
algorithm.ppt

This is the IBM Initiate® “Introduction to algorithms” training presentation.

Page 1 of 31

algorithm.ppt

You will gain some basic information on the algorithms and what the data flow looks like as

it is processed. You will also be introduced to the concept of “derived data”. After this

presentation, you should have a better understanding of the algorithms and how they are

used to manipulate data.

Page 2 of 31

algorithm.ppt

What is an algorithm?

An online dictionary’s definition for “algorithm” is given as: “a set of rules for solving a

problem in a finite number of steps, such as for finding the greatest common divisor”. This

is a good high level explanation of how the algorithm is used in the IBM Initiate software.

An IBM Initiate algorithm, is a series of computational processes that analyze member

records. For the IBM Initiate Master Data Service, the algorithm is the true key to your

probabilistic matching process.

IBM Initiate software applies proprietary algorithms to compare and score member

attribute similarities and differences. The IBM Initiate Master Data Service algorithm has

three steps: standardize, bucket, and compare. The final step, compare, is what yields the

score. The algorithms are applied to data to create tasks and support search functionality,

and are tailored to use attributes specific to your business.

Page 3 of 31

algorithm.ppt

Why are algorithms needed?

The algorithm is used to optimize searches, additions, and updates to your existing data. It

allows your system to be configured in order to meet your business needs based on your

data. Everything in the algorithm is based on your data, so each algorithm is unique for

every customer.

Depending on the demographics, customers often have radically different setups from

each other. Therefore, an algorithm configuration cannot be copied from one dataset to a

different one.

Page 4 of 31

algorithm.ppt

This slide displays terms that you need to know as they are mentioned through-out this

presentation.

Anonymous values. Anonymous values are a set of values that are added to the system.

These values are specifically not included in the comparison. For example, if a record is

being entered into a source system and the social security information is not available, the

registration clerk can enter a value of all zeros or all nines. In such a case, if these

numbers are seen in the social security number field, they are not considered by the

algorithm in the comparison because they are bogus. The algorithm is configured to not

assign a score to attributes containing anonymous or missing values.

The next term is candidate. A candidate is a single result of a search request. When a

search request is sent to the Master Data Engine, the engine returns a list of member

records that meet the search parameters. These records are referred to as candidates.

Comparison score is the score that is returned for each candidate. Every candidate that

returns from the candidate selection process will have a score associated to it. It

represents how close it matched your search criteria. The higher the score, the more likely

that the compared records represent the same person. Similarly, when you add a member,

every record that matches this new member will have a comparison score associated to it.

Core member data is the complete set of data, which includes all attributes, for a member.

It is stored in the Initiate database without modification. All data received from the system

is stored in the database exactly as it was received. The process of how to break this

information down is talked about later.

Page 5 of 31

algorithm.ppt

This slide displays an overview of algorithms. At a high level, algorithms consist of a standardization,
bucketing and comparison process. A detailed look into each process is covered in the next slides.

The first process that takes place is standardization. When data is standardized, it is made unique and easier
to manage. During the standardization stage, the data is modified to create a consistent view. For example,
removing apostrophes and capitalizing characters.

In addition, anonymous values are ignored, such as in the second example where the social security number
consists of all nines.

In the last step of the standardization process, the standardized data is stored in the database. It is worth
noting that the software will store both a copy of the original data as it was received and the new
standardized data. The standardized data is used during the matching and linking process, where the original
data is used for display to the user.

The next step is bucketing. A bucket is a group of records that share common attributes. It is used for
candidate selection to find potential matches. As an example, imagine a play room that has toys organized
into various buckets. In one bucket you have building blocks and in another you have cars. If you are looking
for a specific toy car to play with, you know immediately which bucket to look in. Compare this to one giant
bucket that contains all the toys and you can see how this form of organization can greatly increase
performance.

Finally, there is the comparison process. In the comparison phase, the standardized attributes are compared
and weights are assigned to each attribute’s result. Once weights are calculated, the comparison score is
generated and returned as the result. Going back to the toy car example, this is the part of the process where
you go through the bucket of cars and rank each one based on what attributes you are looking for. For
example, a blue race car with large wheels.

In summary, for the algorithm process, first the data is standardized, then buckets are created and finally the
data is compared to get the final scores.

Page 6 of 31

algorithm.ppt

Standardization is the process where by data received, in various formats, is transformed

to a more uniform format that enhances the comparison process. The incoming data is

stored in both the newly standardized format and in its original format.

The standardization process converts all characters to be upper case and removes

extraneous special characters, such as dashes or spaces. It filters out predefined bad

values, like the anonymous values mentioned in a previous slide. In this example, the bad

value is a telephone number of all zeros.

The process can also filter out any words that do not meet a specified character length. A

good example of this is a North American social security number which is defined as being

nine digits long. Anything other than nine digits is not considered a valid social security

number.

In some cases, you will break apart an attribute into what are called ‘tokens’. Tokens are

commonly used with names and addresses. For example, the personal name JOHN B

ADAMS is split into three tokens, ADAMS, JOHN and B. This will allow the creation of

separate buckets and perform comparisons on each token individually.

Page 7 of 31

algorithm.ppt

This slide displays a list of some common standardization functions. Within each function,

there are several configuration options to allow each customer customization in order to

meet your needs. As you can see, it covers a wide range of data types.

The “AGE” function removes non-integers and ignores invalid ages.

The “ATTR” function removes non-alphanumeric characters.

The “BXNM” standardizes business names.

The “CNADDR” and “USADDR” functions are for Canadian or United States addresses.

The “ZIP”, “DATE” and “EMAIL” functions are self explanatory.

Page 8 of 31

algorithm.ppt

The “EYECOLOR”, “HAIRCOLOR” and “RACE” functions are also self explanatory.

The “HEIGHT” converts a height in FII format to inches.

The “IDENT” is the same as ATTR but also checks for valid length and can pre-append

source code to ID.

The “PHONE” function standardizes telephone numbers.

The “PXNM” function is commonly used on personal name.

The “WEIGHT” function will remove non-integer values and will ignore invalid weights.

The “ATTRN”, and “ATTRA” functions are used to remove non-numeric or non-alphabetic

characters.

Page 9 of 31

algorithm.ppt

The examples in the next slides details the utilization of standardization functions and

walks you through each step of the process.

The first example will employ the IDENT1N standardization function. The IDENT1N

function removes all characters which are not numeric. In this example, the IDENT1N

standardization function removes all the dashes and any spaces. In addition, it filters out

any social security numbers whose length is not nine digits long and any anonymous

values. A couple of anonymous examples are a social security number containing all zeros

or a consecutive number such as 123456789.

Page 10 of 31

algorithm.ppt

In this example, a date is standardized. Date values can be standardized using the DATE1

function.

The DATE1 function removes any non-numeric characters and then checks the length of

the date value. Any value that has a length of zero is treated as an anonymous value. Any

value that has a length greater than eight digits is truncated to include the first eight

characters only.

The DATE1 function then checks that the remaining string is a valid date. In this example,

19710231 is not valid since February does not have 31 days.

As with the previous social security number example, it also removes any anonymous

values. The anonymous value list depends on demographics. For example, you may have

the need to include 19000101 as an anonymous value, and if you did use that as an

anonymous value, this date is filtered out and ignored.

Page 11 of 31

algorithm.ppt

The last example for standardization uses personal name. Typically, personal names are

standardized using the PXNM function.

The PXNM function creates a list of tokens, appends common prefixes, filters out any

anonymous values, titles and degrees and separate suffixes. Suffixes are typically used in

comparison since these help differentiate people in the same family. For example,

identifying a father from a son who both share the same name.

In this example, Mr Bob Q D’Angelo II, will become DANGELO:BOB:Q:.II after

standardization.

Page 12 of 31

algorithm.ppt

The second process in an algorithm, is the bucketing process. Bucketing is a part of the

derivation process in which the IBM Initiate Master Data Engine groups members together

based on matching specific attributes.

An important note is that a record is only compared against other records that it shares a

common bucket with. Most records will have multiple buckets.

Previously in this presentation, the example of the play room was shown. The example

consists of several buckets in which to put sets of toys in. There is one bucket with

building blocks, another bucket with cars and another one with dolls. If you are looking for

a specific toy car, you will not look in the bucket that contains dolls. Instead, go directly to

the bucket that contains cars. In this example, the attributes that got bucketed were the

type of toys.

Some other examples of possible buckets is last name and a telephone number or, last

name plus the email address or, last name plus the first name.

The idea is to generate buckets for data that can be shared by several records. When you

do a search and find that several records share buckets, you can tell that those records

share some similar attribute data and are worth adding to the candidate selection process

for comparison.

Page 13 of 31

algorithm.ppt

To drive the point home it is important to look a little closer.

As stated earlier, records that share common attributes are placed together in the same

bucket using what is known as a ‘hash value’. For example, all records that share a last

name and zip code might be placed in the same bucket.

Consider this example. A hash value exists for the last name of “Smith” with a zip code of

“22901”. There are two members who have this data in common, Member A and Member

B.

In another bucket, there is a different hash value. This one represents a last name of

“Adams” with the zip code of “60613”. This bucket houses Member C and Member D.

The engine uses buckets to find candidate records that are similar to your search criteria.

When you go into your system and look for “Smith” and zip code “22901”, the IBM Initiate

system then converts the search into a hash value which is going to match the “12345678”

hash value. Instead of doing the string search, a number or “integer” search is performed,

since this sort of search is a lot faster for databases. The search will retrieve Member A

and Member B, which share the bucketing information. The same thing is done when

searching for “Adams” with the zip code “60613”.

The results that are returned are called candidates. The idea is to “cast a wide net” for

potential matches based on one or more similar attributes. Effectively, narrowing the

search down and increasing the speed, instead of having to compare against all the

members in the database. Once the candidate selection list has been obtained, the

comparison is performed on each one to get the scores.

Page 14 of 31

algorithm.ppt

The bucket values themselves are based on standardized data which is converted to and

stored as numerical hash values. The standardized data is transformed using bucketing

functions. Multiple standardized values can be combined into a single bucket.

Page 15 of 31

algorithm.ppt

This slide displays some of the available bucketing functions. For “ASIS”, the standardized

attribute is used without additional modification.

With “META”, a value can be translated to its phonetic equivalent, a few examples of

“META” functions are covered later.

Next is “EQUI”. This one is used for nickname translation. For example, the name Robert

can have multiple nickname possibilities such as Bobby, Bob or Rob. So if someone is

looking for Bob Smith, but in the database you have Robert Smith, the record can still be

found.

“EQMETA” is a combination of phonetic conversion using a nickname. This function

converts the nickname to it’s phonetic version. There are many more bucketing functions

available for use.

Page 16 of 31

algorithm.ppt

Now that you are familiar with how buckets are used, you now need to learn how they are created.

Designing a bucket strategy is an art. It is all about looking at your data and understanding how to access it
most efficiently and for the greatest results.

Creating a large number of small buckets based on specific data will not allow an efficient search of records.
Going back to the play room example, this is the same as breaking your car bucket into several small
buckets such as a bucket for red trucks made in 2005 with four doors. This makes it so that if you are
wanting to search for any red truck, you will not be able to find it since there is no single bucket that contains
red trucks.

The opposite extreme is creating buckets that are too generic. These become large buckets that return less
useful results and slow down performance. This is the same as having a single bucket for all cars. If you are
looking for a red truck, it will take some time to go through the entire bucket to see which ones match your
criteria.

This is how you want to design your buckets if you know that you plan to search for your toy cars based on
the type of car and the color.

The idea is that you want to make a search as efficient as possible while still getting the desired results. One
method to ensure effective results, is to make the data more generic by way of methods like phonetic and
sorted. However, the data cannot be too generic as to create huge buckets, such as a one name token.
Common names like “John” or “Mary”, create huge buckets. Depending on locale and demographics, those
buckets can be a few thousand or hundreds of thousands of records in size. That does not help narrow down
the results at all and will greatly consume computing resources. Doing multiple name token buckets to
retrieve “John Williams”, for example, will help narrow the results and increase performance while still
offering a fairly wide net of candidate records to compare.

An important note, not always obvious, is that buckets must support searches. Any type of search that you
perform needs the data to be bucketed. If you want to search on two name tokens only, you need to have a
two token name bucket setup in your algorithm.

Page 17 of 31

algorithm.ppt

This slide displays an example for the social security number bucketing function.

“SORTED” is used as the bucketing function since this helps broaden the candidate

selection.

In this example, you can see that the social security number is transformed to be in

numerical sequence order “123446789”. This resolves the problem of users accidentally

transposing two or more numbers. For example, a member’s social security number might

be “321449876”. If the operator inputs the digits in the wrong order by mistake, say

“213449876”, that is okay because once they are sorted, they are the same.

You may have noticed that there is a good chance you can match on other records with

the same sorted number. Do not worry about that quite yet, this is only used for bucketing

to get the candidate selection. There is still the comparison step which will order the

results based on a score.

Page 18 of 31

algorithm.ppt

Another example is date of birth plus a phonetic name.

Date of birth by itself can potentially create large buckets due to the high number of

records sharing the same birth year. Typically, the date of birth is combined with a name or

phonetic name.

This example depicts a name “JOHN SMITH” combined with date of birth “1971-03-24”.

Since you are doing the phonetic version of the name, “JN” is substituted for “John” and

“SMZ” for “Smith”. Based on this, the bucket permutations are the date of birth plus “JN”,

and the date of birth plus “SMZ”.

Page 19 of 31

algorithm.ppt

This slide displays another example for name pairs with nicknames.

If you recall, back on the standardization function on names, the PXNM function was used

to break up the names to one or more tokens.

This example uses the name “BILL STEVEN SMITH”. Two token permutations results in

these buckets:

BILL plus STEVEN

STEVEN plus WILLIAM – remember, WILLIAM now is a nickname

BILL plus SMITH

SMITH plus WILLIAM

SMITH plus STEVEN

It is worth noting that the tokens are always in alphabetical order so you do not have

repeated buckets.

Page 20 of 31

algorithm.ppt

Comparison is the step of the IBM Initiate algorithm where similarities and differences are

determined between two records. Once the candidate selection list has been obtained

from the bucket results, the comparison process is initiated. It compares the data used for

the search criteria or triggers member data for each candidate. This is done by comparing

each of the attributes as they were standardized and then provides the comparison score.

Page 21 of 31

algorithm.ppt

As each attribute is compared, a score is assigned based on the weight values defined in

the configuration. Once all attributes for a given comparison have been processed, the

scores are tallied and a final score is produced.

The results are then returned to the calling client application with the highest score listed

first. The results are typically displayed in descending order, based on score. The idea is

that the top result, the result with the highest match score, is the most likely candidate.

Page 22 of 31

algorithm.ppt

This slide details a list of some of the comparison functions.

The first one is actually a group of edit distance functions. With these, you can compare

one string to another in order to find out how many changes are required for one string to

be the same as the other string.

The next two, string and integer equivalence, state whether the string or integer,

respectively, are an exact match or not.

Zip code and date comparison functions each have their own rules. The “DATE” function,

for example, will return weights based on a year only match, versus year, month and day

match. In addition, there is person name, business name and provider name comparison

and many more.

Page 23 of 31

algorithm.ppt

The first comparison example is a social security number example. Social security

numbers are typically compared using an edit distance function. You can say that this

describes the “amount of difference” between one value and another, or the number of

actions for one value to be made identical to the other.

Therefore, in the first comparison, the two records are identical which means they have an

edit distance of zero. In the second comparison, the numbers are off by a single digit,

therefore, they have an edit distance of one. The first digit “1” needs to be replaced by a

“2” to make them an exact match.

In the last comparison, the two strings are off by a single transposition, most likely caused

by someone transposing the two numbers. This too will have an edit distance of one as in

the previous comparison. The reason, is that it only takes one swapping of the digits to

make an exact match.

Page 24 of 31

algorithm.ppt

Dates are also compared using edit distance, as this presentation illustrates. If they match

exactly, the weight is determined by the birth year. In this example, there are two years,

1910 and 1971. In most customer databases, it is less common to see someone who was

born in 1910 than in 1971. Therefore, a match on the year 1910 results in a larger weight

being used than a match on 1971.

It is worth noting that while an initial baseline set of weights is provided, once customer

data is loaded, customers typically go through a weight generation process to customize

the weights to match the customer’s dataset. For example, if one customer deals mostly

with infants, and another deals mostly with the elderly, the majority of the birth years will

look significantly different, and so should the corresponding weights.

Page 25 of 31

algorithm.ppt

A personal name example is also described. Personal names are compared using all

permutations of available tokens. The first test is for an exact match. If that fails, the

tokens are checked for phonetic matches, such as “JOHN”, J O H N, and “JON”, J O N

nickname matches. Or such as “BILL” and “WILLIAM”, initial matches. Also, as in ‘G’ for

“GREG”, and edit distance matches, such as “FREDRICK” and “GREDRICK”.

For example, “Bill G Jones” versus “Jimmy William Jones”. ”Bill” and “William” will have a

nickname match, which will produce a positive score. ”Jones” and “Jones” goes for an

exact match, which will produce an even higher positive score. However ‘G’ and “Jimmy”

are at a disagreement, there is not even an initial match. This one produces a negative

score, therefore, for this example, your total score for the personal name comparison is

1.76.

Page 26 of 31

algorithm.ppt

Now, the focus is diverted towards data flow. What does the data flow look like when you

add a record? The first thing that happens is you add a record for “Kevin O’Malley”. Then

the record is standardized, therefore, “Kevin O’Malley” is changed to “KEVIN OMALLEY”,

using all capital letters and leaving out the apostrophe after O. Next, buckets and

comparison strings are generated and stored. Finally, the record is compared against all

the candidates returned. Based on the resulting scores and your configuration, linkages

and tasks are created and stored.

Page 27 of 31

algorithm.ppt

Here is what the process looks like for a search. Say you are in IBM Initiate Inspector or

some other application that is allowed to perform searches and you do a search for “Kevin

O’Malley”. The first thing the algorithm does is it grabs the search data and standardizes it.

Once standardized, the bucket hash values and comparison strings are generated. Now

bucket hashes that match the generated ones are retrieved from the database. These

returned matching hash values are effectively the candidate selection. The algorithm then

compares each of the candidates against search criteria. Then the returned results are

going to be ordered based on the comparison score. The one with the highest score is the

first one returned, and the lowest score is pushed down the list.

Page 28 of 31

algorithm.ppt

Algorithms are at the heart of your IBM Initiate Master Data Engine. You are strongly

encouraged to contact IBM Support if you feel you want to make any changes. At the very

least, changes should be made and thoroughly tested in an environment completely

separate from your production system.

The reason this is cautioned, is because changes to your algorithms will affect your

system. If you make a change that affects the large majority of the records to create higher

score for a certain set of data, then you might generate a large number of tasks or a large

number of unwanted linkages. Changes made can also negatively impact system

performance. If you think a change should be made to your algorithm, contact IBM

Support and you will then be given some tips on the correct steps to make changes. IBM

Support can also arrange for an IBM consultant to work with you in order to perform

analysis on your data and make recommendations, if necessary.

Page 29 of 31

algorithm.ppt

This slide provides links to official IBM Initiate documentation online, which you can use to

learn more about algorithms.

Page 30 of 31

algorithm.ppt Page 31 of 31

