
WASv61_EJB3FP_EJB3Overview.ppt Page 1 of 19

This presentation gives an overview of the WebSphere® Application Server V6.1 Feature

Pack for EJB 3.0.

WASv61_EJB3FP_EJB3Overview.ppt Page 2 of 19

This presentation will first describe some of the drawbacks of EJB 2.1 that provided the

motivation for EJB 3.0. Then it will give an overview of the major changes in EJB 3.0, and

some changes that were made in WebSphere Application Server itself.

WASv61_EJB3FP_EJB3Overview.ppt Page 3 of 19

This section describes some of the drawbacks in EJB 2.1.

WASv61_EJB3FP_EJB3Overview.ppt Page 4 of 19

The EJB specification has often been criticized for being overly complex. For example,

new developers are often confused about why it is necessary to create several different

source files for each EJB. Similarly, you are required to implement several callback

methods even if you do not use them, and handle exceptions that may be unnecessary.

Deployment descriptors can also be difficult to understand, and can be a bottleneck in a

team development environment, since only one person can be updating the deployment

descriptor at a given time. EJB 2.1 applications also cannot be tested outside of a

container, since some beans are abstract classes that are implemented by the container

at runtime.

WASv61_EJB3FP_EJB3Overview.ppt Page 5 of 19

This section will provide an overview of the changes introduced by the EJB 3.0

specification.

WASv61_EJB3FP_EJB3Overview.ppt Page 6 of 19

The main goal of EJB 3.0 is to simplify the programming model. The new specification

aims to make it as easy as possible to implement simple things, while keeping complex

things possible. In many cases this is accomplished by utilizing contextually appropriate

default values, allowing you to override the defaults when needed. When it is possible for

the container to figure something out, it will do so, rather than requiring a developer to

provide unnecessary information. With this simplification, regular Java developers should

be able to develop EJBs. That is, if you can write a plain-old Java object (POJO), you can

write a business object.

WASv61_EJB3FP_EJB3Overview.ppt Page 7 of 19

Many changes have been made in EJB 3.0, in an effort to simplify the programming

model. EJBs are now developed as plain-old Java objects, rather than their more complex

predecessors. Home interfaces are unnecessary in most cases, and business interfaces

can be generated automatically by the runtime, so there are far fewer source files to

develop and maintain. Along the same line, you now only have to implement life cycle

callback methods if you actually want to use them, and the specification no longer requires

you to implement unused exceptions. Deployment descriptors are optional in EJB 3.0,

because as you will see in this presentation, metadata can now be specified directly in

your Java code, using annotations. EJB 3.0 containers also handle deployment

dynamically, so you no longer have to manually deploy your EJBs.

WASv61_EJB3FP_EJB3Overview.ppt Page 8 of 19

The Java Persistence API, or JPA, is a new framework for Java object persistence and

object-relational mapping that was introduced as a part of the EJB 3.0 specification. In

JPA, relational data is represented using plain-old Java objects called “Entities”, rather

than the more complex “Entity Beans” that are used in Container-Managed Persistence

(CMP). JPA is considered both simpler and lighter-weight than CMP. The presentation

titled “JPA overview” discusses JPA in more detail.

WASv61_EJB3FP_EJB3Overview.ppt Page 9 of 19

Java annotations were introduced in Java SE 5, under JSR175, and are widely used in

EJB 3.0. Annotations are used to specify metadata directly in code, rather than in an XML

deployment descriptor, and are compiled directly into your class file. For example, adding

“@Stateful” before the name of a class defines it as a stateful session bean, and that no

longer needs to be specified in a deployment descriptor. Similar annotations exist for

Stateless Session Beans, Message-Driven beans, and JPA Entities. Annotations can be

used to provide more complex information as well, as you can see in the presentation

titled “EJB 3.0 code examples”.

WASv61_EJB3FP_EJB3Overview.ppt Page 10 of 19

EJB deployment descriptors can still be used in EJB 3.0, if you prefer to use them over

annotations. Deployment descriptors can even be partial, if you want to provide some

information using annotations, and keep other information in XML. Any values that are not

specified will inherit intelligent default values. In the case that the same information is

specified by both a Java annotation and the XML deployment descriptor, the data in the

deployment descriptor will be used. With experience, you may find that you prefer using

annotations for some things, and deployment descriptors for others. It is entirely up to you,

as the two are functionally equivalent.

WASv61_EJB3FP_EJB3Overview.ppt Page 11 of 19

EJB 3.0 also introduces annotations for injecting resource dependencies using the

“Inversion of control” pattern. Rather than implement boilerplate code and use a factory to

get an object, look it up in JNDI, and then cast or narrow it to make it useable, you now

need only to use the @Resource annotation to inject a dependency. The examples shown

on this slide illustrate how to inject an instance of an EJB using the @EJB annotation, and

a data source using the @Resource annotation.

WASv61_EJB3FP_EJB3Overview.ppt Page 12 of 19

The EJB 3.0 specification requires compatibility with earlier versions, so EJB 1 and 2

beans are still supported when the Feature Pack for EJB 3.0 is installed. You should

package any CMP beans in a separate EJB JAR file from your EJB 3.0 beans. If you want

to call an older EJB from an EJB 3.0 bean, you only need to look up the bean’s home

interface, and use it exactly as you would in an EJB 2 bean. To call an EJB 3.0 bean from

an older EJB, you need to create a home interface and a component interface for the EJB

3.0 bean, since they are expected by the older bean. Once you have created those

interfaces, you can look up the home interface and call it exactly as you would call an

older bean.

WASv61_EJB3FP_EJB3Overview.ppt Page 13 of 19

This section covers improvements to WebSphere Application Server when the Feature

Pack for EJB 3.0 is installed.

WASv61_EJB3FP_EJB3Overview.ppt Page 14 of 19

It has often been said that the edit-compile-test cycle is too long when developing

applications for WebSphere Application Server. The EJB deployment step had to occur

each time you modified an application, and that can take a very long time, depending on

application complexity. Vendor-specific tools were also required for persistence mapping.

Another frequent pain point is that JNDI bindings had to be specified manually, either

during application assembly or installation. There has also been a dependency on

WebSphere Application Server or WebSphere-specific tools for some tasks, such as

editing WebSphere-specific .xmi files.

WASv61_EJB3FP_EJB3Overview.ppt Page 15 of 19

When using EJB 3.0 applications on WebSphere Application Server, many of these pain

points are resolved. The Feature Pack for EJB 3.0 provides “just in time” deployment and

code generation, so the “EJBDeploy” step is no longer required. The container merges the

metadata provided in annotations and deployment descriptors dynamically. Automatic

binding is another capability that is provided by the Feature Pack. It automatically binds

beans to both a short and long JNDI name, so that you do not have to provide bindings

manually. The long-form binding is guaranteed to be unique. Consult the Information

Center for more information on automatic binding. You can override the automatic

bindings by providing your own bindings if you prefer.

WASv61_EJB3FP_EJB3Overview.ppt Page 16 of 19

This section will summarize the presentation, and list some resources for further

information.

WASv61_EJB3FP_EJB3Overview.ppt Page 17 of 19

The EJB 3.0 specification is designed to make it faster and easier to develop your

business logic. By introducing Java annotations for EJBs, dependency injection support,

removing boilerplate code, and making use of intelligent defaults, EJB 3.0 provides a

framework that enables anyone with Java skills to develop enterprise beans. The Java

Persistence API is also a part of the EJB 3.0 specification, and provides a simple and

lightweight framework for Java persistence and object-relational mapping. It is discussed

in a separate presentation module in more detail.

WASv61_EJB3FP_EJB3Overview.ppt Page 18 of 19

This slide lists some resources where you can learn more about EJB 3.0 and JPA. You

should also consult the Feature Pack for EJB 3.0 Information Center for more information.

WASv61_EJB3FP_EJB3Overview.ppt Page 19 of 19

