

© 2010 IBM Corporation

IBM WebSphere Application Server
Feature Pack for XML

Feature pack for XML API

This presentation will go through the feature pack for XML APIs.

XMLFEP_API.ppt Page 1 of 44

Table of contents

� IBM XML API

� XPath examples

� XSLT examples

� XQuery examples

� User defined variables and extension functions

2 Feature pack for XML API © 2010 IBM Corporation

This presentation will start off going over the IBM XML API and then go through some
examples using the API.

XMLFEP_API.ppt Page 2 of 44

© 2010 IBM Corporation3 Feature pack for XML API

IBM XML APIIBM XML API

Section

The next slides are an overview of the IBM XML API.

XMLFEP_API.ppt Page 3 of 44

;

 /
i
d
}

/
X

/
S
S

/
X
f

/
X
/
S

X

Basic feature pack for XML API usage

//Print out the result
if (sequence != null) {
do{System.out.println(sequence.getStringValue())
}while (sequence.toNext());}

//Serialized result is available in the
ByteArrayOutputStream

/Print out the result
f (sequence != null) {
o{System.out.println(sequence.getStringValue());
while (sequence.toNext());}

//Execute the XQuery
XSequenceCursor sequence =
xquery.execute(source);

//Execute the transformation
xslTransform.execute(source, result);

/Execute the XPath
SequenceCursor sequence =
xpath.execute(source);

//Create the input source
Source source = new
StreamSource(getResourceAsStream(inputfile));

//Create the input source
Source source = new
StreamSource(getResourceAsStream(inputfile));
//Create the output source
Result result = new
StreamResult(new ByteArrayOutputStream());

/Create the input source
ource source = new
treamSource(getResourceAsStream(inputfile));

//Create XQuery executable object
XQueryExecutable xquery =
factory.prepareXQuery(queryString);

//Create an XSL transform
XSLTExecutable xslTransform
= factory.prepareXSLT(xslt);

/Create an XPath executable object
PathExecutable xpath =
actory.prepareXPath(xpathString);

//Create the factory
XFactory factory = XFactory.newInstance();
//Could be from StreamSource
String queryString = SOME_STRING;

//Create the factory
XFactory factory = XFactory.newInstance();
//Create source from file
Source xslt = new
StreamSource(getResourceAsStream(xsltfile));

/Create the factory
Factory factory = XFactory.newInstance();
/Could be from StreamSource
tring xpathString = SOME_STRING;

XQuery XSLT Path

4 Feature pack for XML API © 2010 IBM Corporation

The table here shows the consistent steps across executing XPath/XSLT/XQuery with the
XML API usage. Going through the table you first create a factory for executable objects
and context item. You then create an executable object. XPath, XSLT, and XQuery all use
the common XExecute base class. The next steps are to create a source for the
executable object, run the executable object, and then navigate and print the results.

XMLFEP_API.ppt Page 4 of 44

Factories (1 of 2)

� Used to create top level entities in API

� XFactory
– All usages of the API will start with XFactory
– Prepare executable objects
– Get instances of other factories
– Get instances of static/dynamic contexts
– Perform schema loading, set validation defaults

� XItemFactory
– Create atomic and complex items
– Create sequences from items

5 Feature pack for XML API © 2010 IBM Corporation

The XFactory class is the main factory class for creating executable objects for XPath,
XQuery, and XSLT. It is also the means for creating instances of other classes and
factories such as the XStaticContext, XDynamicContext, XItemFactory, and
XSequenceTypeFactory classes. An instance of XFactory maintains a set of registered
schemas as well and can be validating or non-validating. An XFactory instance can be
created by calling the static newInstance() method on the XFactory class. The instance is
thread safe as long as the settings remain stable.

You can use XItemFactory to create new items and sequences of items of different types.
This factory can be used to create items and sequences from Java™ objects and
primitives. Many of the methods in the API accept Java objects and primitives directly
(such as the bind methods in XDynamicContext for binding variable values), however, if a
heterogeneous sequence is required this factory can be used to create it by first creating
the individual items using the item method and then using the sequence method that takes
an array of items.

XMLFEP_API.ppt Page 5 of 44

Factories (2 of 2)

� XSequenceTypeFactory
– Create sequence types to represent types and cardinality of sequence items

� XCompilationFactory
– Compile XML artifacts and load (from pre-compiled classes) compiled artifacts
– Used with XCompilationParameters

6 Feature pack for XML API © 2010 IBM Corporation

XSequenceTypeFactory is used for creating sequence types. The sequence type factory
associated with an XFactory instance can be obtained by calling the
getSequenceTypeFactory method on the XFactory instance.

XCompiliationFactory for compiling expressions, queries and stylesheets into Java
classes. Load methods are provided for loading the compiled Java classes and
instantiating the executable object. Compiling the expression, query or stylesheet ahead of
time means that the cost of preparation can be avoided during the application runtime. The
getCompilationFactory method on XFactory can be used to get an XCompilationFactory
instance. XCompiliationFactory is used with XCompilationParameters, which is an
interface for compilation parameter settings that is used when generating precompiled
Java classes for an expression, query or stylesheet and when loading precompiled
classes using the XCompilationFactory compile and load methods. New compilation
parameters objects can be created through the XCompilationFactory
newOutputParameters method.

XMLFEP_API.ppt Page 6 of 44

Executable objects (1 of 2)

� Used to execute XML expressions and programs

� XExecutable
– Base class of all other executable objects
– execute returning XSequenceCursor
– executeToList returning List<XItemView>
– Thread-safe (re-usable across threads)

7 Feature pack for XML API © 2010 IBM Corporation

XExecutable is the base executable class. It provides common execute methods.
Parameters to the execute methods include either a JAXP Source object or an XItemView
object for the initial context item. Valid Source types are StreamSource, SAXSource,
DOMSource, and StAXSource. XExecutable also can include an XDynamicContext object
containing the execution-time settings. If none is provided the default settings are used.

The return value is an XSequenceCursor which is a cursor view of the resulting sequence
of items. A List of XItemView return type is also provided for random access. If the result is
the empty sequence and the return type is XSequenceCursor then the value is null. If the
result is empty and the return type is List then the value is an empty list. Note that
XSequenceCursor implements XItemView allowing the result of one execution to be
passed in as the context item for another.

All XExecutable objects are thread safe.

XMLFEP_API.ppt Page 7 of 44

Executable objects (2 of 2)

� XPathExecutable
– XPath 2.0 (or 1.0 BC Mode) Expression

� XSLTExecutable
– XSLT 2.0 (or 1.0 BC Mode) Stylesheet
– Extends XExecutable to add Result output

� XQueryExecutable
– XQuery 1.0 Expression
– Extends XExecutable to add Result output

8 Feature pack for XML API © 2010 IBM Corporation

XPathExecutable extends XExecutable and represents a prepared XPath expression. All
XPathExecutable objects are thread safe. This interface is intentionally empty and you
should refer to the XExecutable for available methods.

XSLTExecutable extends XExecutable and represents a prepared XSLT stylesheet. The
parameters to the execute method is the same as XExecutable. With an XSLTExecutable
you need to pass in an JAXP Result object to serialize the result to. Valid Result types are
StreamResult, SAXResult, DOMResult, and StAXResult. All XSLTExecutable objects are
thread safe.

XQueryExecutable extends XExecutable and represents a prepared XQuery expression.
The parameters to the execute method is the same as XExecutable. You can pass in a
result object to serialize the result to. Valid Result types are StreamResult, SAXResult,
DOMResult, and StAXResult. All XQueryExecutable objects are thread safe.

XMLFEP_API.ppt Page 8 of 44

Static context

� Static context defines items needed to compile executable objects
– Things that do not change across invocations
– Applied to the prepare methods (XFactory.prepare*)

� XStaticContext
– Declare user defined functions, namespaces, variables
– Set compilation mode (compiler or interpreter)
– Set 2.0 mode or 1.0 backwards compatibility mode for XPath
– Setting of user implemented XMessageHandler and XSourceResolver (for import/include)
– Set input base URI, math modes, and so on

9 Feature pack for XML API © 2010 IBM Corporation

XStaticContext is used to override prepare time settings. These are settings used when
preparing an expression, query or stylesheet. The XFactory class has the method
newStaticContext for creating new instances of XStaticContext. Prepare time settings
such as whether to use the interpreter or the compiler, the integer math mode to use, the
names and types of external variables and functions, backwards compatibility mode for
XPath and so on, are built directly into the executable object and cannot be changed at
execution time. Execution-time settings, alternatively, such as the values of external
variables and parameters, and the implementation of external functions are set using the
XDynamicContext and can be different for each execution.

The following are examples of methods on XStaticContext used for setting prepare-time
characteristics are.

The setUseCompiler method is used to set if the executable object is compiled or
interpreted. The declareVariable method is used to declare variables. The type of variable
affects how the expression, query, or stylesheet gets compiled and therefore is a prepare-
time characteristic. Alternatively, binding the value of a variable is an execution-time
characteristic, and the value can be different for each execution. The setSourceResolver
method registered at prepare time is used to resolve includes and imports. A source
resolver can also be registered at execution time, but it is used for a different purpose.

XMLFEP_API.ppt Page 9 of 44

Dynamic context

� Dynamic context defines items that are unique to each invocation of an executable object
– Things that do typically change across invocations

� XDynamicContext
– Bind user defined function and variables
– Setting of user implemented XMessageHandler, XSourceResolver, and XResultResolver
– Set output base URI, timezone, features, and so on
– Set XSLT initial mode and template

10 Feature pack for XML API © 2010 IBM Corporation

XDynamicContext is used to override execution-time settings. These are settings used
when executing a prepared expression, query or stylesheet. The XFactory class has the
method newDynamicContext for creating new instances. Execution time settings such as
the values of external variables and resolvers for source, collections and results can be
different for each call to the execute methods on an executable object.

Examples of execution-time settings: Bind values to external variables (XPath and
XQuery) or parameters (XSLT), Bind an external function implementation, Set source,
collection and result resolvers, and Bind a Collator or a Locale to a collation URI.

Settings in XDynamicContext map to settings in the XPath, XQuery and XSLT dynamic
context as defined in the specifications:

Examples of methods on XDynamicContext used for setting execution-time characteristics
include bind methods used to supply a value for a variable. The value can be different for
each execution.

The setSourceResolver method registered at execution time is used to resolve input
documents loaded with the XPath fn:doc function or the XSLT fn:document function.

The setXSLTInitialTemplate method identifies the initial template to invoke for an XSL
transformation.

XMLFEP_API.ppt Page 10 of 44

Resolvers (1 of 2)

� Used to resolve input stylesheets, input documents and output documents

� XSourceResolver
– Under static context - used to resolve imported and included stylesheets
– Under dynamic context -used to resolve dynamically resolved input documents (ex.

fn:doc)

� XResultResolver
– Under dynamic context –used to resolve dynamically resolved output documents (ex.

xsl:result-document)

� XCollectionResolver
– Used at runtime by collection() function to retrieve a collection of nodes from arbitrary

sources

11 Feature pack for XML API © 2010 IBM Corporation

Resolvers are used to resolve input stylesheets, input documents, and output documents.

The XSourceResolver is used to override the default source document resolution behavior. Register with
the static context to resolve imports and includes. Register with the dynamic context to resolve documents
loaded using the XPath fn:doc function and the XSLT document function. The default source resolution
behavior for imports and includes is to use the base URI of the expression, query, or stylesheet to resolve
relative URIs. If the base URI is not available, the current working directory is used. Absolute URIs are used
unchanged. The default source resolution behavior for documents loaded using the XPath fn:doc function is
to resolve relative URIs based on the base URI from the static context. If the base URI is not available, the
current working directory is used. Absolute URIs are used unchanged.

The default source resolution behavior for documents loaded using the XSLT document function is described
in the XSLT 2.0 specification. If no base URI is available, the current working directory is used.

XResultResolver is used to override the default resolution behavior for the URI reference in XSLT
xsl:result-document instructions. Resolution depends on the URI reference from the xsl:result-document
instruction and the base output URI. The base output URI can be set in the XDynamicContext using the
setBaseOutputURI method. If it is not set then the base URI of the main result document (as passed in to
one of the execute methods on the executable object) is used. If this is not available then the current working
directory is used. The default resolution behavior is to use the base output URI to resolve result documents if
the URI reference is relative. Absolute URIs are used unchanged.

Supported Result types are StreamResult, SAXResult, DOMResult, StAXResult, and
XSequenceCursorResult.

XCollectionResolver is used to resolve the URI provided on a call to fn:collection to a sequence of nodes. If
no collection resolver is registered with the XDynamicContext then calls to fn:collection will result in a
recoverable error and the empty sequence is used for the collection.

XMLFEP_API.ppt Page 11 of 44

Resolvers (2 of 2)

� XSchemaResolver
– Used at runtime to resolve user provided schema documents
– Can be set on the XFactory to resolve imports and includes
– There are really three places where the schema resolver is used:

• For schemas imported into an xml document using the xsi:schemaLocation directive
• For schemas imported into another schema
• For schemas imported into a stylesheet using xsl:import-schema

� XUnparsedTextResolver
– Used at runtime to resolve user provided textual resources
– Used for the XSLT 2.0 unparsed-text function

12 Feature pack for XML API © 2010 IBM Corporation

XSchemaResolver is used to override the default schema resolution behavior.
Implementations should be registered with the XFactory and are used to resolve imports
for schemas that are registered with the XFactory using the registerSchema method as
well schemas that are imported in XSLT using the xsl:import-schema declaration. The
default behavior for resolving imports within a schema is to use the base URI of the
schema to resolve the imported schema's location. The default behavior for XSLT schema
imports is to use the base URI of the xsl:import-schema declaration to resolve the location
specified in the declaration.

XUnparsedTextResolver is used to override the default unparsed text resolution
behavior. Register with the dynamic context to resolve resources loaded using the XSLT
unparsed-text function.

The default unparsed text resolution behavior for resources loaded using the XSLT
unparsed-text function is to resolve relative URIs based on the base URI from the static
context. If the base URI is not available, the current working directory is used. Absolute
URIs are used unchanged.

XMLFEP_API.ppt Page 12 of 44

Compiler and interpreter

� You can use either the compiler or the interpreter for preparing and executing an XQuery
expression, XPath expression, or XSLT stylesheet

– setUseCompiler(true) method on the XStaticContext to use the compiler
– setUseCompiler(false) method to use the interpreter (default)

� Expressions, queries, and stylesheets can also be prepared ahead of time (precompiled
using the XCompilationFactory)

� It takes longer to prepare a compiled executable object than an interpreted executable
object, but a compiled executable object generally runs faster

13 Feature pack for XML API	 © 2010 IBM Corporation

You can use either the compiler and the interpreter for preparing and executing an XQuery
expression, XPath expression, or XSLT stylesheet. Choosing which one to use is very
application specific and depends on several factors. Use the setUseCompiler(true) method
on the XStaticContext to use the compiler, and use the setUseCompiler(false) method to
use the interpreter. The default is to use the interpreter for preparing an XQuery
expression, XPath expression, or XSLT stylesheet.

Expressions, queries, and stylesheets can also be prepared ahead of time (precompiled).
This is the most efficient option because the preparation is done ahead of time instead of
during the application run time, but precompiling might not be applicable to all applications.
Remember that it takes longer to prepare a compiled executable object than an interpreted
executable object, but a compiled executable object generally runs faster; therefore, there
is a trade off between the cost of preparing a compiled executable object and the
improved execution-time efficiency.

XMLFEP_API.ppt	 Page 13 of 44

© 2010 IBM Corporation 14 Feature pack for XML API

Data views and cursors

� Used for navigating (cursors) and viewing (views) data

XNodeView

XItemView

XTreeCursor XSequenceCursor

getTreeCursor

Data views are used to view data and cursors are used to navigate data. The next few
slides will talk about the available data views and cursors included in the XML API.

XMLFEP_API.ppt Page 14 of 44

Data views

� Views
– XNodeView

• View of a node or an item with complex type
• Get node kinds, provides enumeration of kinds
• Get an XTreeCursor for the node

– XNodeView.Kind
• Enumeration of node kinds, values are the same as those defined by DOM

– XItemView
• View of an item with access methods for atomic types

15 Feature pack for XML API © 2010 IBM Corporation

XNodeView represents a node in the data model (an item with complex type). An object
of type XNodeView should never occur, rather XItemView extends XNodeView so that
items of complex type can be examined as nodes. The isAtomic method should be called
on an XItemView object before any of the XNodeView methods are called as they are not
valid for atomic items. If an XNodeView method is invoked on an atomic item, an
XViewException is thrown.

XNodeView.Kind is an Enumeration of node kinds. Values are the same as those defined
by DOM.

XItemView extends XNodeView and represents an item in the data model. You can
access each item in a sequence using the methods on the XItemView interface. You can
use the XItemView.isAtomic() method to determine whether the item is an atomic value or
a node. If the item is an atomic value, you can use the getValueType() method on the
XItemView interface. This method returns an instance of the enumerated type
XTypeConstants.Type. If the atomic value is an instance of a built-in atomic type or a
user-defined type derived from a built-in atomic type, the result of the getValueType()
method is the enumerated value corresponding to that type. For an atomic value that can
be of a user-defined derived type, you also might find it handy to use the
XItemView.getValueTypeName() method to determine the precise type of the value.

Given the type of an atomic value, you then can use the appropriate method to get the
value.

The XItemView interface also extends the XNodeView interface, so if the result of calling
the XItemView.isAtomic() method is false – that is, the item is a node – you can use the
methods inherited from the XNodeView interface to access information about the node.
The XNodeView.getNodeQName() method will return the name of the node and the
XNodeView.getKind() method will return a value of the enumerated type XNodeView.Kind
indicating what sort of node the item is: XNodeView.DOCUMENT, XNodeView.ELEMENT,
and so on.

XMLFEP_API.ppt Page 15 of 44

Cursors

� XSequenceCursor
– Cursor for navigating returned sequences, returning current item
– Can export/serialize from cursor

� XTreeCursor
� Cursor for navigating returned nodes and contained attributes/namespaces, children,

siblings, parent, the root

16 Feature pack for XML API	 © 2010 IBM Corporation

XSequenceCursor extends XItemView and represents a sequence of items providing
cursor access to the items. Cursor traversal can be achieved through the toNext and
toPrevious methods. When either of these methods is used the cursor will change state as
it will now be pointing to a different item in the sequence. This means that other references
to the same XSequenceCursor object will also now be pointing to the next or previous
item. XSequenceCursor implements XItemView so that each item can be examined as the
cursor is traversed. XItemView in turn implements XNodeView so that items of complex
type can be examined as well. Note that null is used to represent an empty sequence so
an XSequenceCursor will always contain at least one item.

At any given time, an instance of the XSequenceCursor interface is positioned to give you
access to one of the items in a sequence. It is positioned initially at the first item in the
sequence; and you can move forward or backward in the sequence, one item at a time,
using the toNext() or toPrevious() methods. If the toNext() method or toPrevious() method
is able to position the XSequenceCursor instance to the next or previous item in the
sequence—that is, if there actually is a next or previous item—the method returns true. If
the XSequenceCursor instance is already positioned at the last item in the case of the
toNext() method or the first item in the case of the toPrevious() method, the method
returns false and the instance of the XSequenceCursor interface remains positioned at the
same item as before the call.

XTreeCursor extends XItemView and represents a node providing cursor access to the
attributes and children of the node. Traversal of the tree is achieved through the various
"to" methods. When any of these methods is used the cursor will change state as it will
now be pointing to a different node in the tree. This means that other references to the
same XTreeCursor object will also now be pointing to the new node.

An XTreeCursor can be obtained by using the XNodeView getTreeCursor interface.
XTreeCursor implements XItemView which in turn implements XNodeView allowing each
to be examined as the cursor is traversed. The XItemView interface provides access to the
schema type and typed value of a node. The XNodeView interface provides access to the
node name, node kind, and so on.
XMLFEP_API.ppt Page 16 of 44 The following are some examples:

To view Attributes of an Element - First use the toFirstAttribute method to move the cursor

Non-cursor ways to get data

� Simplifies programming experience, but incurs possible performance penalties
– XExecutable.executeToList (instead of XSequenceCursor)

• Performance penalties when result sequences are lengthy or deeply complex
– XNodeView.getDOMNode (instead of XTreeCursor)

• Performance penalties when backing source is not DOM

17 Feature pack for XML API © 2010 IBM Corporation

There are non-cursor ways to get data. The executeToList method returns the sequence
as an instance of the java.util.List<XItemView> interface, where each item in the sequence
that results from evaluating the XPath expression is represented in the list as an instance
of the XItemView interface. The entries in that list are in the same order as in the
sequence that resulted from evaluating the XPath expression.

XNodeView.getDOMNode is a non-curor way to get a DOM Node for an item, it can be
used instead of XTreeCursor. This can have some performance penalties when the
backing source is not DOM.

XMLFEP_API.ppt Page 17 of 44

XMessageHandler

� Implement this class to override the default error and message handling behavior

� Set message handler on the XFactory instance, but it is recommended to create and set in
Static and Dynamic Context

– Message handlers set on the XStaticContext or XDynamicContext will take precedence
over a message handler set on the XFactory

� Message handlers are also used for:
– The XSLT xsl:message instruction
– The XPath fn:error function
– The XPath fn:trace function

� At execution time the source location of an error is generally not available
– Use the xsl:message instruction or the fn:trace function to help locate errors at runtime

18 Feature pack for XML API	 © 2010 IBM Corporation

XMessageHandler class is used to override the default error and message handling
behavior. The default behavior is to print the message to System.err and to also create an
XProcessException for unrecoverable errors. The default behavior can be overridden in
general by setting the message handler on the XFactory instance. This will affect errors
and messages that occur while processing schemas (XFactory.registerSchema),
processing source files (XItemFactory.item(Source)) and for errors and messages that
occur when preparing or executing expressions, queries or stylesheets (XFactory.prepare,
XExecutable.execute). The message handling behavior can also be overridden for
individual prepare invocations by setting the message handler on the XStaticContext and
for individual execute invocations by setting the message handler on the
XDynamicContext. Message handlers set on the XStaticContext or XDynamicContext will
take precedence over a message handler set on the XFactory.

You do not have to register a message handler as all messages will go to System.err, but
say you want to register a message handler so that you have a chance of changing how a
message is handled. For example, warnings are printed to System.err and the processor
tries to continue, however, you want to stop processing when there is a warning.

XMLFEP_API.ppt	 Page 18 of 44

Messages

� XMessageHandler.MsgType
– Enumerator of message error levels

– INFO - Indicates an informational message

– WARNING - Indicates a warning message

– ERROR - Indicates an error message

– FATAL_ERROR - Indicates a unrecoverable error message

– TRACE - Indicates that the message was generated by a call to the XPath fn:trace
function

� XSourceLocation
– Reported as part of the XMessageHandler
– Gives public id, columns and lines pointing to the location in expression or stylesheet

19 Feature pack for XML API © 2010 IBM Corporation

XMessageHandler.MsgType returns an enumerator of message error levels.

INFO - Indicates an informational message. These messages are informational and will
not affect the result. This is also the message type that is used for the XSLT xsl:message
instruction when the terminate attribute evaluates to "no".

WARNING - Indicates a warning message. The processor will recover from a warning
situation but the output can not be what was expected. For example if the value of the
xsl:sort data-type attribute is unsupported, a warning is issued and the data-type attribute
is ignored.

ERROR - Indicates an error message. The processor can recover from the error for the
purpose of signaling additional errors but no result is produced.

FATAL_ERROR - Indicates a unrecoverable error message. The processor cannot
recover from these errors and no result is produced. This is also the message type that is
used for the XSLT xsl:message instruction when the terminate attribute evaluates to "yes".

TRACE - Indicates that the message was generated by a call to the XPath fn:trace
function.

XSourceLocation represents a location in a document. It is passed to the
XMessageHandler report method to indicate the location of the error or message.

XMLFEP_API.ppt Page 19 of 44

Common exceptions

� XProcessException
– Fatal error when preparing an expression or stylesheet due to errors in the input
– May be thrown at execution time as well when there is an error such as a divide by 0 that

cannot be caught at prepare time
– Use the error to understand what to correct in your expression or stylesheet

� XViewException
– Covers any exception relating to views

• including conversion problems (ex. trying to get a date from a boolean)
• calling an XNodeView method on an atomic item
• calling XNodeView.relativePosition for nodes that are not in the same document

– Can be avoided by calling getValueType first

20 Feature pack for XML API © 2010 IBM Corporation

XProcessException extends RuntimeException and is the base exception for XML
processing. This exception is thrown when the processor finds a non-recoverable error
when preparing or executing an expression, query, or stylesheet as described in the
specifications for each language. If there are multiple errors at prepare time, the processor
attempts to report all of the errors and only creates an XProcessException at the end of
preparation or if it reaches a point where it cannot continue. At execution time, however,
the first error results in an XProcessException and the end of execution.

In general, XProcessExceptions should not occur if the expression, query, or stylesheet is
syntactically and semantically valid and valid for the types of input documents that it is
meant to process.

An XProcessException is also thrown for an XSLT message instruction where the
terminate attribute evaluates to "yes." This is the default behavior for handling processing
errors and other messages. Applications can register an implementation of the
XMessageHandler interface on the XFactory or at prepare time or execution time to
modify the default behavior.

XViewException extends RuntimeException and occurs when there is a View exception.
This exception is raised for incorrect use of the API such as calling one of the XNodeView
methods on an item that is atomic. An XViewException is thrown when there are
conversion problems (for example, trying to get a date from a boolean), calling an
XNodeView method on an atomic item, and calling XNodeView.relativePosition for nodes
that are not in the same document.

XMLFEP_API.ppt Page 20 of 44

XSequenceType

� XSequenceType
– Sequence types returned by XSequenceFactory used in declaring functions and variables

� XSequenceType.Kind
– Enumeration for the kind of sequence as defined in the specificication

– Each maps to one of the methods in XSequenceTypeFactory

• ITEM is the kind for a sequence type created with the XSequenceTypeFactory.item method

• ELEMENT is the kind for a sequence type created with the XSequenceTypeFactory.element
method, and so on

� XSequenceType.OccurrenceIndicator
– Enumeration of occurrence indicators

– Represents the cardinality of the sequence:

• ZERO_OR_ONE corresponds to "?"

• ZERO_OR_MORE to "*",

• ONE_OR_MORE to "+"

• ONE to represents sequences of exactly one item

21 Feature pack for XML API © 2010 IBM Corporation

In the XML API, sequence types are represented using XSequenceType objects.
XSequenceType objects can represent the same set of sequence types as the
SequenceType syntax defined in XPath 2.0. XSequenceType objects are created through
the XSequenceTypeFactory interface. XSequenceTypeFactory has several methods for
creating XSequenceType instances.

The XSequenceType interface represents a sequence type. To examine the type, a user
should first call the getKind method. The other accessor methods can be applicable
depending on the Kind of the sequence type. XSequenceType.Kind is an enumeration for
the kind of sequence as defined in the SequenceType syntax. Each maps to one of the
methods in XSequenceTypeFactory. ITEM is the kind for a sequence type created with the
XSequenceTypeFactory.item method, ELEMENT is the kind for a sequence type created
with the XSequenceTypeFactory.element method, and so on.

Each method on the XSequenceTypeFactory interface has an
XSequenceType.OccurrenceIndicator parameter except for emptySequence().
OccurrenceIndicator is an enum that represents the cardinality of the sequence;
ZERO_OR_ONE corresponds to "?" in SequenceType syntax, ZERO_OR_MORE to "*",
ONE_OR_MORE to "+", and ONE to no occurrence indicator for sequences of exactly one
item.

XMLFEP_API.ppt Page 21 of 44

Miscellaneous

� XTypeConstants
– QName and enum constants for “built-in” types

� XTypeConstants.Type

– Enumerator of built-in types

• COMPLEX is used for all non-atomic types

� XSequenceCursorResult
– A JAXP result that can then be navigated using XSequenceCursor, typically returned

from XResultResolver

� XItemSource
– A way to provide XItemViews as sources to be used as input data, typically useful when

using an XSourceResolver

22 Feature pack for XML API © 2010 IBM Corporation

XTypeConstants represents predefined constants for the built-in types including Integer
values for the built-in types. The XValueView.getValueType method will return one of
these types or -1 for a user defined type. XTypeConstants can be used when declaring
variables and functions on the XStaticContext.

XTypeConstants.Type represents an enumerator of built-in types. COMPLEX is used for
all non-atomic types.

XSequenceCursorResult is an implementation of result for XSequenceCursor. It can be
used by implementations of XResultResolver to allow for XSequenceCursor results. This
result can be navigated using XSequenceCursor, and is typically returned from
XResultResolver.

XItemSource is an implementation of Source for XItemView objects. This allows results
from a previous expression, query or transformation to be used where a Source object is
required (such as by implementations of XSourceResolver) without first serializing to a
DOM or a stream. Note that an XItemSource can only be used at execution time for
providing input documents and not at prepare time for imports and includes.

XMLFEP_API.ppt Page 22 of 44

Output

� Within XSLT
– The xsl:output declaration is used to specify the output parameters
– The XSLTExecutable provides methods for getting the output parameters specified in

the stylesheet
• getSerializerParameters() - gets the defaults
• getSerializerParameters(QName) - gets the parameters associated with the

specified name

� Outside of XSLT
– XOutputParameters

• Set output serialization format when explicitly serializing sequences

23 Feature pack for XML API © 2010 IBM Corporation

Within XSLT the xsl:output declaration is used to specify the output parameters. The
XSLTExecutable provides methods for getting these output parameters specified within
the stylesheet. These methods are getSerializerParameters() to gets the default
parameters, and getSerializerParameters(QName) to get the parameters associated with
a specified name.

Outside of XSLT you will want to use the interface XOutputParameters for output
parameter settings. Used when exporting sequences and items. New output parameters
objects can be created through the XFactory.newOutputParameters method. These
parameters correspond to the ones in the XSLT 2.0 and XQuery 1.0 Serialization
specification.

XMLFEP_API.ppt Page 23 of 44

© 2010 IBM Corporation24 Feature pack for XML API

XPath examplesXPath examples

Section

The next few slides will show how to use the XML API to execute XPath.

XMLFEP_API.ppt Page 24 of 44

Preparing and executing an interpreted XPath expression

� You can use the XPathExecutable instances that are created using XFactory.prepareXPath
methods to evaluate XPath expressions

� Basic example of preparing and executing an interpreted XPath expression:

//Create a string for the XPath expression
String expression = "/doc/something";
//Create the factory
XFactory factory = XFactory.newInstance();
//Create an XPath executable object for the expression
XPathExecutable xPathExec = factory.prepareXPath(expression);
//Create the input XML source
StreamSource input = new StreamSource(“myxml.xml");
//Execute expression and store results in an XSequenceCursor
XSequenceCursor xSequenceCursor = xPathExec.execute(input);

25 Feature pack for XML API	 © 2010 IBM Corporation

You can use the XPathExecutable instances that are created using
XFactory.prepareXPath methods to evaluate XPath expressions. The example here
shows a basic example of preparing and executing an interpreted XPath expression.
XPath expressions can be passed to the XFactory.prepareXPath method using a JAXP
StreamSource object or using a plain Java string object. The resulting XPathExecutable
instance is thread safe and can be reused to evaluate an XPath expression on multiple
XML input documents.

XMLFEP_API.ppt	 Page 25 of 44

Preparing and executing a compiled XPath

// Create a string for the XPath expression
String expression = "/doc/something";
// Create the factory
XFactory factory = XFactory.newInstance();
// Create a new static context from the factory
XStaticContext sc = factory.newStaticContext();
// Set the mode to compile for the processor
sc.setUseCompiler(true);
// Create an XPath executable object for the expression
XPathExecutable xPathExecutable =

factory.prepareXPath(expression,sc);

//Create the input XML source
StreamSource input = new StreamSource(“myxml.xml"); //Execute
expression, store results in XSequenceCursor
XSequenceCursor xSequenceCursor =

xPathExecutable.execute(input);

26 Feature pack for XML API © 2010 IBM Corporation

Here is a basic example of preparing and executing a compiled XPath expression. Notice
how the XStaticContext interface is used to setUseCompiler to true.

XMLFEP_API.ppt Page 26 of 44

Preparing and executing an interpreted XPath expression with

schema validation

// Create a string for the Xpath expression
String expression = "/doc/byte cast as my:derived1byteenumeration
Type";
// Create the factory
XFactory factory = XFactory.newInstance();
// Create the schema source
StreamSource schema = new StreamSource("schema.xsd");
// Load schema
factory.registerSchema(schema);
// Turn on validation
factory.setValidating(XFactory.FULL_VALIDATION);
// Create a new static context from the factory
XStaticContext sc = factory.newStaticContext();
// Add new namespace
sc.declareNamespace("my", "http://www.schematype.ibm.com/UDSimple");
// Create an XPath executable object for the expression
XPathExecutable xPathExec=factory.prepareXPath(expression,sc);
//Create the input XML source
StreamSource input = new StreamSource(“myxml.xml");
//Execute the expression, store the results in XSequenceCursor
XSequenceCursor xSequenceCursor = xPathExec.execute(input);

27 Feature pack for XML API © 2010 IBM Corporation

Here is a basic example of preparing and executing an interpreted XPath expression with
schema validation. An instance of XFactory maintains a set of registered schemas as well
and can be validating or non-validating. A validating factory produces schema-aware
executable objects and ensures that source documents get validated against the set of
registered schemas before they are processed. If different sets of stylesheets or
expressions need different sets of schemas, these can be kept separate by using more
than one XFactory instance.

XMLFEP_API.ppt Page 27 of 44

© 2010 IBM Corporation28 Feature pack for XML API

XSLT examplesXSLT examples

Section

The next few slides will show how to use the XML API to execute XSLT.

XMLFEP_API.ppt Page 28 of 44

Preparing and executing an interpreted transformation

� You can use the XSLTExecutable instances that are created using XFactory.prepareXSLT
methods to perform XSLT transformations

� Basic example of preparing and executing an interpreted transformation:

// Create the factory
XFactory factory = XFactory.newInstance();
// Create a StreamSource for the stylesheet
StreamSource stylesheet = new

StreamSource("simple.xsl");

// Create an XSLT executable object for the stylesheet
XSLTExecutable xsltExec =

factory.prepareXSLT(stylesheet);

// Create the input source
Source input = new StreamSource("simple.xml");
// Create the result
Result result = new StreamResult(System.out);
// Execute the transformation
xsltExec.execute(input, result);

29 Feature pack for XML API	 © 2010 IBM Corporation

You can use the XSLTExecutable instances that are created using XFactory.prepareXSLT
methods to perform XSLT transformations. The example on this page shows a basic
example of preparing and executing an interpreted transformation.

XMLFEP_API.ppt	 Page 29 of 44

Preparing and executing a compiled transformation

// Create the factory
XFactory factory = XFactory.newInstance();
// Create a StreamSource for the stylesheet
StreamSource stylesheet=new StreamSource("simple.xsl");
// Create a new static context
XStaticContext sc = factory.newStaticContext();
// Enable the compiler
sc.setUseCompiler(true);
// Create an XSLT executable object for the stylesheet
XSLTExecutable xsltExec =

factory.prepareXSLT(stylesheet, sc);

// Create the input source
Source input = new StreamSource("simple.xml");
// Create the result
Result result = new StreamResult(System.out);
// Execute the transformation
xsltExec.execute(input, result);

30 Feature pack for XML API © 2010 IBM Corporation

Here is a basic example of preparing and executing a compiled XPath expression. Notice
the use of the XStaticContext and setting the compiler to true.

XMLFEP_API.ppt Page 30 of 44

Creating identity transformation

// Create the factory
XFactory factory = XFactory.newInstance();
// Create the item factory
XItemFactory itemFactory = factory.getItemFactory();
// Create the input source
Source input = new StreamSource("simple.xml");
// Create the XItemView object from the input source
XItemView item = itemFactory.item(input);
// Create an XOutputParameters object
XOutputParameters params =

factory.newOutputParameters();

// Set parameters
params.setMethod("xml");

params.setEncoding("UTF8");

params.setIndent(true);

// Create the result
Result result = new StreamResult(System.out);
// Serialize to the result
item.exportItem(result, params);

31 Feature pack for XML API © 2010 IBM Corporation

The example on this slide shows how to create an identity transformation. Notice the use
of XItemView and the setting of parameters for the output.

XMLFEP_API.ppt Page 31 of 44

Creating a schema-aware transformation

// Create the factory
XFactory factory = XFactory.newInstance();
// Enable validation
factory.setValidating(XFactory.FULL_VALIDATION);
// Create the schema source
StreamSource schema = new StreamSource("schema.xsd");
// Register the schema
factory.registerSchema(schema);
// Create the stylesheet source
StreamSource stylesheet = new

StreamSource("schema.xsl");
// Create an XSLT executable object for the stylesheet
XSLTExecutable xsltExec =

factory.prepareXSLT(stylesheet);
// Create the input source
StreamSource input = new StreamSource("schema.xml");
// Create the result
StreamResult result = new StreamResult(System.out);
// Execute the transformation
xsltExec.execute(input, result);

32 Feature pack for XML API © 2010 IBM Corporation

The following is an example of creating a schema-aware transformation. An instance of
XFactory maintains a set of registered schemas as well and can be validating or non-
validating. A validating factory produces schema-aware executable objects and ensures
that source documents get validated against the set of registered schemas before they are
processed. If different sets of stylesheets or expressions need different sets of schemas,
these can be kept separate by using more than one XFactory instance. An XFactory
instance can be created by calling the static newInstance() method on the XFactory class.
The instance is thread safe as long as the settings remain stable.

XMLFEP_API.ppt Page 32 of 44

© 2010 IBM Corporation33 Feature pack for XML API

XQuery examplesXQuery examples

Section

The next few slides will show how to use the XML API to execute XQuery.

XMLFEP_API.ppt Page 33 of 44

Preparing and executing an interpreted XQuery expression

� You can use the XQueryExecutable instances that are created using

XFactory.prepareXQuery methods to evaluate XQuery expressions

� Basic example of preparing and executing an interpreted XQuery expression:

// Create a string for the XQuery expression
String expression = "/doc/name[@first='David']";
// Create the factory
XFactory factory = XFactory.newInstance();
// Create the XQueryExecutable
XQueryExecutable xQueryExecutable =

factory.prepareXQuery(expression);

//Create the input XML source
StreamSource input = new StreamSource(“myxml.xml");
//Execute expression, store the results in

XSequenceCursor

XSequenceCursor xSequenceCursor =

xQueryExecutable.execute(input);

34 Feature pack for XML API	 © 2010 IBM Corporation

This slide shows a basic example of preparing and executing an interpreted XQuery
expression. You can use the XQueryExecutable instances that are created using
XFactory.prepareXQuery methods to evaluate XQuery expressions. XQuery expressions
can be passed to the XFactory.prepareXQuery method using a JAXP StreamSource
object or using a plain Java string object. The resulting XQueryExecutable instance is
thread safe and can be reused to evaluate an XQuery expression on multiple XML input
documents.

XMLFEP_API.ppt	 Page 34 of 44

Preparing and executing a compiled XQuery expression

// Create a string for the XQuery expression
String expression = "/doc/name[@first='David']";
// Create the factory
XFactory factory = XFactory.newInstance();
// Create a new static context from the factory
XStaticContext sc = factory.newStaticContext();
// Set the mode to compile for the processor
sc.setUseCompiler(true);
// Create the XQueryExecutable
XQueryExecutable xQueryExecutable =

factory.prepareXQuery(expression, sc);

//Create the input XML source
StreamSource input = new StreamSource(“myxml.xml");
//Execute expression, store results in XSequenceCursor
XSequenceCursor xSequenceCursor =

xQueryExecutable.execute(input);

35 Feature pack for XML API © 2010 IBM Corporation

The following is a basic example of preparing and executing a compiled XQuery
expression. Notice the use of the XStaticContext and the setting of the compiler to true.

XMLFEP_API.ppt Page 35 of 44

© 2010 IBM Corporation36 Feature pack for XML API

User defined variables and extensionUser defined variables and extension
functionsfunctions

Section

The next few slides show how to take advantage of user defined variables and extension
functions.

XMLFEP_API.ppt Page 36 of 44

User defined variables and extension functions

� Even with the extended function of XPath 2.0 and XSLT 2.0, there is a need to extend the
XML programming model with Java logic

� Extend the XML programming model with Java logic
– In order to use existing Java logic and variables, you need a consistent way to

incorporate these variables and functions into the XML programming model

37 Feature pack for XML API	 © 2010 IBM Corporation

Even with the extended function of XPath 2.0 and XSLT 2.0, there is a need to extend the
XML programming model with Java logic. In order to use existing Java logic and
variables, you need a consistent way to incorporate these variables and functions into the
XML programming model.

XMLFEP_API.ppt	 Page 37 of 44

Example of binding external Java variables

� 1 - Declare the variable definition (QName and type) to the preparation

� 2 - Bind the variable value (based on QName) to the execution

// Create a XPath string that has a user defined variable
private static String XPATH_GET_QUESTIONABLE_COMMENTS = "…
matches(atom:content, $my:vulgarwords, 'i') …";

// Create a QName for the Java variable
String myNamespace = "http://com.ibm.xml.samples";
QName vulgarNamesQName = new QName(myNamespace, "vulgarwords");
// Declare the variable to the static context used in

1

the prepare
XStaticContext sc = factory.newStaticContext();
sc.declareNamespace("my", myNamespace);
sc.declareVariable(vulgarNamesQName, XTypeConstants.STRING_QNAME);
// Prepare the XPath
XPathExecutable getQuestionableCommentsXPath=
factory.prepareXPath(XPATH_GET_QUESTIONABLE_COMMENTS

2

, sc);
// Bind the Java variable to the dynamic context
XDynamicContext dc = factory.newDynamicContext();
String VULGAR_WORDS = "shoot|darn";
dc.bind(vulgarNamesQName, VULGAR_WORDS);
// Execute the XPath
XSequenceCursor sequence =
getQuestionableCommentsXPath.execute(source, dc);

38 Feature pack for XML API © 2010 IBM Corporation

For XSLT and XQuery, variables must be declared in the stylesheet or query itself and
thus should not be re-declared in the static context. However, XPath variables need to be
declared in the static context. The example here shows the declaration of the variable in
the static context and the binding of the variable value in the dynamic context.

XMLFEP_API.ppt Page 38 of 44

© 2010 IBM Corporation 39 Feature pack for XML API

Example of binding Java extension functions

� 1 - Declare the function definition (QName and parameter/return types) to the preparation
� 2 - Bind the function (based on QName) to the execution

public class ExtensionFunctions {
public static Boolean legacyContentAnalysis(String input) { … }

}

// Create a XPath string that has a user defined extension function
private static String XPATH_GET_QUESTIONABLE_COMMENTS = “…

my:legacyContentAnalysis(atom:content/text()) …"
// Create a QName for the Java extension function
String myNamespace = "http://com.ibm.xml.samples";
QName legacyContentAnalysisQName = new QName(myNamespace,
"legacyContentAnalysis");

// Declare the function to the static context used in the prepare
XStaticContext sc = factory.newStaticContext();
sc.declareNamespace("my", myNamespace);
sc.declareFunction(legacyContentAnalysisQName, XTypeConstants.BOOLEAN_QNAME,
new QName[] { XTypeConstants.STRING_QNAME });

// Prepare the XPath
XPathExecutable getQuestionableCommentsXPath =
factory.prepareXPath(XPATH_GET_QUESTIONABLE_COMMENTS, sc);

// Bind the Java function to the dynamic context
XDynamicContext dc = factory.newDynamicContext();
dc.bindFunction(legacyContentAnalysisQName,
ExtensionFunctions.class.getMethod("legacyContentAnalysis", String.class));

// Execute the XPath
XSequenceCursor sequence = getQuestionableCommentsXPath.execute(source, dc);

1

2

The example here shows how to extend the XML programming model by binding a Java
extension function. First you will declare the function definition in the static context, then
you will bind the function in the dynamic context.

XMLFEP_API.ppt Page 39 of 44

© 2010 IBM Corporation40 Feature pack for XML API

Summary and referencesSummary and references

Section

The next section provides a summary and references.

XMLFEP_API.ppt Page 40 of 44

Summary

� Feature Pack for XML API Support
– A new XML runtime API across the X-* family

� Factories, executable objects, contexts, resolvers, data views and cursors, messages and
exceptions

� Preparing and executing examples

41 Feature pack for XML API	 © 2010 IBM Corporation

This presentation went through the feature pack for XML API support and the new XML
runtime API. There were also examples showing off how to use the APIs to execute
XPath, XSLT, and XQuery.

XMLFEP_API.ppt	 Page 41 of 44

References

� WebSphere® Application Server Feature Pack for XML
– http://www.ibm.com/software/webservers/appserv/was/featurepacks/xml/

� Primary specifications
– http://www.w3.org/TR/xpath20/
– http://www.w3.org/TR/xslt20/
– http://www.w3.org/TR/xquery/

� Infocenter (also contains the API documentation)
– http://www14.software.ibm.com/webapp/wsbroker/redirect?version=v700xml&p

roduct=was-nd-mp

42 Feature pack for XML API © 2010 IBM Corporation

Here are some useful links.

XMLFEP_API.ppt Page 42 of 44

Feedback

Your feedback is valuable

You can help improve the quality of IBM Education Assistant content to better meet your
needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_XMLFEP_API.ppt

This module is also available in PDF format at: ../XMLFEP_API.pdf

43 Feature pack for XML API © 2010 IBM Corporation

You can help improve the quality of IBM Education Assistant content by providing
feedback.

XMLFEP_API.ppt Page 43 of 44

 Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, and WebSphere are trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of other IBM trademarks is
available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. in the United States, other
countries, or both.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2010. All rights reserved.

44 © 2010 IBM Corporation

XMLFEP_API.ppt Page 44 of 44

