InfoSphere Master Data Management
Collaboration Server

How to upload a Java API class file to the Docstore and
invoke it

©2014 IBM Corporation //I ,4 E

This presentation covers the topic of how to upload directly to the docstore and use a
class file that has a Java™ APl implementation. In this method, you do not need
Integrated development environments such as Rational® Software Architect to develop
your application. Also note that this method is to be used for testing purposes only as in
production environments there are typically multiple extension point implementations
that need to be deployed and that is done best through a single JAR file with all the
bundled classes.

JavaAPI_UploadDocstore2.ppt Page 1 of 14

Terminology

= Product - IBM InfoSphere® Master Data Management for Collaboration Server
= $TOP — Environment variable that points to installation directory of product
= SWAS_HOME - WebSphere® Application Server Installation directory

= API - Java Application Programming Interface

2 © 2014 IBM Corporation

Before going into details, there is some terminology that you need to be aware of. The
official name of the product or application that is referenced in this presentation is IBM
InfoSphere Master Data Management for Collaboration Server and is referred to as
InfoSphere MDMCS.

The term $TOP is an environment variable that points to the installation directory of the
product.

WAS_ HOME is the directory where the WebSphere Application Server is installed and
API refers to Java Application Programming Interface.

JavaAPI_UploadDocstore2.ppt Page 2 of 14

What is Java AP

= Provides a Java interface to write Java code that can access application entities directly

= Supports over 20 components, including components for extension points, items, catalogs, and
categories

= Java API has three parts
— The Java API interface (used for development)
— The Java API implementation (used at run time)
— The Java API reference documentation

3 © 2014 IBM Corporation

The Java API provides a Java interface that exposes a set of classes and methods. You
can use these to write Java code that can access application entities directly, without
the need for custom scripts. There are over 20 components for various entities such as
extension points, items, catalogs, and categories that are supported.

The Java API has three parts. The Java APl interface, which is used for development,
the Java APl implementation, which is used at run time, and the Java API reference
documentation.

The Java APl interface is a set of Java interfaces that document all the classes and
methods that are available to you. This API is shipped as a .jar file called
ccd_javaapi2.jar in the javaapi folder of the InfoSphere MDMCS installation directory.

The Java APl implementation refers to the application internal code that provides the
functionality that is documented in the Java API interface. A Java class that uses the
Java API interface automatically uses this internal code when deployed.

The Java API reference documentation provides explanations for some common
classes and methods that are available in the Java API interface. For a complete
technical reference with detailed explanations of the classes and methods that are
available in your InfoSphere MDMCS instance, see the InfoSphere MDMCS Javadoc.
This document is generated from the InfoSphere MDMCS code and is shipped as a
compressed file called ccd_javaapi2doc.zip in the javaapi folder of the InfoSphere
MDMCS installation directory. To read the documentation, extract this file to a directory
and open the index.html file from that directory in a web browser.

JavaAPI_UploadDocstore2.ppt Page 3 of 14

Required components

= |BM InfoSphere MDMCS installation
= |BM or Sun JDK

= Connectivity to database

4 © 2014 IBM Corporation

There are components that are required for writing Java API-based code. You need
access to a running IBM InfoSphere MDMCS installation.

You need IBM or Sun JDK and the version of the JDK depends on the version of the
InfoSphere MDMCS being used. The JDK version to be used starts from 1.5.

The tools.jar file from JDK is required to be present in the class path of the product.

Client connectivity to the database, which is being used by the IBM InfoSphere MDMCS
instance and database-specific client libraries. For Oracle, ojdbc5.jar or ojdbc6.jar is
required on the class path of the project. For DB2®, db2jcc.jar and
db2jcc_license_cu.jar are required on the class path.

JavaAPI_UploadDocstore2.ppt Page 4 of 14

Pattern for programming with Java API

= Obtaining a context
— PIMContextFactory.getContext(user name, password, company name)
— PIMContextFactory.getCurrentContext().

= Obtaining a manager from context
— Example: CatalogManager ctgManager = context.getCatalogManager();

= Obtaining a Java API entity object
— Example: Catalog catalog = ctgManager.getCatalog("my catalog");

= Modifying object and saving
— Example: Catalog.addSecondaryHierarchy(hierarchy);
catalog.save();

5 © 2014 IBM Corporation

When programming through the Java API, the pattern that is typically followed is obtaining a
context, obtaining a manager from the context, obtaining a Java API entity object, and
modifying the object and saving it.

Regarding obtaining a context to access IBM InfoSphere MDMCS entities and methods, the
Java code must first obtain a PIMContext. You can obtain a PIMContext in two ways. You can
obtain a fresh context by providing the user name, password, and company information to the
API. For example, PIMContextFactory.getContext. This method is used when you are writing
stand-alone Java API applications or unsecured web services.

If the Java API code is running in an already authenticated context, for example, an extension
point implementation class that runs within the InfoSphere MDMCS application or a secure web
service, where authentication information was provided when the web service was started, you
can obtain the existing context through the API, PIMContextFactory.getCurrentContext(). Using
this approach removes the over head of creating extra contexts.

Regarding obtaining a manager from the context, after the context is available, you can retrieve
from the context a Java APl manager object that corresponds to the entity. For example, a
manager for the catalog can be obtained by using the Java API. CatalogManager ctgManager =
context.getCatalogManager();

Regarding obtaining a Java API entity object, after manager for an entity is obtained from the
context, you can access the entity itself. For example, a catalog object can be obtained from the
catalog manager by using the Java API. ctgManager.getCatalog with the catalog name as the
input parameter.

Regarding modifying the object and saving it, the entity object that you obtained from the
manager class can be modified by using the APIs that are available within the object itself. After
the modifications are done, save them to the database with the save() method. For example, a
catalog object that is obtained from the catalog manager can be modified and saved by using
the Java API. addSecondaryHierarchy with hierarchy as a parameter.

JavaAPI_UploadDocstore2.ppt Page 5 of 14

Procedure for using an extension point class

= Develop an extension point implementation class
= Make extension point class available to InfoSphere MDMCS

= Provide a URL for invocation of extension points by InfoSphere MDMCS

6 © 2014 IBM Corporation

Extension points are the various points within InfoSphere MDMCS where you can
modify the behavior by running some user-defined business logic.

In order to implement the extension points using the Java API, you need to develop and
extend a set of predefined interfaces that are supplied with InfoSphere MDMCS.

There are steps to be used when using Java API-based extension points. First, develop
an extension point class to provide custom code for a particular method. Next, to
make the extension point class available to InNfoSphere MDMCS, load the .class file
to the document store or make it available using a JAR file in the classpath of the
InfoSphere MDMCS instance. Finally, before InfoSphere MDMCS can invoke a
specific extension point, the Java-based extension point implementation class needs
to be registered from the corresponding extension point of the InfoSphere MDMCS
user interface. You provide a URL for invocation of extension points.

JavaAPI_UploadDocstore2.ppt Page 6 of 14

Sample Java API program

import com.ibm.pim.collaboration.*;

import com.ibm.pim.collection.PIMCollection;

import com.ibm.pim.common.Manager,

import com.ibm.pim.context. Context;

import com.ibm.pim.context PIMContextFactory;

import com.ibm_pim_extensionpoints ScriptingSandboxFunction;

import com.ibm.pim.extensionpoints.ScriptingSandboxFunctionArguments;
import com.ibm.pim.extensionpoints. WorkflowStepFunction;

import com.ibm.pim.extensionpoints. WorkflowStepFunctionArguments;
import com.ibm.pim.utils.Logger;

import com.ibm.pim.workflow. WorkflowStep;

import java.util. Collection;

import java.util lterator;

import java.util List;

public class SampleTest implements WorkflowStepFunction
public void in(WorkflowStepFunctionArguments arg0)

PIMCollection<Collaborationltem> entrySet = arg0.getitems();
for(Collaborationitem item : entrySet)

{
item setAttributeValue("Test_Spec/F5", "),
System.out printin(“The after release date is: " + tem.getAttributeValue("Test_Spec/F5"));
item.save(); }

public void out(WorkflowStepFunctionArguments arg0)
{ }

public void timeout(WorkflowStepFunctionArguments workflowstepfunctionarguments)
{1}

7 } © 2014 IBM Corporation

This slide displays a simple example of a Java API program. This extension class is a
workflow extension class and has custom logic in the IN function of the workflow
wherein it is setting the value of one of the attributes to a blank.

JavaAPI_UploadDocstore2.ppt Page 7 of 14

Sample Java API program for Post Processing function

import com.ibm.pim.collaboration.*;

import com.ibm_pim.collection. PIMCollection,

import com.ibm_pim common.Managerimport com.ibm pim attribute Attributelnstance;

import com.ibm.pim.common.ValidationError. Type;

import com.ibm.pim.context PIMContextFactory;,

import com ibm_pim extensionpoints CategoryPrePastProcessingFunctionArguments;

import com.ibm.pim_extensionpoints. CollaborationCategoryPrePostProcessingFunctionArguments;
import com.ibm.pim.extensionpoints. CollaborationltemPrePostProcessingFunctionArguments;
import com.ibm.pim.extensionpoints. ItemPrePostProcessingFunctionArguments;

import com.ibm.pim.utils.Logger;

import com.ibm.pim.catalog.item.ltem;

import com.ibm.pim.extensionpoints. PrePostProcessingFunction;

import com.ibm_pim.common.exceptions.PIMInternalException;

public class PostProc implements com.ibm.pim.extensionpoints. PrePostProcessingFunction
{ public void prePostProcessing(CollaborationltemPrePostProcessingFunctionArguments inArgs)
throw new PIMinternalException("SKU can't be checked out");
}
pul{)llc void prePostProcessing(CollaborationCategoryPrePostProcessingFunctionArguments inArgs)

System out printin(" Entered CollaborationCategoryPrePostProcessingFunctionArguments”);

8 © 2014 IBM Corporation

This is another simple example of a Java API program for a post processing function
implementation. Here, a PIMInternalException is thrown when trying to check out an
item from the catalog to a workflow.

JavaAPI_UploadDocstore2.ppt Page 8 of 14

Develop an extension point implementation class

= Develop an extension point implementation class
— Put your Java program in instance server side, such as $TOP/test
— source $TOP/bin/compat.sh
—echo $JAVA_RT
— javac -cp $CCD_CLASSPATH <Java Program Name>

9 © 2014 1BM Corporation

There are more details on the first step, which is to write custom code for your
extension point class. Write your Java program into a sample directory such as “test”
within the product’s installation directory. For example, $TOP/test. It is a good idea to
source the compat.sh so that all variables including some of the old environment
variables such as $TOP, $CCD_DB, and $JAVA_RT are also added. Next, compile the
program. This generates the class file.

JavaAPI_UploadDocstore2.ppt Page 9 of 14

Sample Java API program for Post Processing function

= Make extension point class available to InfoSphere MDMCS

$JAVA_RT com.ibm.ccd.docstore.common.DocStoreMgr -company_code="trigo" -op=upload -
path1=3$TOP/test/PostProc.class -path2=/archives/PostProc.class

= Provide a URL for invocation of extension points by InfoSphere MDMCS
Pre-processing Script -NONE- +

Post-processing Script Test_PP ~ I

Post-save Script -NONE- -
script_execution_mode=java_api="japi:///archives:PostProc.class"

10 © 2014 IBM Corporation

Next, upload the generated class file from $TOP/test, that is pathl to the docstore path,
that is path2. In this example, the class file is being uploaded to the company Trigo.

The last step is to create a Post Processing script on the catalog from the Ul. In the
screen capture that is displayed on this slide, you see the script being created with
name as Test_PP. Put in this line to invoke the Java API.

This program ensures that whenever an item is checked out to a workflow from a
catalog, the Java APl implementation class within the Post Processing script creates an
exception to the Ul.

This is just a simple implementation. You can customize it further to work with your
requirements.

JavaAPI_UploadDocstore2.ppt Page 10 of 14

Troubleshooting

= |f error running Java or javac, check to see if Java is from $WAS_HOME/java/bin

= Then run
<WAS_HOME>/java/bin/java —DTOP=<complete $TOP directory> -DCCD_ETC_DIR =<complete
$TOP directory>/etc -Dfile.encoding=ISO8859_1 -cp $CCD_CLASSPATH:. <LoadFileToDocstore>

- 1 © 2014 IBM Corporation

Sometimes Java needs to be loaded from the WebSphere Application Server
installation directory. You can then compile the program with the command as displayed
on this slide.

JavaAPI_UploadDocstore2.ppt Page 11 of 14

Before you open a PMR

= Gather information first
— Problem in detail
— Java program snippet
-- pimSupport.sh output
$TOP/bin/pimSupport.sh -l all -b -p <completePMRnumber>
— Business impact

12 © 2014 IBM Corporation

Before opening a PMR and contacting product Support, have a detailed problem
description including the use case, expected output, and the result that is seen now.
Also, useful for further diagnosis is to upload the relevant code so that Support can also
use the same code to reproduce the issue generically. Attach to the PMR the
pimSupport output that includes the logging for when the issue was reproduced. The
pimSupport script gives the product logs and configuration files. The command to run is
displayed on this slide.

Finally, provide Support the business impact of this issue on your application or project.

JavaAPI_UploadDocstore2.ppt Page 12 of 14

Resources
= Related product documentation — IBM Kowledge Center links
Debugging Java API code -

- http:/iwww-
01.ibm.com/support/knowledgecenter/?lang=en#!/SSWSR9 11.4.0/com.ibm.pim.app.doc/code/java/

pim tsk debugjavacode.html
Requirements and restrictions for using Java APl code —

- http://iwww-
01.ibm.com/support/knowledgecenter/?lang=en#!//SSWSR9 11.4.0/com.ibm.pim.app.doc/code/java/

pim_con_regrest.html
Java API migration -

— hitp://www-
01.ibm.com/support/knowledgecenter/#!//SSWSR9 11.4.0/com.ibm.pim.app.doc/code/java/pim con

migratenewjavaapi.html
— Advanced topics in programming with Java API —

— http://www-
01.ibm.com/support/knowledgecenter/#!//SSWSR9 11.4.0/com.ibm.pim.app.doc/code/java/pim con

advancedjavaprogram.html

13 © 2014 IBM Corporation

For reference, this slide displays links that you might find useful.

JavaAPI_UploadDocstore2.ppt Page 13 of 14

Trademarks, disclaimer, and copyright information

IBM, the IBM logo, ibm.com, DB2, InfoSphere, Rational, and d of B Machi Corp., regi d in many j
Other product and service names might be trademarks of IBM or other :nmpames Acurrent hst of other IBM trademarks is available on the web at "Copynght and trademark information” at
http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are or reg of Oracle and/or its affiliates

Other company, product, or service names may be trademarks or service marks of others

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND
ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS
INFORMATION IS BASED ON IBM'S CURRENT PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS PRESENTATION IS
INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS
AND CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE

© Copyright B Mach Corp: 2014. All rights reserved

14 ©2014 I1BM Corporation

JavaAPI_UploadDocstore2.ppt Page 14 of 14

