
AppDevelop.ppt

The topic of this presentation is how to develop custom applications and integrate custom

code with IBM InfoSphere® Master Data Management Collaboration Server version 10.

This is important because it will allow you to develop a custom solution that is ideal for

your business case. IBM InfoSphere Master Data Management Collaboration Server is

referred to as InfoSphere MDMCS throughout this presentation.

Page 1 of 20

AppDevelop.ppt

The aim of this presentation is to give you an overview of how to develop and deploy

custom applications compatible with InfoSphere MDMCS. The steps necessary to

configure your integrated development environment, or IDE, is reviewed.

Before continuing, there are some terms you need to be familiar with.

TOP is an environment variable which points to the installation directory of the product.

Rational® Software Architect, or RSA, is IBM's modeling and development environment

built on Eclipse open-source software framework. It can be used for designing architecture

for Java 2 Enterprise Edition (J2EE) or C++ applications and web services. Note that RSA

is the only Eclipse platform that the product is tested with and hence, it is the only one

supported.

DocStore is an abbreviation for document store which is used by the application to

manage all incoming and outgoing files, including import feeds, scripts, reports, and specs.

This presentation is not meant to help you with programming specifics or development

methodologies. Those are beyond the scope of this presentation.

Page 2 of 20

AppDevelop.ppt

Before beginning the configuration, you must have the InfoSphere MDMCS build local to

your machine. There are two ways to do this. You can download the same patch level from

the IBM Support Site as the one you have deployed or you can download the entire $TOP

structure directly from the instance which you want to connect to your Eclipse like

environment. Either way, create a new folder under the $TOP/src directory for your local

build to contain the .class files.

If you download the build from an IBM site, you will need to configure the

$TOP/etc/default/db.xml file in your local build. This file should have the database

connection details to be used by Eclipse to access the database. If you download $TOP,

then this file should already be populated with the correct information. A sample db.xml is

displayed on this slide.

Page 3 of 20

AppDevelop.ppt

To begin configuration, open RSA or Eclipse and create a new workspace to use. After

creating the workspace, you need to configure the instance. Go to the “Installed JRE”

prompt by following the path displayed on this slide and select the JRE which the

workspace should use. It is recommended you use jdk 1.6 and using a jdk path which has

no blank spaces in it such as avoiding directories like “Program Files”.

Page 4 of 20

AppDevelop.ppt

After selecting a jdk, create a new project by following the path displayed on this slide.

Choose the previously added jdk and select the location in your hard disk where you want

your project to be created. Click Finish to complete project setup.

Page 5 of 20

AppDevelop.ppt

Next, you need to configure the run time properties of the workspace. Right click the name

of the newly created project name in the left navigation pane and select Properties. A pop

up box opens as displayed on this slide. Select “Java Build Path” and then configure the

Source tab as displayed on this slide.

Tasks that need to be done include putting a check mark in the Allow output folders for

source folders box. Under the source folders, select Output folder and Edit. Provide a new

folder called classes through Specific output folder. In the Default output folder section,

click Browse > Create New Folder. Specify the new folder name as classes and click OK.

NewTestAPI refers to the new folder under $TOP/src directory that you created earlier.

Finally, click Add Folder, select classes folder and click OK.

Page 6 of 20

AppDevelop.ppt

Go to the “Libraries” tab, click External Jars to add all the run time jars that the program

will need to run and connect to the database. Add all the product jars located under the

jars folder of the downloaded build.

The tools.jar and the database jars are not shipped with the product; you have to copy

them from a working instance. Review the slide for the location of Oracle, DB2, and

WebSphere® Application Server specific jars.

Ensure that you remove all instances of axis_1.1*.jar because InfoSphere MDMCS uses

axis 1.4 and not 1.1. Also if both ccd_javaapi.jar and ccd_javaapi2.jar exist, remove

ccd_javaapi.jar to avoid duplicate jars.

Page 7 of 20

AppDevelop.ppt

The last tab in this screen is the “Order and Export” tab. Ensure that the jars added in

Libraries tab show up here and that JRE System library is pushed all the way to the

bottom. This order determines how the jars are searched and classes executed.

Page 8 of 20

AppDevelop.ppt

To configure run configurations, go to “Run” in the top panel and from the dropdown select

“Run Configuration”. A Run dialog box will come up. Go to the Arguments tab and enter

the value for VM Arguments as shown in the slide. These should point to the location of

$TOP and $TOP/etc/default in your hard disk. Make sure you do not have any spaces

before or after the ‘=' above.

Make sure that you configure run parameters properly before compiling a program.

Page 9 of 20

AppDevelop.ppt

This slide displays a high level overview of the API design. As shown, you can use

methods in the PIMContextFactory to get the context and using that context, you can get a

reference to catalog manager, lookup table manager, hierarchy manager, and so on. Using

these references, you can get catalogs, items, attributes, and more. This is how you can

add, edit, or delete data or data structures using code and without logging into the web

user interface.

All available functions are documented in the Information Center.

Page 10 of 20

AppDevelop.ppt

An extension point is a point in the application where custom code can be invoked, such

as entry preview script, post save script, and validation rule script. They are the various

points within InfoSphere MDMCS where you can modify the behavior by running some

user defined business logic. More than 20 extension point interfaces are shipped with

InfoSphere MDMCS. You can write a Java class to implement custom code and then

invoke that class from any of the available extension points as per your business use

case.

Review the Information Center for more details including how to develop extension points,

invoking them within InfoSphere MDMCS, and view some samples.

Page 11 of 20

AppDevelop.ppt

After compiling your code into a class or a jsp, you need to invoke it. There are four main

ways of doing this. The first is to upload a Java class to the document store and then start

it using an extension point.

You have two options for uploading files to the DocStore. The first is to mount the

DocStore onto a directory in the server where InfoSphere MDMCS is installed. Once a

DocStore is mounted, copying the file into the mounted directory of your server will upload

it to the DocStore. The second option is to use Java API to upload the class to the

DocStore. Once uploaded, the code can be invoked using an extension point. Multiple

invocations and argument passing are supported in these extension points. Refer to the

links displayed on the slide for more details on any of these options.

Page 12 of 20

AppDevelop.ppt

The second way of deploying custom code is to create a jar of all the custom

implementation classes. Then you can add the custom code to the InfoSphere MDMCS

library to be used later. This slide contains the command to create a new jar or to add a

class to an existing jar.

If you are deploying a new jar, it needs to be added to the classpath. Adding a jar to the

classpath is a three step process. First, configure the application to recognize the location

of this jar. You can do this by copying the jar to the $TOP/jars directory or by adding the

location of the jar to the jars-custom.txt file. The second step is to update the classpath in

InfoSphere MDMCS. You need to run configureEnv.sh in the $TOP/bin directory. Finally,

you need to update the classpath in the application server. You can do this by running

install_war.sh for WebSphere Application Server or update_weblogic_xml.sh for Weblogic.

Now, your new jar and custom code has been deployed.

Page 13 of 20

AppDevelop.ppt

You can also build custom tools to deploy Java code. Custom tools provide a custom user

interface and functionality that is not provided by the product by default. For example, you

can use custom tools to present an item and category together on a screen when the user

wants to view the item and category together on a screen or to display a custom audit trail

of a user record.

To build your own custom tools, go to the Scripts Console and select “Custom Tools” from

the drop down as displayed on this slide. Then, click “New” to define your tool. Specify any

input parameters, provide a custom tool name, and select the ASP/JSP type.

In parallel, you need to define the code which is started by this tool. You do so by coding a

stand-alone program in the form of an asp or jsp and then deploying it in the ccd.war file of

the application server. The absolute path for a Websphere Application Server directory for

ccd.war file is provided on this slide.

The flow-config.xml file is the core configuration file for the framework and it maps events

in the web user interface to the function calls in the ccd.war file. For a custom tool to

function properly, you need to map the code reference in the custom tool definition to the

location of the jsp in the ccd.war file by way of a flow-config.xml file.

Page 14 of 20

AppDevelop.ppt

This slide is a continuation of the last one to demonstrate the interdependencies. In this

sample custom tool, you specify newhomepage.wpc as the target code in the definition.

The system will then look in the flow-config.xml file to search for the location of the

corresponding jsp. In this case, the jsp is named welcome1.jsp. The application will start

the code within the jsp and the result is rendered on the web user interface. It should be

noted that this is a purely custom application and IBM Support will not troubleshoot it.

Page 15 of 20

AppDevelop.ppt

The final method for deploying custom tools is web services. A web service is a method of

communication between two electronic devices over the World Wide Web. It is a software

system designed to support interoperable machine-to-machine interaction over a network.

InfoSphere MDMCS supports web services with Axis standard 1.4 and some web services

are also bundled with the product. Details of web services is beyond the scope of this

presentation. Review other IBM Education Assistant modules or consult the Information

Center documentation for more details. A direct link is provided on this slide along with the

structure of the Information Center.

Page 16 of 20

AppDevelop.ppt

This slide displays a sample program which will loop through the database and can be

used to get context, reference to a spec, and catalog.

Page 17 of 20

AppDevelop.ppt

The Information Center has extensive documentation to assist you in developing custom

applications. Review the link on this slide and the structure of the documentation.

Page 18 of 20

AppDevelop.ppt

You can get an extensive list of available Java packages and classes functions from the

Information Center. Follow the link displayed on this slide.

Page 19 of 20

AppDevelop.ppt Page 20 of 20

