to java.exe by

<launcher>.exe.

v If the platform is running as a service the -nosplash option is always active.

For a complete list of runtime options, refer to the Platform Plug-in Developer’s

Guide, installed with the Rational Software Development Platform.

To configure the platform launcher to use additional arguments, you must add the

argument to the path of the executable. To add arguments to the executable, you

modify the shortcut from the desktop icon, or if the WebSphere Everyplace

Deployment client is installed as a service, you modify the service’s image path

from the registry.

The following example modifies the WebSphere Everyplace Deployment Client that

is running as a Windows service to display a console during launch. When you

236 IBM WebSphere Everyplace Deployment: Developer’s Guide

follow this example, you enable additional debugging information and provide

access to the OSGi console. At the osgi> prompt, type ″help″ to see a list of

possible commands:

1. From the Start menu select Run.

2. In the Run dialog, type regedit. The registry is displayed.

3. Select HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/Services/

WEDMgmntService.

4. Double click on the entry named ImagePath. The Edit String dialog is

displayed.

5. Type -console at the end of the path and click OK.

6. Open the Services Control Panel.

7. Open the properties for WebSphere Everyplace Deployment Management

Service.

8. Click the Log on tab and select the Allow service to interact with desktop

option.

9. Start the service.

For Linux, you can get access to the OSGi console and additional debugging

messages using the following steps:

1. Stop the service if it is running.

2. From a command line interface, type mgmtservice -debug.

3. When finished, type exit at the osgi> prompt and the service will terminate.

OSGi

OSGi specification

One activity of the OSGi Alliance was to define a Java framework that:

v Enables multiple applications to coexist within a single JVM

v Manages the life cycle of components within the framework

v Specifies a set of required and optional services on the platform

WebSphere Everyplace Deployment is built on the Eclipse Rich Client Platform,

which includes an OSGi framework. The framework is based upon the OSGi™

Service Platform Release 3 specification with additional extensions provided by the

Eclipse 3.0.x implementation of the OSGi framework. Application developers

partition applications into services and other resources. Services and resources are

packaged into bundles, which are files that serve as the delivery unit for

applications. Bundles have manifests with special headers that enable you to share

classes and services at the package level. Within the Eclipse based platforms, all

plug-ins are OSGi bundles, so you can think of the terms plug-in and bundle as

being interchangeable.

Working with OSGi bundles

OSGi™ bundles consist of a JAR file that contains Java classes, resources, and a

manifest file. Bundles can register services for other bundles to use, use services

registered by other bundles, export Java packages for other bundles to use, and

import Java packages from other bundles.

Creating OSGi bundles

This section describes how to create an OSGi bundle. For more detailed

information about writing bundles, refer to the OSGi Service Platform Release 3

Reference information 237

Bundles: A bundle is the smallest unit of management for the Framework.

Bundles are Java Archive (JAR) files with a manifest that contains special headers.

These headers describe the bundle to the OSGi framework and list the bundle’s

dependencies, such as the packages and services required by the bundle. Bundles

can register services with the OSGi framework that other bundles can use.

The descriptive information in the manifest file differentiates bundles from other

JAR files. Non-bundle JAR files often keep very little information in the manifest

file. However, a bundle’s manifest file usually contains descriptive information,

such as the bundle’s name and version, and a list of the packages and services it

requires.

Bundle life cycle: The framework manages the life cycle of bundles. As you install

and run a bundle, it goes through various states. The possible states of a bundle

are:

v INSTALLED - the bundle has been installed, but all of the bundle’s dependencies

have not been met. The bundle requires packages that have not been exported

by any currently installed bundle.

v RESOLVED - the bundle is installed, and its dependencies have been met, but it is

not running. If a bundle is started and all of the bundle’s dependencies are met,

the bundle skips this state.

v STARTING - a temporary state that the bundle goes through while the bundle is

starting.

v ACTIVE - the bundle is running.

v STOPPING - a temporary state that the bundle goes through while the bundle is

stopping.

v UNINSTALLED - the bundle no longer exists in the framework.

Conventions for creating bundles: When you create bundles, use the following

conventions:

v Clean up objects and threads properly during your stop method. The framework

does not terminate lingering threads.

v Return promptly from BundleActivator start() and stop() methods. These

methods are invoked synchronously by the framework. Delays in returning from

these methods will affect the ability of the framework to process other bundle

actions. It is recommended that substantial activities be handed off to another

thread for processing, or be delayed until first service invocation.

v Return promptly from Framework and Bundle Listeners events. These event

methods are invoked by the framework. Delays in returning from these methods

may adversely affect performance of the framework.

v Allow for service life cycle events. The OSGi framework provides the ability to

dynamically install and remove bundles. As a result, it is possible in some

frameworks that services may not always be present. A service is only present

when the bundle that registered the service is available. See “Getting and

un-getting services from the OSGi Framework” on page 243 for conventions to

solve this problem.

Creating manifest files: Each bundle must contain either a plugin.xml or a

manifest file. The bundle’s manifest file contains data that the framework needs to

correctly install and activate the bundle.

Note: A plugin.xml may contain similar information, however, a plugin.xml also

contains extensions and extension points

238 IBM WebSphere Everyplace Deployment: Developer’s Guide

If a bundle contains only a plugin.xml, the Eclipse platform will generate a

MANIFEST.MF equivalent when the platform starts. When you specify data in a

manifest file, you must use the headers that were defined by the OSGi™

specification. You can use user-defined headers; however, the framework ignores

any headers that it does not understand. Refer to the OSGi Service Platform

Release 3 specification for more information about the OSGi Manifest file format

and syntax.

The MANIFEST.MF file is located in the META-INF directory of your bundle project.

The plugin.xml file, if present, should be under the root directory.

The following headers are defined in the OSGi Service Release 3 specification and

by the Eclipse 3.0.x extensions to the OSGi framework.

v Import-Package

Use this header to specify the names of any package that you want your bundle

to import from the runtime. If you do not specify the package your bundle

needs in this header, you may get a NoClassDefFound exception when the bundle

loads.

For information on how to edit this header, refer to “Bundle Resources page” on

page 245.

Note: You must also specify the package you want to import (using

Import-Package) in the Export-Package header of the bundle that contains

the package.

v Export-Package

Use this header to specify the name of any package that you want your bundle

to export to the runtime. If you do not specify the packages needed by other

bundles in this header, the dependent bundles may not resolve.

For information on how to edit this header, refer to “Bundle Resources page” on

page 245.

v Require-Bundle

Use this header to specify the specific bundles that provides packages you use in

your bundle. If you do not specify the bundle which provides the packages you

need, you may get a NoClassDefFound exception when the bundle loads.

For information on how to edit this header, refer to “Bundle Resources page” on

page 245.

Note: You must also specify the packages you want to access from your bundle

in the Provide-Package header of the bundle that contains the package.

v Provide-Package

Use this header to specify the names of any package that you want to provide to

other bundles. If you do not specify the packages needed by other bundles in

this header, the dependent bundles may not resolve.

For information on how to edit this header, refer to “Bundle Resources page” on

page 245

v Bundle-Activator

Use this header to specify the fully-qualified name of the BundleActivator class.

A bundle designates a special class to act as a Bundle Activator. The Framework

must instantiate this class and invoke the start and stop methods to start or stop

the bundle as needed. The bundle’s implementation of the BundleActivator

Reference information 239

Interface enables the bundle to initialize a task, such as registering services,

when the bundle starts and to perform clean-up operations when the bundle

stops.

The org.eclipse.core.runtime.Plugin class implements the

org.osgi.framework.BundleActivator interface. When creating Client Services

projects, a subclass of Plugin will be created and will become the

BundleActivator for the plug-in.

You may define your own class to implement the

org.osgi.framework.BundleActivator interface.

You can specify this header in the Class field on the Overview Page of the

Bundle Manifest Editor. For more information, refer to “Overview page” on page

244.

v Bundle-SymbolicName

The Bundle-SymbolicName manifest header can be used to identify a bundle. The

Bundle Symbolic Name and Bundle Version allow for a bundle to be uniquely

identified in the Framework. It does not replace the need for a Bundle-Name

manifest header, which provides a human readable name for a bundle.

You can specify this header in the ID field on the Overview Page of the Bundle

Manifest Editor. For more information, refer to “Overview page” on page 244.

Refer to the OSGi Service Platform Release 3 for descriptions of other bundle

headers, such as the following, which provide bundle description information:

v Bundle-Name

v Bundle-Description

v Bundle-Copyright

v Bundle-Vendor

v Bundle-Version

v Bundle-DocUrl

v Bundle-ContactAddress

v Bundle-Fragment

Packages: Bundles can use code that is defined within other bundles by declaring

the packages as imported packages in the manifest file. Although you can create a

bundle that does not rely on any classes other than the Java base packages, most

bundles import code from other bundles or the base runtime class path.

You must import any class that you use within a bundle that is not defined in the

bundle or that is not a base Java class, meaning classes within packages that begin

with java.. To import another class, include an import clause for the class’s

package in the bundle’s manifest. You can explicitly import only whole packages;

individual classes cannot be explicitly imported.

A bundle can make the classes the bundle defines available to other bundles by

exporting packages. To enable other bundles to access a particular package, include

an export clause for the package in the manifest of the bundle that contains the

package.

Understanding services

In the OSGi™ environment, bundles are built around a set of cooperating services

that are available from a shared service registry. The service interface defines the

OSGi service, which is implemented as a service object.

240 IBM WebSphere Everyplace Deployment: Developer’s Guide

Services decouple the provider from the service user. The only code a service

provider and a service user share is the service definition. You can use Java

interfaces to define services. Any class that implements this interface can provide

the service.

Bundles that use services that are not provided by the bundle can notify the

framework by including an Import-Service header in the bundle manifest.

However, this is not required. When code within a bundle requests a provider of

the service from the framework, the bundle imports the service at runtime.

A bundle that provides services can also include an Export-Service header in its

manifest. When code within a bundle makes a provider available to the

framework, the bundle exports the service at runtime.

Registering and unregistering a service with the OSGi Framework: The

framework passes a BundleContext object to your bundle when it invokes your

BundleActivator’s start method. Your bundle can use the BundleContext object to

interact with the framework by calling the methods of the BundleContext object.

One method that your bundle can call is registerService, which uses a service

object and an interface name to register a service with the framework’s service

registry.

The recommended approach for using services is to provide all interface and object

classes referred to in the service definition in a bundle separate from the service

implementation. The service implementation bundle then imports the packages

from the defining bundle, and exports no packages of its own. Therefore in a

typical service usage, there are three bundles involved – a service interface bundle,

the service implementation, and the service consumer.

In the following example, three bundles are created:

v InterfaceBundle

v ServiceImplBundle

v ServiceConsumerBundle

Interface Bundle

The InterfaceBundle exports the com.ibm.osg.example.mtservice package that

contains the com.ibm.osg.example.mtservice.MyTestService interface. The

InterfaceBundle adds an Export-Package: com.ibm.osg.example.mtservice to its

MANIFEST.MF file. Since this bundle has no initialization or startup needs, no

BundleActivator is required for this bundle. This interface defines a service than

can print a message:

package com.ibm.osg.example.mtservice;

public interface MyTestService {

 // One method is provided by the service.

 // This method will simply print

 // the message to standard out.

 public void printMessage(String message);

}

Service Implementation Bundle

The ServiceImplBundle provides an implementation of the MyTestService (Other

bundles could provide alternative implementations). The ServiceImplBundle

Reference information 241

exports no packages, but does contain an Import-Package:

com.ibm.osg.example.mtservice in its MANIFEST.MF file so that it can have access to

the MyTestService interface.

The following class provides the implementation for our service. In the following

example, a service called com.ibm.osg.example.mtservice.MyTestService registers

with the framework. This implementation of the service prints the message to the

standard output. Generally, packages containing service implementation classes

should not be exported to other bundles.

package com.ibm.osg.example.mytestservice;

public class MyTestService implements com.ibm.osg.example.mtservice.MyTestService{

 public void printMessage(String message){

 System.out.println("MyTestService - " + message);

 }

}

The following BundleActivator class registers the

com.ibm.osg.example.mtservice.MyTestService service with the framework.

package com.ibm.osg.example.mytestservice;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceRegistration;

public class MyBundleActivator implements BundleActivator {

 ServiceRegistration registration;

 /*Create a new instance of the TestService

 and then use the BundleContext object to

 register it.

Store the registration object

 to use to unregister the service when the

 bundle is

stopped by the framework.

 */

 public void start(BundleContext context)

 {

 MyTestService testservice = new MyTestService();

 if(registration == null){

 registration =

 context.registerService(

 "com.ibm.osg.example.mtservice.MyTestService",

 testservice,

 null);

 }

 }

 public void stop(BundleContext context) {

 if (registration != null){

 registration.unregister();

 }

 registration=null;

 }

}

The ServiceConsumer bundle, like the ServiceImplBundle, must contain an

Import-Package: com.ibm.osg.example.mtservice in its MANIFEST.MF file. It may

optionally contain an Import-Service:

com.ibm.osg.example.mtservice.MyTestService. This is recommended as the tools

will use this to ensure the framework has the proper prerequisites, but this is not

required. See the section “Getting and un-getting services from the OSGi

Framework” on page 243 for an example of the ServiceConsumer bundle.

242 IBM WebSphere Everyplace Deployment: Developer’s Guide

Getting and un-getting services from the OSGi Framework: Bundles register

and unregister services. Bundles that depend on services must account for the

possibility that the requested service might not be available. The service can

register or unregister with the framework at any time. You can use a

ServiceTracker to enable your bundles to query or listen for service registrations

and to react accordingly.

package com.ibm.osg.example.mygetservice;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.util.tracker.ServiceTracker;

import com.ibm.osg.example.mtservice.MyTestService;

public class MyBundleActivator

 implements BundleActivator, Runnable

{

 private boolean done=false;

 private ServiceTracker testServiceTracker;

 // Bundle Activator Start Method

 public void start(BundleContext context)

 {

 /* Here we initialize and open our ServiceTracker.

 It will track any service registering under

 the "com.ibm.osg.example.mtservice.MyTestService"

 interface.

 */

 testServiceTracker =

 new ServiceTracker(context,

 "com.ibm.osg.example.mtservice.MyTestService",

 null);

 testServiceTracker.open();

 // Here we start a thread that will continue

 // to use our service until

 // the bundle is stopped.

 Thread t = new Thread(this);

 t.setName("mygetservice thread");

 t.start();

 }

 /*Bundle Activator Stop Method -- here we stop

 the thread and close the

 ServiceTracker*/

 public void stop(BundleContext context)

 {

 done=true;

 testServiceTracker.close();

 }

 //Here is a method that uses the service

 //we are tracking. First we get

 //the service

 //from the tracker, then we call its printMessage

 //method.

 public void useService(String message){

 MyTestService testService = (MyTestService)

 testServiceTracker.getService();

 if(testService != null)

 {

 // If the service is available then use it.

Reference information 243

testService.printMessage(message);

 }

 else{

 // If the service is not available then perform an acceptable action.

 // Here we just print the message to standard out and indicate the service

 // was not available.

 System.out.println("No MyTestService available - " + message);

 }

 }

 // Simply continues to use the test service

 // every second until the done flag is set.

 public void run(){

 int i = 0;

 done = false;

 while (!done) {

 useService("message from test " + i++);

 try{

 Thread.sleep(1000);

 }

 catch(InterruptedException ie){

 }

 }

 }

}

For an example that uses ServiceTrackers and getting services, refer to the Service

Tracker example in the Samples Gallery > Technology Samples > WebSphere

Everyplace Deployment > OSGi section.

IBM WebSphere Everyplace Client toolkit

This section provides reference information for using the IBM WebSphere

Everyplace Client toolkit.

Editors

The WebSphere Everyplace Client Toolkit provides the following editors:

Bundle Manifest editor

The Bundle Manifest editor enables you to define information in the plugin.xml

and/or MANIFEST.MF file.

Bundle manifest editor extends the PDE plug-in manifest editor. For more

information on PDE plug-in manifest editor, refer to the PDE Guide.

For Client Services projects, the Bundle Manifest Editor is the default editor for

plugin.xml and META-INF/MANIFEST.MF files. The editor is opened when either of

these files are opened. If you find that the bundle specific information is missing,

close the editor, and use the Open with operation to select the Bundle Manifest

Editor.

Overview page: Bundle manifest editor’s Overview page includes all sections of

the Overview page of plug-in manifest editor, and an additional Bundle Manifest

Information section. The following table lists the information you can enter into

this section:

 Table 48. Bundle Manifest Information headers

Manifest header Description

Bundle-Category Enables bundles to be listed in different categories.

244 IBM WebSphere Everyplace Deployment: Developer’s Guide

Table 48. Bundle Manifest Information headers (continued)

Manifest header Description

Bundle-ContactAddress Represents the e-mail address of a person that a user can

contact regarding the bundle.

Bundle-Copyright Represents the copyright year for the bundle.

Bundle-Description Specifies the purpose or function of the bundle.

Bundle-DocURL Specifies a URL that contains additional information about

the bundle.

Bundle-UpdateLocation Specifies the location where an updated version of the

bundle resides.

Bundle Resources page: You can specify packages and services to import and

export. You can also specify the secondary dependencies this bundle might use.

Refer to “Packages” on page 240 for more information about packages. For more

information about secondary dependencies, refer to “Secondary Dependencies” on

page 174.

 Table 49. Bundle Resources

Bundle Resource Section Description

Export Packages Describes packages from the bundle that other bundles can

use.

Export Services Describes services that other bundles can use.

Import Packages Describes the packages that the bundle requires. Another

bundle must export these packages.

Import Services Describes the services the bundle can use.

Secondary Dependencies Describes the list of plug-ins this bundle might use.

The Bundle Resource page contains the following buttons:

v The Add button opens a dialog that lists the available choices to add for each

section.

v The Remove button removes any item that is selected in the box next to them.

v The Set Version button opens a dialog that will let you specify the version for

the import and export packages.

v The Compute button will compute any dependencies in your project’s code that

are not already included in the MANIFEST.MF. This is meant to be used if you do

not enable Search for dependencies automatically upon resource changes in the

Client Services Project Options page.

v The Up and Down buttons move bundles up and down in the list. Since

Secondary Dependencies are resolved upon the first matching bundle, the order

can be important if two bundles contain the same packages.

Wizards

The WebSphere Everyplace Client Toolkit provides a variety of wizards:

New Client Services Project Wizard

Use this wizard to create a new Client Services project. This wizard can be

accessed as follows:

1. Select File > New > Project. The new project wizard displays.

2. Expand the Client Services folder and select Client Services Project.

Reference information 245

Refer to the following tables for a description of the options and their default

values.

 Table 50. Client Services Project page

Option Description Default value

Project name Enter a name for your new Client Services

Project.

None

Project Contents You may de-select ″Use default″ and click

Browse to select a file system location for your

new Client Services Project.

The ″Use default″

option creates the

project in your

current

workspace.

Create a Java project Select this if the project will contain Java code.

Deselect this if the project will only contain

non-Java resources.

Selected to create

a Java project.

Source Folder Name Folder name for Java source files. src

Output Folder Name Folder name for Java class files. bin

This is followed by the Client Services Content page:

 Table 51. Client Services Content page

Option Description Default Value

Bundle ID This is a unique bundle symbolic name. It is

suggested that you update this from the default

value. The bundle name should be a unique

URI, following the Java package naming

conventions.

The project name

is used as the

default value.

Bundle Version The bundle version. The version is in the form

of major, minor, and micro numbers, separated

by ‘.’.

1.0.0

Bundle Name A descriptive bundle name. The default name

is constructed by

appending

“Bundle” to the

project name.

Bundle Provider A description of the bundle provider. None

Runtime Library The name of the JAR file in which the project’s

built contents will be placed.

The project name

is used as the JAR

file base name.

Generate the Java

class that controls the

bundle’s life cycle

Selecting this will generate a bundle activator

for the project. You will probably want to

override the default class name of the bundle

activator class.

Selected

246 IBM WebSphere Everyplace Deployment: Developer’s Guide

Table 51. Client Services Content page (continued)

Option Description Default Value

This bundle will

contribute to the Rich

Client Platform

Select this option if you intend for the bundle

to use Eclipse extension points to contribute to

the Rich Client Platform. Selecting this option

has the following affects:

v If selected, the generated bundle activator

class will have additional support for the

Rich Client Platform.

v It affects the default preference for

automatically managing manifest package

dependencies, on the Client Services Project

Options page. If Rich Client Platform is

selected, then the Require-Bundle preference

is set, otherwise the Import-Package

preference is set.

Selected

This is followed by the Platform Profile page:

 Table 52. Platform profile options

Option Description Default value

Platform Profile Select from the list the Platform Profile this

Client Services Project will target. You can

change your selection later in the Client

Services property page.

WebSphere

Everyplace

Deployment

(6.0.0) Default

Application Services Check the Application Services that your Client

Services Project will require. You can change

your selection later in the Client Services

property page. Grey entries are required by the

Platform Profile and cannot be un-checked.

The ″Core OSGi

Interfaces″

Application

Service is required

by all Platform

Profiles.

This is followed by the Client Services Project Options page:

 Table 53. Client Services Project Options

Option Description Default value

Search for

dependencies

automatically upon

resource changes

Select this option to enable the tools to search

for package dependencies whenever the user

modifies source files. When this option is

deselected, the tooling will not search for any

unresolved or unused dependencies in your

project.

Selected

Attempt to

automatically resolve

Manifest

dependencies

Select this option to enable the tools to

automatically manage the package dependency

information in the manifest file. Package

dependencies in your project’s Java code will

automatically be reflected through proper

updates to the manifest file. When this option

is deselected, package dependencies that are

not properly reflected in the manifest are

flagged with problem markers, along with

quick fixes to resolve the problems.

Selected

Reference information 247

Table 53. Client Services Project Options (continued)

Option Description Default value

Give preference to

Require-Bundle

Require-Bundle will be used to automatically

resolve a package dependency in cases where

either Require-Bundle or Import-Package can

be used.

Selected by

default for

projects that are

contributing to the

Rich Client

Platform.

Give preference to

Import-Package

Import-Package will be used to automatically

resolve a package dependency in cases where

either Require-Bundle or Import-Package can

be used.

Selected by

default for

projects that are

not contributing

to the Rich Client

Platform.

New Client Services Fragment Project Wizard

Use this wizard to create a new Client Services fragment project. This wizard can

be accessed as follows:

1. Select File > New > Project. The new project wizard displays.

2. Expand the Client Services folder and select Client Services Fragment Project.

Refer to the following tables for a description of the options and their default

values.

 Table 54. Client Services Fragment Project page

Option Description Default value

Project name Enter a name for your new Client Services

fragment project.

None

Project Contents You may deselect ″Use default″ and click

Browse to select a file system location for your

new Client Services Fragment Project.

The ″Use default″

option creates the

project in your

current

workspace.

Create a Java project Select this if the project will contain Java code.

Deselect this if the project will only contain

non-Java resources.

Selected to create

a Java project.

Source Folder Name Folder name for Java source files. src

Output Folder Name Folder name for Java class files. bin

This is followed by the Client Services Fragment Content page:

 Table 55. Client Services Fragment Content page

Option Description Default Value

Fragment ID This is a unique bundle symbolic name. It is

suggested that you update this from the default

value. The bundle name should be a unique

URI, following the Java package naming

conventions.

The project name

is used as the

default value.

248 IBM WebSphere Everyplace Deployment: Developer’s Guide

Table 55. Client Services Fragment Content page (continued)

Option Description Default Value

Fragment Version The fragment version. The version is in the

form of major, minor, and micro numbers,

separated by ‘.’.

1.0.0

Fragment Name A descriptive bundle name. The default name

is constructed by

appending

“Fragment” to the

project name.

Fragment Provider A description of the fragment provider. None

Runtime Library The name of the JAR file in which the project’s

built contents will be placed.

The project name

is used as the JAR

file based name.

Parent Bundle Specify the ID, version, and optional version

match rule for the parent bundle that this

fragment contributes to. You may use the

Browse button to select a parent from a dialog

of other bundles in the target platform.

None

This bundle will

contribute to the Rich

Client Platform

Select this option if you intend for the fragment

to use Eclipse extension points to contribute to

the Rich Client Platform. Selecting this option

affects the default preference for automatically

managing manifest package dependencies, on

the Client Services Project Options page. If Rich

Client Platform is selected, then the

Require-Bundle preference is set, otherwise the

Import-Package preference is set.

Selected

This is followed by the Platform Profile page:

 Table 56. Platform profile options

Option Description Default value

Platform Profile Select from the list the Platform Profile this

Client Services Project will target. You can

change your selection later in the Client

Services property page.

No default value

Application Services Check the Application Services that your Client

Services Project will require. You can change

your selection later in the Client Services

property page. Grey entries are required by the

Platform Profile and cannot be unchecked.

The ″Core OSGi

Interfaces″

Application

Service is required

by all Platform

Profiles.

Reference information 249

This is followed by the Client Services Project Options page:

 Table 57. Client Services Project Options

Option Description Default value

Search for

dependencies

automatically upon

resource changes

Select this option to enable the tools to search

for package dependencies whenever the user

modifies source files. When this option is

deselected, the tooling will not search for any

unresolved or unused dependencies in your

project.

Selected

Attempt to

automatically resolve

Manifest

dependencies

Select this option to enable the tools to

automatically manage the package dependency

information in the manifest file. Package

dependencies in your project’s Java code will

automatically be reflected through proper

updates to the manifest file. When this option

is deselected, package dependencies that are

not properly reflected in the manifest are

flagged with problem markers, along with

quick fixes to resolve the problems.

Selected

Give preference to

Require-Bundle

Require-Bundle will be used to automatically

resolve a package dependency in cases where

either Require-Bundle or Import-Package can

be used.

Selected by

default for

projects that are

contributing to the

Rich Client

Platform.

Give preference to

Import-Package

Import-Package will be used to automatically

resolve a package dependency in cases where

either Require-Bundle or Import-Package can

be used.

Selected by

default for

projects that are

not contributing

to the Rich Client

Platform.

Convert Project to Client Services Project Wizard

Use this wizard to convert a Java or Plug-in project to a Client Services project.

This wizard can be accessed as follows:

1. Select File > New > Other. The new wizard displays.

2. Expand the Client Services folder and select Convert Project to Client Services

Project.

 Table 58. Convert Existing Project Page

Option Description Default Value

Available projects Select the project to be converted. None

Update Java build

path for required

bundles

For Java projects, selecting this option will

convert the project’s Java Build Path to use the

Plug-in Dependencies class path container.

Deselecting this option will leave the Java

Build Path as is.

Selected

250 IBM WebSphere Everyplace Deployment: Developer’s Guide

This is followed by the Platform Profile page:

 Table 59. Platform profile options

Option Description Default value

Platform Profile Select from the list the Platform Profile the

Client Services Project will target. You can

change your selection later in the Client

Services property page.

No default value

Application Services Check the Application Services that your Client

Services Project will require. You can change

your selection later in the Client Services

property page. Grey entries are required by the

Platform Profile and cannot be unchecked.

The ″Core OSGi

Interfaces″

Application

Service is required

by all Platform

Profiles.

This is followed by the Client Services Project Options page:

 Table 60. Client Services Project Options

Option Description Default Value

Search for dependencies

automatically upon resource

changes

Select this option to enable

the tools to search for

package dependencies

whenever the user modifies

source files. When this

option is deselected, the

tooling will not search for

any unresolved or unused

dependencies in your project.

Selected

Attempt to automatically

resolve Manifest

dependencies

Select this option to enable

the tools to automatically

manage the package

dependency information in

the manifest file. Package

dependencies in your

project’s Java code will

automatically be reflected

through proper updates to

the manifest file. When this

option is deselected, package

dependencies that are not

properly reflected in the

manifest are flagged with

problem markers, along with

quick fixes to resolve the

problems.

Selected

Give preference to

Require-Bundle

Require-Bundle will be used

to automatically resolve a

package dependency in cases

where either Require-Bundle

or Import-Package can be

used.

Selected by default for

projects that are contributing

to the Rich Client Platform.

Reference information 251

Table 60. Client Services Project Options (continued)

Option Description Default Value

Give preference to

Import-Package

Import-Package will be used

to automatically resolve a

package dependency in cases

where either Require-Bundle

or Import-Package can be

used.

Selected by default for

projects that are not

contributing to the Rich

Client Platform.

Client Services Project Properties page

Use this properties page to update the properties of a Client Services Project. Both

platform profile selections and project options can be updated. To access this page,

right click on the project in the Package Explorer view, select Properties, and then

select Client Services.

 Table 61. Application Profile tab

Option Description Default Value

Platform Profile Select a platform profile this

Client Services project will

target.

None

Application Services Select the Application

Services that the project

requires.

The “Core OSGi Interfaces”

Application Service is

required by all Platform

Profiles.

 Table 62. Options tab

Option Description Default Value

Search for dependencies

automatically upon resource

changes

Select this option to enable

the tools to search for

package dependencies

whenever the user modifies

source files. When this

option is deselected, the

tooling will not search for

any unresolved or unused

dependencies in your project.

Selected

Attempt to automatically

resolve Manifest

dependencies

Select this option to enable

the tools to automatically

manage the package

dependency information in

the manifest file. Package

dependencies in your

project’s Java code will

automatically be reflected

through proper updates to

the manifest file. When this

option is deselected, package

dependencies that are not

properly reflected in the

manifest are flagged with

problem markers, along with

quick fixes to resolve the

problems.

Selected

252 IBM WebSphere Everyplace Deployment: Developer’s Guide

Table 62. Options tab (continued)

Option Description Default Value

Give preference to

Require-Bundle

Require-Bundle will be used

to automatically resolve a

package dependency in cases

where either Require-Bundle

or Import-Package can be

used.

Selected by default for

projects that are contributing

to the Rich Client Platform.

Give preference to

Import-Package

Import-Package will be used

to automatically resolve a

package dependency in cases

where either Require-Bundle

or Import-Package can be

used.

Selected by default for

projects that are not

contributing to the Rich

Client Platform.

Dialogs

The WebSphere Everyplace Client toolkit includes the following dialogs:

WebSphere Everyplace Deployment Runtime Launch

Configuration dialog

The WebSphere Everyplace Client toolkit supports launching a local instance of the

IBM WebSphere Everyplace Deployment runtime. This supports the ability to both

run and debug Client Services projects from your workspace. The WebSphere

Everyplace Deployment runtime launch extends the Eclipse run-time workbench

launch. It is suggested that you use the WebSphere Everyplace Deployment

launcher for running Client Services projects, since it automatically handles setting

up the proper native library environment for the WebSphere Everyplace

Deployment runtime.

Perform the following procedure to run or debug a project using the WebSphere

Everyplace Deployment runtime launch:

1. Select Run > Run... to run under the WebSphere Everyplace Deployment

runtime, or select Run > Debug... to debug under the WebSphere Everyplace

Deployment runtime.

2. Select WebSphere Everyplace Deployment under configurations, and click

New to create a new configuration.

Note: If WebSphere Everyplace Deployment runtime configurations have

already been created, you can directly select one.

3. On the arguments tab, insure that the JRE selected is the J2SE 1.4.2.

4. By default, the launcher selects all the plug-ins/application services from the

WebSphere Everyplace Deployment default platform profile. To change the

plug-ins/application services in your WebSphere Everyplace Deployment

instance, please go to the Profile tab.

5. Click either the Run or Debug button to launch the runtime.

Refer to the Running a Plug-in section of the PDE Guide for further information

on launch options.

Debugging a remote WebSphere Everyplace Deployment runtime: To debug an

IBM WebSphere Everyplace Deployment runtime that has been started through

Reference information 253

other means than the WebSphere Everyplace Deployment runtime launcher, refer

to “Remote debugging and testing” on page 159.

WebSphere Everyplace Client Toolkit Preference Dialogs

To access and set preferences for the WebSphere Everyplace Client Toolkit, select

Window > Preferences > WebSphere Everyplace Client Toolkit.

Refer to the following tables for a description of the options and their default

values of the resulting dialog screens:

Manifest Editor Preferences

 Table 63. Manifest editor preferences

Option Description Default value

Incorrect manifest syntax The syntax of the manifest header is

incorrect or invalid

Error

Unresolved bundle references The specified bundle reference does

not exist in the PDE target platform

or workspace

Error

Invalid reference values The specified reference is invalid for

the given manifest headers

Error

Invalid fragment references The specified reference is invalid in

the fragment manifest file

Warning

Required attributes not defined A required attribute for the manifest

header is missing

Error

Unknown attributes The specified attribute of the

manifest is not defined in the OSGi

specification

Warning

Unknown attribute values The attribute value defined in the

manifest is incorrect or invalid

Warning

Secondary dependencies The secondary dependency is

referenced, but is not defined in the

bundle’s manifest file

Warning

Unused references The given reference is defined but

not used in the bundle

Warning

Unknown resources The given resource cannot be

resolved

Error

Export Preferences

 Table 64. Manifest editor preferences

Option Description Default value

JAR Format The naming schema for

exporting Client Service

projects as OSGi Jar bundles

{BundleSymbolicName}_{version}

Use Advanced

PDE Export

Select this option to enable

the Advanced PDE export

that allows users to export

Client Service Web and

Embedded Transaction

Projects as plug-ins or in

features and update sites

Selected

254 IBM WebSphere Everyplace Deployment: Developer’s Guide

Advanced topics

Platform Profile and Extension Points

Creating a Platform Profile

An XML-based platform profile descriptor file describes the Platform Profile. You

can define your own Platform Profile by creating a platform profile descriptor file

and adding it to the tools through the platform profile extension point. Refer to the

com.ibm.pvc.tools.bde.profiles plug-in for platform profile examples. A schema

for platform profiles is also available in the com.ibm.pvc.tools.bde plug-in under

schema/PlatformProfile.xsd.

The following information assumes that you have knowledge of the OSGi Alliance

concepts, such as bundles and services.

You can externalize the descriptive text in the profile for internationalization. The

Platform Profile uses the same mechanism for externalizing strings as Rational

Software Development Platform uses for plugin.xml. The tools consider words

within text strings that begin with the percent character (%) to be keywords for

referencing corresponding text from a properties file. The default properties file

base name is the same as the Platform Profile base name. You can explicitly specify

the name of the properties file through the PlatformProfile elements’

PropertyFile attribute. Properties files for specific languages follow the Java

resource bundle naming conventions.

Refer to the “Platform Profile Document Type Definition” for the platform profile

format. Refer to “Platform Profile elements and attributes” on page 256 for

descriptions of the elements and attributes.

Platform Profile Document Type Definition: The following Document Type

Definition (DTD) defines the platform profile format.

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT PlatformProfile

(JCL,ApplicationService*,RequiredApplicationService*,RequiredRuntimeService*)>

<!ATTLIST PlatformProfile

 ID CDATA #REQUIRED

 Name CDATA #REQUIRED

 Provider CDATA #IMPLIED

 Description CDATA #IMPLIED

 PropertyFile CDATA #IMPLIED

>

<!ELEMENT JCL (#PCDATA)>

<!ATTLIST JCL

 Name CDATA #REQUIRED

 Type (ECLIPSE_JRE | J9_WCE | J9_WME) #REQUIRED

>

<!ELEMENT ApplicationService (Bundle*,ImportService*, DynamicImport-Package*,

 ClasspathLibrary*, BootLibrary*, NativeLibrary*)>

<!ATTLIST ApplicationService

 Name CDATA #REQUIRED

 ID CDATA #IMPLIED

 Description CDATA #IMPLIED

 Version CDATA #IMPLIED

>

<!ELEMENT RequiredApplicationService EMPTY>

<!ATTLIST RequiredApplicationService

 ID CDATA #REQUIRED

>

Reference information 255

<!ELEMENT RequiredRuntimeService EMPTY>

<!ATTLIST RequiredRuntimeService

 ID CDATA #REQUIRED

>

<!ELEMENT Bundle (#PCDATA)>

>

<!ELEMENT ImportService (#PCDATA)>

<!ELEMENT DynamicImport-Package (#PCDATA)>

<!ELEMENT ClasspathLibrary (#PCDATA)>

<!ATTLIST ClasspathLibrary

 ReferenceType (PLUGIN_RELATIVE | PLATFORM_PLUGIN_RELATIVE

 | CLASSPATH_VARIABLE | ABSOLUTE) #REQUIRED

<!ELEMENT BootLibrary (#PCDATA)>

<!ATTLIST BootLibrary

 Position (PREPEND | APPEND) #IMPLIED

 ReferenceType (PLUGIN_RELATIVE | PLATFORM_PLUGIN_RELATIVE

 | CLASSPATH_VARIABLE | ABSOLUTE) #REQUIRED

>

<!ELEMENT NativeLibrary (#PCDATA)>

<!ATTLIST NativeLibrary

 OS (Windows 2000 | Windows2000 | Win2000 | Windows XP | WindowsXP

 | WinXP | Linux) #REQUIRED

 Processor (x86) #REQUIRED

 ReferenceType (PLUGIN_RELATIVE | PLATFORM_PLUGIN_RELATIVE

 | CLASSPATH_VARIABLE | ABSOLUTE) #REQUIRED

>

Platform Profile elements and attributes: In the following descriptions,

development time refers to the development environment of a Client Services project

and runtime refers to the WebSphere Everyplace Deployment Client v6.0 runtime

environment.

PlatformProfile element

The PlatformProfile element contains the definition of a Platform Profile.

Refer to the following table for the elements in the PlatformProfile element

and their descriptions.

 Table 65. Elements in the PlatformProfile element

Element Description

JCL Defines the Java Class Library that the platform

uses.

ApplicationService Defines each Application Service provided by the

platform.

RequiredApplicationService Defines the Application Services that are required at

development time and runtime.

RequiredRuntimeService Defines the Application Services that are required at

runtime, but are not required at development time.

Refer to the following table for the attributes in the PlatformProfile element

and their descriptions.

256 IBM WebSphere Everyplace Deployment: Developer’s Guide

Table 66. Attributes in the PlatformProfile element

Attributes Description

ID Specifies a unique identification, in the format of a

Uniform Resource Locator (URL), for the platform

profile.

Name Specifies a descriptive name for the Platform Profile.

Provider Specifies the provider name.

Description Provides a text description of the Platform Profile.

PropertyFile Specifies a file name of the properties file to be used

for resource strings. This name should not include

the .properties extension. If this attribute is not

included, the default value is the base file name of

the platform profile.

DefaultProduct Specifies the id of a default Eclipse Product for the

WebSphere Everyplace Deployment Launcher

DefaultApplication Specifies the id of a default Eclipse Application for

the WebSphere Everyplace Deployment Launcher.

JCL element

The JCL element defines the Java Class Library (JCL). The WebSphere

Everyplace Client Toolkit will set this JCL in the class path of a Client

Services project that uses this platform. Client Services also uses the JCL as

a Client Services server that is configured to use this platform. The

WebSphere Everyplace Client Toolkit identifies which JCL to use based on

the value of this element and the value of the Type attribute. Refer to the

following table for the attributes in the JCL element and their descriptions.

 Table 67. Attributes in the element

Attributes Description

Name Specifies a descriptive name for the Java Class

Library.

Type Specifies the type of the Java Class Library.

WebSphere Everyplace Client Toolkit uses this

attribute and the value of the JCL element to

determine which Java Class Library to use.

Refer to the following list for valid values:

v ECLIPSE_JRE indicates that the server uses the

default Java Runtime Environment (JRE) that was

selected in the WebSphere Studio Java Properties.

If you specify this value, the value of the JCL

element is ignored.

v J9_WCE indicates that the server uses the IBM J9

Java Virtual Machine (JVM) and the Java Class

Library indicated by the value of the JCL element.

The value of the JCL element must an IBM JCL.

v Custom Environment Java Class Libraries.

v J9_WME indicates that the server uses the IBM J9

Java Virtual Machine (JVM) and the Java Class

Library indicated by the value of the JCL element.

The value of the JCL element must be one of the

WebSphere Everyplace Micro Environment Java

Class Libraries.

Reference information 257

ApplicationService element

The ApplicationService element defines an Application Service provided

by the platform. Bundle elements define the set of bundles that are

associated with the Application Service. ImportService elements define the

service import dependencies for users of this Application Service.

DynamicImport-Package elements define the dynamic import package

requirements for users of the Application Service. ClasspathLibrary

elements define class path libraries used by the Application Services.

BootLibrary elements define boot class path libraries used by the

Application Service. NativeLibrary elements define the native libraries

used by the Application Service.

 Refer to the following table for the attributes in the ApplicationService

element and their descriptions.

 Table 68. Attributes in the ApplicationService element

Attributes Description

Name Specifies a descriptive name for the Application

Service.

ID Specifies a unique identification used to refer to this

element.

Version Specifies the version of the Application Service. The

version format is major.minor.service, where major,

minor, and service are integers that represent the

version of the Application Service.

Description Provides a text description of the Application

Service.

ReferenceType attribute

Refer to the following table for a list of the ReferenceType attribute values

and their descriptions.

 Table 69. ReferenceType attribute form values and descriptions

Value Description

PLUGIN_RELATIVE Specifies a resource reference that is relative to a

plug-in in the tools configuration. The first part of

the reference path must be the plug-in ID. The

remainder of the path represents the location of the

resource within the plug-in. For example, a reference

to myLib.jar under the lib directory, within the

com.mycompany.myplugin plug-in is

com.mycompany.myplugin/lib/myLib.jar.

Note: This value is not supported for the

ReferenceType attribute for Bundle elements. It is

supported for the BootLibrary and NativeLibrary

elements.

PLATFORM_PLUGIN_RELATIVE The same as PLUGIN_RELATIVE, except the specified

resource is relative to a plug-in from the current

plug-in development target platform.

CLASSPATH_VARIABLE Specifies a resource reference that is relative to the

value of a class path variable that is defined in the

Rational Software Development Platform

environment. For example, if you defined the class

path variable MY_BUNDLES as C:/SMF/bundles, then

the reference MY_BUNDLES/myBundle.jar refers to the

file C:/SMF/bundles/myBundle.jar.

258 IBM WebSphere Everyplace Deployment: Developer’s Guide

Table 69. ReferenceType attribute form values and descriptions (continued)

Value Description

ABSOLUTE Specifies an absolute file reference to the resource.

This is an operating system specific reference, such

as C:/SMF/bundles/myBundle.jar.

Bundle element

The Bundle element value references an OSGi bundle or Eclipse plug-in.

The value of the Bundle element is the symbolic name of the bundle. The

bundle is expected to be in the current plug-in development target

platform.

ImportService element

The ImportService element specifies a service that a project using the

associated Application Service must import. The value of the

ImportService element is the service interface class. When a project selects

the Application Service associated with this element, the WebSphere

Everyplace Client Toolkit add this service to the project Manifest file under

the Import-Service header.

DynamicImport-Package element

The DynamicImport-Package element specifies a dynamic package

specification that a project using the Application Service associated with

this element must import. When a project selects the Application Service

associated with this element, the WebSphere Everyplace Client Toolkit adds

this dynamic package to the project Manifest file under the

DynamicImport-Package header.

ClasspathLibrary element

The ClasspathLibrary element references a library JAR file that is needed

on the development time and runtime class path by the Application

Service. The ReferenceType attribute of the ClasspathLibrary defines the

form of the library reference. Refer to Table 69 on page 258 for a list of the

ReferenceType attribute values and their descriptions.

BootLibrary element

The BootLibrary element references a library JAR file that is needed on the

runtime boot class path by the Application Service. The ReferenceType

attribute of the BootLibrary defines the form of the library reference. Refer

to Table 69 on page 258 for a list of the ReferenceType attribute values and

their descriptions. The Position attribute of the BootLibrary defines where

the library appears in the boot class path. Refer to the following table for a

list of the Position attribute values and their descriptions.

 Table 70. Position attribute values and descriptions

Value Description

PREPEND Specifies that the boot library should be prepended to the boot class

path.

APPEND Specifies that the boot library should be appended to the boot class

path. This is the default value if the Position attribute is not specified.

NativeLibrary element

The NativeLibrary element references a file or directory that contains

native libraries used by the Application Service. The ReferenceType

attribute of the NativeLibrary defines the form of the library reference.

Refer to Table 69 on page 258 for a list of the ReferenceType attribute

Reference information 259

values and their descriptions. The OS attribute of the NativeLibrary defines

what operating system this location is appropriate for. The Processor

attribute of the NativeLibrary defines what processor type this location is

appropriate for.

RequiredApplicationService element

The RequiredApplicationService element specifies an Application Service

that must be present at development time by a project that uses this

platform and that must be present at runtime on a WebSphere Everyplace

Deployment Client v6.0 server that runs this platform. The WebSphere

Everyplace Client Toolkit automatically include this Application Service in

the set of services that a project uses when the project selects the platform

profile. The WebSphere Everyplace Client Toolkit automatically install and

start this service on local Client Services servers that are configured to use

this platform.

 You can reference the Application Service with the ID attribute. The value

you specify for the ID attribute must match the ApplicationService

element’s ID attribute in the platform profile.

RequiredRuntimeService element

The RequiredRuntimeService element specifies an Application Service that

must be present at runtime on a WebSphere Everyplace Deployment server

that runs this platform. The WebSphere Everyplace Client Toolkit

automatically installs and starts this service on local WebSphere Everyplace

Client servers that are configured to use this platform.

 You can reference the Application Service with the ID attribute. The value

you specify for the ID attribute must match the ApplicationService

element’s ID attribute in the platform profile.

Extension points

WebSphere Everyplace Client toolkit includes the

“com.ibm.pvc.tools.bde.platformprofilerepository” extension point.

com.ibm.pvc.tools.bde.platformprofilerepository:

Platform Profile:

Identifier:

com.ibm.pvc.tools.bde.platformprofilerespository

Description:

This extension point allows a plug-in to contribute platform profiles.

Configuration markup:

<! ELEMENT RepositoryLocation (#PCDATA)>

The value of RepositoryLocation is a path to a directory, which is relative

to the directory where the plug-in resides, that contains the Platform

Profile descriptor files.

Examples:

The following example contributes Platform Profiles that reside in the

resources/profiles directory for the plug-in.

<extension point="com.ibm.pvc.tools.bde.platformprofilerepository">

 <RepositoryLocation>

 resources/profiles

 </RepositoryLocation>

</extension>

260 IBM WebSphere Everyplace Deployment: Developer’s Guide

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM might not offer the products, services, or features discussed in this document

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM might have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law: INTERNATIONAL

BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”

WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. Some states do not allow disclaimer of express or implied warranties in

certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2004 261

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Department LZKS

11400 Burnet Road

Austin, TX 78758

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

262 IBM WebSphere Everyplace Deployment: Developer’s Guide

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

You may copy, modify, and distribute these sample programs in any form without

payment to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) 2004, 2005. Portions of this code are derived from IBM

Corp. Sample Programs. © Copyright IBM Corp. 2004, 2005 All rights reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States, or other countries, or both:

EveryPlace

IBM

Rational

Rational Suite

WebSphere

Workplace

Workplace Client Technology

 Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

JavaScript™ is a trademark of Sun Microsystems, Inc. in the United States, other

countries, or both.

Linux is a trademark of Linus Torvalds.

Microsoft and Windows are trademarks of Microsoft Corporation.

Other company, product or service names may be trademarks or service marks of

others.

Appendix. Notices 263

	Contents
	Introduction
	Client platform
	Managed client services
	Access services
	Interaction services
	Platform management
	Packaging
	Components
	Fragments
	Features

	Class loading

	Application models
	Rich client application model
	Web application model
	Composite application model

	Application design considerations
	End-to-End applications
	Business logic
	Persistence
	Messaging
	Management
	Serviceability
	Interaction

	Client toolkit
	Getting started
	Samples
	Information roadmap

	Navigating and customizing the workbench
	Migrating and uninstalling
	Migrating
	Automated migration
	Manual migration

	Uninstalling WebSphere Everyplace Client Toolkit

	Developing Web applications
	Client Services Web Application Concepts
	Client Services Web projects
	Using a Client Services Web project versus a Dynamic Web project
	Creating a Client Services Web project
	Converting a Dynamic Web project to a Client Services Web project

	Client Services Web Application Development
	Unsupported tooling features
	Accessing resources
	Using JSP Standard Tag Libraries
	Java Server Faces (JSF) development
	Struts development
	Securing Web Application resources
	Configuring a Web Application
	Using the User Admin Service to create users and roles
	Using the Admin Utility for OSGi to create users and roles

	Platform integration
	com.ibm.eswe.workbench.WctWebApplication

	Importing and Exporting Web Application Bundles
	Importing a Web Application bundle
	Exporting a Web Application bundle

	WAB Utility
	WAB Utility installation
	WAB Utility usage and parameters
	WAB Utility examples
	WAB Utility parameters

	Web Container Logging
	Configuring the Web Container Logging

	Developing messaging applications
	Technology overview
	Publish and Subscribe – Topics, subscriptions and brokers
	Point-to-point – queues and queue managers

	Java Message Service
	WebSphere MQ Everyplace
	MicroBroker – Technical Preview
	MQ Telemetry Transport – Technical Preview
	WebSphere MQ Everyplace and MicroBroker comparison
	Client Services platform profile components
	Related documentation

	Developing the application user interface
	Technology overview
	Eclipse
	UI toolkits
	Visual Editor for Java

	Understanding the WebSphere Everyplace Deployment User Interface
	User interaction in the WebSphere Everyplace Deployment 6.0
	User interface organization
	Title bar
	Menu bar
	Banner bar
	Switcher bar
	Data area
	Coolbar/Toolbar
	Status bar

	Creating a simple Rich Client Platform application
	Extending the capabilities of your application
	Adding and contributing menus
	Menu contributions
	Creating a top-level menu

	Creating views
	Creating preferences
	Creating preference pages
	Preference options

	Applying Capitalization and punctuation guidelines
	Creating helpful messages
	Messages

	Customizing existing applications
	Activities
	Using activities

	Integrating existing RCP applications into WebSphere Everyplace Deployment

	Developing data access and synchronization applications
	Databases
	Embedded databases
	DB2 Everyplace and Cloudscape comparison
	Creating database access application development best practices
	Client Services platform profile components
	Deployment and synchronization
	Security considerations

	DB2 Everyplace and IBM Cloudscape Documentation

	SyncML
	Technology overview
	SyncML4J common
	SyncML4J data synchronization
	SyncML4J device management
	Client Services platform profile components

	Developing Embedded Transaction applications
	Embedded Transaction concepts
	Embedded Transaction projects
	Using a Client Services Embedded Transaction project versus an EJB project
	Creating a Client Services Embedded Transaction project
	Converting an EJB project to a Client Services Embedded Transaction project

	Embedded Transaction specific considerations
	Implementing finder methods
	Configuring and using data sources
	Creating and binding DataSource instances
	Locating and connecting to a DataSource

	Locating EJBs
	Finding EJB homes

	Conserving JDBC resources
	Working with user managed transactions
	Advanced topics

	Providing custom bundle activation
	Advanced topics

	Embedded Transaction Deployment
	Invoking deployment
	Automatic deployment when running or exporting a project
	Manual deployment through the Deploy action
	Ant script deployment
	Embedded Transaction Deployment Descriptor
	Embedded Transaction Deployment Editor

	Customizing the deployment Ant script (ejb-build.xml)
	Customizing for target data base (DB2e and Cloudscape)
	Advanced topics
	Integrated Driver required arguments

	Importing and Exporting Embedded Transaction Bundles
	Importing an Embedded Transaction Bundle
	Exporting an Embedded Transaction Bundle

	Embedded Transaction specific debugging
	Saving source for viewing during debugging
	Enabling logging and tracing with the Embedded Transaction Container

	Developing Mobile Web Services
	Mobile Web Services overview
	Technologies
	Web Services Description Language (WSDL)
	Simple Object Access Protocol (SOAP)
	JAX-RPC
	The Web Services Client Programming Model

	Tools
	Tools for Mobile Web Services development

	Creating Mobile Web Services
	Creating Mobile Web Services providers
	Creating Mobile Web Services clients
	Static Mobile Web Services clients
	Dynamic Mobile Web Services clients

	Editing Mobile Web Services
	Custom serialization (marshalling)
	MarshalFactory
	Marshal
	ClassDescriberMarshalFactory
	Examples

	Securing Mobile Web Services
	Securing Mobile Web Services providers
	Securing Mobile Web services clients
	Editing the Mobile Web Services security configuration
	Prerequisites
	Editing a Mobile Web Services security configuration for basic authentication (scenario #1)
	Editing a Mobile Web Services security configuration for basic authentication with encryption (scenario #2)
	Editing a Mobile Web Services security configuration for sign and encrypt (scenario #3)
	Editing a Mobile Web Services security configuration for encrypt and sign (scenario #6)

	Deploying Mobile Web Services
	Deploying Mobile Web Services providers
	Deploying Mobile Web Services clients

	Validating Mobile Web Services using the Web Services Gateway Utility
	Accessing the Mobile Web Services Gateway Utility
	Consuming Mobile Web Services
	Exposing Mobile Web Services providers
	Listing Mobile Web Services client OSGi bundles
	Listing Mobile Web Services provider OSGi bundles

	Creating client runtime images
	Getting started building platforms
	Setting up the target platform
	Creating a Platform Builder project
	Updating a Platform Builder project
	Building a target runtime image
	Exporting a target runtime image
	Running a target runtime image
	Platform Builder page options

	Debugging and testing applications
	Local debugging and testing
	WebSphere Everyplace Deployment Launcher
	WebSphere Everyplace Deployment Server
	Creating a server
	Editing a server
	Adding projects to a server
	Starting a server

	Remote debugging and testing
	Remote debugging using Rational Software Development Platform
	Starting from the command line

	Packaging and deploying applications
	Packaging applications for distribution
	Understanding methods of installation
	Local installation
	Enterprise installation

	Understanding the types of install artifacts
	Installer/Uninstaller
	Update site
	Features
	Plug-ins
	Native libraries
	Configuration file updates
	Installation instructions
	Enterprise distribution instructions

	Using Ant tasks to build a deployable bundle

	Deploying projects for local testing
	Exporting Client Services projects
	Exporting plug-ins from the Rational Software Development Platform

	Using the IBM WebSphere Everyplace Client Toolkit
	Getting started with the IBM WebSphere Everyplace Client Toolkit
	IBM WebSphere Everyplace Client Toolkit overview
	Supported platforms
	Roadmap of major tasks
	Setting up the WebSphere Everyplace Client Toolkit
	Creating a sample Client Services project
	Setting Manifest Editor preferences
	Turning on build automatically
	Concepts
	Client Services Project
	Bundle Manifest Editor

	Managing Client Services project dependencies
	Platform Profile
	Application Services
	Application Profile
	Secondary Dependencies
	Automatic management of manifest package dependencies
	Bundle registration job
	Advanced PDE export

	Creating and using Client Services applications
	Creating a Client Services project
	Creating a Client Services fragment project
	Converting a Java project into a Client Services project
	Setting Client Services project properties

	Using Platform Services
	Using the HTTP Service
	handleSecurity plug-in
	Configuring HTTP Service
	General configuration
	Port configuration
	Configuring the parameters using Admin Utility for OSGi
	Configuring the HTTPService for multiple ports

	Using the Log Service and Log Reader Services
	Configuring Log Service
	Configuring the parameters using Admin Utility for OSGi

	Using the Meta Type Service
	MetaData XML sample

	Using the XML parser services
	Creating help for the application
	Using logging and tracing
	Eclipse logging
	Eclipse tracing
	OSGi logging

	Enabling your plug-in for startup
	Using runtime developer tools
	Using the Platform Manager
	Installing the Platform Manager
	Configuration view

	Using Admin Utility for OSGi
	Installing the Admin Utility for OSGi
	Starting Admin Utility for OSGi
	Managing start levels
	Managing bundles
	Viewing a bundle's information
	Configuring a bundle
	Viewing registered services
	User administration
	Using the log viewer

	Using the JNDI Manager
	Installing the JNDI Manager
	Starting the JNDI Manager

	Configuring Enterprise Definitions (JNDI)
	WebSphere Everyplace Deployment JNDI overview
	Using declarative JNDI
	EJBObjectFactory
	GenericObjectFactory
	TxnDataSourceObjectFactory

	Packaging
	Extending declarative JNDI
	Life cycle Management of JNDI registry

	Globalizing your application
	Support for multiple locales
	IBM language groups
	Supporting preferred fonts and bidirectional layouts
	Creating translatable plug-ins

	Troubleshooting
	Logging
	Logging framework
	Manually adjusting the logging level
	Log file management
	Tracing

	Using the IBM Support Assistant

	Reference information
	WebSphere Everyplace Deployment top level menus
	File menu
	Application menu
	View menu
	Help menu

	Extension points reference
	Applications
	com.ibm.eswe.workbench.WctApplication

	Web applications
	com.ibm.eswe.workbench.WctWebApplication

	JNDI Binding
	com.ibm.pvc.jndi.provider.java.binding

	JNDI generic object
	com.ibm.pvc.jndi.provider.java.genericobject

	JNDI object factory
	com.ibm.pvc.jndi.provider.java.objectfactory

	WebSphere Everyplace Client Toolkit ANT task and types
	bde.exportJarBundle
	filedirectory
	buildpolicyinfo

	Managing client configurations
	Understanding the client file layout
	Configuring Java system properties
	Configuring Java VM arguments
	Configuring native library references
	Configuring Java Bootclasspath libraries
	Configuring workbench options
	Configuring the web container
	Configuring the web container to use a dynamic port
	Configuring with system properties
	Configuring with ConfigurationAdmin
	Configuring client plug-ins with the Enterprise Management Agent

	Configuring platform configuration files
	Specifying other platform configuration properties
	Updating the rcpinstall.properties file
	Updating the config.ini file

	Specifying platform branding
	Changing the title bar
	Changing the splash screen
	Changing the product images
	Changing the About dialog
	Changing the background image
	Changing the Switcher Bar
	Changing the Banner bar
	Distributing branding updates

	Configuring the platform launcher

	OSGi
	OSGi specification
	Working with OSGi bundles
	Creating OSGi bundles
	Understanding services

	IBM WebSphere Everyplace Client toolkit
	Editors
	Bundle Manifest editor

	Wizards
	New Client Services Project Wizard
	New Client Services Fragment Project Wizard
	Convert Project to Client Services Project Wizard
	Client Services Project Properties page

	Dialogs
	WebSphere Everyplace Deployment Runtime Launch Configuration dialog
	WebSphere Everyplace Client Toolkit Preference Dialogs

	Advanced topics
	Platform Profile and Extension Points
	Creating a Platform Profile
	Extension points

	Appendix. Notices
	Trademarks

