

®

IBM Software Group

© 2009 IBM Corporation

Updated November 19, 2009

IBM WebSphere Application Server V7.0
Feature Pack for Service Component
Architecture V1.0.1

Data binding – SDO overview

This presentation is an overview of the SDO data binding in the WebSphere® Application
Server V7.0 Feature Pack for Service Component Architecture V 1.0.1.

WASv7SCA101_SDO_Overview.ppt Page 1 of 24

 –

IBM Software Group

2

Data binding SDO overview © 2009 IBM Corporation

SDO versus SDO in SCA

�Some of the capabilities of SDO are not used in
any particular way when doing SCA service and
client development

�Some of the features of SDO described in the first
portion of the presentation (like RDB access) are
�Described to give background context regarding SDO

�Do not necessarily play a role in SCA feature pack
development

Before covering the overview, here are some things to keep in mind. Some of the
capabilities of SDO are not used in any particular way when doing SCA service and client
development. Some of the features of SDO are described to give background context
regarding SDO. They do not play a role in SCA feature pack development.

WASv7SCA101_SDO_Overview.ppt Page 2 of 24

 –

IBM Software Group

3

Data binding SDO overview © 2009 IBM Corporation

What are service data objects ?

�Service data objects (SDO) provide:

�Uniform access to data from heterogeneous sources
� XML, RDB, POJO, SOAP and so on

�Both static and dynamic programming models

�Meta-data for easy introspection of data types

�Disconnected object graph capable of tracking changes

� Implementations exist in Java™, C++ and PHP

What are service data objects?

Service data objects, or SDOs, provide uniform access to data from heterogeneous
sources such as XML, RDB, POJO, and SOAP. They also provide both static and dynamic
programming models. In addition, they provide meta-data for easy introspection of data
types. And they provide disconnected object graphs capable of tracking changes. SDO
Implementations exist in Java, C++ and PHP.

WASv7SCA101_SDO_Overview.ppt Page 3 of 24

 –

IBM Software Group

4

Data binding SDO overview © 2009 IBM Corporation

� Dynamic data API (DataObject)

� XML and XML schema integration

�Serialization can conform to pre-defined XSD

�Or, can generate XML schema

� XPath navigation through graphs of data

� Change tracking (ChangeSummary)

� Metadata (type and property)

� Validation and constraints

� Relationship integrity

SDO key features

SDO key features include a dynamic data API, XML and XML Schema integration, XPath
navigation through graphs of data, change tracking, Metadata, validation and constraints,
and relationship integrity.

WASv7SCA101_SDO_Overview.ppt Page 4 of 24

 –

IBM Software Group

5

Data binding SDO overview © 2009 IBM Corporation

SDO overview

�Service Data Objects framework provides a unified
framework for data application development

�SDO API works with data from multiple data
sources:
�Relational databases,

�entity EJB components

�XML pages

�Web services

SDO provides a unified framework for data application development. With SDO, you do
not need to be familiar with a technology-specific API in order to access and use data. You
need to know only one API, the SDO API, which lets you work with data from multiple data
sources. Data sources such as relational databases, entity EJB components, XML pages,
Web services, the Java Connector Architecture, JavaServer Pages pages, and more. In a
nutshell, SDO provides a dynamic programming model for writing SCA Java applications
that work with schema-derived data. This dynamic programming model eliminates the
need to generate Java classes from schema definitions (like in the case of JAXB),
abstracts over certain XML details, and provides convenient and advanced methods for
accessing data at run-time.

WASv7SCA101_SDO_Overview.ppt Page 5 of 24

 –

IBM Software Group

6

Data binding SDO overview © 2009 IBM Corporation

�Composed of properties

�Single and many-valued properties

�Properties accessed and modified by name, offset,
Property, XPath

�Can contain other DataObjects as properties

�Reverse link to containing DataObject

�Example: DataObject parent =
containedDataObject.getContainer();

Guideline: cleanest possible client code for data access

DataObject

The DataObject is composed of properties both single and many-valued properties. The
properties are accessed and modified by name, offset, property, and XPath. DataObjects
can contain other DataObjects as properties.

What reverse link to containing DataObject means is that the contained dataobject can
traverse back to its containing dataobject. It is just like a DOM tree where you can find
your parent node, as shown in this example.

WASv7SCA101_SDO_Overview.ppt Page 6 of 24

 –

IBM Software Group

7

Data binding SDO overview © 2009 IBM Corporation

Dynamic data API example

XSD file

<complexType name="Person">
<attribute name="name" type="string"/>
<attribute name="postalCode" type="int"/>

</complexType>

Java code

DataObject o = dataFactory.create(tns, "Person");
o.set("name", "John");
o.set("postalCode", 94133);
System.out.println(o.get("name"));

Here is an example of Dynamic Data API. In the top part, you see an XSD file, and on the
bottom is the Java code corresponding to it. The XSD file shows the person’s attributes
and the corresponding Java code shows the specifics of the person.

WASv7SCA101_SDO_Overview.ppt Page 7 of 24

 –

IBM Software Group

8

Data binding SDO overview © 2009 IBM Corporation

Guideline: cleanest possible client code for data access

DataObject core API

get(Property)
set(Property)

Properties by String, int, Property, XPath
get("address")
get(1)
get(address)
get("address/zip")

isSet(Property)
unset(Property)

create(Property)
delete()

The DataObject API is designed to make programming easier because it provides access
to business data of all the common types and access patterns, such as name, index, and
path.

The DataObject API includes several functions. Functions that:

• Get and set the properties of a DataObject.

• Query whether a Property is set.

• Create a new instance of a contained DataObject.

• Delete a DataObject from its container.

• Detach a DataObject from its container.

• Get the container of a DataObject and the containing property.

• Get the root DataObject and so forth.

For many applications that do not use generated code, the DataObject API is the only part
of SDO that is used to write applications. For many applications that use generated code,
the generated APIs themselves are what is used. The other parts of SDO are primarily
use-as-you-go.

WASv7SCA101_SDO_Overview.ppt Page 8 of 24

 –

IBM Software Group

9

Data binding SDO overview © 2009 IBM Corporation

� getXXX(property). XXX is
�primitives: int, float, boolean, byte[], …
�String
�BigDecimal, BigInteger
�Date
�List for multi-valued properties
�converts between primitives and Objects
�converts between data types

� getInt("width") of 5.123 returns 5

DataObject - typed accessors

DataObject accessor functions are separated into getters and setters for each basic type,
so there is a getBoolean, getString, getInt and so on, rather than just a get() function. The
notation getXXX() is used to indicate any one of these accessor functions. XXX can be
primitives (like int, float, boolean, or byte[]), or they can be String, BigDecimal, BigInteger,
Date, or List for multi-valued properties and so on. Also note that it converts between
primitives and Objects and between data types.

WASv7SCA101_SDO_Overview.ppt Page 9 of 24

 –

" "

IBM Software Group

10

Data binding SDO overview © 2009 IBM Corporation

Or, use the API to go step by step to find the employee

List departments = company.getList(" departments ");
DataObject department = (DataObject) departments.get(0);
List employees = department.getList(" employees ");
DataObject employeeFromList = (DataObject) employees.get(1);

Or, an SDO xpath expression can find the employee based on simple
query:

DataObject employee =

company.getDataObject(" departments[number=123]/employees[SN=0002] ");

•

Get an employee using an SDO xpath expression starting from the
company

DataObject employee =
company.getDataObject(" departments[1]/employees[2] ");

Example: accessing DataObjects

Here is an example of the different ways to access data using an SDO XPath expression.
This is a DataObjects example on how to find an employee in a company in different ways:

By using the SDO XPath expression starting from the company, with employee as the
DataObject type, you can use getDataObject method to locate them. You can also use a
query or a step by step process using the getList () method to locate them as shown.

WASv7SCA101_SDO_Overview.ppt Page 10 of 24

 –

IBM Software Group

11

Data binding SDO overview © 2009 IBM Corporation

� SDO provides a simple, universal meta-model

�Used across JavaBeans, XML, or any data source

� Meta-data classes

�“Type”
– Has name, URI, instance class, and properties

�“Property”
– Has name, type, default value, numeric index within Type

SDO meta-model

SDO provides a simple, universal meta-model which is used across JavaBeans, XML, or
any data source. Metadata classes can be derived from Java, C++, UML or
EMOF(Essential Meta Object Facility)

A class can be represented by an SDO Type – URI, instance class and properties. Each
field of the class can be represented by an SDO property – name, type, default value, and
so on.

WASv7SCA101_SDO_Overview.ppt Page 11 of 24

 –

WASv7SCA101_SDO_Overview.ppt Page 12 of 24

IBM Software Group

12

Data binding SDO overview © 2009 IBM Corporation

Example - SDO metadata

DataObject obj = …;
Type type = obj.getType();
Collection c = type.getProperties();
Iterator i = c.iterator();
while (i.hasNext()) {

Property prop = (Property) i.next();
System.out.println(prop.getName());

}

Here is an example of an SDO metadata. Many applications are coded with built-in
knowledge of the shape of the data being returned. These applications know which
functions to call or fields to access on the data objects they use. However, in order to
enable development of generic or framework code that works with data objects, it is
important to be able to introspect on data object metadata, which exposes the data model
for the data objects. SDO provides APIs for metadata.

 –

IBM Software Group

13

Data binding SDO overview © 2009 IBM Corporation

SDO today sample usecase

� SDO provides a dynamic object binding for
XML

XML
Artifact

JAVA
Client

����

In this SDO sample use case you have the Java client and the xml artifact.

SDO provides a dynamic object binding for XML SCA WebSphere programmer, who
wants to read, write, or modify XML using a dynamic object API. The XML conforms to a
predefined and often vendor-specific XML schema.

WASv7SCA101_SDO_Overview.ppt Page 13 of 24

 –

IBM Software Group

14

Data binding SDO overview © 2009 IBM Corporation

SDO for XML

Component

Account
Service
Component

Component

Account
DataService
Component

Service

Account
Service

Reference

StockQuote
Service

Composite
AccountComposite

.Net
Web

Service

SCA

SCA

SCA

SDO

JAXB

Here are the SDO for XML “must haves”
XML Fidelity - API and model must support all valid XML schemas

Naturalness - API, model, and behavior must seem natural to an XML-savvy programmer

Performance - API must not inject features that prevent high-performance
implementations

Tolerance - must be able to tolerate some degree of erroneous XML
Additional IBM requirements

Data virtualization support, that is, the “XML document” can not have a natural physical
serialization as XML (for example., COBOL data structures)

Lazy loading and large object support

WASv7SCA101_SDO_Overview.ppt Page 14 of 24

 –

IBM Software Group

15

Data binding SDO overview © 2009 IBM Corporation

� Direct correspondence between XML and DataObjects

� XMLHelper
�Load and save DataObjects to XML streams

� XSD mapping to and from SDO

� XSDHelper
�Get XML specific information - isElement, isMixed, local name,

appinfo
�Define Types and Properties from XSDs

Annotations or XSLT for mapping control

�Generate XSDs from Types and Properties

XML/XSD integration

There is a direct correspondence between XML and DataObjects. An XMLHelper converts
XML streams to and from graphs of DataObjects. It loads and saves DataObjects to XML
streams. XSD mapping to and from SDO is also possible. Note that Because an XSD
contains more information than type and property, there are many XSD capabilities
unused by the default generation, like the preference between serializing with XML
elements or attributes. The recommended procedure is to generate the XSD from types
and properties, customize the XSD using tools or with XSLT, and use the customized XSD
as the original from which to define the SDO types and properties.

An XSDHelper provides additional information when a type or property is defined by an
XML schema. XSDHelper is useful in getting XML specific information, defining types and
properties from XSDs, and generating XSDs from types and properties.

WASv7SCA101_SDO_Overview.ppt Page 15 of 24

 –

IBM Software Group

16

Data binding SDO overview © 2009 IBM Corporation

XSD mapping <-> SDO

XML schema
concept

SDO concept Java concept

Schema URI for types Package

Simple type Type, dataType=true int, String,
BigDecimal

Complex type Type, dataType=false Interface

Attribute Property getX(), setX()

Element Property getX(), setX()

This slide shows you the XSD/SDO mapping. For example, the equivalent of a Schema in

XML is a URI for types on SDO, and an XML attribute is equivalent to a property in SDO.

WASv7SCA101_SDO_Overview.ppt Page 16 of 24

 –

IBM Software Group

17

Data binding SDO overview © 2009 IBM Corporation

<purchaseOrder orderDate="1999-10-20">

<shipTo country="US">

<name>Alice Smith</name>

<street>123 Maple Street</street>

<city>Mill Valley</city>

<state>PA</state>

<zip>90952</zip>

</shipTo>

...

</purchaseOrder>

•country= US
•name= Alice Smith
•street= 123 Maple Street
•city= Mill Valley
•state= PA
•zip= 90952

Values

Properties

•orderDate=1999-10-20

shipTo

XML SDO PurchaseOrderType

USAddress Type

XML / SDO mapping

Here is an example of XML / SDO mapping of a purchase order. Take note of the
orderdate, values and properties and how they map from XML to SDO.

WASv7SCA101_SDO_Overview.ppt Page 17 of 24

 –

IBM Software Group

18

Data binding SDO overview © 2009 IBM Corporation

Instance and model

This slide shows you the instance and model and how SDO/XML mapping takes place. To
highlight a few things, in the SDO metamodel you have type/property. On the XML side of
things you have XSDtype which can be complex or simple. Similarly for model, on the
SDO side you have a purchase order with the “Customer” and the lineItem, and on the
XML side you have the XSD containing the elements and the attributes.

WASv7SCA101_SDO_Overview.ppt Page 18 of 24

 –

IBM Software Group

19

Data binding SDO overview © 2009 IBM Corporation

SDO 2.1.1 and JSR235 compliancy support

�Compliant to JSR235 specification
�http://www.ibm.com/developerworks/java/library/specification/j-jsr235/

�Key features:
�XML and XML schema integration

�Dynamic data API (access data without generating Java
codes)

�SDO metadata (allow users to introspect the data model
of the data)

�Generate XML schema

�XPath navigation through graphs of data

The Feature Pack for Service Component Architecture (SCA) implementation complies
with Service Data Objects (SDO) specification version 2.1.1, also known as JSR 235.

The JSR-235 defines the Service Data Object API, which is designed to simplify and unify
the way in which applications handle data in a heterogeneous environment. The SDO API
frees developers from handling the complexity of data programming and enables them to
remain focused on business application development. Key features shown here are also
listed on Slide 4 of this presentation.

WASv7SCA101_SDO_Overview.ppt Page 19 of 24

 –

IBM Software Group

20

Data binding SDO overview © 2009 IBM Corporation

SummarySummary

Section

In summary…

WASv7SCA101_SDO_Overview.ppt Page 20 of 24

 –

IBM Software Group

21

Data binding SDO overview © 2009 IBM Corporation

SDO summary

�SDO is a framework for data application
development, which includes an architecture and
API:
�Simplifies the Java EE data programming model

�Unifies data application development

�Supports and integrates XML

�Incorporates Java EE patterns and best practices

SDO is a framework for data application development, which includes an architecture and
API. SDO simplifies the Java EE data programming model and unifies data application
development. It also supports and integrates XML and incorporates Java EE patterns and
best practices.

WASv7SCA101_SDO_Overview.ppt Page 21 of 24

 –

IBM Software Group

22

Data binding SDO overview © 2009 IBM Corporation

References

� IBM Education Assistant:
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.wasfpsca/wasfpsca/1.0/JAXB.html

� Introduction to service data objects
http://www.ibm.com/developerworks/java/library/j-sdo/

� SDO 2.1 specification:
http://www.osoa.org/display/Main/Service+Data+Objects+Home

� SDO JSR235 Data objects
http://www.ibm.com/developerworks/java/library/specification/j-jsr235/

� SCA feature pack information center
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.soafep.multiplatform.doc/info/welcome_nd.html

Here are some reference links for more information.

WASv7SCA101_SDO_Overview.ppt Page 22 of 24

 –

IBM Software Group

23

Data binding SDO overview © 2009 IBM Corporation

Feedback

Your feedback is valuable
You can help improve the quality of IBM Education Assistant content to better

meet your needs by providing feedback.

� Did you find this module useful?

� Did it help you solve a problem or answer a question?

� Do you have suggestions for improvements?

Click to send e-mail feedback:

mailto:iea@us.ibm.com?subject=Feedback_about_WASv7SCA101_SDO_Overview.ppt

This module is also available in PDF format at: ../WASv7SCA101_SDO_Overview.pdf

You can help improve the quality of IBM Education Assistant content by providing
feedback.

WASv7SCA101_SDO_Overview.ppt Page 23 of 24

 –

IBM Software Group

24

Data binding SDO overview © 2009 IBM Corporation

Trademarks, copyrights, and disclaimers
IBM, the IBM logo, ibm.com, and the following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM WebSphere

If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of other IBM
trademarks is available on the Web at "Copyright and trademark information" at http://www.ibm.com/legal/copytrade.shtml

EJB, Java, JavaServer, and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any statements regarding IBM's future direction
and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply
that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this
document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be
used instead.

THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products
are warranted, if at all, according to the terms and conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License
Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other
publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related
to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2009. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

WASv7SCA101_SDO_Overview.ppt Page 24 of 24

