

© 2010 IBM Corporation

IBM WebSphere Application Server
Feature Pack for XML

Migration

This presentation will cover the migration scenarios of going from XSLT 1.0 to XSLT 2.0
and the migration scenarios from JAXP to the new XML API.

XMLFEP_Migration.ppt Page 1 of 29

© 2010 IBM Corporation 2 Migration

Table of contents

� XSLT 1.0 to XSLT 2.0

� Migration scenarios, JAXP to new API

Listed here is the agenda for this presentation.

XMLFEP_Migration.ppt Page 2 of 29

© 2010 IBM Corporation3 Migration

XSLT 1.0 to XSLT 2.0XSLT 1.0 to XSLT 2.0

Section

First, this presentation will walk through the migration from XSLT 1.0 to XSLT 2.0.

XMLFEP_Migration.ppt Page 3 of 29

Backwards compatibility mode

� The XPath 2.0 and XSLT 2.0 specifications define a backwards compatibility mode
– In XPath, this setting must be controlled by a processor specific setting because it is not

integrated into the language itself
– In XSLT, this setting is controlled by the xsl:version attribute which can be set on a per

element basis within the stylesheet
– Even in BC mode there are still some incompatibilities with 1.0, you can work around

these in your stylesheet or XPath expressions

44 Migration © 2010 IBM Corporation

It’s great to have new functions and features, but what about existing XPath 1.0 and XSLT
1.0 applications?

The XPath 2.0 and XSLT 2.0 specifications define a backwards compatibility mode that
minimizes the differences between pure 1.0 behavior and 1.0 backwards compatible
behavior. In XPath, this setting must be controlled by a processor specific setting because
it is not integrated into the language itself. In XSLT, this setting is controlled by the
xsl:version attribute which can be set on a per element basis within the stylesheet. The
xsl:use-when attribute can be used to have different behavior on different versions. Even
in BC mode there are still some incompatibilities with 1.0, you can work around these in
your stylesheet or XPath expressions.

XMLFEP_Migration.ppt Page 4 of 29

Applications

� Suggestions for migrating applications from older standards to newer standards
– Change from running on 1.0 processors to running in 1.0 backwards compatible mode

on 2.0 processors
– Look for opportunities to simplify your expressions and stylesheets in moving to 2.0 over

time

� Suggestions for new application - start with the newer 2.0 standards

55 Migration © 2010 IBM Corporation

For your applications the suggestion for migrating applications from older standards to
newer standards is to either change from running on 1.0 processors to running in 1.0
backwards compatible mode on 2.0 processors or look for opportunities to simplify your
expressions and stylesheets in moving to 2.0 over time. For a new application, go ahead
and start with the newer 2.0 standards.

XMLFEP_Migration.ppt Page 5 of 29

XSLT 1.0 to XSLT 2.0

� XSLT 2.0 is closely compatible with 1.0, but adds many new features

� As you plan an upgrade, concentrate on the old features you use and the new features that
motivate you

� There are five options that represent five purified views of upgrading

6 Migration	 © 2010 IBM Corporation

You might have heard that XSLT 2.0 is closely compatible with 1.0 and that it adds many
new features. Your 1.0 stylesheets probably uses only a fraction of the 1.0 features and
uses a smaller fraction of the 2.0 feature set. As you plan an upgrade, concentrate on the
old features you use and the new features that motivate you. This presentation follows five
options that represent views of upgrading. You will want to consider two kinds of decision
factors when you choose an option: organizational capability factors and impact factors
deriving from the 2.0 features that appeal to you.

XMLFEP_Migration.ppt	 Page 6 of 29

Option 1: Full rewrite

� You can take full advantage of 2.0 syntax and features because you are basically starting
from scratch

� You can make your code more readable by using 2.0 features

� You can make your code more straightforward because it does not involve backwards
compatibility

� The result is portable across 2.0 processors

7 Migration	 © 2010 IBM Corporation

Option one is a full re-write. If you choose this option, then it’s like starting from the
beginning. To take full advantage of XSLT 2.0 syntax and features, it is necessary to plan,
possibly change the whole design, and probably rewrite most of your stylesheet modules.
If you have a good modular structure with your current stylesheets, you might choose to
retain the structure. More generally, if you have a clean architecture for 1.0 already in
place, you might save some planning time, depending on which 2.0 features you want to
exploit.

XMLFEP_Migration.ppt	 Page 7 of 29

Option 2: Convert most to 2.0

� This option is the best approach for a gradual transition, if you eventually want to eliminate
backwards compatibility

� You can enhance modularity and reusability of your code

� You can apply locally standard tweaks or code cleanup as you go

� The result is vulnerable to mistakes in local version handling and tweaks

� It might consume more coding time on branching code for alternative versions

8 Migration	 © 2010 IBM Corporation

If a complete rewrite to 2.0 seems too drastic, then the next best option is to convert most
of your stylesheet modules to 2.0 and reuse some 1.0 modules. You can make the 1.0
islands at the level of a single template or even deeper. This option still requires some
planning, particularly about the places where you will use new 2.0 features, and
investigating the reusability of old modules in your new stylesheet structures.

XMLFEP_Migration.ppt	 Page 8 of 29

XSLT modules

� XSLT 2.0 spec introduces the term stylesheet modules to encompass the units that are
imported or included into the collective entity called the stylesheet

� If you upgrade incrementally, you can use modules to separate old XSLT code from the new
– Some modules will contain templates that are version 1.0 and some that are version 2.0

• This can cause a lot of restructuring of the stylesheet to split things out this way

9 Migration	 © 2010 IBM Corporation

XSLT 2.0 specification introduces the term stylesheet modules to encompass the units
that are imported or included into the collective entity called the stylesheet. If you upgrade
incrementally, you can use modules to separate old XSLT code from the new. Some
modules will contain templates that are version 1.0 and some that are version 2.0. This
can cause a lot of restructuring of the stylesheet to split things out this way.

XMLFEP_Migration.ppt	 Page 9 of 29

Option 3: Rewrite modules

� You can learn new features incrementally

� You can focus on performance bottlenecks

� You can apply locally standard tweaks or code cleanup as you go

� This is a patchy approach that might cause errors due to the wrong version being in effect

� It is harder to capitalize on new features that have wide impact, such as schema-awareness

� Requires knowing both versions to debug

10 Migration © 2010 IBM Corporation

If specific 2.0 features are desirable, then you can try to patch 2.0 version islands in your
1.0 stylesheet, and run it using a 2.0 processor that supports backwards compatibility. If
the processor generates unexpected results, then tweak your 1.0 modules until they work.
This option lets you capitalize on the 2.0 features you want with minimal planning or
redesign. Naturally, this works best if the new features you want are easily isolated. Some
benefits of this approach include that you can learn new features incrementally and focus
on performance bottlenecks. However, this can be a patchy approach that might cause
errors, also it requires having knowledge of both versions.

XMLFEP_Migration.ppt Page 10 of 29

Option 4: Change to 2.0 and debug from there

� You can take an incremental approach to conversion

� This might be the fastest conversion if your 1.0 stylesheet did not run afoul of the

compatibility exceptions

� You can apply locally standard tweaks or code cleanup as you go

� Without initial planning, it is harder to capitalize on new features that have wide impact, such
as schema-awareness

� It is hard to predict how long the conversion will take

11 Migration	 © 2010 IBM Corporation

If you need to change your existing 1.0 stylesheets into 2.0 stylesheets quickly, then why
not just set the stylesheet version attribute to 2.0 and see if you get the expected output
from a 2.0 processor? If that does not work, then start your debugging by back-tracking
the result of each template and tweak until it works. Tweaking might involve fixing it with
the appropriate 2.0 instruction, or (if you have the BC feature) you can just set the version
attribute to 1.0 and see what happens. Of course, this option shows much less concern for
exploiting new 2.0 features.

XMLFEP_Migration.ppt	 Page 11 of 29

Option 5: Stay at 1.0

� No work and no new processor needed

� You do not have to read six new specifications

� 1.0 processors are mature and well debugged.

� You cannot take advantage of new 2.0 features

� Turnaround time for processor bug fixing can be slower because XSLT product developers
might not invest as much in 1.0 anymore

� The old techniques in XSLT 1.0 can become more irritating over time when you know that a
readable 2.0 replacement exists

12 Migration	 © 2010 IBM Corporation

You might ask, “why switch at all when your 1.0 stylesheets work as expected?” You do
not have to learn 2.0 syntax, do not have to plan for a 2.0 stylesheet structure, and do not
have to install a 2.0 processor. This might be a viable option for you, but remember that
2.0 can do some things that a 1.0 processor cannot do, and 2.0 addresses many
shortcomings of 1.0.

XMLFEP_Migration.ppt	 Page 12 of 29

© 2010 IBM Corporation13 Migration

Migration scenarios, JAXP to new APIMigration scenarios, JAXP to new API

Section

The next few slides help with the migration from JAXP to the new XML API.

XMLFEP_Migration.ppt Page 13 of 29

Migration

� Existing JAXP XPath 1.0, XSLT 1.0 applications will continue to run on WebSphere®

Application Server V7 XML runtime

� These applications can be easily converted to the new XML runtime by
– Converting the invocation API to the XML Feature Pack API (ease of conversion

dependent on depth of JAXP usage)

– Setting the backwards compatibility flag in the API (for XPath 1.0) or the version attribute

in the stylesheet (for XSLT 1.0)
• Backwards compatibility, as defined by the specification, handles most

incompatibilities between 1.0 and 2.0

� In the long term move these XPath and XSLT applications to the 2.0 version and runtime
– Take advantage of functional enhancements and reduced complexity

14 14 Migration	 © 2010 IBM Corporation

First remember that existing JAXP XPath 1.0, XSLT 1.0 applications will continue to run
on WebSphere Application Server V7 XML runtime. Next think about converting to the
new XML runtime by converting the invocation API to the XML Feature Pack API. To
help, you can set the backwards compatibility flag in the API (for XPath 1.0) or the version
attribute in the stylesheet (for XSLT 1.0). Of course, you should in the long term move
these XPath and XSLT applications to the 2.0 version and runtime in order to take
advantage of functional enhancements and reduced complexity.

XMLFEP_Migration.ppt	 Page 14 of 29

14

Processing an XSLT stylesheet using the API

� Example below shows how to process an XSLT stylesheet and apply it to some input to
produce an instance of the javax.xml.transform.Result interface

XFactory factory = XFactory.newInstance();

XSLTExecutable style = factory.prepareXSLT(new StreamSource("style.xsl"));

style.execute(new StreamSource("input.xml"), new StreamResult(System.out));

15 Migration	 © 2010 IBM Corporation

Here is a basic example of how to process an XSLT stylesheet and apply it to some input
to produce an instance of the javax.xml.transform.Result interface.

XMLFEP_Migration.ppt	 Page 15 of 29

Processing an XPath expression using the API

� The example below demonstrates how to process an XPath expression and apply it to some
input

XFactory factory = XFactory.newInstance(); XPathExecutable pathExpr =
factory.prepareXPath("/doc/child[@id='N1378']");

// Process input from a StreamSource

XSequenceCursor result1 = pathExpr.execute(new StreamSource("input.xml"));

// Process input from a DOM node

XSequenceCursor result2 = pathExpr.execute(new DOMSource(node));

16 Migration © 2010 IBM Corporation

Here is an example that demonstrates how to process an XPath expression and apply it to
some input.

XMLFEP_Migration.ppt Page 16 of 29

Resolving URI references

� Resolve references to the XSLT document() function

� JAXP: JAXP URIResolver interface

� New API: Use XSourceResolver interface
– Resolve references to the document() function or fn:doc() function

• Set instance of XSourceResolver interface on instance of the XDynamicContext
interface

– Resolve references to stylesheets imported through xsl:import and xsl:include
declarations

• Set instance of XSourceResolver interface on instance of the XStaticContext
interface

17 Migration © 2010 IBM Corporation

If you used instances of the JAXP URIResolver interface to resolve references to the
XSLT document() function, you can now use the XSourceResolver interface to accomplish
the same thing. To resolve references to the document() function or the fn:doc() function,
you can set an instance of the XSourceResolver interface on an instance of the
XDynamicContext interface. To resolve references to stylesheets imported through
xsl:import and xsl:include declarations, you can set an instance of the XSourceResolver
interface on an instance of the XStaticContext interface.

XMLFEP_Migration.ppt Page 17 of 29

Extension functions and external functions

� Supply the implementations of extension functions that your XPath expressions might call

� JAXP: register an instance of XPathFunctionResolver interface
– XPath expressions can call extension functions you register

� New API:
– declare extension functions on an instance of the XStaticContext interface

• Specify the expected types of the arguments and the expected type of the result of
calling the function

– Register the implementations of extension functions on an instance of the

XDynamicContext interface

• XSLT stylesheet and XPath and XQuery expressions can call any extension
functions that you register

18 Migration © 2010 IBM Corporation

Using JAXP for XPath expression evaluation, you can register an instance of the
XPathFunctionResolver interface to supply the implementations of extension functions that
your XPath expressions might call. The XSLT portion of JAXP does not have an
equivalent mechanism.

With the current API, you can declare extension functions on an instance of the
XStaticContext interface. You will specify the expected types of the arguments and the
expected type of the result of calling the function, and you can register the
implementations of extension functions on an instance of the XDynamicContext interface.
Your XSLT stylesheet and XPath and XQuery expressions can call any extension
functions that you register.

XMLFEP_Migration.ppt Page 18 of 29

Stylesheet parameters and external variables

� JAXP
–	 Initial values of stylesheet parameters: Transformer.setParameter method
–	 Values of variables for XPath expressions: instance of the XPathVariableResolver

interface

� New API:
–	 Declare variables: declareVariable() methods of the XStaticContext interface

•	 For XSLT and XQuery, variables must be declared in the stylesheet or query itself and
should not be re-declared in the static context. Only for XPath do variables need to be
declared in the static context.

–	 Supply the values of stylesheet parameters, XPath variables, and XQuery external

variables through bind() methods of the XDynamicContext interface

19 Migration	 © 2010 IBM Corporation

Using JAXP, you can supply the initial values of stylesheet parameters by calling the
Transformer.setParameter method and you can supply the values of variables for XPath
expressions by supplying an instance of the XPathVariableResolver interface. Using the
API, you can declare variables using the declareVariable() methods of the XStaticContext
interface, specifying a variable name and the expected type of the variable. You can
supply the values of stylesheet parameters, XPath variables, and XQuery external
variables through one of the bind() methods of the XDynamicContext interface.

XMLFEP_Migration.ppt	 Page 19 of 29

Identity transformation

� JAXP identity transformation is a way of transforming data from one form to another
• For example, serializing a DOM tree, or producing a DOM tree from SAX events

� New API: It is possible to perform identity transformations using the new API
– Call the exportItem method on an XItemView object created from a source using the

XItemFactory

20 Migration © 2010 IBM Corporation

An operation that is frequently used in JAXP is the identity transformation. This is a way
of transforming data from one form to another for example, serializing a DOM tree, or
producing a DOM tree from SAX events. It is possible to perform identity transformations
using the new API. You need to call the exportItem method on an XItemView object
created from a source using the XItemFactory. An identity XSLTExecutable cannot be
created by preparing a null stylesheet.

XMLFEP_Migration.ppt Page 20 of 29

JAXP: Prepare-time and execution-time

� In JAXP runtime configuration information for XSLT stylesheets is supplied directly on
– the objects that are used to perform transformations
– instances of the Transformer interface
– TransformerHandler interface

� Similarly, you supply configuration information for the preparation of stylesheets and XPath
expressions directly on instances of

– TransformerFactory classes
– XPathFactory classes

� Instances of the Transformer, TransformerHandler and XPathExpression interfaces are not
thread safe

21 Migration	 © 2010 IBM Corporation

In JAXP you supply much of the runtime configuration information for XSLT stylesheets
such as the values of stylesheet parameters, URIResolvers, and so on. You supply this
information directly on the objects that are used to perform transformations – instances of
the Transformer interface and the TransformerHandler interface. Similarly, you supply
configuration information for the preparation of stylesheets and XPath expressions directly
on instances of the TransformerFactory and XPathFactory classes in JAXP. Every thread
that uses them has to synchronize access to shared instances of those objects or create
distinct copies that are specific to each thread.

XMLFEP_Migration.ppt	 Page 21 of 29

API: Prepare-time and execution-time

� New API, supply configuration information that is needed at the time a stylesheet or an
expression is prepared

– Use instance of the XStaticContext interface
– Pass as an argument to the prepare methods of the XFactory class

� Similarly, provide any configuration information that is needed to evaluate a stylesheet or
expression

– Use instance of the XDynamicContext interface
– Pass as an argument to the execute methods of the XExecutable interface and its

subinterfaces

� This separation of the configuration information into a separate object makes the API more
thread safe

22 Migration	 © 2010 IBM Corporation

With the new API, you can supply configuration information that is needed at the time a
stylesheet or an expression is prepared such as namespace bindings, the types of
external functions or variables, and so on. This information is supplied using an instance of
the XStaticContext interface. Similarly, you can provide any configuration information that
is needed to evaluate a stylesheet or expression such as the values of variables, settings
of output parameters, and so on. This information is supplied on an instance of the
XDynamicContext interface, which you can pass as an argument to the execute methods
of the XExecutable interface and its subinterfaces.

This separation of the configuration information into a separate object makes the API more
thread safe. Your application can use the same instance of the XExecutable interface on
different threads without any synchronization. This stands in contrast to JAXP, where
instances of the Transformer, TransformerHandler and XPathExpression interfaces are
not thread safe. In JAXP, every thread that uses them has to synchronize access to
shared instances of those objects or create distinct copies that are specific to each thread.

XMLFEP_Migration.ppt	 Page 22 of 29

Handling errors

� JAXP, you can supply an instance of the ErrorHandler interface to control how the processor
should respond to errors

� New API, supply an instance of the XMessageHandler interface on an instance of
– XStaticContext interface for preparation-time errors or
– XDynamicContext interface for execution-time errors

23 Migration	 © 2010 IBM Corporation

In JAXP, you can supply an instance of the ErrorHandler interface to control how the
processor should respond to errors. In the API, you can achieve this by supplying an
instance of the XMessageHandler interface on an instance of the XStaticContext interface
for preparation-time errors or the XDynamicContext interface for execution-time errors.

XMLFEP_Migration.ppt	 Page 23 of 29

© 2010 IBM Corporation24 Migration

Summary and referencesSummary and references

Section

The next section provides a summary and references

XMLFEP_Migration.ppt Page 24 of 29

Summary

� XSLT 1.0 to XSLT 2.0

� 5 choices to take for migration

� Migration scenarios, JAXP to new API

25 Migration © 2010 IBM Corporation

This presentation went through the migration scenarios migrating from XSLT 1.0 to XSLT
2.0. It also went through the migration scenarios to go from JAXP to the new XML API.

XMLFEP_Migration.ppt Page 25 of 29

References (1 of 2)

� WebSphere Application Server Feature Pack for XML
– http://www.ibm.com/software/webservers/appserv/was/featurepacks/xml/

� Infocenter
– http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v700xml&product=was-nd-mp

� Primary specifications
– http://www.w3.org/TR/xpath20/
– http://www.w3.org/TR/xslt20/
– http://www.w3.org/TR/xquery/

26 Migration © 2010 IBM Corporation

Here are some useful links.

XMLFEP_Migration.ppt Page 26 of 29

References (2 of 2)

� developerWorks® XML Zone
– http://www.ibm.com/developerworks/xml/

� Seven part article on moving to XSLT 2.0
– http://www.ibm.com/developerworks/library/x-xslt20pt1.html
– http://www.ibm.com/developerworks/library/x-xslt20pt2.html
– http://www.ibm.com/developerworks/library/x-xslt20pt3.html
– http://www.ibm.com/developerworks/library/x-xslt20pt4.html
– http://www.ibm.com/developerworks/library/x-xslt20pt5.html
– http://www.ibm.com/developerworks/library/x-xslt20pt6.html
– http://www.ibm.com/developerworks/library/x-xslt20pt7.html

27 Migration © 2010 IBM Corporation

Here are some useful links.

XMLFEP_Migration.ppt Page 27 of 29

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_XMLFEP_Migration.ppt

This module is also available in PDF format at: ../XMLFEP_Migration.pdf

28 Migration © 2010 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

XMLFEP_Migration.ppt Page 28 of 29

 Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, developerWorks, and WebSphere are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other
IBM trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2010. All rights reserved.

29 © 2010 IBM Corporation

XMLFEP_Migration.ppt Page 29 of 29

