

®

IBM Software Group

© 2008 IBM Corporation

Updated December 10, 2008

IBM® WebSphere ® Application Server V7.0 Feature
Pack for Service Component Architecture

JAXB data binding

This presentation will cover the data binding piece of SCA; specifically JAXB, which is
what is implemented in the SCA feature pack.

WASv7SCA_JAXBDatabinding.ppt Page 1 of 32

IBM Software Group

2

JAXB data binding © 2008 IBM Corporation

Agenda

�Overview

� JAXB in SCA feature pack

�Summary and references

This presentation starts with a small overview of the data bindings in general, followed by
the discussion of the implementation of JAXB in the SCA feature pack.

WASv7SCA_JAXBDatabinding.ppt Page 2 of 32

IBM Software Group

3

JAXB data binding © 2008 IBM Corporation

OverviewOverview

Section

This first section is the overview.

WASv7SCA_JAXBDatabinding.ppt Page 3 of 32

IBM Software Group

4

JAXB data binding © 2008 IBM Corporation

Data bindings: Overview

�Q. In a “data binding ” what is being bound?

�A. Application data format (that is the Java™

programming model) is being bound to the wire
data format used by the runtime.

�Q. Why?

�A. More Java-friendly programming model to the
application programmer using a data binding.

In a data binding, what is being bound? The answer to this question is that Application
data format (that is the Java programming model) is being bound to the wire data format
used by the runtime. And why is this done? Although XML is useful in SOA for bridging a
variety of technologies, platforms, and implementation types, it can be a burden to
program to. And although the SCA runtime in some cases uses an XML wire data format,
data binding provides a more Java-friendly programming model to the application
programmer.

WASv7SCA_JAXBDatabinding.ppt Page 4 of 32

IBM Software Group

5

JAXB data binding © 2008 IBM Corporation

Data bindings: Overview

� Two data bindings relevant to SCA feature pack:
�SDO – Dynamic or static (generated) API

�JAXB – Static API

�For SCA feature pack, JAXB with its static
API is the only one supported

�** The JAX-WS programming model in
WebSphere Application Server also uses
JAXB

There are two data bindings relevant in this discussion of the SCA Feature Pack. JAXB
and service data objects, or SDOs.

SDO - the Dynamic or Static (generated) API mentioned in the OSOA SCA specifications ­
is not supported in the SCA feature pack. It was supported in SCA Feature Pack alpha on
WebSphere Application Server 6.1, but it is not supported in the current release of the
SCA feature pack.

For SCA feature pack, JAXB with its static API is the only one supported. Something to
note is that the JAX-WS programming model in WebSphere Application Server also uses
JAXB and the SCA feature pack is comparable.

WASv7SCA_JAXBDatabinding.ppt Page 5 of 32

IBM Software Group

6

JAXB data binding © 2008 IBM Corporation

JAXB: Overview

� JAXB stands for Java Architecture for XML Binding

� JAXB provides an easy way to map Java classes and XML
schema for simplified development of Web services, and
SCA service clients and implementations.

� JAXB is an XML to Java binding technology that supports
transformation between XML documents and Java objects
and between XML instance documents and Java object
instances

� JAXB enables Java developers to map Java classes to
XML representations

JAXB stands for Java Architecture for XML Binding

It is a Java technology that lets you generate Java classes from XML schemas by means
of a JAXB binding compiler. The JAXB binding compiler takes XML schemas as input, and
then generates a package of Java classes and interfaces that reflect the rules defined in
the source schema. These generated classes and interfaces are in turn compiled and
combined with a set of common JAXB utility packages to provide a JAXB binding
framework. JAXB is a Java technology that provides an easy and convenient way to map
Java classes and XML schema for simplified development of Web services and SCA
service clients and implementations. JAXB uses the flexibility of platform-neutral XML data
in Java applications to bind XML schema to Java applications without requiring extensive
knowledge of XML programming. JAXB is an XML to Java binding technology that
supports transformation between XML documents and Java objects and between XML
instance documents and Java object instances. JAXB enables Java developers to map
Java classes to XML representations. JAXB allows storing and retrieving data in memory
in any XML format, without the need to implement a specific set of XML loading and
saving routines for the program's class structure. So application developers can focus on
business need to define the XML schema for the data that flows between the services and
the client, and interact with the business data in the JAVA POJO form.

WASv7SCA_JAXBDatabinding.ppt Page 6 of 32

Class
Class

“ ”

IBM Software Group

7

JAXB data binding © 2008 IBM Corporation

JAXB

� Maps XML Schema to Java:
�Schema Compiler

�XML Binding Declarations

� Maps Java to XML Schema:
�Schema Generator

�J2SE 5.0 Annotations

� Runtime:
�Serialization / deserialization

�Binding

<Schema>

<Document>
Object

Class

V
al

id
 fo

r

In
st

an
ce

 o
f

Serialize

Deserialize

Bind

xjc

<Binding Declaration>
(optional)

The JAXB binding framework provides methods for unmarshalling XML instance
documents into Java content trees. This is a hierarchy of Java data objects that represent
the source XML data and for marshalling Java content trees back into XML instance
documents.

WASv7SCA_JAXBDatabinding.ppt Page 7 of 32

33

IBM Software Group

8

JAXB data binding © 2008 IBM Corporation

JAXB architecture

1

2

3
45

Here is a picture of JAXB architecture.

JAXB provides the xjc schema compiler tool shown in 1, it also provides 2) the
schemagen schema generator tool, and a runtime framework.

Number 3 denotes JAXB annotated classes and artifacts. These contain all the information
needed by the JAXB runtime API to process XML instance documents.

At 4, the JAXB runtime API supports marshaling of JAXB objects to XML and
unmarshalling the XML document back to JAXB class instances. Optionally, you can use
JAXB to provide XML validation to enforce both incoming and outgoing XML documents to
conform to the XML constraints defined within the XML schema.

5 is the JAXB binding package, javax.xml.bind, which defines the abstract classes and
interfaces that are used directly with content classes. In addition the package defines the
marshal and unmarshal APIs.

** In general, JAXB is the default data binding technology used by the Java API for XML
Web Services (JAX-WS) tools and implementation within this product. You can develop
JAXB objects for use within JAX-WS and SCA applications.

You can also use JAXB independent of JAX-WS when you want to take advantage of the
XML data binding technology to manipulate XML within your Java applications.

WASv7SCA_JAXBDatabinding.ppt Page 8 of 32

IBM Software Group

9

JAXB data binding © 2008 IBM Corporation

JAXB: Tools

wsimport

xjc

wsgen

schemagen

WSDL

XML schema
(XSD)

Java
objects

Java objects
WSDL

XML schema
(XSD)

app_server_root\bin\wsimport.bat

app_server_root\bin\xjc.bat

app_server_root\bin\wsgen.bat

app_server_root\bin\schemagen.bat

JAXB provides these four tools: wsimport, xjc, wsgen and schemagen. You can run them
from root of WebSphere Application Server install\bin directory.

The wsimport tool reads an existing WSDL file and generates a Java interface and
required data beans to model the service data.

The xjc tool is the JAXB schema compiler. It generates fully annotated Java classes from
an XML schema.

The wsgen tool creates WSDL documents from Java beans.

The schemagen tool is the schema generator. schemagen creates the XML schema
from Java beans. Note that data stored in XML documents can be accessed without the
need of understanding the data structure.

WASv7SCA_JAXBDatabinding.ppt Page 9 of 32

IBM Software Group

10

JAXB data binding © 2008 IBM Corporation

JAXB data binding process
1 2

3, 4, 5, 6

7

.xsd

WSDL

wsimport / xjc

wsgen / schemagen

Here is a look at the data binding process:

At label 1, the first step is to generate classes. Suppose you start with an XML schema
(xsd file). In this scenario, the XML schema is used as an input to the JAXB binding
compiler (xjc) to generate JAXB classes based on that schema. At label 2, all of the
generated classes, source files, and application code are then compiled.

Next step, shown at 3, is to Unmarshal.

XML documents (WSDL) written according to the constraints in the source schema are
unmarshalled by the JAXB binding framework. Note that JAXB also supports
unmarshalling XML data from sources other than files/documents, such as DOM nodes,
string buffers, SAX Sources, and so forth.

At 4, The next step is the generation of the content tree: The unmarshalling process
generates a content tree of data objects instantiated from the generated JAXB classes.
This content tree represents the structure and content of the source XML documents.

At five and six, there is also the ability to process content at this point. This means that the
client application can modify the XML data represented by the Java content tree by means
of interfaces generated by the binding compiler. This completes the one way process of
the binding.

Note that as shown at 7, the processed content tree may be marshalled out to one or
more XML output documents.

WASv7SCA_JAXBDatabinding.ppt Page 10 of 32

IBM Software Group

11

JAXB data binding © 2008 IBM Corporation

JAXB in SCAJAXB in SCA

Section

Now that you know what JAXB is in general, this section looks at how it applies in SCA.

WASv7SCA_JAXBDatabinding.ppt Page 11 of 32

IBM Software Group

12

JAXB data binding © 2008 IBM Corporation

JAXB in SCA feature pack

SCA feature pack is schema
based design

� Supports annotations

wsimport / xjc

For SCA feature pack, schema based interface design is the first class principle.

The implementation starts with schema definitions (WSDL/XSD) then Java interface is
generated with JAXB then the implementation is written.

WASv7SCA_JAXBDatabinding.ppt Page 12 of 32

IBM Software Group

13

JAXB data binding © 2008 IBM Corporation

JAXB in SCA: Overview

� The WSDL/XSD used by the SCA runtime to
define the wire format of the data and maps to:
�The Java interface defined in terms of the Java classes

�XML document is the wire format of the data on a
single service invocation and maps to:
�Actual Java parameters (input/output arguments)

JAXB is used for conversion of WSDL/XSD to Java Classes.

The WSDL/XSD service interface definition is used by the SCA runtime to define the wire
format of the data and this maps to the Java interface defined in terms of the Java classes
it uses for its methods’ input, output, and exception types

The XML document is the wire format of the data on a single service invocation and this
maps to the actual Java parameters (input and output arguments) passed across a single
service invocation.

WASv7SCA_JAXBDatabinding.ppt Page 13 of 32

IBM Software Group

14

JAXB data binding © 2008 IBM Corporation

JAXB – simple example

<schema
targetNamespace="http://www.mybank.com/accoun
t " xmlns="http://www.w3.org/2001/XMLSchema">

<complexType name=“Account">

<sequence>

<element name=“accountNum" type=“int"/>

<element name=“balance" type=“float"/>

</sequence>

</complexType>

</schema>

package com.mybank.account;

import javax.xml.bind.annotation.XmlType;

@XmlType(name = "Account", namespace =
"http://www.mybank.com/account ",
propOrder = {

"accountNum",

"balance"

})

public class Account {

protected int accountNum;

protected float balance;

Codegen (wsimport or xjc)

XSD schema definition

Select lines from generated Java (JAXB)

Here is a simple example of XSD schema to Java code using JAXB wsimport or xjc.

You basically start with an XSD schema, run it through the JAXB xjc tool and you end up
with Java code.

WASv7SCA_JAXBDatabinding.ppt Page 14 of 32

IBM Software Group

15

JAXB data binding © 2008 IBM Corporation

JAXB – simple example continued

public Account myBusinessOperation(….) {

…

ObjectFactory factory = new ObjectFactory();

Account acct = factory.createAccount();

acct.setAccountNum(23915);

acct.setBalance(6134.23);

return acct;

}

WIRE DATA FORMAT

<p497:account
xmlns:p497="http://www.mybank.com/account">
<accountNum>23915</accountNum><balance>613
4.23</balance>

</p497:account> Runtime converts to wire format

Java JAXB programming model Simple Java programming
model blissfully ignorant of

the
XML wire format

The JAXB binding framework provides methods for unmarshalling XML instance
documents into Java content trees. This is a hierarchy of Java data objects that represent
the source XML data and for marshalling Java content trees back into XML instance
documents. The JAXB binding framework also provides methods for validating XML
content as it is unmarshalled (deserialized) and marshalled (serialized).

WASv7SCA_JAXBDatabinding.ppt Page 15 of 32

IBM Software Group

16

JAXB data binding © 2008 IBM Corporation

JAXB in SCA – when does it come into play?

� For clients and implementations of remotable
interfaces when the default (SCA) and Web
service bindings are used
�Specifically bindings that use an XML wire format.

� * EJB binding works differently since it uses Java serialization.

� A client or implementation of a local interface does not
use JAXB, since pass-by-reference is done over a local
interface rather than a data copy.

JAXB comes into play for clients and implementations of remotable interfaces when the
default (SCA) and Web service bindings are used. These are the bindings that use an
XML wire format. The EJB binding works differently since it uses Java serialization.

A client or implementation of a local interface does not have to worry about JAXB, since
pass-by-reference is done over a local interface. Any Java type may be used over a local
interface.

As a caution for the EJB binding case, this is bad since the abstraction of a binding-neutral
programming model has broken down. To the extent that the EJB binding is used only to
access pre-existing EJBs with their types, this is not a huge problem.

WASv7SCA_JAXBDatabinding.ppt Page 16 of 32

IBM Software Group

17

JAXB data binding © 2008 IBM Corporation

JAXB – Top down

� Best practice is to start from WSDL/XSD definitions

� Code generation - wsimport
�used to generate Java classes

� JAXB classes generated from schema definitions in WSDL
<types> section
�marked up using annotations from the javax.xml.bind.annotation.*

namespace

� Java interface generated from WSDL port Type with
@javax.jws.WebService annotation

� JAX-WS/JAXB customizations can be used to customize
generated classes

The best practice is to start from WSDL/XSD definitions, which are the most interoperable
- they are platform-neutral and language-neutral.

Code generation is through the wsimport tool that is used to generate Java classes to be
used in your Java client or implementation from the WSDL/XSD definitions.

JAXB classes generated from schema definitions in the WSDL <types> section, and are
marked up using annotations from the javax.xml.bind.annotation.* namespace

Java interface is generated from WSDL portType with @javax.jws.WebService annotation.

JAX-WS/JAXB customizations can be applied to generated classes by overriding or
extending the default mappings and bindings.

WASv7SCA_JAXBDatabinding.ppt Page 17 of 32

SCA

IBM Software Group

18

JAXB data binding © 2008 IBM Corporation

JAXB data binding tools: Top down scenario

� Top down scenario:

JAXB data binding tools

wsimport xjc

WSDL/XML
schemas

Business data
logic

Java POJO presentations

Java classes Java classes

Java classes Java classes marked using
annotations from the

javax.xml.bind.annotation *
namespace

As mentioned in the previous slide, for the top-down scenario, wsimport and xjc are used
to define the business data logic from the XML schema, then generate the Java
representations. The classes generated are marked up using annotations from the
javax.xml.bind.annotation.* namespace .

This is the implementation mostly used in the SCA feature pack.

WASv7SCA_JAXBDatabinding.ppt Page 18 of 32

 SCA

IBM Software Group

19

JAXB data binding © 2008 IBM Corporation

JAXB: Using WSDL (top-down) - example

JAXB data binding
tools

wsimport

Business
logic

Business
logic

AccountService.
wsdl /XSD

Java classes Java classes

AccountService.java

// This is the service implementation
package services.account;
import org.osoa.sca.annotations.*;

@Service(AccountService.class)

public class AccountServiceImpl
implements AccountService {

public int account(int balance) {
...
}}

Java Implementation

AccountServiceImpl.java

1 2 3

4

// This is the generated service
// interface
package services.account;

@WebService
// other generated JAX-WS
// annotations not shown
public interface Account Service
{

int account(int balance);
}

Java interface

AccountService.java
5

This is a visual diagram example of a top-down scenario using JAXB mentioned in the
previous slide.

First run the WSDL/XSD (in this example AccountService.wsdl) through wsimport to
generate Java classes. These classes can then be used in your Java client or
implementation from the WSDL/XSD definitions.

WASv7SCA_JAXBDatabinding.ppt Page 19 of 32

IBM Software Group

20

JAXB data binding © 2008 IBM Corporation

JAXB top-down marshalling/unmarshalling

� All schema-defined data is mapped to Java data

� JAXB annotations are generated to capture in
Java the schema definitions that the Java is
mapped from.

In the top-down case it is much simpler to understand what data gets marshalled.

All schema-defined data is mapped to Java data and JAXB annotations are generated to
capture in Java the schema definitions that the Java is mapped from.

WASv7SCA_JAXBDatabinding.ppt Page 20 of 32

IBM Software Group

21

JAXB data binding © 2008 IBM Corporation

JAXB – Bottom-up

�Bottom-up is Java-centric

� JAXB marshalling used whether you generate
JAXBs or not
�The JAXB spec defines a mapping of unannotated POJO

to XML.

�JAXB mapping used even if no JAXB classes are
generated, and even if no JAXB annotations are present.

The bottom-up, Java-centric view is designed to enable the Java programmer to just get
started with a minimal effort. However, the SCA Java programming model is not the Java
programming model – it is a JAXB-based programming model.

JAXB marshalling used whether you generate JAXBs or not. The JAXB specification
defines a mapping of an annotated POJO to XML.

JAXB mapping is used even if no JAXB classes are generated, and even if no JAXB
annotations are present.

WASv7SCA_JAXBDatabinding.ppt Page 21 of 32

IBM Software Group

22

JAXB data binding © 2008 IBM Corporation

JAXB bottom up scenario - No tools required

� The runtime will generate the needed XSD/WSDL
definitions for you, and so there is no need to run
schemagen or wsgen during development time.

� This is the simplest path to application
development and deployment.

For a simpler path to application development and deployment, the runtime will generate
the needed XSD/WSDL definitions for you, and so there is no need to run schemagen or
wsgen during development time.

WASv7SCA_JAXBDatabinding.ppt Page 22 of 32

IBM Software Group

23

JAXB data binding © 2008 IBM Corporation

JAXB bottom up scenario - Dev tool

�You can choose to generate the XSD/WSDL
yourself at development time (shown on next slide)
for use within your application
�Example: to refer to it in SCDL on an interface or binding

definition

� This allows you to clearly see the WSDL/XSD used
for your service interface
�But it is no longer as simple

�It might be better to restart with a top-down development
approach after generating the WSDL

You can choose to generate the XSD/WSDL yourself at development time (shown on next
slide) for use within your application. This allows you to clearly see the WSDL/XSD that is
used for your service interface.

But it is no longer as simple; it might be better to restart with a top-down development
approach after generating the WSDL.

WASv7SCA_JAXBDatabinding.ppt Page 23 of 32

SCA

IBM Software Group

24

JAXB data binding © 2008 IBM Corporation

JAXB data binding tools: Bottom up scenario

� Bottom up scenario:

JAXB data binding tools

wsgen schemagen
WSDL/

XML
schemas

Business data
logic

Java POJO presentations

Java classes Java classes

Java classes Java classes marked
using annotations from

the javax.xml.bind
annotation

It is possible to use tools to generate XSD/WSDL from your Java in the bottom-up case so
that you can clearly capture the XSD/WSDL interface definition, which would otherwise be
generated from the runtime.

The schemagen and wsgen tools allow you to generate XSD and WSDL definitions. This
slide shows a visual example of how this process would happen.

WASv7SCA_JAXBDatabinding.ppt Page 24 of 32

IBM Software Group

25

JAXB data binding © 2008 IBM Corporation

JAXB bottom-up marshalling/unmarshalling

� JAXB marshalling/unmarshalling (that is
serialization/deserialization) – understand what
data gets preserved across your invocation

� For an unannotated class,
�JavaBean properties are serialized

�Private data is not
** This is different from Java serialization which is used by other

WebSphere Application Server programming models (example:
RMI/EJB).

You must understand JAXB marshalling and unmarshalling in order to understand what
data gets preserved across your invocation. For an unannotated class, JavaBean
properties are serialized. Private data is not.

This is different from Java serialization, which is used by other WebSphere Application
Server programming models like RMI/EJB.

WASv7SCA_JAXBDatabinding.ppt Page 25 of 32

IBM Software Group

26

JAXB data binding © 2008 IBM Corporation

Bottom-up: marshalling/unmarshalling example

public class MyUnAnnotatedClass {
public MyUnAnnotatedClass() // no-arg, default constructor required by JAXB

private int count; // Java-serializable, BUT not marshalled by JAXB
public String name; // Java-serializable, ALSO marshalled by JAXB
private String accountName; // Java-serializable, ALSO marshalled by JAXB
public String getAccountName()
public void setAccountName(String)

…
}

‘count’ not marshalled per JAXB since it is private data
‘name’ marshalled per JAXB since it is public data
‘accountName’ marshalled per JAXB since it has public getter/setter

Here is an example of JAXB Bottom-up approach on marshalling and unmarshalling.

Notice that:

- ‘count’ is not marshalled per JAXB since it is private data

- ‘name’ is marshalled per JAXB since it is public data

- ‘accountName’ is marshalled per JAXB since it has public getter/setter

The default marshalling could be described as using the JavaBeans view of the class.

WASv7SCA_JAXBDatabinding.ppt Page 26 of 32

IBM Software Group

27

JAXB data binding © 2008 IBM Corporation

JAXB in SCA – A note on validation

�Validation against schema can not currently be
done against the payload of a service invocation

�Applications can use JAXB APIs to validate their
own XML documents

Validation against schema cannot currently be done against the payload of a service
invocation. Applications can use JAXB APIs to validate their own XML documents.

WASv7SCA_JAXBDatabinding.ppt Page 27 of 32

IBM Software Group

28

JAXB data binding © 2008 IBM Corporation

Benefits of JAXB

� Simplifies access to an XML document from a Java
program

� JAXB allows you to access and process XML data without
having to know XML or XML processing

� Allows for accessing data in non-sequential order
�does not force navigation through a tree to access the data

� By unmarshalling XML data through JAXB, Java content
objects that represent the content and organization of the
data are directly available to your program

� Uses memory efficiently

� Flexible - you can unmarshal XML data from a variety of
input sources

(1) JAXB simplifies access to an XML document from a Java program:.

(2) JAXB allows you to access and process XML data without having to know XML or XML
processing. Unlike SAX-based processing, there is no need to create a SAX parser or
write callback methods.

(3) JAXB allows you to access data in non-sequential order, but unlike DOM-based
processing, it does not force you to navigate through a tree to access the data.

(4) By unmarshalling XML data through JAXB, Java content objects that represent the
content and organization of the data are directly available to your program.

(5) JAXB uses memory efficiently: The tree of content objects produced through JAXB
tends to be more efficient in terms of memory use than DOM-based trees.

(5) JAXB is flexible:

You can unmarshal XML data from a variety of input sources, including a file, an

InputStream object, a URL, a DOM node, or a transformed source object.

You can marshal a content tree to a variety of output targets, including an XML file, an
OutputStream object, a DOM node, or a transformed data object

You can unmarshal SAX events -- for example, you can do a SAX parse of a document
and then pass the events to JAXB for unmarshalling.

JAXB allows you to access XML data without having to unmarshal it. Once a schema
is bound you can use the ObjectFactory methods to create the objects and then use
set methods in the generated objects to create content.

(6) JAXB's binding behavior can be customized in a variety of ways.

WASv7SCA_JAXBDatabinding.ppt Page 28 of 32

IBM Software Group

29

JAXB data binding © 2008 IBM Corporation

SummarySummary

Section

And, in summary…

WASv7SCA_JAXBDatabinding.ppt Page 29 of 32

IBM Software Group

30

JAXB data binding © 2008 IBM Corporation

Summary

� JAXB:
�Easy and convenient way to map Java classes and XML

schema for simplified SCA Java development

�Provides
� a schema compiler

� schema generator

� a runtime framework to support two-way mapping between Java objects
and XML documents

�Supports transformation
� between schema and Java objects

� between XML instance documents and Java object instances

JAXB provides an easy and convenient way to map Java classes and XML schema for
simplified SCA Java development.

JAXB provides a schema compiler, schema generator and a runtime framework to support
two-way mapping between Java objects and XML documents.

JAXB supports transformation between schema and Java objects and between XML
instance documents and Java object instances.

WASv7SCA_JAXBDatabinding.ppt Page 30 of 32

IBM Software Group

31

JAXB data binding © 2008 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WASv7SCA_JAXBDatabinding.ppt

This module is also available in PDF format at: ../WASv7SCA_JAXBDatabinding.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASv7SCA_JAXBDatabinding.ppt Page 31 of 32

JAXB data binding

 Trademarks, copyrights, and disclaimers

IBM Software Group

32

JAXB data binding © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

WebSphere

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

EJB, J2SE, Java, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

WASv7SCA_JAXBDatabinding.ppt Page 32 of 32

