
Develop_WebServices.ppt

The topic of this presentation is how to use web services to integrate IBM InfoSphere®

Master Data Management Collaboration Server version 10 with other products to form a 

complete solution. This presentation provides a high level discussion on developing and 

invoking web services which are compatible with Master Data Management Collaboration 

Server, referred to as MDMCS throughout this presentation.

Page 1 of 15



Develop_WebServices.ppt

The aim of this presentation is to familiarize you with the processes of enabling and 

developing web services which are compatible with MDMCS.

Through the course of this presentation, certain terminology is used that is unique to the 

product and web services, including TOP. TOP is an environment variable pointing to the 

installation directory of MDMCS.

WSDL is the Web Services Description Language. It is written in XML and is used to 

describe what a web service is designed to do. 

WSDD is the Web Service Deployment Descriptor. It is an Axis specific web service 

deployment configuration file and can be used to specify resources that should be 

exposed as web services.

SOAP is an acronym for Simple Object Access Protocol. It is a transport protocol that 

sends XML messages using HTTP (which runs on top of TCP, typically on port 80). 

Axis is an XML based, open source framework for developing web services. It is a global 

standard and currently MDMCS supports Axis 1.4.

RSA stands for Rational® Software Architect and is the IBM implementation of Eclipse 

platform to develop applications and web services.

This presentation is not meant to serve as a comprehensive programming or 

implementation guide to help you implement web services. Rather, it is meant to make you 

familiar with the whole process of implementing, deploying, and accessing web services.

Page 2 of 15



Develop_WebServices.ppt

Web services are a way of communication between two electronic devices over 

the internet. There is often a business need to have two programs on one computer or to 

have different computers talk to each other. One is known as the server (waiting and 

listening for requests), and the other is the client (contacting the server when it needs 

something done that the server does). The client and the server can talk to each other in a 

variety of ways: sockets, pipes, text files and so on. The purpose of web services is to 

provide a generic, standardized, secure client and server paradigm for asking server 

programs on remote computers to perform some predefined action like computation, data 

retrieval, data storage and more.

See the diagram displayed on this slide for a high level overview on how web services 

work. At its simplest, a web service provider will create a web service and register itself 

with a web service registry. This is an optional step but if the provider does not register it, 

the independent requesters will not know how to invoke it. The second step is for the web 

service requester to find the web service they want along with the other essential details. 

This step is not needed if the requester already has the details of the web service to 

invoke. Finally, the client and provider will exchange information by way of SOAP 

messages.

To work with MDMCS, the client will already have the details of the provider and so only 

step three is needed.

Page 3 of 15



Develop_WebServices.ppt

Further details of web services are beyond the scope of this presentation. Review any of 

the links displayed on this slide for such details.

Page 4 of 15



Develop_WebServices.ppt

To enable web services, you have to modify these parameters in the common.properties 

file. The soap_company parameter defines the company credentials, and soap_user 

parameter defines the user credentials. When SOAP services are run, they use this 

company and user to access the database and run scripts. 

The soap_envelope_schema_url parameter defines the URL of schema for the SOAP 

envelope and the port number. 

The product_center_url parameter defines the fully-qualified URL, including the port 

number of the website where you should point your browsers to to access your MDMCS 

instance. 

The enable_webservice_session parameter enables the web service session.

There are some message queue parameters that define how your system handles 

inbound and outbound messaging with external sources or destinations including web 

servers. Review the link displayed on the slide for more details.

Page 5 of 15



Develop_WebServices.ppt

Web services can be broadly categorized into two types - simple and complex. These 

types are based on the type of data that is being exchanged. 

Simple web services are ones where only simple types, such as string and int, are sent 

and received as arguments and returns from methods. MDMCS handles the generation of 

WSDL and WSDD for the deployment of the service. 

Complex web services are used to exchange information using complex data object types 

when simple ones are not sufficient. To deploy complex web services, the web services 

author needs to provide a custom WSDD file which is specified in either the WSDD 

section of web service console or set programmatically by way of Java APIs. To author 

your own WSDD, you must have a good understanding of web services, the Java2WSDL, 

and WSDL2Java tools. 

Leveraging web services is a three step process. First you have to write code, create 

WSDL, and WSDD files to implement it. Then you have to deploy it and finally access it. 

All these are discussed in greater detail on the next slide.

The messaging styles supported by MDMCS are document/literal or rpc/encoded. This 

dictates how to translate a WSDL binding to a SOAP message. The details of these styles 

are beyond the scope of this presentation but the author of the web service needs to 

decide which one to adopt. Rpc/encoded is simple but has relatively poor performance 

and is not WS-I compliant. Document/literal is more secure, is WS-I compliant but is more 

complicated.

Page 6 of 15



Develop_WebServices.ppt

The web services console provides the administrator the ability to create and manage web 

services that are exposed by MDMCS. The MDMCS team encourages using the console 

to manage your web services for security, simplification, and to reduce the required 

maintenance. The web service console displays the web services as rows in a table. You 

can also define new web services or modify existing ones. This slide displays a screen 

capture of the web service definition page. 

Most of the prompts are self explanatory. Some of the important features of this screen are 

protocol which is always SOAP_HTTP. Style, which can be document_literal or 

rpc_encoded. The web services description file contains the WSDL file and is published to 

the default HTTP server. The web services implementation script is the script invoked by 

an incoming web service request. This script decodes the incoming request parameters, 

executes a query against the data model to fetch the appropriate information, and 

formulates a response message. 

Page 7 of 15



Develop_WebServices.ppt

Simple web services are ones that use only simple types such as string and int. You can 

deploy a simple web service on MDMCS without any customization of WSDD or WSDL. 

All that is required is to go to the web service definition page and populate it with the 

implementation code with either Java or a native application script. Refer to the 

Information Center link displayed on this slide for a sample implementation script and 

WSDL document.

Complex web services are used to use custom data types to set and retrieve data which 

cannot be classified into simple ones like string and int. Firstly, to create a complex web 

service, write and compile the code for creating a complex web service. Since by 

definition, such web services do not use standard data types, the product cannot auto 

generate the WSDL and WSDD file needed for deployment. Therefore, to generate the 

WSDL file, run Java2WSDL tool which is provided by Apache Axis foundation. Then use 

WSDL2Java tool, also provided by Apache Axis, on the generated file. Finally, edit the file 

as needed to get your WSDD file. Now your web service is ready for deployment in the 

web service console.

Note that these two Java2WSDL and WSDL2Java tools are bundled with most application 

servers. For WebSphere® Application Server, these can be found under the bin directory of 

the installation.

Page 8 of 15



Develop_WebServices.ppt

After implementation, you must deploy a web service to be able to use it. You have three 

options for deploying a web service; from the user interface, to do so programmatically, or 

from the application server. 

To deploy a web service from the user interface, go to the new web service creation 

screen in the web services console. Fill out all the required prompts and save it. Your web 

service is deployed.

To deploy programmatically, you can either use the createWebService script operation or 

createWebServiceUsingJava JAVA API to deploy these web services. A sample JAVA API 

code to deploy the web service is displayed on this slide.

Finally, you can create a .EAR file of the web services you have and then deploy them 

together from the application server. For WebSphere Application Server, you can do so 

from either the administrative console GUI or the wsadmin command prompt. The 

commands to use are displayed on this slide. This process is discussed in more detail on 

slide 11.

Page 9 of 15



Develop_WebServices.ppt

The Information Center contains very comprehensive examples on how to implement and 

deploy simple and complex web services. Review these samples and use them as a 

template to build your own web services.

Page 10 of 15



Develop_WebServices.ppt

A service that is hosted on a server other than MDMCS is known as a custom-hosted web 

service. MDMCS supports such web services. Since it is hosted outside MDMCS, it can 

be implemented using standard web service development processes. Refer to the 

Information Center link for Rational Software Architect which describes the process of 

developing a web service.

All custom-hosted web services have to be manually deployed at the application server. 

This presentation only discusses the deployment process for WebSphere Application 

Server. Before starting, make sure that the administrative server, known as server1, is 

running. Then, wrap the web service or group of web services that you want to deploy into 

a .ear file. To ensure that the web service is deployed correctly, you need to configure 

certain JVM properties. These properties are located on the path displayed on this slide.

First, configure the classpath. Make sure that the tools.jar from the application server and 

the corresponding client database jars db2jcc.jar, db2jcc_license_cu.jar, ojdbc6.jar are part 

of the classpath. Along with these, make sure you add all the jars under $TOP/jars to the 

classpath.

Note that some of the jars under $TOP/jars are not needed. If you prefer to deploy only 

the ones which are necessary, you can get a list from the Information Center.

Page 11 of 15



Develop_WebServices.ppt

The second step is to configure the custom properties in the JVM. Ensure that all the 

custom properties in your WebSphere Application Server administrative console are 

configured as displayed on this slide. Without these, the web service is not correctly 

deployed.

The final step is to deploy it as a “New Enterprise Application”. You can do so by providing 

the location of the .ear file, then specifying the context root and finally starting the web 

service application. 

Your custom-hosted web service has been deployed.

Page 12 of 15



Develop_WebServices.ppt

After you deploy the web service, you need to be able to access it to derive real use. You 

can do so by going to the URL of the type displayed on this slide. Replacing hostname, 

port, context root, and name of the web service with the actual ones will allow you to 

access it. Note that all the web services in the same .ear file will have the same context 

root, which is defined at the time of deployment.

It should be noted that you can restart the MDMCS Application Server multiple times 

without needing to redeploy the web services if you are using WebSphere Application 

Server. However, if you are using Weblogic, you need to redeploy it every time MDMCS 

Application Server service is restarted.

Page 13 of 15



Develop_WebServices.ppt

The Information Center also creates some very useful suggestions on how to debug a web 

service if you encounter any issues. These suggestion are valid for both simple and 

complex web services. 

If you cannot narrow down the root cause using these suggestions, open a PMR and the 

IBM Support team is happy to assist you.

Page 14 of 15



Develop_WebServices.ppt Page 15 of 15


