

®

IBM Software Group

© 2009 IBM Corporation

Updated November 3, 2009

IBM WebSphere Application Server V7.0
Feature Pack for Service Component
Architecture V1.0.1

Data binding - SDO

This presentation covers SDO data binding in the WebSphere® Application Server Feature
Pack for Service Component Architecture.

WASv7SCA101_SDO_databindng.ppt Page 1 of 24

 -

IBM Software Group

2

Data binding SDO © 2009 IBM Corporation

�Serialization/deserialization of data between the
application and wire

�Scope Management
�Basic

�Shared scopes

�Programming model
�API to access default scope

�JAX-WS Based

Key features of SDO data binding

The SDO data binding support includes serialization and deserialization of data between
the application and the wire; scope management, which is either basic or shared; and the
JAX-WS based programming model.

Each of these features is covered in detail in the next couple of slides.

WASv7SCA101_SDO_databindng.ppt Page 2 of 24

 -

IBM Software Group

3

Data binding SDO © 2009 IBM Corporation

�Used to marshall/unmarshall service interface
input/output/fault values to/from the application
service client/implementation

�SDO defines a mapping between XML document
and an instance of SDO’s
commonj.sdo.DataObject
�XML document = wire data format

�DataObject = application data format

Serialization/deserialization of data

An important aspect of SDO is that it is used to marshall and unmarshall service interface
input, output, and fault values to and from the application service client or service
implementation. In a manner parallel to JAXB, SDO defines a mapping between an XML
document and an instance of SDO’s commonj.sdo.DataObject.

An XML document is used for the wire data format, and a DataObject is the application
data format.

This happens in the scope of the application’s default HelperContext.

WASv7SCA101_SDO_databindng.ppt Page 3 of 24

 -

IBM Software Group

4

Data binding SDO © 2009 IBM Corporation

Example – XML document, XSD, SDO Java™

<schema targetNamespace="http:///test..">

<complexType name="Person">

<sequence>

<element name="firstName" type="xsd:string"/>

<element name="lastName" type="xsd:string"/>

</sequence>

</complexType>

<element name="myOperation">

<complexType>

<sequence>

<element name="person" type="tns:Person"/>

<element name="code" type="xsd:string"/>

</sequence>

</complexType>

</element>

<ns0:myOperation xmlns:ns0=“http://test”>

<person>

<firstName>John</firstName>

<lastName>Doe</lastName>

</person>

<code>GO</code>

</ns0:myOperation>

public void myOperation(DataObject person, String code) {

String first = person.getString(“firstName”); // John

String last = person.getString(“lastName”); // Doe

SCA JAVA Service Impl

XML payload on wire

XSD in original (doc-lit­
wrapped) WSDL Payload conforms to

Deserializes to: (note
unwrapping of doc-lit­

wrapped wrapper)

Data model
described by

Here is an example of an XML document, XSD, and SDO Java.

WASv7SCA101_SDO_databindng.ppt Page 4 of 24

 -

IBM Software Group

5

Data binding SDO © 2009 IBM Corporation

� In SDO, a scope = an instance of
commonj.sdo.helper.HelperContext

�SCA defines SDO scopes within boundaries
meaningful from SCA-application perspective

�SCA/SDO runtimes together provides SCA
applications with a default HelperContext

Scope management

In SDO, a scope corresponds precisely to an instance of
commonj.sdo.helper.HelperContext. As with any scope, this defines visibility boundaries
for SDO types. In the Feature Pack for SCA, the SCA layer defines HelperContext on SCA
application boundaries, which are meaningful boundaries from an SCA perspective.
Together, SCA and SDO define a default HelperContext for a given application and enable
the SCA application to access this programmatically.

WASv7SCA101_SDO_databindng.ppt Page 5 of 24

 -

IBM Software Group

6

Data binding SDO © 2009 IBM Corporation

�SCA creates a unique HelperContext (scope) for
each deployable composite

�Each deployable composite is contributed to the
SCA domain by a single contribution (JAR)
�All schema definitions in WSDL/XSD files packaged

within the same contribution JAR is added (on-demand)
to a given deployable composite’s HelperContext

�No programmatic API calls like the SDO
XSDHelper.define() API

Scope mgmt – based on deployable composite and
contribution

The service component architecture creates a unique HelperContext, or scope, for each
deployable composite. Each deployable composite is contributed to the SCA domain by a
single JAR. All schema definitions in WSDL/XSD files packaged within the same
contribution JAR are added, on-demand, to a given deployable composite’s
HelperContext. This happens without any programmatic API calls.

WASv7SCA101_SDO_databindng.ppt Page 6 of 24

 -

IBM Software Group

7

Data binding SDO © 2009 IBM Corporation

�SCA registers schema definitions from your SCA
application’s WSDL/XSDs to your application
HelperContext

�Registered definitions is used by:
�The runtime, to establish the SDO Type of DataObject

instantiated by deserializing service request/response
data from the wire

�The application, to create DataObject of application-
specific Type

Scope mgmt - registration of schema definitions

The SCA run time provides mechanisms to register schema definitions from your SCA
application (for example, in WSDL/XSD files packaged with your application) to your SCA-
meaningful scopes, such as your application default HelperContext.

Schema registration is important because when using SDO to interact with XML data, the
exact details of your application's SDO programming model can be affected. They can be
affected by whether the relevant SDO scope recognizes the schema definitions in the
original XML document (such as the wire format data coming in over the binding
invocation).

For example, the commonj.sdo.DataObject method Object get(int propertyIndex) might
return a single DataObject in cases where get() is invoked on an object corresponding to a
registered schema element or type. It might return a list<DataObject> in cases where the
schema definitions corresponding to the payload are unrecognized.

WASv7SCA101_SDO_databindng.ppt Page 7 of 24

 -

IBM Software Group

8

Data binding SDO © 2009 IBM Corporation

�Multiple components/composites can load schema
definitions into a shared SDO scope
�reduces memory footprint

�Uses SCA contribution import and export

� Integrated with pass-by-reference optimization

�Shared scopes also work within a business level
application (BLA)

Scope mgmt – shared scopes

Multiple components or composites can load commonly-used schema definitions into a
shared SDO scope. This reduces memory footprint.

Shared scopes also use SCA Contribution import/export. You can package a set of shared
schemas into a single contribution, export certain XML namespaces, and import those
namespaces from your composites’ contributions.

Another aspect of shared scopes is that it is also integrated with pass-by-reference
optimization.

It also works within a business level application. For each shared contribution exporting
schema definitions (XSD), any two composites in the same business level application that
import those definitions will load from a single SDO scope.

WASv7SCA101_SDO_databindng.ppt Page 8 of 24

 -

IBM Software Group

9

Data binding SDO © 2009 IBM Corporation

Shared scopes diagram
sca-contribution.xml InsuranceSchemaPack

Contrib.jar
<contribution xmlns=“http://www.osoa.org/xmlns/sca/1.0”

targetNamespace=“http://insurance”>

<export namespace="http://test/insurance/quote" />
<export namespace="http://test/insurance/claim" />

</contribution>

InsuranceClaim.jar
MyInsuranceBLA

ClaimComposite

PaymentComposite

<contribution
xmlns=“http://www.osoa.org/xmlns/sca/1.0”
targetNamespace=“http://insurance”>

<deployable composite=“ins:ClaimComposite"/>

<import namespace="http://test/insurance/claim" />

</contribution>

sca-contribution.xml

<contribution
xmlns=“http://www.osoa.org/xmlns/sca/1.0”
targetNamespace=“http://insurance”>

<deployable composite=“ins:PaymentComposite"/>

<import namespace="http://test/insurance/claim" />

</contribution>

sca-contribution.xml
InsurancePayment.jar

Here is an example of shared scopes. Note how ClaimComposite and PaymentComposite
from MyInsuranceBLA load from a single SDO

WASv7SCA101_SDO_databindng.ppt Page 9 of 24

 -

IBM Software Group

10

Data binding SDO © 2009 IBM Corporation

API to access default scope

@com.ibm.websphere.soa.sca.sdo.DefaultHelperContext

� The runtime will inject a public or protected field/setter with the application-
specific HelperContext

import com.ibm.websphere.soa.sca.sdo.DefaultHelperContext;
…
@DefaultHelperContext
protected HelperContext defaultHC;
….
DataFactory dataFactory = defaultHC.getDataFactory();
DataObject person =

dataFactory.create("http://test", "Person");

As you saw in some earlier slides, SCA and SDO define a default HelperContext for a
given application and enable the SCA application to access this programmatically. The
default HelperContextFactory is accessible through the interface
commonj.sdo.helper.SDO. The runtime will inject a public or protected field or setter with
the application-specific HelperContext.

In the example shown, the XSD type with QName {http://test}Person is defined in an
XSD file packaged in the same contribution as the deployable composite using this Java
code in a component. The annotation gives you access to this scope.

WASv7SCA101_SDO_databindng.ppt Page 10 of 24

 -

IBM Software Group

11

Data binding SDO © 2009 IBM Corporation

JAX-WS based programming model

� JAX-WS defines interface-level mapping, between WSDL
portType operation and Java interface method

� JAX-WS annotations significant in SCA applications using
SDO
�@RequestWrapper, @ResponseWrapper, @WebParam,

@WebResult

� For individual input parameter and return types, SDO
defines mapping between XSD and Java, rather than JAXB

� Exception/fault handling defined by JAX-WS
�Mapping between the “fault bean” and schema defined by SDO,

rather than JAXB

SCA feature pack uses JAX-WS to define the operation-level mappings between
WSDL/XSD and the Java interface method, and uses SDO to define the mapping between
XSD types and the corresponding Java parameter types. Thus, there is a single SCA
programming model based on JAX-WS, with the ability to "plug in" either the JAXB data
binding or SDO data binding.

One consequence of this is that the JAX-WS annotations like those shown here are
significant in SCA applications using SDO.

Another important consequence is that the product uses JAX-WS to define the mapping
between a Java exception thrown or caught in Java clients and implementations, and the
"fault bean" that is serialized "on the wire”.

The "fault bean" can be an SDO of type commonj.sdo.DataObject, in which case the SDO
XMLHelper is used to serialize or deserialize the fault bean to or from the wire format.

WASv7SCA101_SDO_databindng.ppt Page 11 of 24

 -

IBM Software Group

12

Data binding SDO © 2009 IBM Corporation

SDO known versus. unknown type

� The (XSD/SDO) type of the DataObject can either
be known or unknown
� “unknown” type scenario is treated as the SDO-

equivalent of xsd:anyType

�can affect the programming model used to interact with
DataObject’s properties

� In SCA, top-down approach used to program with
“known” types, bottom-up approach results in
“unknown” types

When working with a DataObject in your SCA client or SCA implementation, the
(XSD/SDO) type of the object can either be known or unknown.

The “unknown” type scenario is treated as the SDO-equivalent of xsd:anyType. This can
affect the programming model used to interact with your DataObject’s properties. In SCA,
top-down approach (starting from WSDL), can be used to program with “known” types,
whereas bottom-up approach (starting from Java) typically results in “unknown” types.

WASv7SCA101_SDO_databindng.ppt Page 12 of 24

 -

IBM Software Group

13

Data binding SDO © 2009 IBM Corporation

DataObject personDO = ...; // corresponds to 'Person' XSD type

List<Object> child1 = (List<Object>) personDO .get(“company”);

<schema targetNamespace="http://person"
xmlns="http://www.w3.org/2001/XMLSchema">

<complexType name="Person">

<sequence>

<element name=“company"
type=“comp:Company"/>

<element name="firstName" type="string"/>

<element name="lastName" type="string"/>

</sequence>

</complexType>

</schema>

Since SDO has no knowledge of the Person
XSD type, it must assume its child property

might correspond to something like this:
maxOccurs=“unbounded” element

returning a List instead of a singular object

Example: Schema definition unknown

XML

This is an example where Schema definition is unknown. In this scenario, since SDO has
no knowledge of the Person XSD type, it assumes its child property might correspond to
an unbounded element. It therefore returns a list instead of a singular object.

WASv7SCA101_SDO_databindng.ppt Page 13 of 24

 -

IBM Software Group

14

Data binding SDO © 2009 IBM Corporation

<schema targetNamespace="http://person" xmlns="http://www.w3.org/2001/XMLSchema">

<complexType name="Person">

<sequence>

<element name=“company" type=“comp:Company"/>

<element name="firstName" type="string"/>

<element name="lastName" type="string"/>

</sequence>

</complexType>

</schema>

DataObject personDO = ...; // corresponds to 'Person' XSD type

DataObject company = personDO .getDataObject(“company”);

Here SDO knows about the Person XSD
type and knows its first child property

corresponds to the ‘company’ element.
Since for ‘company’, the

maxOccurs=“1”, SDO returns a single
DataObject rather than a List

Example: Schema definition registered

This is the same XSD as in
the last example, but this

time SCA has registered the
XSD in the HelperContext

This is an example where schema definition is registered. This is the same XSD as in the
last example, but this time SCA has registered the XSD the HelperContext class. In this
example, SDO knows about the Person XSD type and knows its first child property
corresponds to the ‘company’ element. Since for ‘company’, the maxOccurs=“1”, SDO
returns a single DataObject rather than a list.

WASv7SCA101_SDO_databindng.ppt Page 14 of 24

 -

IBM Software Group

15

Data binding SDO © 2009 IBM Corporation

� Top-down approach, the <interface.wsdl> allows
the payload to be deserialized into the “known”
type.
� defined by the XSD type of the doc-lit WSDL’s message

element.

� In bottom-up approach, there is no particular XSD
type associated with a Java DataObject.
�It is treated as an “unknown” type, that is xsd:anyType

�Note that if you generate Java from a WSDL and do not
use <interface.wsdl> the XSD type information is lost

Top-down versus bottom-up

In the top-down approach, the <interface.wsdl> describing the service in SCDL allows the
payload to be deserialized into the “known” type defined by the XSD type of the doc-lit
WSDL’s message element.

In the bottom-up approach, there is no particular XSD type associated with a Java
DataObject, and so it is treated as an “unknown” type, that is xsd:anyType. If you do a
publish WSDL, you will also see this mapped to xsd:anyType.

Note that even if you generate the Java from a WSDL (for example, in Rational®

Application Developer) and do not use <interface.wsdl> the XSD type information is lost.
This is unlike when using JAXB.

WASv7SCA101_SDO_databindng.ppt Page 15 of 24

 -

IBM Software Group

16

Data binding SDO © 2009 IBM Corporation

Steps for using SDO 2.1.1 in SCA feature pack

1.Start from your WSDL and XSD files describing
your service interface (as a WSDL portType)

2.Produce a corresponding Java interface

3.Write your SCA Java client or component
implementation

4.Write the composite definition defining the
reference or service interface in terms of your
original WSDL portType

5.Package the WSDL and XSD files in the same
contribution JAR as the deployable composite

Top-down approach steps for using SDO 2.1.1 in SCA feature pack. First, start from your
WSDL and XSD files describing your service interface as a WSDL portType.

Then produce a corresponding Java interface. At the moment, this is not an easy task
because of the absence of a supported WSDL-to-Java tool. The information center has
manual instructions on how to do this.

Next, write your SCA Java client or component implementation using the dynamic SDO
programming model. Then write the composite definition defining the reference or service
interface in terms of your original WSDL portType

Finally, package the WSDL and XSD files in the same contribution JAR as the deployable
composite that deploys your client or implementation component.

WASv7SCA101_SDO_databindng.ppt Page 16 of 24

 -

IBM Software Group

17

Data binding SDO © 2009 IBM Corporation

Sample steps for using SDO

WSDL

XSD
Java files

Rational
Application
Developer

Create a Java
Implementation

(implementation.java)

Service.composite

1

2

3

4

5

WSDL

XSD

Service.composite

MyServiceContribution.jar

Java

Here is a graphical view of the steps. A good example of this process is given in the
information center. You can use Rational Application Developer to generate Java files or a
semi-automated process of modifying the generated output of wsimport. To reiterate, start
with WSDL, generate your Java classes, write your Java client, write your composite
definition, then package the WSDL and XSD files in the same contribution JAR as the
deployable composite.

WASv7SCA101_SDO_databindng.ppt Page 17 of 24

 -

IBM Software Group

18

Data binding SDO © 2009 IBM Corporation

SDO and JAXB comparison

�SDO defines a Java binding framework of its own

�SDO offers a dynamic API, analogous to Java
reflection but with more capabilities

�SDO does not require generating and packaging
Java classes corresponding to XSD definitions
(like JAXB)

�SDO provides uniform access to data of various
types in addition to XML (this feature is not used in
SCA, however)

SDO defines a Java binding framework of its own, but it goes one step further. While
JAXB is only focused on a Java-to-XML binding, XML is not the only kind of data being
bound to SDO. SDO provides uniform access to data of various types, only one of which is
XML. SDO also offers both a static and dynamic API, whereas JAXB only provides a static
binding.

WASv7SCA101_SDO_databindng.ppt Page 18 of 24

 -

IBM Software Group

19

Data binding SDO © 2009 IBM Corporation

SCA SDO limitations

�Only doc-lit, BasicProfile-compliant WSDL is
supported
�Note that: this is an overall SCA feature pack restriction.

�Static/generated SDOs corresponding to complex
types not supported

� java.lang.Object as a Java interface or
implementation parameter type not supported

Here are a few limitations. First, WSDL must be BP compliant. The assumption here is
that you are dealing with doc-lit WSDL (not necessarily doc-lit-wrapped though), which is
WS-I Basic Profile compliant.

Second, in the SCA feature pack, any use of static or generated SDOs corresponding to
complex types is not supported.

Finally, java.lang.Object as a Java interface or implementation parameter type is not
supported. There is no intention to mix the dynamic aspects of java.lang.Object with
dynamic SDO.

WASv7SCA101_SDO_databindng.ppt Page 19 of 24

 -

IBM Software Group

20

Data binding SDO © 2009 IBM Corporation

SummarySummary

Section

In summary…

WASv7SCA101_SDO_databindng.ppt Page 20 of 24

 -

IBM Software Group

21

Data binding SDO © 2009 IBM Corporation

Summary

�SDO provides a dynamic programming model for
writing SCA Java applications working with
schema-derived data
�Dynamic programming model eliminates the need to

generate Java classes from schema definitions

�Provides convenient and advanced methods for
accessing data at run-time by index, property
name, or XPath-like expression"

SDO provides a dynamic programming model for writing SCA Java applications that work
with schema-derived data. This dynamic programming model eliminates the need to
generate Java classes from schema definitions (like JAXB). It abstracts over certain XML
details, and provides convenient and advanced methods for accessing data at run-time by
index, property name, or XPath-like expression.

And from the SCA perspective, SDO adds the dynamic API.

WASv7SCA101_SDO_databindng.ppt Page 21 of 24

 -

IBM Software Group

22

Data binding SDO © 2009 IBM Corporation

References

� IBM Education Assistant:
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.wasfpsca/wasfpsca/1.0/JAXB.html

� Introduction to service data objects
http://www.ibm.com/developerworks/java/library/j-sdo/

� SDO 2.1 specification:
http://www.osoa.org/display/Main/Service+Data+Objects+Home

� SDO JSR235 Data objects
http://www.ibm.com/developerworks/java/library/specification/j-jsr235/

� SCA feature pack information center
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.soafep.multiplatform.doc/info/welcome_nd.html

Here are some reference links for more information.

WASv7SCA101_SDO_databindng.ppt Page 22 of 24

 -

IBM Software Group

23

Data binding SDO © 2009 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WASv7SCA101_SDO_databindng.ppt

This module is also available in PDF format at: ../WASv7SCA101_SDO_databindng.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASv7SCA101_SDO_databindng.ppt Page 23 of 24

 -

IBM Software Group

24

Data binding SDO © 2009 IBM Corporation

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM Rational WebSphere

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

Rational is a trademark of International Business Machines Corporation and Rational Software Corporation in the United States, Other Countries, or both.

Java, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

WASv7SCA101_SDO_databindng.ppt Page 24 of 24

