
Page 1 of 32

White Paper: Using WebSphere Adapter in
WebSphere High Availability Environment

 By

 Ni Yong
 Li Dong
 Song Han
 Zhang Kai

 IBM Software Group

Page 2 of 32

1. OVERVIEW ... 3

1.1 WEBSPHERE HIGH AVAILABILITY ENVIRONMENT OVERVIEW .. 3
1.2 WEBSPHERE ADAPTER IN HA ENVIRONMENT ... 5

2. ADAPTER DEPLOYMENT AND CONFIGURATION IN HA ENVIRONMENT 7

2.1 WEBSPHERE HA ENVIRONMENT ... 7
2.2 STANDALONE DEPLOYMENT .. 7

2.2.1 Standalone Deployment in WebSphere Application Server 7.0 HA Environment 8
2.2.1.1 Scenario 1 - Deploy Adapter in Cluster Level.. 8
2.2.1.2 Scenario 2 - HA configuration in Cluster-level different with it in node-level 16
2.2.1.3 Scenario 3 - Deploy Adapter only in Node Level... 17

2.2.2 Standalone Deployment in WebSphere Process Server 6.2 cluster environment 19
2.2.2.1 Scenario 4 - Deploy Adapter in Cluster Level.. 19
2.2.2.2 Scenario 5 - Deploy Adapter in Node Level and generate AS or MCF manually 21
2.2.2.3 Scenario 6 - Deploy Adapter in Node Level and generate AS or MCF automatically 22
2.2.2.4 Scenario 7 - Both Node-level JNDI and Cluster-level JNDI Exists ... 23

2.2.3 Standalone Deployment in WebSphere Process Server 7.0 cluster environment 24
2.2.3.1 Scenario 8 - Deploy Adapter in Cluster Level.. 24

2.3 EMBEDDED DEPLOYMENT .. 25
2.3.1 Embedded Deployment in WebSphere Process Server 6.2 HA environment 25

2.3.1.1 Scenario 9 - Embedded deployment in WebSphere Process Server 6.2 HA environment .. 25
2.3.2 Embedded Deployment in WebSphere Process Server 7.0 cluster environment 26

2.3.2.1 Scenario 10 - Embedded deployment in WebSphere Process Server 7.0 HA environment 26

3. ACHIEVE HIGH AVAILABILITY OF ADAPTER TRANSACTION IN HA ENVIRONMENT 27

3.1 HA REQUIREMENT FOR GLOBAL TRANSACTION ... 27
3.2 TRANSACTION SCENARIO IN HA ENVIRONMENT ... 28

4. SUMMARY .. 31

5. GLOSSARY .. 31

6. RESOURCES ... 32

Page 3 of 32

1. Overview

WebSphere Adapter is a connectivity-oriented middleware and is often used with runtime server
such as WebSphere Process Server or WebSphere Application Server and so on. There are
multiple deployment options and approaches for using an adapter in HA environments for these
servers. However, so far, there is no document that consolidates these usages, suggests an
approach, or provides the best practices to use adapter in these HA environments. This paper is
intended for this purpose and aim to help an enterprise application developer to understand the
configuration and deployment through various actual usage scenarios.

1.1 WebSphere High Availability Environment Overview

This paper mainly covers two kinds of WebSphere High Availability Environment, WebSphere
Application Server HA environment and WebSphere Process Server HA environment. The two
kinds of HA environment are based on the network deployment architecture. For example, in the
WebSphere Application Server HA environment, it uses several logical components that slot
together to form high availability application server cluster environments. See Figure 1.

Deployment Manager

Node Agent Node Agent

App A

App B

App A

App B

App C App D

Application Server 1 Application Server 2

Application Server 3 Application Server 4

Cell 1

Node 1 Node 2

C
lu

s
te

r 1

Figure 1.

The most top level unit is a cell, which is a logical grouping of nodes that are centrally managed
and have access to shared resources. A node is a managed container for one or more application
servers. Typically, a single node corresponds to a single machine. A node comprises a node
agent and application servers. The node agent is an architectural component that enables the
deployment manager of the cell to remotely manage the node. The deployment manager is an
application server whose task is to manage and configure the cell.
Multiple application servers are grouped together to form a WebSphere cluster to perform the
same task as a team. The member application servers can be distributed across one or more
nodes in any configuration.
The cluster can provide load balancing by way of distributing the requests across the application
servers in response to the individual load and availability of each server in order to prevent an
individual server from being overloaded. See Figure 2.

Page 4 of 32

Load Banlancer

Node Agent Node Agent

Application Server 1

Cell 1

Node 1 Node 2

Application Server 1

Application Server 1 Application Server 1

Deployment Manager

Client Request

C
lu

s
te

r 1

Figure 2.

Additionally, the cluster can provide failover capability to enable the high availability and business
continuity. If one node fails the other node in the same cluster will take over and complete the
unfinished business job and process the other business requests. This ensures that the cluster
enhances the business high availability. See Figure 3.

Load Banlancer

Node Agent Node Agent

Application Server 1

Cell 1

Node 1 Node 2

Application Server 1

Application Server 1 Application Server 1

Deployment Manager

Client Request

C
lu

s
te

r 1

Figure 3.

Based on the cluster environment, the WebSphere Application Server ND v6 introduces a new
feature called High Availability Manager (commonly called HAManager) that enhances the
availability of WebSphere singleton services such as transaction or messaging services. It
provides a peer recovery mechanism for in-flight transactions or messages among clustered
WebSphere application servers. The HAManager runs as a service within each WebSphere
process (Deployment Manager, Node Agent, or application server) that monitors the health of
WebSphere singleton services. In the event of a server failure, the HAManager will failover any
singleton service that was running on the failed server to a peer server. To ensure the high
availability in the scope of a cell, a core group is used for grouping all of the application servers
as a high availability domain. See Figure 4.

Page 5 of 32

HAManager

Deployment Manager

Node 1

HAManager

Node Agent

Node 2

HAManager

App Server 1

HAManager

Node Agent

Node 3

HAManager

App Server 1

Cluster 1

Core Group 1

Cell

Figure 4.

A cell must have at least one core group. The WebSphere Application Server creates a default
core group called DefaultCoreGroup for each cell. The multiple application servers can join the
core group to host high availability service. A core group uses the policy to determine how many
and which members of a high availability group are activated to accept work at any point of time.
A policy manages a set of high availability groups (HA groups). HA group is a set of dynamic
components created in a core group at run time. Each group represents a highly available
singleton service, such as the messaging service or adapter inbound service, and so on. The
available members in a group are ready to host the service at any time. There are several types
of core group policies that can be used. This paper only covers the One of N policy, which
determines that only one server activates the singleton service at a time and the HAManager
starts the service on another server if a failure occurs.

1.2 WebSphere Adapter in HA environment

The IBM WebSphere Adapter portfolio provides a series of adapters based on the Java™
Connector Architecture (JCA) specification. WebSphere Adapters enable managed, bidirectional
connectivity and data exchange between Enterprise Information System application and J2EE
components supported by WebSphere platform. It can support multiple WebSphere platforms to
provide the end-to-end integration bridge between two EIS.
The typical end-to-end integration scenario is to use two adapters to connect the two individual
EIS, EIS A and EIS B. See Figure 5. The two adapters enable the integration between the
generic data format used in the server business component and the application specific data
format in the EIS. The data in one EIS flows into another through the adapter and the process
server in bidirectional way. With the connectivity and transformation provided by adapter, the
business process can focus on the business logic since the interaction and communication logic
with EIS is completed by adapters and is transparent to it.

Page 6 of 32

Figure 5.

In the real customer’s production environment, the high availability of the enterprise solution is
more and more important. In the above end to end scenario, the availability of the adapter
application is critical to the whole integration solution. Whenever the adapter application is
unavailable, the interaction and communication with EIS will break. This impacts the normal
running of the integration solution and lead to the business break and uncountable loss for
customers. So the adapter application is usually deployed to the HA environment to ensure high
availability of the whole integration solution.
To make sure the WebSphere Adapter application can work with the high availability provided by
the infrastructure of WebSphere HA environment, a good practice is to deploy it in cluster level
and in this way it can be managed by the HA manager to provide the HA capability. What needs
to pay attention together is, there’re some difference between the HA behavior of adapter
outbound application and that of adapter inbound application in HA environment.
When the adapter inbound application is deployed to WebSphere HA environment with HA
capability enabled, there is a HA group created for the adapter inbound service. See Figure 6.
One of N HA policy is used in this HA group. In this way, only one adapter inbound instance is
activated and others are all in standby state. This is known as the singleton pattern for HA
behavior of adapter inbound service. Applying this pattern for adapter inbound is based on the
fact that it’s invalid usage to enable more than one inbound instance to process the same event,
which will lead to the event conflict and unpredictable errors. When the node with the active
inbound instance fails, the failover occurs and the adapter inbound instance in the other node will
be activated and go on processing events so as to ensure the high availability for the business.
To enable the singleton mode of adapter inbound in various WebSphere HA environments, some
deployment and configuration steps will be necessary, which are described in the following
sections through specific scenarios.

Node Agent
Node 1

Adapter Inbound

(Active)

Application Server 1

Node Agent
Node 2

Adapter Inbound

(Standby)

Application Server 2

HA Group 1

Cell
Deployment Manager

Figure 6.

When the adapter outbound application is deployed into WebSphere HA environment, it will be
active in every node of the cluster. This is different with the inbound service, since there is no
singleton requirement for it and thus the One of N HA policy of HA group has no impact for
adapter outbound service. Every adapter outbound instance in this cluster is ready to process an
event at any time when the event is delivered to it. The load balance will be enabled for the
multiple adapter outbound to serve the large amounts of events and prevent the single node
overload. Once some node fails then the request originally delivered to it will be automatically
forwarded to other nodes to ensure the service availability.

Page 7 of 32

Node Agent
Node 1

Adapter Outbound

(Active)

Application Server 1

Node Agent
Node 2

Application Server 2

Deployment Manager

Adapter Outbound

(Active)

Figure 7.

2. Adapter Deployment and Configuration in HA
Environment

This section describes how to use the standalone deployment and the embedded deployment of
an adapter to achieve the correct runtime behavior as described in Section 1.2. Also, the various
configuration options will be explored to clarify the runtime behavior through various specific
scenarios and finally outline the best practices for depolying and configuring an adapter in
Websphere HA environment.

2.1 WebSphere HA Environment

Among all of the scenarios, the following three kinds of Websphere HA environment are
discussed here:
 WebSphere Application Server 7.0 HA environment
 WebSphere Process Server 6.2 HA environment
 WebSphere Process Server 7.0 HA environment

This section will illustrate the features and compare the differences for adapter application
deployment in these HA environment. Table 1 lists the runtime and tooling version for every
environment.

WebSphere HA Platform Runtime Tooling

WebSphere Application
Server 7.0 HA Environment

WebSphere Application Server
7.0 Network Deployment

Rational Application Developer
7.5

WebSphere Process Server
6.2 HA Environment

WebSphere Process Server 6.2
Network Deployment

WebSphere Integration
Developer 6.2

WebSphere Process Server
7.0 HA Environment

WebSphere Process Server 7.0
Network Deployment

WebSphere Integration
Developer 7.0

Table 1.
Specifically, below HA runtime and tooling environment are used for scenarios in this paper.
For WebSphere Application Server 7.0 HA Environment, there is one cluster with two nodes,
each node includes an application server. In the following scenario description, the nodes will be
named as Node A and Node B. To simplify the description, the adapter application running in the
application server in Node A will simplified as “the adapter application running in Node A”.
For WebSphere Process Server 6.2 HA Environment, there are three clusters, AppTarget cluster,
Messaging cluster and Support cluster. Each cluster has two application servers distributed in two
different nodes.
For WebSphere Process Server 7.0 HA Environment, it has the same network deployment
topology with the WebSphere Process Server 6.2 HA Environment.

2.2 Standalone Deployment

Page 8 of 32

In Standalone Deployment, the adapter RAR is installed independently before the adapter
application EAR is deployed. The adapter application EAR contains no RAR in it, yet associates
and uses the installed adapter RAR in runtime.

2.2.1 Standalone Deployment in WebSphere Application Server 7.0
HA Environment

2.2.1.1 Scenario 1 - Deploy Adapter in Cluster Level

JCA Adapter RAR is managed as resource at the node-level in WebSphere Application Server
and WebSphere Process Server HA environment, which means the adapter RAR’s life cycle and
runtime behavior is managed by individual node independently in its node scope. However, the
adapter inbound or outbound application runs at cluster level. Many customers choose to install
adapter RAR with node level in all nodes in the cluster, and create the AS or MCF with same
JNDI name and the same properties individually in every adapter RAR. Then, deploy the adapter
application to refer to the JNDI name. This is the typical usage that is described in the Scenario 2.
However, this way brings the uncertainty about which adapter RAR will be actually invokded by
the application in runtime, and also, this way cannot make use of adapter’s HA feature to ensure
the high availability of customer’s business. So the most suggested and the reliable way is to
generate a cluster-level adapter based on the node-level adapter RAR in all nodes within the
cluster, then configure AS/MCF in the cluster-level adapter and deploy adapter application
referring to this AS/MCF JNDI.

Configuration Steps
1. Install Adapter RAR in Node A and Node B.
Open the Admin Console of deployment manager, navigate to the Resources->Resource
Adapters->Resource adapters. Click the Install RAR button in the right side pane, the Install
RAR File page is opened. See Figure 8.

Figure 8.

Specify the target Node A in the Node combo box. Click Browse and navigate to the target RAR
file. Then click Next. Input the name of the adapter RAR in the Name edit box or keep the default
value for it in the configuration page. Click OK and save the configuration to complete the RAR
installation. Then install the RAR on Node B following the same steps.

2. Generate the cluster-level adapter based on the two node-level adapters.
Navigate to the Resources->Resource Adapters->Resource adapters, specify the scope to the
target cluster and click New to open the configuration page. See Figure 9.

Page 9 of 32

Figure 9.

Specify the adapter name in the Name edit box, for example - SAPRAND. In the Archive path
area, the “Choose an archive from the list of installed RARs” radio is selected by default. Here
specify “${CONNECTOR_INSTALL_ROOT}/CWYAP_SAPAdapter_Tx.rar”, which is the
installed adapter RAR in Step 1. Notes that the RAR appears in the choice list only if the RAR is
installed on all nodes in the same cluster. This ensures that the cluster level adapter has real
adapter RAR in every node in the cluster. Click OK and save the configuration to complete the
generation for the cluster level adapter. See Figure 10.

Figure 10.

3. Generate AS or MCF for cluster-level adapter.
Click the cluster level adapter in the adapter RAR table to enter the configuration page. Click the
J2C connection factory to create MCF for outbound application or click J2C activation
specification to create AS for inbound application. For the specific configuration steps you can
refer to [1].
4. Configure the HA property for cluster-level adapter.
After the creation of MCF or AS, return to the main configuration page. Click Custom properties,
specify the enableHASupport as true.

Page 10 of 32

Return to the main configuration. Click Advanced resource adapter properties, and select
Register this resource adapter with the high availability manager. Then specify the
Endpoint failover option.

Figure 11.

Registering the resource adapter with the high availability manager specifies that the high
availability (HA) manager will manage the lifecycle of a JCA resource adapter in the cluster,
ensuring that applications using resource adapters remain highly available. Endpoint failover
option allows only one resource adapter in an HA group to receive messages across multiple
servers. The result is that only one resource adapter can have endpoints active at one time.
Resource adapter instance failover option allows only one resource adapter in an HA group to be
started across multiple servers.
This HA related configuration is recorded into the configuration file in the WebSphere Application
Server 7.0 ND installation directory, specifically,
WAS_Root\profiles\xxNode\config\cells\xxcell\clusters\xxcluster\resouces.xml
Some of the content in this file corresponds to the above configuration.
<resources.j2c:J2CResourceAdapter

xmi:id="J2CResourceAdapter_1295432333031" name="SAPRAND"

isolatedClassLoader="false"

archivePath="${CONNECTOR_INSTALL_ROOT}/CWYAP_SAPAdapter_Tx.rar"

singleton="false" hACapability="RA_ENDPOINT_HA"

isEnableHASupport="true">

The EnableHASupport corresponds to Register this resource adapter with the high availability
manager checkbox choice. The hACapability attribute corresponds to the Endpoint failover or
Resource adapter instance failover radio box choice.

5. Develop Adapter Application
Develop the Adapter application with the Rational Application Developer 7.5. Specify the JNDI
name to the preconfigured cluster level AS or MCF. The detailed development steps refer to [1].
Export the application as EAR file in Rational Application Developer 7.5.

6. Deploy and start the application
In the Admin Console navigate to the Applications > Application Types > WebSphere
enterprise applications. Click Install in the right pane, browse the exported EAR file. Complete
the installation wizard to install EAR. Start the application.

Observations and Runtime Behavior
If the application is for inbound in this scenario, it is activated for polling events on only one node
and is standby on another node. When the active node fails, the failover happens and the adapter
inbound is activated on another node and go on processing events. From the trace in two

Page 11 of 32

application server in the two nodes, there is some trace records reflecting the different behavior.
Following is an example of the trace of server1 on Node A:
[1/20/11 0:00:40:000 GMT+08:00] 00000022 EJBContainerI I WSVR0037I: Starting

EJB jar: SAPInboundEJB.jar

[1/20/11 0:00:41:062 GMT+08:00] 00000022 EJBContainerI I CNTR0167I: The

server is binding the sapinboundpkg.SapInboundInt interface of the

SapInboundIntSB enterprise bean in the SAPInboundEJB.jar module of the

SAPInboundEJBEAR application. The binding location is:

ejblocal:SAPInboundEJBEAR/SAPInboundEJB.jar/SapInboundIntSB#sapinboundpkg.SapIn

boundInt

[1/20/11 0:00:41:093 GMT+08:00] 00000022 EJBContainerI I CNTR0167I: The

server is binding the sapinboundpkg.SapInboundInt interface of the

SapInboundIntSB enterprise bean in the SAPInboundEJB.jar module of the

SAPInboundEJBEAR application. The binding location is:

ejblocal:sapinboundpkg.SapInboundInt

[1/20/11 0:00:41:703 GMT+08:00] 00000022 ResourceAdapt 2

com.ibm.j2ca.sap.SAPResourceAdapter

endpointActivation(MessageEndpointFactory,ActivationSpec) Entering method.

[1/20/11 0:00:41:718 GMT+08:00] 00000022 ResourceAdapt 1

com.ibm.j2ca.sap.SAPResourceAdapter

endpointActivation(MessageEndpointFactory,ActivationSpec) Adding endpoint.

Factory = com.ibm.ejs.container.MessageEndpointFactoryImpl@fd8599b6,

ActivationSpec = com.ibm.j2ca.sap.SAPActivationSpecWithXid@0

[1/20/11 0:00:41:718 GMT+08:00] 00000022 ResourceAdapt 3

com.ibm.j2ca.sap.SAPResourceAdapter

endpointActivation(MessageEndpointFactory,ActivationSpec) ->>>>>>>>> adding

endpoints()

[1/20/11 0:00:41:718 GMT+08:00] 00000022 ResourceAdapt 2

com.ibm.j2ca.sap.inbound.EndpointManager addEndpoint Entering method.

[1/20/11 0:00:42:390 GMT+08:00] 00000022 ResourceAdapt 1

com.ibm.j2ca.sap.inbound.SAPEventListenerManager installAleFunctions --

>aSpec.getNumberOfListeners()=0

[1/20/11 0:00:42:390 GMT+08:00] 00000022 ResourceAdapt I

com.ibm.j2ca.sap.inbound.SAPEventListenerManager installAleFunctions Warning

NumberOfListeners=0 , at least one listner is required for inbound , adding one

listner. -->NumberOfListeners=1

…..

 [1/20/11 0:00:46:687 GMT+08:00] 00000022 ResourceAdapt 2

com.ibm.j2ca.sap.inbound.SAPEventListenerManager startAleEventListeners

Entering method.

[1/20/11 0:00:46:859 GMT+08:00] 00000022 ResourceAdapt 2

com.ibm.j2ca.sap.inbound.SAPEventListenerManager installALEFunctions Entering

method.

[1/20/11 0:00:46:859 GMT+08:00] 00000022 ResourceAdapt 1

com.ibm.j2ca.sap.inbound.SAPEventListenerManager installAleFunctions Attempting

to install ALE functions

[1/20/11 0:00:48:062 GMT+08:00] 00000022 ResourceAdapt 1

com.ibm.j2ca.sap.inbound.SAPEventListenerManager installAleFunctions Function

module IDOC_INBOUND_ASYNCHRONOUS has been installed successfully.

[1/20/11 0:00:48:078 GMT+08:00] 00000022 ResourceAdapt 2

com.ibm.j2ca.sap.inbound.SAPEventListener SAPEventListener Entering method.

[1/20/11 0:00:48:093 GMT+08:00] 00000022 ResourceAdapt 3

com.ibm.j2ca.sap.ale.inbound.SAPAleEventListener SAPAleEventListner

*********onNotification********

[1/20/11 0:00:48:109 GMT+08:00] 00000022 ResourceAdapt 2

com.ibm.j2ca.extension.utils.persistencestore.EventPersistence

EventPersistence:constructor Entering method.

[1/20/11 0:00:48:109 GMT+08:00] 00000022 ResourceAdapt 2

com.ibm.j2ca.extension.utils.persistencestore.EventPersistence

EventPersistence:constructor DataSourceJNDIName is null.

[1/20/11 0:00:48:125 GMT+08:00] 00000022 ResourceAdapt 2

com.ibm.j2ca.extension.utils.persistencestore.EventPersistenceMemoryImpl

EventPersistenceMemoryImpl:constructor Entering method.

Page 12 of 32

[1/20/11 0:00:48:125 GMT+08:00] 00000022 ResourceAdapt 3

com.ibm.j2ca.extension.utils.persistencestore.EventPersistenceMemoryImpl

EventPersistenceMemoryImpl:constructor setLogUtils Successful

[1/20/11 0:00:48:140 GMT+08:00] 00000022 ResourceAdapt 2

com.ibm.j2ca.extension.utils.persistencestore.EventPersistenceMemoryImpl

createEventTableInMemory() Entering method.

[1/20/11 0:00:48:140 GMT+08:00] 00000022 ResourceAdapt <

com.ibm.j2ca.extension.utils.persistencestore.EventPersistenceMemoryImpl

createEventTableInMemory() Exiting method.

[1/20/11 0:00:48:140 GMT+08:00] 00000022 ResourceAdapt 3

com.ibm.j2ca.extension.utils.persistencestore.EventPersistenceMemoryImpl

EventPersistenceMemoryImpl:constructor EventMemoryTable: NULL

[1/20/11 0:00:48:140 GMT+08:00] 00000022 ResourceAdapt <

com.ibm.j2ca.extension.utils.persistencestore.EventPersistenceMemoryImpl

EventPersistenceMemoryImpl:constructor Exiting method.

[1/20/11 0:00:48:140 GMT+08:00] 00000022 ResourceAdapt <

com.ibm.j2ca.extension.utils.persistencestore.EventPersistence

EventPersistence:constructor Exiting method.

[1/20/11 0:00:48:140 GMT+08:00] 00000022 ResourceAdapt <

com.ibm.j2ca.sap.ale.inbound.SAPAleEventListener SAPAleEventListener Exiting

method.

[1/20/11 0:00:48:156 GMT+08:00] 00000022 ResourceAdapt <

com.ibm.j2ca.sap.inbound.SAPEventListenerManager startAleEventListeners Exiting

method.

[1/20/11 0:00:48:156 GMT+08:00] 00000022 ResourceAdapt <

com.ibm.j2ca.sap.inbound.EndpointManager addEndpoint Exiting method.

[1/20/11 0:00:48:156 GMT+08:00] 00000022 ResourceAdapt <

com.ibm.j2ca.sap.SAPResourceAdapter

endpointActivation(MessageEndpointFactory,ActivationSpec) Exiting method.

[1/20/11 0:00:48:156 GMT+08:00] 00000022 ActivationSpe I J2CA0523I: The

Message Endpoint for ActivationSpec sapinbound

(com.ibm.j2ca.sap.SAPActivationSpecWithXid) and MDB Application

SAPInboundEJBEAR#SAPInboundEJB.jar#SapInboundIntMDB is activated.

[1/20/11 0:00:48:281 GMT+08:00] 00000022 EJBContainerI I WSVR0057I: EJB jar

started: SAPInboundEJB.jar

[1/20/11 0:00:48:312 GMT+08:00] 00000022 ApplicationMg A WSVR0221I:

Application started: SAPInboundEJBEAR

The Trace in server2 on Node B,

[1/20/11 0:00:52:937 GMT+08:00] 00000033 ApplicationMg A WSVR0200I: Starting

application: SAPInboundEJBEAR

[1/20/11 0:00:52:953 GMT+08:00] 00000033 ApplicationMg A WSVR0204I:

Application: SAPInboundEJBEAR Application build level: Unknown

[1/20/11 0:00:54:609 GMT+08:00] 00000033 EJBContainerI I WSVR0037I: Starting

EJB jar: SAPInboundEJB.jar

[1/20/11 0:00:55:765 GMT+08:00] 00000033 EJBContainerI I CNTR0167I: The

server is binding the sapinboundpkg.SapInboundInt interface of the

SapInboundIntSB enterprise bean in the SAPInboundEJB.jar module of the

SAPInboundEJBEAR application. The binding location is:

ejblocal:SAPInboundEJBEAR/SAPInboundEJB.jar/SapInboundIntSB#sapinboundpkg.SapIn

boundInt

[1/20/11 0:00:55:812 GMT+08:00] 00000033 EJBContainerI I CNTR0167I: The

server is binding the sapinboundpkg.SapInboundInt interface of the

SapInboundIntSB enterprise bean in the SAPInboundEJB.jar module of the

SAPInboundEJBEAR application. The binding location is:

ejblocal:sapinboundpkg.SapInboundInt

[1/20/11 0:00:56:718 GMT+08:00] 00000033 EJBContainerI I WSVR0057I: EJB jar

started: SAPInboundEJB.jar

[1/20/11 0:00:56:765 GMT+08:00] 00000033 ApplicationMg A WSVR0221I:

Application started: SAPInboundEJBEAR

[1/20/11 0:00:56:796 GMT+08:00] 00000033 CompositionUn A WSVR0191I:

Composition unit WebSphere:cuname=SAPInboundEJBEAR in BLA

WebSphere:blaname=SAPInboundEJBEAR started.

Page 13 of 32

In the JCA adapter application starting process, only if ResourceAdapter.endpointActivation() is
invoked, can the inbound functionality be enabled and the inbound polling activated. In the trace
of Node A, ResourceAdapter.endpointActivation() is invoked, accordingly, the polling is started. In
the trace of Node B, ResourceAdapter.endpointActivation() is not invoked, indicating that inbound
functionality is not enabled and the inbound instance in Node B is standby.

From WebSphere Application Server HA mechanism, when the configuration in this scenario is
set, the resource adapter is registered to HA manager and one HA group is generated to ensure
the inbound singleton service. Navigate to Servers->Core Groups->Core group settings. A list
of the core group in this cell is displayed. Then, click DefaultCoreGroup. The configuration page
for DefaultCoreGroup is displayed. See Figure 12.

Figure 12.

Then switch to Runtime page, keep all of the values in this page as default and click Show
groups. All of the HA groups in DefaultCoreGroup are listed in the table, one of which is the HA
group generated for the cluster level adapter and the corresponding policy is One of N policy. See
Figure 13.

Figure 13.

Click this HA group list item to show the status. It indicates that the inbound service is active in
the server1 and standby in server2. This is consistent with the actual runtime behavior and the
node traces analysis.

Page 14 of 32

Figure 14.

On the other hand, if you change the configuration for the HA related properties, it will display the
following runtime behavior.
You can uncheck the isEnableHASupport at the advanced property window for resource adapter
as false and not change the other properties. When you redeploy and start the application, the
adapter inbound instance on both nodes are active. If you check the DefaultCoreGroup status,
you will find that the HA group mentioned above has been eliminated. Hence, the inbound
singleton behavior has been disabled.
In another case, if you configure the enableHASupport in the custom properties window of the
Resource Adapter as false and not change the other properties, the result is just the same as
above case.
The different configuration and the corresponding runtime behavior for inbound adapter
application are summarized in Table 2.

Page 15 of 32

Items isEnableHASuppor
t at advanced
property for
cluster-level
resource adapter

HACapability at
advanced property
for cluster-level
resource adapter

EnableHASupport
at customer
property for
cluster-level
resource adapter

Runtime
Behavior

Adapter
Inbound at
cluster level

true RA_INSTANCE_HA or
RA_ENDPOINT_HA

true 1. only one
adapter
inbound
instance active
in only one
node.

2. If active node
fails, the
inbound
instance
activate in the
standby node.

Adapter
Inbound at
cluster level

true RA_INSTANCE_HA or
RA_ENDPOINT_HA

false Adapter inbound
instances are
active on both
nodes.

Adapter
Inbound at
cluster level

false RA_NO_HA true Adapter inbound
instances are
active on both
nodes.

Adapter
Inbound at
cluster level

false RA_NO_HA false Adapter inbound
instances are
active on both
nodes.

Table 2.
From the runtime behavior summary, the common rule is that the isEnableHASupport at
advanced properties and the enableHASupport at custom properties are like two switches for the
adapter inbound HA behavior. If either of them are turned off it will lead to the HA singleton
behavior being disabled.
When this scenario is for outbound adapter application, the outbound instance is activated on
both nodes and starts working concurrently. When sending a large number of requests to the
outbound adapter application, the outbound on two nodes will each take a half of the work load
under the load balance. If one node fails, all the requests sent to that node are forwarded to the
other node thereby processing all requests successfully. When the failed node is active again, the
load balance is restored and the two outbound instance work concurrently again.
Regardless of the value that is set in the HA related properties, the runtime behavior for outbound
application on HA environment are the same. The specific configuration and the according
runtime behavior are summarized in Table 3.

Page 16 of 32

Items isEnableHASuppor
t at advanced
property for
cluster-level
resource adapter

HACapability at
advanced property
for cluster-level
resource adapter

EnableHASupport
at customer
property for
cluster-level
resource adapter

Runtime
Behavior

Adapter
Outbound at
cluster level

true RA_INSTANCE_HA or
RA_ENDPOINT_HA

true 1. Outbound is
active on both
nodes.

2. When one
node fails, the
requests to it
are all forward
to another
node.

Adapter
Outbound at
cluster level

true RA_INSTANCE_HA or
RA_ENDPOINT_HA

false Same with above.

Adapter
Outbound at
cluster level

false RA_NO_HA true Same with above.

Adapter
Outbound at
cluster level

false RA_NO_HA false Same with above.

Table 3.
Scenario Summary
In cluster-level deployment mode, only if the isEnableHASupport at advanced properties and the
enableHASupport at custom properties are both true, the singleton HA behavior for inbound is
enabled. For outbound, no matter how the cluster-level HA properties are configured, the feature
of all active and load balance are always enabled. The cluster-level deployment is the
recommended approach for adapter in WebSphere Appliation Server 7.0 HA environment.

2.2.1.2 Scenario 2 - HA configuration in Cluster-level different with it in
node-level

In the configuration steps in Scenario 1, the node-level adapter’s HA configuration keeps as
default value. However, if the node-level HA configuration changes to other values, what is the
runtime behavior of the inbound application and the outbound application? Does the HA
configuration in node-level affect the runtime behavior remarkably? The answers are discussed in
the following scenario.
Configuration Steps

1. Follow the Step 1 to Step 3 in Scenario 1 to setup cluster-level adapter. Keep the cluster-
level HA properties as default value.

2. Configure the HA property for node-level adapter in Node A to enable HA behavior.
Navigate to the Resource adapters > IBM WebSphere Adapter for SAP > Advanced
resource adapter properties, select the Register this resource adapter with the high
availability manager, and keep the Endpoint failover radio as default. Configure the
node-level adapter in Node B with the same step.

3. Follow the Step 5 and Step 6 in Scenario 1 to deploy and start the adapter application.

Observations and Runtime Behavior
If the application is for inbound, the inbound instance will be active on both nodes, which
indicates the inbound singleton HA behavior is disabled in this scenario. The reason is that the
cluster-level HA property maintains the default value, so the Register this resource adapter with
the high availability manager property is unchecked by default. In this scenario, the HA behavior
is decided by cluster-level adapter’s HA configuration.

Page 17 of 32

If you specify any kind of configuration combination for the HA configuration in cluster-level and
node-level, you will obtain the following summary as shown in the table below:

Cluster-level HA support Node-level HA Support Runtime Behavior

True True 1. only one adapter inbound
instance active in one
node.

2. If active node fails, the
inbound instance activate
in the standby node.

True False 1. only one adapter inbound
instance active in one
node.

2. If active node fails, the
inbound instance activate
in the standby node.

False True Adapter inbound instances are
active on both nodes.

False False Adapter inbound instances are
active on both nodes.

Table 4.
In this table, the Cluster-level HA support is true means the mentioned two HA switch
(isEnableHASupport at advanced properties and the enableHASupport at custom properties) in
cluster-level adapter are both true. If the Cluster-level HA support is false it implies that either of
these two switches is false. The similar is for Node-level HA support, the only difference is that it
corresponds to the two node-level HA switches. From this table, notice that the inbound HA
behavior is consistent with the cluster-level HA configuration. Conversely, the node-level HA
configuration does not affect the inbound HA behavior.
If the application is for outbound, no matter any kind of configuration combination for the HA
configuration in cluster-level and node-level, the runtime behavior is just the same with it in
Scenario 1.

Scenario Summary
For adapter inbound, the cluster-level HA configuration overrides the Node-level HA
configuration. This means that the inbound HA behavior is decided by the HA configuration for
the cluster-level adapter, if it exists. For adapter outbound, both the cluster-level HA configuration
and node-level HA configuration does not affect the HA behavior.

2.2.1.3 Scenario 3 - Deploy Adapter only in Node Level

In this scenario, adapter is deployed only in the node level and no cluster-level adapter is
configured. Although this is not a recommended approach for the usage of adapter in HA
environment, the different runtime behavior with the cluster-level deployment is illustrated here to
understand why it’s not recommended.
Configuration Steps
1. Install Adapter RAR in Node A and Node B following the Step 1 in Scenario 1.
2. Configure the AS or MCF for Adapters in both nodes and set the same property values for

the both.
3. Enable the HA properties for both nodes following the Step 4 in Scenario 1.
4. Follow the Step 5 and Step 6 in Scenario 1 to deploy and start the adapter application.

Observations and Runtime Behavior
If the application is for inbound, the inbound instance is active on both nodes. Although the HA
related properties are all set to true in the node-level adapter, the inbound singleton HA runtime
behavior is disabled. In fact, irrespective of the option specified for the HA configuration at the
node-level, the runtime behavior is just the same.

Page 18 of 32

Also by comparing the inbound application starting trace in Node A and Node B, the invocation on
ResourceAdapter.endpointActivation() happened on both nodes, which is another explanation for
this runtime behavior.
To understand the runtime behavior, we need to observe the HA group related settings. Navigate
to Servers->Core Groups->Core group, click DefaultCoreGroup. Switch to Runtime page,
keep all of the values in this page as default and click Show groups. Here there are two HA
groups are generated for the individual node-level adapter in two nodes.

Figure 15.

Click either of the two HA group list item to enter the HA group page, it indicates that there is only
one node in this HA group and the adapter inbound is active in it. By means of two HA group, the
HA manager ensures each adapter inbound instance is always active in its node.

Figure 16.

If the application is for outbound, no matter any kind of configuration combination for the HA
configuration in both node-level adapter, the runtime behavior is just the same with it in Scenario
1.

Scenario Summary
Deploying adapter only in node level will disable HA singleton behavior for inbound. Hence, it is
not recommended approach in HA environment. For outbound, the all active and load balance
feature are the same with the cluster-level deployment. However, you need to maintain a
consistency of MCF properties for both nodes in this case. And if there are more nodes in the
cluster, the maintenance will become sick and tired job. The approach in this scenario is not
recommended to customers and the cluster-level deployment described in Scenario 1 is the best
practice and recommended way for adapter usage in WebSphere Application Server 7.0 HA
environment.

Page 19 of 32

2.2.2 Standalone Deployment in WebSphere Process Server 6.2
cluster environment

This section will describe the adapter HA configuration and the runtime behavior on WebSphere
Process Server 6.2 HA environment through several scenarios. Also the limitations of
WebSphere Process Server 6.2 HA environment for adapter deployment are described here. This
will help clarify the incorrect approach and highlights these limitations in a real solution
development through WebSphere Integration Developer 6.2 and targeted to WebSphere Process
Server 6.2 HA environment.

2.2.2.1 Scenario 4 - Deploy Adapter in Cluster Level

In this scenario, the adapter will be deployed to the cluster level. The approach is similar with
Scenario 1, however there are some differences in the HA related configuration.

Configuration Steps
1. Install adapter RAR on the two custom nodes in the svttop.AppTarget cluster. For each node,

make the configuration following the Step 1 in Scenario 1.
2. Generate a cluster-level adapter based on the node-level adapter, following the Step 2 in

Scenario 1. Specify the svttop.AppTarget cluster in the combo box for scope. Then, click New
to generate the cluster-level adapter.

Figure 17.

After the generation of the cluster-level adapter complete, go into the cluster-level adapter
configuration page. There is no Advanced properties link in this page as present in WebSphere
Application Server 7.0. This difference is based on the fact that the WebSphere Process Server
6.2 is built on the WebSphere Appliation Server 6.1.0.23. Hence, in the WebSphere Application
Server version not higher than 6.1.0.23 or on the WebSphere Process Server with version not
higher than 6.2, there is no Advanced properties link in this page. The Advanced properties
configuration is an enhancement from the higher version of WebSphere Application Server,
specifically, WebSphere Application Server 7.0 release.
Here you cannot configure the isEnableHASupport in the advanced properties of RAR as done in
WebSphere Application Server 7.0 scenario. However, the enableHASupport in custom
properties of RAR need to be configured to true.
3. Create cluster-level AS or MCF for the cluster-level adapter, following the configuration in

Step 3 in Scenario 1.
4. Develop adapter application with WebSphere Integration Developer 6.2.
In EMD, specify to use the standalone deployment by setting the Deploy connector project
option as the “On server for use by multiple applications”. Specify Connection properties as
the “Use the predefined connection properties”. Specify the JNDI Lookup Name to the AS or

Page 20 of 32

MCF created in Step 3. After the application is developed and built, export it as EAR file. For the
complete EMD process in WebSphere Integration Developer 6.2, please refer to [2].

Figure 18.

5. Deploy the application and start, following the Step 6 in Scenario 1. The only difference is to
specify the correct target cluster for the application, as there are more than one cluster in this
topology.

In the Step 2 of the deployment wizard, select the item
“WebSphere:cell=aix116Cell01,cluster=svttop.AppTarget” in the Clusters and servers list box.
And select all of the modules in the module list, click Apply. As a result all the modules are
mapped to the svttop.AppTarget cluster. Then go on and finish this wizard to complete the
deployment. Start the application.

Figure 19.

Observations and Runtime Behavior
If the application is for inbound in this scenario, the adapter inbound is active on only one node
and the inbound instance on another node is standby. Comparing the trace of two nodes, the
ResourceAdapter.endpointActivation() is invoked by only one node, where the inbound instance
is activated. And for the node where the method is not invoked, the inbound instance is standby.

Page 21 of 32

And also there is one HA group generated for the cluster-level adapter, one of N policy is
specified for this HA group.
If the application is for outbound, it starts working on both nodes in the svttop.TargetApp cluster,
and the feature of all active and load balance take effective.
There is the similar question as in the Scenario 2 for WebSphere Application Server 7.0 HA
environment, what impact will be brought by specifying various configuration combination in the
cluster-level adapter HA configuration and the node-level adapter HA configuration? All the
cases and the corresponding runtime behavior are summarized in the table below.

Cluster-level HA support Node-level HA Support Runtime Behavior

True True Singleton HA behavior for inbound
is enabled.

True False Singleton HA behavior for inbound
is enabled.

False True Inbound is active on both nodes.

False False Inbound is active on both nodes.

Table 5.
In this table, the Cluster-level HA support being True stands for the enableHASupport property in
cluster-level adapter is set to true and vice versa. The Node-level HA support being True stands
for the enableHASupport property in node-level adapter is set to true and vice versa.
From this table, the inbound HA behavior is decided by the cluster-level HA support. And the
node-level HA support has no impact on the inbound HA behavior. The enableHASupport
property in cluster-level is the only HA switch comparing with the two switches in WebSphere
Application Server 7.0 HA environment.
If the application is for outbound, no matter what kind of HA configuration make for cluster-level
and node-level, the feature of all active and load balance are always enabled, just as the
description in the Table 3 in Scenario 1.

Scenario Summary
In WebSphere Process Server 6.2 HA environment, the cluster-level deployment mode enables
the singleton HA behavior for adapter inbound application. The enableHASupport at custom
properties in cluster-level adapter is the switch for enabling the singleton HA behavior for
inbound. For outbound, irrespective of the kind of the cluster-level HA configuration, the feature of
all active and load balance is always enabled. The cluster-level deployment is the recommended
approach for adapter in WebSphere Process Server 6.2 HA environment.

2.2.2.2 Scenario 5 - Deploy Adapter in Node Level and generate AS or MCF
manually

Similar with Scenario 3 for WebSphere Application Server 7.0, the adapter can also be deployed
on only node-level in WebSphere Process Server 6.2 HA environment. Accordingly, this is also
not a recommended approach for adapter usage in WebSphere Process Server 6.2 HA
environment. However, the following discussion and the illustration of the actual configuration and
runtime behavior states why this scenario is not recommended.

Configuration Steps
1. Install JDBC RAR in Node A, then configure the AS or MCF for the RAR.
2. Install JDBC RAR in Node B, then configure the AS or MCF with the same name and the

property value of it in Node A.
3. In adapter EMD wizard, specify to use the standalone deployment through setting the Deploy

connector project option as the “On server for use by multiple applications”. Specify
Connection properties as the “Use predefined connection properties”. Specify the JNDI
Look Name as the MCF or AS configured in Step 1. Complete the EMD and generate the
application.

4. Deploy the application and start it.

Page 22 of 32

Observations and Runtime Behavior
If the scenario is for inbound adapter application, the adapter inbound start polling on both nodes
and the singleton HA behavior is disabled.
If the scenario is outbound, it has the same behavior as described in the Scenario 4, the feature
of all active and load balance is enabled.

Scenario Summary
This approach will not achieve the correct runtime behavior for adapter inbound, and hence is not
recommended in the actual usage. Also, for maintenance, it is not a recommended approach to
maintain consistency of the multiple AS or MCF that are distributed on multiple nodes.

2.2.2.3 Scenario 6 - Deploy Adapter in Node Level and generate AS or MCF
automatically

In this scenario, most of the configuration steps are similar with Scenario 5, except that the AS or
MCF generation can be automated in deployment process, which is achieved by making some
settings in EMD wizard in the WebSphere Integration Developer 6.2. As mentioned above, this
scenario is not recommended because of the some known limitations in WebSphere Process
Server 6.2 HA environment.

Configuration Steps
1. Install JDBC RAR in Node A, then configure the AS or MCF for the RAR.
2. Install JDBC RAR in Node B, then configure the AS or MCF with the same name and the

property value of it in Node A.
3. In EMD, specify to use the standalone deployment through setting the Deploy connector

project option as the “On server for use by multiple applications”. Specify Connection
properties as the “Specify connection properties”. Complete the connection information in
this page. Complete the EMD and generate the application.

Figure 20.

4. Deploy the application and start it.

Observations and Runtime Behavior
After Step 4, the AS or MCF is automatically generated in only one node with the property values
specified in EMD. There is no AS or MCF is generated in another node. This is a known

Page 23 of 32

functionality limitation in WebSphere Process Server 6.2 HA environment, although this approach
can work well in standalone WebSphere Process Server 6.2 environment. As a result, it will lead
to some abnormal runtime behavior accordingly.
For inbound, after Step 4, adapter inbound can only start in the node with the AS generated. And
it fails starting in the node with no AS generated since the AS JNDI cannot be found. The below
error happens,
J2CA0052E: The lookup of the ActivationSpec with JNDI Name

JDBCInboundHAAuto/JDBCInboundInterface1_AS failed due to exception

javax.naming.NameNotFoundException

For outbound, after Step 4, adapter outbound started on both nodes successfully. However, the
“JNDI Not Found exception” happens if invoke requests are distributed to the adapter outbound
instance on the node where the MCF is not generated.
Additionally, if another step is added to configure a cluster-level adapter in this scenario before
deployment and when you complete the operations in this scenario, the result is the same. The
AS or MCF is generated on only one node-level adapter, and no AS or MCF is generated in the
cluster level adapter, although, generating AS or MCF in the cluster-level adapter automatically is
the expected behavior in this scenario.
Based on the above scenario, when you uninstall the application, sometimes the automatically
generated MCF or AS cannot be removed automatically, which is another known limitation in
WebSphere Process Server 6.2 HA environment. In this case, you need to remove the AS or
MCF manually to ensure that everything generated in the deployment process has been clean up.

Scenario Summary
The AS or MCF automatic generation function is not as the expected to generate AS or MCF to
the cluster-level adapter. And even for the node-level adapter for which this function is originally
designed, it has some limitations when it is used in HA environment. This approach is not
encouraged to be used in the WebSphere Process Server 6.2 HA environment and it is more
applicable to be used in WebSphere Process Server 6.2 standalone environment.

2.2.2.4 Scenario 7 - Both Node-level JNDI and Cluster-level JNDI Exists

The AS and MCF can be generated on either node-level adapter or cluster level adapter,
naturally coming the question is that if both the node level AS or MCF and the cluster level AS or
MCF is coexisted and some properties are different, for instance, the polling properties are
different, which level of AS or MCF will take effect? This question is to be answered in this
scenario.

Configuration Steps
1. Install Adapter RAR in Node A, then create and configure the AS named “InboundAS”.
2. Install Adapter RAR in Node B, then create and configure the AS named “InboundAS” which
has the same properties with the one on Node A.
3. Specify the enableHASupport in the custom properties of both the two RAR to true.
4. Develop Inbound Adapter application to use Stand-alone deployment and set JNDI name as
“InboundAS”.
5. Deploy the application and start it.
6. Configure the Cluster-level adapter for this Adapter RAR in svttop.AppTarget cluster then
configure the different property value with the node-level AS properties, specify the
enableHASupport in the custom properties of RAR to true.
7. Restart the application.
8. Remove the Cluster-level AS and restart application.
9. Restart application server on Node A.

Observations and Runtime Behavior
The following is the observations in the above scenarios,
After Step 5, the inbound instance starts polling on both nodes.

Page 24 of 32

After Step 7, the inbound instance restarts with the cluster-level AS properties on Node A, and
the inbound instance in another node stops.
After Step 8, the inbound instance on Node B also starts polling. At this time, the inbound
instance on Node A is polling with the Cluster-level AS properties, since the deletion of cluster
level AS has not take effect. The inbound instance on Node B is polling with the local node level
AS properties since it’s started with the node-level AS.
After Step 9, the inbound adapter application restarts polling on Node A with the local node level
AS properties.

Scenario Summary
The cluster-level AS or MCF has the higher priority to take effect than the node level AS or MCF
with the same JNDI name. The property value in cluster level AS or MCF will override the
property value in node level AS or MCF. The node level AS or MCF can be effective only when
there is no cluster level counterpart exists. Another important fact is that the deletion of AS or
MCF will not take effect at once. You need to restart the server for this change to take effect. Also
in this scenario it proves again that only when there is a cluster-level adapter can it achieve the
inbound singleton HA behavior.
Generally speaking, configuring AS or MCF on both cluster level and node level is not
recommended to customer. The best practice is to create AS or MCF on the cluster level only,
just as described in Scenario 4.

2.2.3 Standalone Deployment in WebSphere Process Server 7.0
cluster environment

WebSphere Process Server 7.0 is built on the WebSphere Application Server 7.0.0.7, which is
the derived version from WebSphere Application Server 7.0. So the adapter’s HA configuration is
similar with the WebSphere Application Server 7.0 HA environment. Also, from the perspective of
WebSphere Integration Developer tooling and the server runtime behavior, the WebSphere
Process Server 7.0 HA environment inherits many features from the WebSphere Process Server
6.2 HA environment. Scenario 5, Scenario 6 and Scenario 7 are also applicable for WebSphere
Process Server 7.0 HA environment. The configuration approach, the runtime behavior and the
mentioned limitations in those scenarios are also real for WebSphere Process Server 7.0 HA
environment. Here the difference for adapter HA configuration and runtime behavior in
WebSphere Process Server 7.0 HA environment in comparison with it in the other two
environments is highlighted through the following scenario.

2.2.3.1 Scenario 8 - Deploy Adapter in Cluster Level

Similar with it in WebSphere Application Server 7.0 environment, the most suggested way is to
generate a cluster-level adapter RAR based on the node-level adapter RAR, then configure
AS/MCF in the cluster-level adapter and deploy adapter application referring to the AS/MCF
JNDI.

Configuration Steps
1. Follow the Step 1 to Step 3 in Scenario 4 to install Adapter RAR in Node A and Node B,

generate the cluster-level adapter and create the cluster-level AS or MCF.
2. Configure the HA property for cluster-level adapter. Keep the enableHASupport property in

Custom properties as true. Enter the Advanced resource adapter properties, the Register this
resource adapter with the high availability manager is by default unselected. Keep it no
change.

3. Follow the Step 4 and Step 5 in Scenario 4 to complete the adapter EMD, generate the
adapter application and start it. The only difference for EMD is that here use the WebSphere
Integration Developer 7.0. The specific steps refer to [3].

Observations and Runtime Behavior

Page 25 of 32

If the scenario is for inbound, it is active in only one node and is standby in another node. So
although the Register this resource adapter with the high availability manager checkbox is
unselected, the singleton HA behavior for inbound is enabled. This is a prominent difference with
Scenario 1. The Register this resource adapter with the high availability manager checkbox
function was revoked in latest WebSphere Application Server version beginning from WebSphere
Application Server 7.0.0.7. The “Endpoint failover” and “Resource adapter instance failover” radio
buttons are still visible in the Admin Console. Regardless of the configuration settings for these
options, the implementation in the server runtime assigns the fixed value for these options to
enable the singleton HA behavior by default.
Accordingly, the enableHASupport property at customer properties in cluster-level adapter
becomes the only HA switch to enable or disable HA behavior in WebSphere Process Server 7.0
HA environment. Note that from the WebSphere Application Server 7.0.0.7 and WebSphere
Process Server 7.0 version, the resource adapter’s HA configuration mechanism restores to the
status in WebSphere Application Server 6.1.0.23 and WebSphere Process Server 6.2.
For outbound, the runtime behavior is the same with it in Scenario 4, the feature of all active and
load balance is enabled in this scenario.

Scenario Summary
The cluster-level adapter deployment is the most recommended approach for the usage in the
WebSphere Process Server 7.0 HA environment. The advanced properties for resource adapter
HA behavior are revoked in WebSphere Process Server 7.0 and the enableHASupport property
at custom properties in cluster level adapter decides the final HA behavior.

2.3 Embedded Deployment

For Embedded Deployment, the adapter RAR is embedded in the adapter application EAR and is
installed with the EAR. In comparison with the Standalone Deployment, this approach brings the
convenience to deploy application easily without the need to deploy RAR separately on the node
and cluster. However, in this mode, the adapter RAR is bound to the specific application and
cannot be shared by multiple applications, thus brings more resource consumption in runtime.
Since WebSphere Application Server 7.0 does not support the embedded deployment, this
section mainly focuses on the embedded deployment in WebSphere Process Server 6.2 HA
environment and WebSphere Process Server 7.0 HA environments.

2.3.1 Embedded Deployment in WebSphere Process Server 6.2 HA
environment

2.3.1.1 Scenario 9 - Embedded deployment in WebSphere Process Server
6.2 HA environment

To deploy adapter with embedded deployment, specify the option in WebSphere Integration
Developer 6.2 EMD wizard and generate the EAR with the adapter embedded in it. And then
deploy it in the admin console.

Configuration Steps
1. Start the adapter EMD wizard in WebSphere Integration Developer 6.2. Specify to use the

embedded deployment by setting the Deploy connector project option as the “With
module for use by single application” in the page of Service Generation and Deployment
Configuration. Complete the EMD wizard to generate the application artifacts.

2. Export the application artifacts as EAR file and follow the Step 5 in Scenario 4 to deploy the
application to the svttop.AppTarget cluster.
3. Open the Admin Console, navigate to Enterprise Applications >
JDBCInboundHAEmbededApp > Manage Modules > CWYBC_JDBC.rar >
JDBCInboundHAEmbededApp.IBM WebSphere Adapter for JDBC > Custom properties,
here the enableHASupport is true by default. Keep it no change.

Page 26 of 32

4. Start the application.

Observations and Runtime Behavior
If the scenario is for inbound, it is active in only one node and standby in another node. This
indicate that the adapter RAR is by default register to the HA manager for enable the singleton
HA behavior in this scenario.
Also there is one HA group generated for the embedded adapter RAR,

Figure 21.

Click the HA group and check the status. You will find that it is active in one node and standby on
another node, which is consistent with the actual runtime behavior.
When you set the enableHASupport property of this embedded RAR to false and restart the
application, it is active in both nodes and hence the singleton HA behavior is disabled.
If the scenario is for outbound, the feature of all active and load balance both take effect on both
nodes, no matter what value set to the enableHASupport of the embedded RAR.
In this scenario, the automatically generated AS or the MCF is in the cluster-level. Combined with
the actual runtime behavior, the embedded adapter and its associated components basically
have the same HA functionality with a cluster-level adapter.

Scenario Summary
Embedded deployment by default enables the singleton HA behavior for inbound. The
enableHASupport property value of adapter RAR is the only switch to enable or disable the
singleton HA behavior for adapter inbound. This approach is also a typical usage recommended
in the WebSphere Process Server 6.2 HA environment.

2.3.2 Embedded Deployment in WebSphere Process Server 7.0
cluster environment

The approach to embedded deployment in WebSphere Process Server 7.0 basically inherited
from WebSphere Process Server 6.2. The embedded adapter HA configuration is similar with
what was discussed in the standalone deployment in Section 2.2.2.

2.3.2.1 Scenario 10 - Embedded deployment in WebSphere Process Server
7.0 HA environment

Similar with the steps in WebSphere Integration Developer 6.2 EMD, firstly need to specify the
embedded deployment option in the EMD wizard in WebSphere Integration Developer 7.0 and
then generate the application and complete the deployment.

Page 27 of 32

Configuration Steps
1. Start the EMD in WebSphere Integration Developer 7.0, follow the Step 1 to Step 2 in Scenario
9 to deploy the adapter application with embedded deployment.
2. In Admin Console, navigate to Enterprise Applications > JDBCInboundHAEmbededApp >
Manage Modules > CWYBC_JDBC.rar > JDBCInboundHAEmbededApp.IBM WebSphere
Adapter for JDBC. Enter the Custom properties, here the enableHASupport is set to true by
default. Then enter the Advanced properties, the “Register the resource adapter with the
high availability manager” is by default is unselected. Keep it no change.
3. Start the application.

Observations and Runtime Behavior
If the scenario is for inbound, it is active in only one node and is standby in another node. Just as
mentioned in Scenario 8, the Register this resource adapter with the high availability manager
checkbox function is revoked in WebSphere Process Server 7.0. It enables the singleton HA
behavior for adapter inbound service in runtime by default. Irrespective of what values set to
these advanced properties, the runtime behavior is the same.
In this scenario, there is also a HA group generated automatically for the embedded adapter to
ensure the singleton HA behavior.
If set the enableHASupport at custom properties to false, then restart the application, the inbound
instance becomes active in both nodes. The singleton HA behavior is disabled. This behavior is
consistent with what was discussed in Scenario 8. The enableHASupport property for adapter is
the only one HA switch for enable or disable the singleton HA behavior.
If the scenario is for outbound, the feature of all active and load balance take effect on both
nodes, no matter what value set to the HA properties of the embedded RAR.

Scenario Summary
In WebSphere Process Server 7.0 HA environment , embedded deployment by default enables
the singleton HA behavior for inbound. The enableHASupport property value of adapter RAR is
the only switch to enable or disable the singleton HA behavior for adapter inbound. This approach
is also a typical usage recommended in the WebSphere Process Server 7.0 HA environment.

3. Achieve High Availability of Adapter Transaction in
HA Environment

Standalone WebSphere Process Server or WebSphere Application Server environment provides
support for the adapter transaction configuration and management. Transaction manager in
WebSphere Application Server runtime provides the coordination for global transactions on
multiple distributed XA resource in a business process. Transaction logs provide the transaction
recovery in the case of server crash in global transaction. However, in comparison with the
standalone environment, there’s some difference in leveraging the transaction service provided
by WebSphere Process Server or WebSphere Application Server container in HA environment to
achieve the high availability for adapter application’s transaction. This section will mainly focus on
the typical HA configuration for transactions and illustrate the transaction failover and recovery
runtime behavior.

3.1 HA requirement for Global Transaction
In the business scenarios, adapter with global transaction support needs to join the global
transaction to operate multiple distributed resource to ensure that the update of data in a global
view with atomicity. The typical scenario is displayed in Figure 22. In the WebSphere HA
environment, Adapter outbound A and outbound B are involved in a business process.
Additionally, they both join a global transaction. Adapter Outbound A updates the data of EIS A,
Adapter outbound B update the data of EIS B. Both EIS A and EIS B implement the XA resource
and provide the support for the two phase transaction commit protocol. So when Adapter

Page 28 of 32

outbound A and Adapter outbound B both succeed, the whole global transaction commits, else if
either of the two outbound operations fails, the global transaction will rollback as a whole. Also if
the application crash or server crash happens in the process of global transaction, it can go on
commit or rollback after the application or server environment restored, this is due to the usage of
transaction logs, which records the transaction context information for commit or rollback. The
transaction logs are by default configured in the specific directory in server installation path,
app_server_root/ tranlog/cell_ name/node_ name/server_ name.

WebSpehere ND

EIS A EIS B

Adapter

Outbound A
Adapter

Outbound B

Global Transaction

Figure 22.

In WebSphere HA environment, the servers in different nodes have the independent transaction
log directory located in their own installation path. When one node fails, the node failover
happens and all the work will switch to the peer node, accordingly, the in-fly transaction in the
process of commit or rollback will resume in the peer node. To achieve this, the peer node need
the access to the transaction logs persisted by the predecessor node. This is implemented by
transaction log sharing in a shared disk.

3.2 Transaction Scenario in HA environment

To satisfy the HA requirement for the global transaction, setup the scenario based on the
WebSphere Process Server 6.2 HA environment. It is displayed in Figure 23.

HAManager

Node A Node B

Solution Solution

2. Failover

1. Node A down

lead to the HA

failover.

3. After failover,

Node B proceed

the in-fly

transaction

through access

the sharing

translog.

translog
translog

NFS

Figure 23.

In this scenario, the business application is deployed to the WebSphere HA environment. The
Node A (preferred node) and Node B (backup node) work together with the HAManager. A disk

Page 29 of 32

sharing is configured for the disk access for both two nodes. Configure the transaction log
directory of both two nodes to the same location in the shared disk. The application is started in
the preferred Node A at the beginning. And when it went down in the process of XA transaction,
the node failover happens to switch the running business application and its transaction process
to Node B. Accordingly, Node B will take over the in-fly transaction and go on processing it,
through the way of accessing the transaction context and status information in the shared
transaction logs. The node failover may happens in any point of the global transaction process,
that is, it may happens in the 1

st
 phase commit operation, may happens in the second phase

commit, may happens in the rollback operation and so on. No matter which point the node
failover happens, the context information of the whole transaction are recorded in the transaction
logs and shared between the two nodes, so both nodes have the enough information to go on
processing the in-fly transactions in any time when the application is activated in it.
The peer recovering ability in this scenario has been provided by WebSphere HA platform, using
the network-attached storage device (NAS) as the medium for placing the transaction logs. All the
nodes have shared access to the transaction logs, and also the NAS ensures only a single client
process can access the log at a time to maintain the integrity of a recovery log file.

Configuration Steps
1. Configure the NFS v4 as the medium for the shared transaction logs. And mount local

directory of every node in the svttop.AppTarget cluster to specific directory in the NFS v4
server. For example, /home/SVT/TransactionLog in Node A mount to the
/home/Share112/tranlog directory in the NFS disk. Configure to ensure that all nodes have
read and write access for the mounted folder.

2. Enable the One of N HA policy for transaction service in ND cluster. In the Admin Console,
navigate to the Core Groups > DefaultCoreGroups > Policies, ensure the Clustered TM
Policy is associated with the transaction service by the type = WAS_TRANSACTIONS match
criteria. This policy is a One of N type policy which provides automated peer recovery
processing support such that only one server owns the transaction log at any time.

Figure 24.

3. Enable high availability for persistent services, namely the transaction service. Navigate to
the WebSphere application server clusters > XXXServer, switch to the Configuration tab
page, check the Enable failover of transaction log recovery checkbox and restart the
servers for the configuration changes to take effect.

Page 30 of 32

Figure 25.

4. Provide the transaction log location for all the nodes in this cluster.
For every server in the svttop.AppTarget cluster, navigate to the Application Servers>XXX
Server, choose the Container Settings>Container Services>Transaction Service. Specify the
local mount directory path in the Transaction log directory edit box. Check the Enable file
locking checkbox.

Figure 26.

5. Develop and deploy adapter application with cluster-level deployment as described in
Scenario 4. Configure to join the JDBC adapter outbound applications to the global
transaction.

6. Start the application and send a large number of events for processing.

Page 31 of 32

7. Shut down the Node A while processing and shut down Node B after a while.
8. Continue sending events until all of the events have been processed.

Observations and Runtime Behavior
The business process can process all of the events with high availability and maintain every
event process as an atomic transaction. The transaction recovery logs in both nodes are all
generated in the shared transaction log directory. Whenever and whichever node shutdown, the
in-fly transaction resume processing in the peer node until it completes.

Scenario Summary
To achieve the high availability for global transaction of adapter application in the HA
environment, it is necessary that the infrastructure for transaction recovery log sharing is setup
and make it available for all nodes to access.

4. Summary
This white paper describes two deployment approaches and the runtime behavior for WebSphere
Adapter in WebSphere Process Server or WebSphere Application Server HA environment
through several senarios. Also, it highlights the best practices in these deployment approaches
and clarifies the known limitations in WebSphere Process Server HA environment. At the end of
this paper the Section 3 presents a description of how to configure the transaction recover log
sharing in WebSphere Process Server or WebSphere Application Server HA environment to
enable the high availability of global transaction for adapter applications.

5. Glossary
Failover. A standby or backup system is used to take over for the primary system if the primary
system fails. In principle, any kind of service can become highly available by employing system
failover techniques.
load balance. Load balance is a technique to distribute workload evenly across two or more
computers, network links, CPUs, hard drives, or other resources, in order to get optimal resource
utilization, maximize throughput, minimize response time, and avoid overload.
RAR. A Resource Adapter aRchive (RAR) file is the valid format for deployment of resource
adapters on application servers.
EAR. An Enterprise ARchive, or EAR, is a file format used by Java EE for packaging one or more
modules into a single archive so that the deployment of the various modules onto an application
server happens simultaneously and coherently.
AS. An Activation Specification (AS) is a JavaBean used during endpoint activation. Endpoint
activation is the process of notifying resource adapters of eligible message listeners. The
activation specification is a class implementing javax.resource.spi.endpoint.ActivationSpec.
MCF. A Managed Connection Factory (MCF) is a JavaBean which represents adapter outbound
connectivity information to an EIS instance from an application via a specific resource adapter
instance. This contains the configuration information pertaining to outbound connectivity to an EIS
instance.
EMD. Enterprise Metadata Discovery (EMD) is a standard which defines a common API that
adapters can use to expose their services and business objects to tools for the generation of JCA
based applications. It is used by Enterprise Service Discovery wizard in WebSphere Integration
Developer or J2C tooling in Rational Application Developer to create EIS metadata related
artifacts.
global transaction. Opposite to the local transaction, refer to the transaction involves accessing
multiple resource managers and preserve ACID properties.
XA. The XA standard is a specification by The Open Group for distributed transaction processing
(DTP). It describes the interface between the global transaction manager and the local resource
manager. The goal of XA is to allow multiple resources (such as databases, application servers,

Page 32 of 32

message queues, etc.) to be accessed within the same transaction, thereby preserving the ACID
properties across applications. XA uses a two-phase commit to ensure that all resources either
commit, or rollback, any particular transaction simultaneously.
network-attached storage. Network-attached storage (NAS) is file-level computer data storage
connected to a computer network providing data access to heterogeneous network clients. NAS
NAS systems contain one or more hard disks, often arranged into logical, redundant storage
containers to provide both storage and a file system.

6. Resources

[1] WebSphere Adapter in Rational Application Developer Information Center
[2] WebSphere Adapter 6.2 Information Center
[3] WebSphere Adapter 7.0 Information Center
[4]WebSphere Application Server Network Deployment V6:High Availability Solutions
[5] IBM WebSphere Developer Technical Journal: Transactional high availability and

deployment considerations in WebSphere Application Server V6
[6] WebSphere Application Server 7.0 - Network Deployment

http://publib.boulder.ibm.com/infocenter/radhelp/v7r5/index.jsp?topic=/com.ibm.etools.j2c.doc/topics/cresourceadapters.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r2mx/index.jsp?topic=/com.ibm.wbit.620.help.adapter.emd.ui.doc/topics/tcreatecmps.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v7r0mx/topic/com.ibm.wbit.help.adapters.doc/topics/tcreatecmps.html
http://www.redbooks.ibm.com/abstracts/sg246688.html?Open
http://www.ibm.com/developerworks/websphere/techjournal/0504_beaven/0504_beaven.html
http://www.ibm.com/developerworks/websphere/techjournal/0504_beaven/0504_beaven.html
http://www.ibm.com/developerworks/websphere/techjournal/0504_beaven/0504_beaven.html
http://www-01.ibm.com/software/webservers/appserv/was/library/v70/nd-dp/index.html

