
Searching.ppt

This is the “Understanding Master Data Engine searching” training presentation from IBM

Initiate®. IBM Initiate Master Data Service® is referred to as MDS throughout this

presentation.

Page 1 of 15

Searching.ppt

The objective of this presentation is to introduce you to the inner workings of the IBM

Initiate Master Data Engine searching system. You will learn the reasons why the IBM

Initiate MDS searches are more effective than those that use ‘wildcard’ searches. You will

understand how the preprocessing of data increases search efficiency and improves data

match-ability of members that are present in the system.

The phonetic conversion process is also discussed. This section covers how the MDS

phonetic algorithms are able to retrieve members whose names sound similar to others.

Even if the name is misspelled when searched, the name can still be retrieved from the

system. This is largely due to the employment of phonetics, which compensates for

potential data entry errors.

This presentation displays an example on the creation of sample records. Described is a

step by step process of how records are compared in the MDS engine. This includes the

retrieval of potential candidates as a result of sample searches.

A troubleshooting section is provided to cover some of the potential issues that users

frequently run into when searching for records. Some of the examples have some real

world situations and demonstrate how these can best be handled when unexpected

results are encountered.

Finally, you are given a set of additional resources where you can get further information

regarding this essential functionality of the MDS software.

Page 2 of 15

Searching.ppt

First on the list is a discussion on wildcard searches versus real searches.

The ultimate purpose of performing a search is to be able to retrieve the member that you are looking for.
Many people have become accustomed with standard wildcard searching and expect to find a specific
member by typing part of a name and including an asterisk sign. For example, you want to find the name
Edward in a system. You will typically enter “ED*” for the search. This can potentially retrieve hundreds of
results, including names like Edgar, Eddy, Eduardo, Edmonton, Edna, and so on. As you can see, in order
for you to get the particular record you need, you will have to search again through your results. This is
exactly what the software tries to facilitate for you.

Some important identifiers such as a date of birth, social security number or any other key identifiers should
be entered to produce more unique and better results.

Suppose you are trying to find a particular member record with the name of “Patty Countryman”. A wildcard
search on “PAT” will return: “PAT SMITH”, “PATTY JONES”, “PATRICK ADAMS” and “PATTY
COUNTRYMAN”. As you can see, the records that have a textual match are returned along with Patty
Countryman. However, they are nowhere close to the person you are looking for. “PAT SMITH” is a male
whose last name is nothing like what you are looking for. “PATTY JONES” is a female, but her last name is
also a mismatch. “PATRICK ADAMS” is also male, and does not match the record that you are interested in
finding. This list can go on for hundreds of other records. You can see how wildcard searching can become
cumbersome, especially if you have a spelling mistake to begin with. The MDS technology tries to avoid the
returning of any arbitrary members that matched their name textually due to the use of a wildcard.

Suppose you are interested in finding a person whose social security number is 234-45-5678. If you were to
search for 234*, the returned list of numbers that match those first three numeric characters will be extremely
long, mostly filled with completely unrelated records. Again, wildcard searches are not useful in helping you
retrieve a particular member.

The MDS solution involves the use of matching and scoring algorithms that aid you in finding the correct
member quickly and efficiently. For instance, when searching for PATI COUNTRYMEN, spelled P A T I C O
U N T R Y M E N, having misspelled both the first and last names, the system will deduce that PATTY
COUNTRYMAN, spelled P A T TY C O U N T R Y M A N, is the actual member that needs to be retrieved,
thanks to a phonetic match that these names have and despite a spelling mistake.

Searching for “234-54-5678”, where you have accidentally transposed the middle two numbers, will still get a
match on the correct social security number as the edit distance is only one character.

There are several other helpful functions within the MDS software that allows you to find a member
accurately.

Page 3 of 15

Searching.ppt

This slide displays some commonly asked questions.

When asked, “what happens if a name is misspelled when doing a search?”. The answer is that the MDS

phonetic process will help in compensating for this mistake, helping you find the correct member.

When asked, “what happens if a search is done on a social security number whose numbers are accidentally

transposed?”. The answer is the MDS edit-distance system compensates for this accidental transposition in

numbers and will return the records that are similar to what was entered. This helps you find the social

security number that was intended to be searched on.

Another common question is, “what happens when you search for a member whose address on file is more

current than the one that is being used in the search?”. The answer is that historical data is stored in the

MDS database in order to keep track of the information that represents a particular member. This is because

outdated information is still pertinent to a member’s record, regardless of the fact that it is older information. It

still represents who that member is. When updating a particular member’s attribute, MDS marks the older

information as inactive and the newer information as active. This way, when you search for a John Smith that

used to live at a particular address, or that used to have a particular telephone number, you will still be able

to get him back in your search results. The engine will perform a search on the current and all historical

member data to help identify a record. Most search tools do not have this feature.

When asked “what happens when you search for a member whose information is found at a different

location, or source, to the one you are searching on?”. The answer is that the MDS indexes the entire

member base and tracks each member by way of Enterprise ID technology. If a particular member is only

found at site A’s database, this information can be pulled from it and create a new record that will now reside

at site B’s database too. The exact same member attributes and data is copied over in order to have the data

consistent and up to date. This helps avoid any possible data entry errors that may occur when trying to

manually copy information that was only found at one site.

Ultimately, the MDS purpose is to minimize the duplication of data that is primarily caused by human error.

Page 4 of 15

Searching.ppt

Your focus will now be shifted to a discussion on how data preprocessing is actually a 3-step process.

For a deeper understanding of the material that is covered in this presentation, you should review other IBM Educational
Assistant presentations that discuss bucketing and algorithms. However, these are not required in order to understand
the material covered in this presentation. Examples from previous slides are reused to discuss data processing.

There are several configurable processes that take place before the insertion of data into the MDS database. This is
done in order to create metadata, which allows the engine to perform faster searches when querying the database.

The first step is “standardization”. In this step, data is converted into a more consistent, usable format that will make all
of the data that comes in uniform. For example; the case of all letters are changed to upper case and special characters
like the dashes are stripped out. White spaces are also eliminated as illustrated in these examples.

The second step is “bucketing”. In this step, the already standardized data may, or may not, be combined, and is then
transformed, or translated, into a numeric hash value. Looking up an integer or hash value yields optimal retrieval of
such data from the database. Using “John Smith” as an example illustrates this process. This name search employs the
phonetic algorithm, which is discussed on the next slide. Performing the search, yields the phonetic strings of “JN” and
“SMZ”. They are then combined into one bucket using a secure hash algorithm to produce the negative hash integer
value. Since numbers work much faster in the database than any other data type, this hash value is the number that
corresponds to this particular bucket, and is inserted into a special table used for quick lookups. You may already be
familiar with the mpi_membkd table.

The third step is “comparison”. This is the process of comparing standardized data and assigning a score that
represents how similar the sets of data are. When performing a search, you provide specific criteria, such as name,
telephone number, address, social security number, zip code, and so on. From this search data, buckets are created on-
the-fly, and the database is searched for all matching buckets. This is often referred to as “casting a net”. A set of
members whose bucket values match are returned. These members are called the “candidates”. All of the attributes
from each candidate are compared with the search data.

Here is where the scoring occurs and is based on individual scores given to distinct attributes of each member. There
are different agreement types and disagreement types that contribute to the score as well. Take for example, the exact
agreement match of “JOHN” J O H N and “JOHN” J O H N. Or the phonetic agreement match of J O H N and J O N.
There is also a nickname match, like “BILL” and “WILLIAM”. There is an initial match, like “G” and “GREG”, this case will
give a positive score because the correct initial letter was entered, or found in the database. Another contributor is an
edit distance match, like “FREDERICK” and “GREDRICK”, where the edit distance is only one character, the first letter.
There are also the disagreement scores, like “JOHN” and “DAVE”, where the phonetics and spelling of these names do
not match at all, giving a negative score.

Once all of the scores are completed, a final comparison score is given to every member that was returned in the
search. It is very typical that many members or candidates are brought back as part of the bucket sharing process.
However, those that match closer to the search data have a higher score. The final comparison scores describe how
closely your search criteria matches with the retrieved candidates’ attributes found in the database.

Page 5 of 15

Searching.ppt

In this search example, you will gain a better understanding on exactly how searches take place in the

database. Some important points of interest include, “What is being done with the data?”. “How is the data

injected into the database?”. “What actually happens when you perform a search?”.

This example is composed of a very simple algorithm. It includes the combination of date of birth and a

single phonetic name token. The algorithm will also use a phonetic name combination.

First, the data is populated with three sample members. Each contain a first and last name, and a date of

birth.

The first sample member has the name of “JACOB SMITH” with his corresponding date of birth. This creates

three buckets, each with their corresponding hash values.

The first bucket is the combination of Jacob’s date of birth and his first name. The second bucket is a

combination of his date of birth and his last name. The third bucket is the name combination “JACOB

SMITH” which has been converted to “JKB + SMZ.”

The second sample member is “JOHN SMITH” with the same date of birth as “JACOB”. Now you are going

to create three buckets with the same standards. The first bucket is the combination of date of birth and the

first name using “JN”. The second bucket is the combination of date of birth and his last name using “SMZ”.

The third bucket is the name combination “JOHN SMITH” which has been converted to “JN + SMZ.” Notice

the hash value is a unique value generated based on the bucket contents, and are used by the system for

seeded look-ups.

The third name example is “JON SMYTH”, spelled J O N S M Y T H which sounds just like the second

member “JOHN SMITH”, spelled J O H N S M I T H but has a completely different date of birth. Again, you

use the same standard to generate its corresponding buckets and hash values. If you compare all three

members, you notice that there are some overlaps or the sharing of buckets.

Page 6 of 15

Searching.ppt

The results from the previous slide are displayed on this slide in the table. You can see all

buckets, relevant bucket-hashes, and the records that are participating in each bucket.

The first bucket pair is between “Jacob Smith” and “John Smith”. They have the same date

of birth and the same phonetic last name “SMZ”.

Next, “John Smith”, spelled J O H N S M I T H and “Jon Smyth” spelled J O N S M Y T H

are sharing a bucket with their phonetic name combination of “JN+SMZ”, because their

first and last names sound alike. Finally, notice that “Jacob Smith” and “Jon Smyth” do not

share any buckets.

Page 7 of 15

Searching.ppt

Now that the data is in the Hub, a search is performed that helps you better understand

how the bucket retrieval and scoring mechanism work.

The first scenario is an example of a search using only a name as the search criteria. You

typed the first name “JOHN” and last name “SMITH”. Notice that the date of birth was not

used.

The algorithm has a phonetic first name and last name bucket combination. Therefore, the

query only generates one bucket: “JN + SMZ”. The system then hashes this bucket as -

988532043 and retrieves all the records that share this particular value. This search

produces “John Smith”, J o h n S mi t h, and “Jon Smyth”, J o n S m y t h.

The system then goes through the comparison phase and compares the comparison

strings for the retrieved records with those that were provided in the search criteria. These

are scored to determine how similar the results are to the actual input that was provided

as the search criteria.

The comparison yields both “J O H N” and “S M I T H” as an exact match. Therefore, the

final score for this particular member is a +2.22.

Next, you have “J O H N” versus “J O N” and “S M I T H” versus “S M Y T H”. Both sets

match phonetically. The final score for this comparison is a +1.94. Even though this

candidate did phonetically match, it did not score as high as the previous candidate.

Since the first candidate, “J O H N S M I T H” scored higher due to an exact match, you

can say that this member is the one that most closely matches the search criteria.

Page 8 of 15

Searching.ppt

This scenario is similar to the previous one, but with a slight difference.

You search for “JACOB JONES” and this time you also enter a date of birth “1970-05-07”. This creates three

buckets. One with the combination of the first and last name of “JKB+JNS”, a second bucket with the date of

birth and the first name as “19700507+JKB”, and a third bucket with the combination of the date of birth and

the last name as “19700507+JNS”. Each of these generate their own, different hash value.

The engine searches for these newly generated hash values, and find that only one existing bucket,

“19700507+JKB = 928633656” matched your search criteria. This is the date of birth plus first name bucket

that has the existing record “Jacob Smith”. Recall that there is no “JONES” in the system, so no buckets exist

that contain the name “JONES”.

Since the search retrieved one member, “JACOB SMITH”, the system now has to score its data through the

comparison phase. Again, utilizing the string yielded by the input search data.

The input comparison string for “JACOB JONES” is compared against the database record’s comparison

string for “JACOB SMITH”. “JACOB” versus “JACOB” is an exact match, yielding a positive score. “JONES”

versus “SMITH” is a total disagreement. The names are not close at all, hence, the last name comparison

receives a negative score. Finally, the date of birth is an exact match and therefore receives a positive score.

After adding up all of the scores, you can see that the final score stays at a positive +5.09, despite the last

name being in disagreement. It is possible that the last name of this record used to be “JONES”, so the MDS

score helps find the best possible match through its scoring mechanism. In this case, you can see that

having an exact match on the first name and the date of birth helped drastically. Therefore, based on your

input search data the most likely candidate is narrowed down to “JACOB SMITH.”

Page 9 of 15

Searching.ppt

It is time to recap some of the information that you have learned so far. The data that

comes into the MDS system receives pre-treatment that helps in the creation of buckets

with associated hash values. Certain attributes are transformed in order to create

representations of this data. This is what is referred to as the metadata.

It is this metadata that is used in order to perform high-speed searches and achieve the

results that the software can deliver. When searching, the bits of information entered in the

search criteria are also used to create temporary buckets and hashes. These are then

used to look up any existing matches of this same metadata in the database.

When several buckets are generated due to the amount of information provided in the

search, a “wide net” is cast which may result in the retrieval of many potential candidates.

One may be miss led by this, thinking: “Well, if too many results are returned, then it

defeats the purpose of the search.”. It is common for dozens of candidates to be returned,

nonetheless, the high-speed comparison phase will help score each of the returned

members and list them according to their probability of being the actual record of interest.

Results are returned in the order of most-likely to least-likely candidate.

Finally, it is important to emphasize the fact that “more is better”. To achieve best results,

you should enter as much information as you can. This allows you to retrieve as many

members as possible to participate in the comparison process. This method is called

“casting a wide net”. This gives you a higher chance of locating the member that you are

interested in finding, quickly and effectively.

Page 10 of 15

Searching.ppt

The next slides cover some of the most common issues that you might encounter when

searching for records using the MDS search engine.

Page 11 of 15

Searching.ppt

The first issue is when searching brings back no results. As discussed earlier, the
metadata that gets created is solely dependent on the number of buckets that are created.
This needs to be strategically configured in order to enable the creation of the most
relevant attribute and data combinations that are found in the buckets. Combinations like
name plus address, name plus date of birth, social security number only, and so on, can
help improve the way that data is put into buckets and improve the searches. This is
important to consider. For instance, suppose you wanted to create a bucket that takes the
combination of last name and state. As you can already anticipate, this bucket will turn out
fairly useless as way too many members can belong in it. Just imagine having a listing of
all of the Johnsons that live in a particular state. Simply put, this is not a very effective
bucket. This is why strategic buckets need to be set in the algorithm during your
implementation phase.

If you do not enter sufficient information that is relevant to the bucketing algorithm, you will
not have any buckets to use as reference to search the database. For example, you are
not able to build and retrieve any buckets, and no search can actually take place.

For example, if the bucketing algorithm requires that you enter a first name and last name
in order to create a bucket, and if you only enter a first name in your search, then no
buckets can be generated. This is because the algorithm requires both first and last name
in order to have something to search against the buckets that are already stored in the
database.

This kind of mistake will cause an error to appear in your log files, like the one displayed
on this slide. This error indicates that the search that you have just made did not generate
enough buckets according to your algorithm.

One solution to this issue is to ensure that the appropriate number of search criteria is
entered. Typically, this requires that you enter at least two search tokens. So if you search
by only entering one name token, chances are that no buckets will get generated solely
from the one piece of information. No results are returned by the MDS.

Page 12 of 15

Searching.ppt

Another issue is phonetic limitations. The phonetic system can be affected by nuances of
pronunciation in the English language. Next are a couple of real world examples that some
customers have actually run into in the past.

The first example is when you are searching for AUTUMN, spelled A U T U M N. This
name actually breaks down as A T M N. If you search for A U T U M instead, which sounds
like AUTUMN because of its ending silent letter, the breakdown is actually A T M. Since
the ending M N is rare enough, a phonetic rule does not really exist for it. So AUTUMN,
spelled A U T U M N, is not retrieved. You can fix this problem by creating a nickname
match value using the IBM Initiate Workbench. Make AUTUMN, spelled A U T U M without
the N, a nickname for AUTUMN with an N. This way when you search for A U T U M, a
nickname match for AUTUMN will also be retrieved and you are able to find your match.

The next example is with the unusual name of “RAEQUAN”. This one phonetically breaks
down to R K N. If you search for R A E K W A N, it will phonetically break down to R K W N
and will not bring back the first name. To come up with an explanation for this, you must
first understand how the name is actually pronounced. You probably pronounce it as RAY-
KWAN. However, the system can only treat this name in one way and when it sees the Q
U in the name, the phonetic algorithm treats it as a K, rather than a K W sound. This is the
rule of the Q U in the middle of a word. “R a k a n”, “R a y k a n” and “R a e k a n” will all
match this name perfectly because they have been broken down to R K N, also.

But since you did not type in phonetically the way that the system believed it should be
pronounced phonetically, you cannot get the first name back. These are really rare
instances in which the problem can be corrected by creating a nickname value for them.
This brings back the member in question, despite the fact that you may not type it in
correctly. The phonetic algorithms can make mistakes as they are not 100% perfect, so
the system might get names wrong sometimes. Nevertheless, it can be corrected easily.

Page 13 of 15

Searching.ppt

This slide displays a list of additional resources available to you that contain more

information regarding the topic of this discussion.

Page 14 of 15

Searching.ppt Page 15 of 15

