
WASv61_EJB3FP_EJB3_CodeExamples.ppt

This presentation will cover basic EJB 3.0 code examples.

Page 1 of 13



WASv61_EJB3FP_EJB3_CodeExamples.ppt

In this presentation, you will see several basic code examples. Many of them will show 

EJB 2.1 code alongside equivalent EJB 3.0 code, to help you understand the differences 

between the two programming models.

Page 2 of 13



WASv61_EJB3FP_EJB3_CodeExamples.ppt

This first example shows a simple session bean interface. In EJB 2.1, your interface must 

extend EJBObject, and you are required to throw a RemoteException. The EJB 3.0 

interface is just a plain Java interface, with no special requirements. In EJB 3.0, bean 

interfaces are optional. If you do not create one, it will be generated automatically at 

runtime. One reason that you might want to create your own interface is if you want to 

selectively expose the public methods on your bean. When an interface is automatically 

generated, all public methods are exposed.

Page 3 of 13



WASv61_EJB3FP_EJB3_CodeExamples.ppt

In this example, note that the EJB 3.0 session bean is a plain-old Java object (POJO) that 

implements its own interface, not “SessionBean”. It is recognized as a stateful session 

bean because of the “@Session” annotation that precedes the class definition. EJB 3.0 

also does not require implementation of the callback methods you seen in the EJB 2.1 

beans, ejbActivate() and ejbPassivate(). You need only implement them if you intend to 

use them. If you did not create a business interface, all of your public methods will be 

exposed by the automatically-generated interface. Alternately, you can use the 

“@BusinessMethod” annotation to selectively expose only certain methods. Note that in 

this basic example, the EJB 2.1 code would also require an XML deployment descriptor, 

while the EJB 3.0 code can stand on its own and run without any additional metadata.

Page 4 of 13



WASv61_EJB3FP_EJB3_CodeExamples.ppt

Here you see the difference between EJB 2.1 and 3.0 when it comes to EJB references. 

With EJB 2.1, if you want to call an EJB from the Web container or from another EJB, you 

need to first lookup the bean’s home interface, then use “narrow()” to cast the object to the 

appropriate interface type, and call “create()” to instantiate the bean. With EJB 3.0, you 

can use the @EJB annotation to easily inject an instance of an EJB, as shown in the 

example on the right. The example injects an instance of ShoppingCart named myCart, 

and you can then call methods on that object as you normally would.

Page 5 of 13



WASv61_EJB3FP_EJB3_CodeExamples.ppt

This slide shows a basic EJB 3.0 message-driven bean, designated as such by the 

“@MessageDriven” annotation. You can use the “@ActivationConfigProperty” annotation 

to provide information for the bean to use, such as destination and connection factory 

JNDI names. You must also provide a bindings file so that the bean will be able to locate 

the objects that exist with these names. Bindings files are discussed in detail in the 

Information Center. It is not necessary to inject the MessageDrivenContext in this 

example, but it is shown here to demonstrate how it can be injected to give you access to 

information maintained by the container, such as transaction information.

Page 6 of 13



WASv61_EJB3FP_EJB3_CodeExamples.ppt

Interceptors give you the ability to do pre- and post-processing, similar to what you can do 

with a servlet. An interceptor can be defined within the class or in a separate class, and 

must take an InvocationContext as an argument. A complete list of available interceptors 

can be found in the EJB 3.0 specification. This example uses a separate class to define 

an interceptor that logs the name of each method being called.

Page 7 of 13



WASv61_EJB3FP_EJB3_CodeExamples.ppt

This snippet shows an example of how you specify that a class should use an interceptor. 

The “@Interceptors” annotation can take a list of interceptor classes as arguments. There 

is also an example here of how to use callback annotations. In this case, the 

“@PrePassivate” annotation says that the “persistCart()” method should be called 

immediately before the bean is passivated.

Page 8 of 13



WASv61_EJB3FP_EJB3_CodeExamples.ppt

If you have installed the Feature Pack for EJB 3.0, you can find a sample EJB 3.0 

application in the “installableApps” directory. The source code for the application can be 

found in the “samples” directory. The sample application comes with an Ant build.xml file 

to show how EJB 3.0 applications can be built using Ant. You can also download a lab 

exercise that will walk you through the process of configuring the Application Server Toolkit 

to support development of EJB 3.0 applications using this sample.

Page 9 of 13



WASv61_EJB3FP_EJB3_CodeExamples.ppt

This section will summarize the presentation.

Page 10 of 13



WASv61_EJB3FP_EJB3_CodeExamples.ppt

The EJB 3.0 specification is designed to make it faster and easier to develop your 

business logic. By introducing Java annotations for EJBs, dependency injection support, 

removing boilerplate code, and making use of intelligent defaults, EJB 3.0 provides a 

framework that enables anyone with Java skills to develop enterprise beans. The code 

snippets in this presentation have given basic examples of how create interfaces, session 

beans, and message-driven beans, and also how to use interceptors and callback 

methods. The samples also show how the POJO-based EJB 3.0 framework is simpler 

than EJB 2.1.

Page 11 of 13



WASv61_EJB3FP_EJB3_CodeExamples.ppt

This slide lists some resources where you can learn more about EJB 3.0 and JPA. You 

should also consult the Feature Pack for EJB 3.0 Information Center for more information.

Page 12 of 13



WASv61_EJB3FP_EJB3_CodeExamples.ppt Page 13 of 13


