
3_1_3_Complex_Event_Processing.ppt

This presentation builds on the knowledge you have gained to allow you to understand

how the components of a WebSphere® Business Events solution can be combined to

provide a true complex event processing solution.

Page 1 of 17

3_1_3_Complex_Event_Processing.ppt

The goal of this presentation is to help you understand complex event processing.

Complex event processing is the handling of multiple related events. There are several

key points; event history has to be saved, filters relate events together and the solution

can look for both omitted events and potential future events.

Page 2 of 17

3_1_3_Complex_Event_Processing.ppt

When an event is presented to the runtime, you can issue an action as a result of that

event having arrived and being detected. This ‘one event’ to ‘one action’ mapping is useful

but by itself limited. The true power of WebSphere Business Events originates from the

idea of seeing a sequence of events and executing actions based upon the detection of

multiple events. When an event is detected, you immediately know two things; what kind

of event it was and when it occurred. The diagram illustrates a sequence of different

events arriving over a period of time.

Page 3 of 17

3_1_3_Complex_Event_Processing.ppt

When an event is detected by the runtime or when an action is generated, a record of the

event or action is written into the runtime’s history data store. This allows subsequent

determination of which events have been seen, when these occurred and what actions

have been generated.

Page 4 of 17

3_1_3_Complex_Event_Processing.ppt

Since WebSphere Business Events is now aware of the preceding history of events and

actions, the filter expressions can use and exploit this knowledge to determine filter results

based on preceding events. Remember that a filter is an expression that results in a true

or false outcome, and if true, can allow an action to be taken. Using this notion, you can

now define more interesting filters which are defined to be true if one event follows

another.

Page 5 of 17

3_1_3_Complex_Event_Processing.ppt

When a filter is created in the design tool, it asks for an operator that should be used to

calculate the result of the filter expression. One of the sets of operators available to the

filter designer is called “context operators.” by selecting one of these, the filter is instructed

to use the history of preceding events and actions in evaluating the filter expression. To

access this set of operators, click the operator box in the filter editor and from the operator

selection dialog, expand the context operators folder.

Page 6 of 17

3_1_3_Complex_Event_Processing.ppt

In the filter context operators, two distinct groups are available. One of them begins with

the name “is present”. These operators use the event that triggered the interaction set rule

and ask questions about previous occurrences of this type of event. The first of these

operators is “is present” which asks if any instance of this event has previously been seen.

Another operator is called “is present after” which asks if an instance of this event has

previously been seen after a given date or time. Another operator is called “is present

before” which asks if a previous instance of this event has been seen before a given date

or time. Finally, there is the “Is Present Within” operator which asks if an instance of this

event has previously been seen within a supplied time interval before the current event.

Page 7 of 17

3_1_3_Complex_Event_Processing.ppt

Similar to the “is present” operators, a second set of operators are also provided which

start with the text “follows”. These operators look for a preceding event which might be

different from the current event. The previous set of operators looked for a previous event

that was the same type as the current event.

The first operator in the “follows” class of operators is called “follows” and looks for a

named event having occurred any time in the past. A second operator is called “follows

after” and this looks for a named event having occurred previously after a given date or

time. The next operator is called “follows before” which looks for a named event having

occurred before some time in the past. Finally there is the operator called “follows within”

that looks for a named event having occurred within some defined interval before the

current event.

The “follows” operator can also be applied to actions.

Page 8 of 17

3_1_3_Complex_Event_Processing.ppt

An additional set of context related filter items are available as predefined functions. From

within the operand menu there is an item called “select a predefined function”. When

selected a dialog containing a list of such functions is presented. Under the context

functions folder a set of functions related to context can be selected. Each of these

functions returns the number of occurrences of an event or action within different time

periods. There are two classes of occurrence functions, one which returns the count of the

occurrences of the current event and one which returns the count of occurrences of the

named event or action. These are described in more detail shortly.

By counting of the number of occurrences of an event, interesting expressions can be

created. For example, the number of failed login attempts or the number of stock

purchases over a given period of time (assuming these were both modeled as events).

Page 9 of 17

3_1_3_Complex_Event_Processing.ppt

The first set of occurrence functions uses the current event that triggered the interaction

set as the type of event to count. There are four functions. One function counts all events

of the given type. A second function counts all events of a given type that have been seen

after a specific date and time. A third function returns the count of events of a given type

before a specific date and time. The last type of function returns the count of a given type

within an interval from when the current event was seen.

It is important to note that this set of functions do not include the current event in the

count. Even though this event is of the searched for type, the functions are exclusive of

the current event.

Page 10 of 17

3_1_3_Complex_Event_Processing.ppt

The second set of functions also counts occurrences but these functions can take a

named event or named action as a parameter and return the count. There are again four

instances of the function. The first returns the total number of the named event or action

that has been seen. The second returns the count of the named event or action seen after

a given date and time. The third function returns the count of the named event or action

seen before a given date and time. The final function returns the number of occurrences of

the event or action within a given time interval before the triggering event was seen.

Page 11 of 17

3_1_3_Complex_Event_Processing.ppt

Although the detection of the occurrence of preceding events is highly valuable, detecting

the absence of preceding events can be just as valuable. For example, the detection of a

cash payment without a preceding authorization can trigger a halt to the payment. In this

case, the missing authorization event is crucial.

Since a filter expression can be used to detect the occurrence of a preceding event and a

filter can be logically inverted with the NOT operator, this can easily be used to determine

the absence of an event. For the occurrence functions, a count of zero indicates that no

events of the given type in the given time range have been seen.

The diagram illustrates both an inverted filter and an occurrence function asking if there

were zero occurrences.

Page 12 of 17

3_1_3_Complex_Event_Processing.ppt

A simple but powerful combination of capabilities can also be used to look for the presence

or absence of future events. When defining an interaction block, a delay can be associated

with the execution of that block, after the specified event arrives. When the delay has

passed, only then are the filter expressions evaluated and possible actions executed.

Combining this interaction block capability with the complex event processing, you can

start to formulate rules that can be used to match for future event combinations. For

example, the arrival of an event, wait for a period and then ask if a second event has now

arrived. One example of this might be if an event has been generated saying that goods

have been shipped to a customer. In this case you can delay the processing of that event

for twenty eight days and then ask if a corresponding payment event has been received.

The absence of such an event might cause you to contact the customer for the expected

payment.

The diagram illustrates the delay of processing an event for three days after which a check

for a subsequent event that is expected to arrive after the first event is performed.

Page 13 of 17

3_1_3_Complex_Event_Processing.ppt

To ask if one event has happened before another event is not that useful. What you really

mean to ask is if one event that is related to the current event has happened before. For

example, think of the scenario where a change of address followed by a large account

withdrawal is an indication of a potential banking fraud. In this case you need to also

recognize that these events have to happen against the same account. Events happening

against different accounts are not important. This then tells you that there has to be

something in an event that allows you to group or relate events together. This relationship

is termed the context of the event. WebSphere Business Events allows you to configure a

context relationship.

Page 14 of 17

3_1_3_Complex_Event_Processing.ppt

A context relationship is defined with respect to an interaction set. The context relationship

allows you to select a single field from the intermediate object that is populated from the

arriving event. The value of this field is then used to relate sets of events together. For

example, if a field in an intermediate object is used for a bank account number, then

events that supply that intermediate object can be related together through the value of

the account number. Events against the same bank account will have the same value for

this intermediate object field.

To define a context relationship, right-click in the interaction set for the associated event.

From the pop-up menu, select “define context relationship.” A dialog opens which allows

you to select a field from the associated intermediate object fields. Upon completion, the

relationship is shown as an attribute in the interaction set editor.

Page 15 of 17

3_1_3_Complex_Event_Processing.ppt

In this presentation you have learned about capabilities in WebSphere Business Events

for handling multiple related events. These included the notion of event history, how filters

relate events together and how to look for both omitted events and events that might

happen in the future.

The presentation also covered the details about how to use the WebSphere Business

Events: Design tool to define filters that use operators in the filter expression for

processing related events. You also learnt how to specify context relationships in an

interaction set and how these can be used to relate events together.

Page 16 of 17

3_1_3_Complex_Event_Processing.ppt Page 17 of 17

