il
(e
iy

I

IBM Initiate

Introduction to buckets

© 2012 BM Corporation

This is the IBM Initiate® “Introduction to buckets” training presentation.

IntroBuckets.ppt Page 1 of 32

= Understand what buckets are

= Understand bucket creation

= Understand bucket types

= How entity management and searches use buckets

= Large buckets and frequency-based bucketing (FBB)

= Command line utilities

2 Introduction to buckets ©2012 1BM Corporation

The objective of this presentation is to introduce you to how the IBM Initiate Master Data
Service®, referred to as MDS, uses buckets for searches and comparisons. This
presentation begins by discussing what buckets are and how they are created. By the end
of this presentation you should understand the different bucket types and how entity
management and searches use buckets. You will learn about large buckets and a concept
referred to as “frequency-based bucketing” and finally, you will discover the purpose of
some useful command line utilities.

IntroBuckets.ppt Page 2 of 32

What are buckets?

= Group of members or data numerically or phonetically similar and share common attributes

= Bucket data is output of derivation attributes configured to participate in candidate selection

© 2012 BM Corporation

3 Introduction to buckets

Before you can learn how buckets work, it is important to understand what they are.
Buckets are defined as a group of records that are numerically or phonetically similar and
share common attributes. Bucket data is the output of the derivation attributes configured

to participate in the candidate selection process.
Essentially, buckets represent the organization or grouping of data that is similar.

IntroBuckets.ppt Page 3 of 32

Bucket analogy (1 of 2)

= Analogy
— Bucket data represented by bills and coins
— Cash register’s drawer composed of two divided storage areas
* Top half for bills, lower half for coins
— When giving change, go to bottom storage area where coins have been pre-determined
to be located

Top Half — b

Lower Half ——

- Introduction to buckets ©20121BM Corpor

ration

To understand what buckets are, a simple analogy is used. In every grocery store you visit
you will typically see cash registers. The cash registers contain a drawer that is typically

divided into two sections; the top half for bills and the lower half for coins.

When the cashier gives you change for a dollar, they do not go to the top half
drawer. Instead, they go directly to the bottom half where they know the coins

of the cash
are kept.

Imagine how much slower each cash transaction will be if the cashier has to use a single

cash “jar” instead of a cash register to give the customer change.

IntroBuckets.ppt

Page 4 of 32

o
\

(

)

)

= Use buckets to eliminate unnecessary processing of data

= Increases efficiency by going directly to data that is known to be similar

Name: Patty Countryman

Name: J;)n;nhan Green

Address: 2717 111th Avenue Address: P.O. Box 2919
San Francisco, CA 94115 Concord, CA 94520
Gender: Male Gender: Female
MRN: H:987754 MRN: RMC:870504
SSN: 888-22-6446 SSN: 263-19-9065
DOB: 1970-05-08 DOB: 1965-08-02

Introduction to buckets ©2012 1BM Corporation

Buckets work in much the same way. Just as you would not search for a penny in the bills
bucket, you would not want to spend time comparing two sets of member’s data that are
completely different. For example, the two members displayed on this slide would have
their data stored in completely separate buckets.

Conceptually, buckets work the same way. By using buckets, you eliminate unnecessary
processing of data that is completely different. This exponentially increases efficiency by
going directly to the data that is known to be similar. For example, take the two members
displayed on this slide. These members have completely different names, addresses,
gender, and so on. Due to their data disparity, they will never generate common buckets.
Therefore, searches for any attributes associated with one of the members will not waste
any time comparing attributes associated with the other. It is this organization of attributes
or buckets that makes the Master Data Service so efficient.

IntroBuckets.ppt Page 5 of 32

o

» Creation of buckets are initialized or triggered through MEMPUT or SEARCH interactions

* Three example clients that generate MEMPUTs
— Custom applications
— IBM Initiate Inbound Broker
— |BM Initiate Inspector

Cu_stor_n The Engine:
3 Clients Applications -Standardizes
-Buckets

-Generates Comparison String
-Stores Data into the Initiate DB

k—*———f_,_i_i_i_‘_ N—
T Initiate

Database

100+ tables

The Data is now ready to be
cross matched.

S
inbound Broker MMaster Data

Messages
Message Message L
Reader Broker

Queue
(Pos.toc and dat files)

~Y

—

(Source
- System

o

TCPIP
Stream

Inspector
(Members can be added, deleted or updated)

(] Introduction to buckets 2012 IBM Corporation

This slide illustrates how buckets are generated. The interactions that trigger bucket
generation are called member puts, referred to as MEMPUTSs or searches. On this slide,
there are three example clients that generate MEMPUTSs: Custom applications, the IBM
Initiate Inbound Broker, and IBM Initiate Inspector. When a MEMPUT call is made by any
one of these clients, the Master Data Engine takes the data and standardizes it, creates
buckets, generates the comparison string and finally, stores the data into the IBM Initiate
database. The data is now queued and is ready to be cross matched against all members
that share common buckets.

IntroBuckets.ppt Page 6 of 32

* Inspector, Enterprise Viewer and custom applications can perform SEARCH functions

* Inspector and custom applications can perform both MEMPUT and SEARCH functions

3 Clients
Custom Inspector
Applications
Master Data
O Enterprise
The Engine: Viewer
-Standardizes Enterprie
-Buckets -
-Generates Comparison String
-Stores the Data Note: The Database
-Returns the results was bypassed

7 Introduction to buckets © 2012 IBM Corporation

For search interactions, the same three example clients are used. The custom
applications and Inspector can perform both the MEMPUTs and search interactions. The
front end application, Enterprise Viewer, is only capable of performing searches.

After the search criteria has been entered, the engine standardizes and derives the data,
returning the results to the respective clients. The data that is used to retrieve the
matching buckets is not stored in the database, in other words it is transient. This
temporary information is only used in the comparison process.

IntroBuckets.ppt Page 7 of 32

= Bucket creation cycle consists of
— Standardization
» Data is first standardized

= bktvals conversion
— Standardized data is converted to bktvals based on generation type (gentype) and
bucketing functions being used in algorithm
» Types — Predefined functions used to generate bktvals
* bktvals — Are converted type values

= Hash number generation
— bktvals are converted to hash integers
* Hash numbers — Integers are buckets that engine uses

Introduction to buckets ©2012 1BM Corporation

The creation of buckets consists of cycles. Standardization is where the data is converted
into caps and all non-print characters are stripped. The system can also be configured to
take all street names with the value of “West”, for instance, and format it as “W”, or
change all occurrences of “Street” to “St”. The standardization process will also strip name
prefixes like Mr., Mrs., and so on. Bucket-val conversion is where the data is converted to
the type that is being used. Types are predefined functions used to generate bucket
values. The bucket-vals themselves are the converted type values. The final cycle is hash
number generation. A hash number is an integer representation of a bucket-val. This is the
bucket that the engine actually uses.

IntroBuckets.ppt Page 8 of 32

» ASIS - Unmodified data

* META (META1, META2, META3, META4) - Phonetic conversion

= EQUI - Nickname translation

* EQMETA (EQMETA1, EQMETA2, EQMETA3) - EQUI plus META

* GEO - Location value (latitude/longitude)

* SORTED - Sorted input string

= NRANGE - Integer range mapping

= SRANGE - String range mapping

» DATE (DATEZ2, GRDATE, DTY4SMD, DTY4MM, DTMMDD) — Date conversion

9 Introduction to buckets © 2012 IBM Corporation

There are several Bucket Generation Types, referred to as gentypes. There is ASIS,
META, EQUI, EQMETA, GEO, SORTED, NRANGE, SRANGE, and DATE. This
presentation only discusses the top four gentypes.

IntroBuckets.ppt Page 9 of 32

]
)
7))

L

= ASIS does not modify data
— Can be used with any data type

= First step is to standardize raw data

RAW
DATA

First Name: Patty

Last Name: Countryman

Phone: 686-9876
SSN: 263-19-9065
DOB: 1965/08/02

10 Introduction to buckets

DATA
STANDARDIZED

First Name:
Last Name:
Phone:
SSN:

DOB:

PATTY
COUNTRYMAN
6369876
263199065
19650802

©2012 1BM Corporation

First of the gentypes is “ASIS”. The ASIS gentype does not modify the data after
standardization and can be used with any data type. If you take a look at the example
provided, the raw data contains the first and last name, telephone number, social security
number and the date of birth of the record. In this example, the standardization process
will capitalize all the letters and remove any of the non-print characters before the ASIS

phase begins.

IntroBuckets.ppt

Page 10 of 32

w
(§))

= Standardize data now converted into bktvals
— Integer hash used by engine to help increase performance

Data Standardized

First Name PATTY

Last Name COUNTRYMAN

Phone 6869876

SSN: 263199065

DOB 19650802

Gen Type ASIS
bktval Conversion bktval
(TOKEN PERMUTATION) (INTEGERHASH)

[bktrolel:Fname+Lname] COUNTRYMAN +PATTY ——— 5210651869
[bktrole2:Fname+Phone] PATTY + 6869876 —» 28547654734
[bktrole3:Fname+SSN] PATTY + 263199065 -13285647910

[bktrole4:SSN+Lname) 263199065 + COUNTRYMAN 8201159663
[bktrole5:DOB+Lname] 19650802 + COUNTRYMAN ——— 311506585647

1 Introduction to buckets ©2012 1BM Corporation

Once the data is standardized, the gentype of "ASIS" is applied. In this case, there are no
further transformations to be made, because the information should be used “as is”. The
bucket-val or token permutation is then created for bucket role 1 which is a combination of
the first and last names. You may notice that the last name is presented first; this is
because the bucket-val is always in alphabetical order. This combination is then converted
into a bucket hash. Next is bucket role 2: first name and telephone number. This is also
converted to a bucket hash. Bucket role 3, first name and social security number, is
converted to a hash, then bucket role 4, social security and last name, and finally bucket
role 5, date of birth and last name. Remember that the bucket hash is the final integer
value that the engine uses. Integers are used to maximize database lookup speed.

IntroBuckets.ppt Page 11 of 32

m

or identiphone)

12 Introduction to buckets

= META1, META2, META3 — Uses phonetic conversion and translation (metaphone, soundex

— Raw data standardized and converted using Meta (1,2,3) gentype

KNTRMN

26319906

RAW DATA
DATA STANDARDIZED (Metal,2,3) Conversion
First Name: Patty PATTY — = P1
Last Name: Countryman COUNTRYMAN
Phone: 686-9876 6369876 6369876
SSN: 263-19-9065 —= 263199065
DOB: 1965/08/02 —19650802 ———— 19650802

©2012 1BM Corporation

Metal, 2 and 3 are the next bucket gentypes. These use phonetic conversion to break
down the alphabetic characters into “sound-alikes” code. The example once again, uses
the same data and standardization process as in the “ASIS” example on the previous
slide. However, once this initial phase is complete, the data will then be converted using
the Metal, 2, 3 phonetic algorithm, taking the first name of Patty and converting it to PT.
The last name of Countryman is converted to KNTRMN. These phonetic codes will result
from similar sounding names such as PAT and PETE, and perhaps COUNTERMAN, and
serve to compensate for spelling errors. Notice that the numerical values were not
modified, since this particular gentype will only convert alphabetic characters.

IntroBuckets.ppt

Page 12 of 32

m

bktval

(TOKEN PERMUTATION)
[bktrolel:Fname+Lname]

[bktrole2:Fname+Phone]
[bktrole3:Fname+SSN]
[bktrole4:SSN+Lname]
[bktrole5S:DOB+Lname]

13 Introduction to buckets

= Once conversion and translation performed, buckets are created
— Integer hash used by engine to help increase performance

Converted Data

bktval
(INTEGERHASH)
KNTRMN + PT 9592520317
PT + 6869876 — 53629117915
PT + 263199065 20488783211
263199065 + KNTRMN -90432187038
19650802 + KNTRMN 976346537665

©2012 1BM Corporation

Following the Metal, 2, 3 transformation, the data is once again converted into a bucket-
val permutation. This produces first name plus last name, first name plus telephone
number, first name plus social security number, social security number plus last name, and
date of birth plus last name. Then, all of those are converted to their respective bucket
hashes. All of the values to the right are the buckets the engine will use. If you review the
bucket hashes from the previous example, you will notice that these are completely
different. The previous bucket hashes were using the gentype of ASIS. In this example the
gentype of METAL, 2 and 3 is being used.

IntroBuckets.ppt

Page 13 of 32

» Uses nickname translation

RAW STANDARDIZED Gen Type (EQUI)
DATA DATA CONVERSION
. JOHN
First Name: Jonathan JONATHAN JON
i) JONATHAN NATHAN
Last Name: Green — GREEN
JONATHAN
Phone: 575-9876 — 5759876
. Anad AR GREAN
SSN: 838-22-6446— 838226446 ‘f(‘mw
GREEN T
DOB: 1970/05/08 — 19700508) GREEN
bktval

(TUlﬂZN PERM'UTAT[DN)

The same as in previous Type

14 Introduction to buckets © 2012 IBM Corporation

Now for the EQUI gentype:

This time a different example is employed. In the last examples, the member “Patty
Countryman” was used. This time, “Jonathan Green” is the member. The EQUI gentype
uses the nickname translation.

First, the data needs to be standardized. Once this is complete, the data is converted
using the nickname translation. The system gathers a list of all the names where
“‘Jonathan” is considered a nickname. Since it is not considered a nickname, only
“‘JONATHAN?” is used to generate buckets. However, in the case of a search, if the input
data is “John”, the system will then generate search bucket-vals for “JOHN” and
“*JONATHAN?” since “JOHN” is considered to be a nickname of “JONATHAN”. The same
applies for the last name. If a search entry has “G-R-E-E-N”, the search will generate
bucket-vals for “G-R-E-A-N”, “G-R-E-N" and “G-R-E-E-N". Typically, last names do not
have nicknames, but it is recommended to use common misspellings as nicknames. It is
very common for names to be misspelled when entered into a system. By assigning those
erroneous names as nicknames you are able to cast a wider net when attempting to locate
a record. From this point, the normal path is followed and bucket-vals are created. The
difference here is that you have the ability to search on records using the configured
nicknames. Searching for J O N G R E N brings back result sets which include
JONATHAN GREEN.

IntroBuckets.ppt Page 14 of 32

= EQMETA1, EQMETA2, EQMETA3 — Same as EQUIplusMETA

STANDARDIZED EQUI CONVERSION META
DATA (NICKNAME) CONVERSION
1 JOHN
JONATHAN JONATHAN
‘ JON _|—— N
GREEN NATHAN NZN
5759876 JONATHAN— JNZN

B GREAN
888226446 (,Rhm-f e iy
19700508 GREEN
bktval (TOKEN PERMUTATION) The same asin previous Type

15 Introduction to buckets ©2012 1BM Corporation

The EQMETA is the combination of EQUI and META. Now, using the same member, the
data is standardized, only this time, the gentype EQMETA is applied. This example starts
by using the EQUI gentype to generate the nicknames for the first name, again these are
John (J O H N), Jon (J O N), NATHAN, and JONATHAN. Next, the META conversion is
applied to the first name. In this case, they are JN for J O H N, JN for J O N, NZN for
Nathan, and JNZN for Jonathan. Since JN appears twice, only one is used, reducing your
first name count.

The same thing is done for last name. First, the list of nicknames is created. Then, the
nicknames are converted using META. Since the phonetic conversion of all the last names
are the same, they are condensed into a single value of “K-R-N”". Since the last name was
short and monosyllabic, the number of permutations is significantly less.

Just as before, the normal path is followed from here: the bucket-vals are created but this
time, only three first names and one last name is used.

IntroBuckets.ppt Page 15 of 32

m
)
7))
py
m
M
W
Ppu
®

m

= Other gentypes work much in same way
— Only difference is how data converted from standardized form to respective
gentype in preparation to be hashed

16 Introduction to buckets ©2012 1BM Corporation

With regards to the standardization and the hashing of the bucket-vals, the remainder of
the gentypes work in the same manner. The exception, however, is that the data is
converted into a different bucket-val format.

IntroBuckets.ppt Page 16 of 32

Target member: John Smith 456-9823 345-23-8756 1964-06-26

I Name Phone I SSN I DOB I Score |
= Search on name only
— Must have name-on|y Smith, Jon 506-4344 633-35-0998 1989-10-03 1.0
bucket configuration. Smyth, John ~ 612-6543 682127654 1956-01-15 1.0
JOHN+SMITH Smyth, Jan 980-3247 368-89-3487 1970-12-21 1.0
-12323456924
Last name' 1 Smithy, Jon ~ 234-8765 43560-5582 1982-04-19 1.0
First name:| John Smith, Jonny 729-8263 562-09-2376 1992-08-01 1.0
Total Members Retrieved 1,900
SS N: 425 Total Members that score above 1.0 = 100
Birth Date: -
—50 C
Gender: /’ “
th
Telephone: T i A— '
i —_0
1100

17 Introduction to buckets ©2012 1BM Corporation

This example takes a closer look at how the search logic uses buckets. Suppose you are
looking for John Smith. You have the member’s first and last name, their date of birth,
social security number and telephone number. Instead of entering all of the information,
you decide to only use the first and last name to look for the member. By doing this, the
bucket of John plus Smith is created. This bucket is then extracted from the system. The
total number of members retrieved is 1,900. The system is using the bucket hash for
increased speed of lookups.

Out of the 1,900 rows, only 100 score above 1.0. Out of these 100 rows your search
member scores 67th place. This means that you need to review 66 other records before
you find the one record you are searching for. Since all of these members score the same,
their order shown is somewhat random and is displayed based on the order in which they
were retrieved from the database.

Keep in mind that your system must be configured to use a first and last name search at
the very least. Depending on your unique setup you may not be able to use a first name,
last name search only. In some configurations, your system will require additional
information to be entered.

IntroBuckets.ppt Page 17 of 32

Search logic (fname, Iname, and DOB)

. Target member: John Smith 456-9823 345-23-8756 1964-06-26
= First name, Last name,

1
and DOB search i | Name I Phone I SSN I DOB I Score |
37 Place |
Smith, Johny 2348765 $62-09-2376 1964-06-26 54
413

Smyth, John ~ 612:6543 682-12-7654 1964-06-26 53

Last name: 58 Smith, John 4569823 345.23.8756 1964-06-26 52

First name:| John Smithy, Jon 9083247 435-60-5582 1964-06-26 29

SSN: [Smith, Jonny 5064344 653-35-0998 1964-06-26 14

—138
i . Total Members Retrieved 4,400
Birth Date:| 19640626 Total Members that score above 1.0 = 50
Gender:|
— JOHN+SMITH JOHN+19640626 SMITH+19640626
Telephone:| = L -12323456924 4343456576 64676767879

R AL

138 Introduction to buckets ©2012 1BM Corporation

Now you can see what happens when you use the first and last name and the date of birth
to search for the member. In this case, you are going to get the bucket you had before,
plus two additional buckets. You will get the John plus Smith bucket, the John plus date of
birth bucket, and Smith plus date of birth bucket. Just like before, you will retrieve all of the
members. This time you have retrieved 4,400 members. The number of members that
scored over 1.0 is 50.

Before you had 1,900 members and 100 members scored above one, this time you have
half as many that score above one. The reason for this, is due to the addition of an
attribute to your search criteria. This caused 50 of the members that previously scored
above a 1.0 to score much lower this time since their date of birth did not match the date
of birth you provided in your search. Since their date of birth is different, a negative score
can now be applied to the overall score bringing them to below 1.0.

Just by adding the additional attribute of date of birth, your member has risen from 67t
place to third place. This makes finding your member much easier. Negative and positive
scores increase the likelihood of a search returning the correct candidate.

IntroBuckets.ppt Page 18 of 32

Search logic (fname, Iname, DOB, and SSN)

1%'Place
* When sorted, social security Targetmember: John Smith 456-9823 345-23-8756 1064-06-26
number alone works well as ; l — | — | pe | - l e |
a bucket -
Smith, John 4569823 345238756 1964-06-26 124
Last name;%»m Smith, Johny ~ 2348765 562092376 1964-06-26 49
First name: [John Smyth, John 6126543 682127654 1964-06-26 38
SSN:[325-23-8756 5 Smithy, Jon 9083247 435605582 19640626 20
Birth Date:[19640626 Smith, Jonny 5064344 653350998 19640626 14
Gender:l:L»ZO Total Members Retrieved 4,404
Total Members that score above 1.0 = 20
Telephone:[]
JOHN+SMITH JOHN+19640626 SMITH+19640626 345238756
-12323456924 4343456576 64676767879 7675446579

VYWY

Introduction to buckets ©2012 1BM Corporation

Now you are going to add the social security number to your search criteria. This time,
four buckets are retrieved from the system, the previous three plus one for the social
security number. When sorted, the social security number works very well by itself as a
bucket.

This time the total members retrieved is 4,404. There were only four members that exist in
the social security bucket. The total number of members that score above one is even less
than before. This time there are only 20. By adding the social security number, the number
of returned members has been cut by more than half. A negative score was assigned to
the social security number for the 50 previously compared members. This dropped their
overall score to below 1.0.

Your member is now shown in first place in the result set. This record was the only one
that contained the exact social security number match giving him the top score of 12.4.

Finally, if you enter the remainder of the information like gender, telephone number, and
other attributes, you will eliminate additional members from this list. The more information
you provide, the easier it is to find your intended member the first time around.

IntroBuckets.ppt Page 19 of 32

= The more data entered, better chances of finding target member
— Especially critical where data for existing record is sparse

= “Casting a wide net”
— Entering more information increases resolution and yields more effective search results

Last Name:| Countryman |
First Name:| Patty |
Middle Name:| Patty |
SSN:[263-19-9065 |
|

|

|

Birth Date:| 19561120
Gender: | Female
Telephone:| 686-9876

20 Introduction to buckets ©2012 1BM Corporation

Search guidelines are very basic. You should enter as much information as you possibly
can. This will allow you to retrieve as many members as possible to participate in the
comparison process. You will sometimes hear reference to this as “casting a wide net”. By
providing more information, you increase the chances of retrieving your target member.
This is critical in cases where the search data is sparse, anonymous or blocked by
Frequency Based Bucketing. Frequency Based Bucketing is discussed later in this
presentation.

IntroBuckets.ppt Page 20 of 32

= Member only has a first name, last name and a social security number stored in database.

Last name:| smith |

First name:| John |
SSN:
Birth Date:

Gender:

Telephone:

Inspector Warning

N The entity search criteria produced no matching result. Sufficient search criteria were entered but there are no matches.
| Close

21 Introduction to buckets ©2012 1BM Corporation

Now take a look at an example with sparse data. In this example, there is a member that
only has the name and social security number attributes populated in the database. In
addition, his name, “John Smith” has been configured as anonymous value due to the
large amounts of members with that name in the system. No buckets exist for the “John
Smith” tokens. Therefore, when you try to retrieve the member by entering his name only,
no records are found, even though a member exists in the database for John Smith.

This member’s record will return in search results if the social security number is used as
the search criteria. Alternately, the record can be explicitly retrieved by entering the
Enterprise ID or Member Record Number in the “Retrieve Person by ID” search.

IntroBuckets.ppt Page 21 of 32

* MEMPUTs work same way as search logic

* Messages, by way of Inbound Broker or an API call
— Similar to search criteria in search

INBOUND MESSAGE

inbound
Messages Broker (METS)
Message
Reader

Master Data

Source !

System

Message
Broker

oo

Queue

TCPIP
Stream

(Pos toc and dat files)

2 Introduction to buckets

API
Custom The Engine:
Applications —Standardizes
—Buckets

—Generates Comparison String
—Stores Data into the Initiate DB

Initiate
Database
100+ tables

Interactions Queued

© 2012 IBM Corporation

As far as buckets are concerned, MEMPUT logic works much like the search logic.
However, instead of defining the search data, the custom application and broker clients
provide the data. By sending in a message, the engine standardizes, buckets, generates
the comparison string, and stores the data into the IBM Initiate database. The interactions

are now queued to be processed by the Entity Manager.

IntroBuckets.ppt

Page 22 of 32

23 Introduction to buckets

Members are cross
matched

IBM Initiate
Database

-

“

©2012 1BM Corporation

The purpose of the Entity Manager is to cross match all members in the queue in a first-in,
first-out manner. For example, take the last member represented by a red arrow on this
slide. You see this member’s record “life cycle” from MEMPUT to successful entity

management.

IntroBuckets.ppt

Page 23 of 32

MEMPUT logic (3 of 6)

This member will be used in the comparison

This record is a duplicate and will not be
included in the comparison

Entity
Manager

e ¢ ¢ o

AAAM

wel® o This record is a duplicate and will not be
B oNed included in the comparison
These records will be used in the
comparison
24 Introduction to buckets © 2012 BM Corporation

After a MEMPUT, the Entity Manager works on this member record, and the buckets
associated with the record are called. The engine retrieves all members in all buckets that
the target record is also in. These are called “candidate” records. Then, it removes any
duplicates and uses the remaining candidates for the final similarity comparison.

IntroBuckets.ppt Page 24 of 32

MEMPUT

25

logic (4 of

P eres

Introduction to buckets

A

COMPARED

— .

SCORED

|

}

+AL threshold

+CR threshold

Z1Z,

—0

©2012 1BM Corporation

The first member in the list is compared and scored. This member’s score is positive but
falls below the Clerical Review threshold. Therefore, no task or link is created. This

member is not determined to be an applicable match to the original member.

IntroBuckets.ppt

Page 25 of 32

MEMPUT logic (5 of 6)

+AL threshold

|

Task Is Created

+CR threshold

l

COMPARED
———————— > —
SCORED

26 Introduction to buckets © 2012 BM Corporation

Now the process continues to the next candidate record. It is compared and evaluated for
a final score. This time the score is above the Clerical Review threshold, but below the
“Autolink” threshold. Therefore, a task is created. A data steward now needs to determine
if these two members are the same.

IntroBuckets.ppt Page 26 of 32

N

MEMPUT logic (6 of 6)

Members are auto-linked

+AL threshold

—_— .

|

+CR threshold

/
/
/
/
|

COMPARED
SCORED

27 Introduction to buckets © 2012 BM Corporation

Finally, the last member in this bucket is compared and scored. The score is above the
“Autolink” threshold so they are linked as the same individual. The auto linking of members
saves a lot of time and manual work that would otherwise have to be performed.

IntroBuckets.ppt Page 27 of 32

Large buckets

* Buckets grow in size as members added

* More records associated with existing buckets

» Adding of sources drastically increases buckets size

= Extremely “large” buckets can cause performance issues
— Long search times

* Large results can render result set useless

28 Introduction to buckets © 2012 IBM Corporation

As your member base grows, by the normal addition of new members or by a bulk addition
of one or more source systems, so do your buckets. Both the number of buckets in total
and the amount of records associated with each individual bucket. Large buckets — those
associated with thousands of member records or more - can have a negative effect on
performance, and they can render search results far less useful. Earlier you saw that an
example member was returned in 67t place, following a search, due to insufficient
information. However, similarly poor results can occur when the buckets become too large.

IntroBuckets.ppt Page 28 of 32

= Frequency-based bucketing incorporated into algorithm at time of implementation

= Can “cut-off’ searching against particular bucket once amount of members in bucket is too
high
— Will not provide meaningful results
— Will not provide fast results

Anonymous

John Smith _JohmrSTmith
John Smith Zip
- Zip,Ph '
New York g O
) OR
FBB @ 3.000

29 Introduction to buckets ©2012 1BM Corporation

One of the settings that can be configured to help alleviate the problem of large buckets is
Frequency Based Bucketing. Frequency Based Bucketing, or FBB for short, is the setting
of predefined thresholds that are used by the engine before performing any comparisons.
This limits the growth of the bucket predefined size. At the time of your implementation
and based on your demographics, the IBM services team may have performed a bucket
analysis and configured FBB. They may have also made certain names anonymous where
member data was deemed to be large or possessed the probability to grow at an
extremely fast rate. By making certain names anonymous or limiting bucket growth to a
predetermined size, you can ensure that the results of a search are fast and meaningful.

For example, imagine that you live in New York and you want to search for “John Smith”.
The probability of having 10,000 people that live in New York with that name is extremely
high. This will give you a bucket with 10,000 members. Now you add a zip code. The
number of “John Smiths” with the same zip code is approximately 3,000. This is still high.
To narrow the search, add the telephone number to the existing information. Now you
have “John Smith” plus his zip code plus his telephone number. The probability that a
member meets all of this criteria is narrowed down to 10 members. The fact that there are
10 results can be due to typos, but as you see, the number has been greatly reduced and
is now manageable.

In this case it is a good idea to either set the FBB threshold to 3,000 for this particular
bucket, or, alternatively, to make John Smith an anonymous value. By configuring the
name John Smith as anonymous, you will not bring back the 10,000 members. Bringing
back this much data will consume computing resources and slow the system down.
Moreover, the results produced by such a large search, as you have seen in this example,
is useless. It will take you many hours to go through that many results for the right match.
The “John Smith” bucket is not needed since you will normally be submitting additional
information like zip code, telephone number and so on, in your search criteria. This
eliminates the need to cross match 10,000 members, increasing speed and returning
meaningful results.

IntroBuckets.ppt Page 29 of 32

* mpimshow: Shows complete definition of member including DVD data
* Pipe results to text file
+ Syntax
— mpimshow memrecno

= Example: mpimshow 986547

* madcode: Shows phonetic conversion and translation (Soundex, Nysiis, MetaPhone or
IdentiPhone)
+ Syntax
— madcode [string]
— Example: madcode Jonathan Green

30 Introduction to buckets © 2012 IBM Corporation

mpimshow and madcode are two command line utilities that you might find useful when
you are trying to understand the particular members bucket behavior or setting.
mpimshow shows the complete definition of a member including DVD data. The syntax
for this utility is “mpimshow” followed by the member’s memrecno value.

madcode shows the phonetic conversion/translation, which includes Soundex, Nysiis,
MetaPhone, or IdentiPhone. The syntax for this is “madcode” and the name you want to
see converted. For instance, if you want to know what Jonathan Green will look like
converted, type madcode jonathan green and hit enter. A list of the phonetic translations
for this name produced by each algorithm is shown.

IntroBuckets.ppt Page 30 of 32

2
D
f

q),

= |BM Initiate Master Data Service information center (version specific)
— IBM Initiate MDS V9.7

—IBM Initiate MDS V9.5

— IBM Initiate MDS V7.5 through V9.2

3 Introduction to buckets ©2012 1BM Corporation

This slide provides links to official IBM Initiate documentation online, which you can use to
learn more about algorithms.

IntroBuckets.ppt Page 31 of 32

Trademarks, disclaimer, and copyright information

d trad ks of | ional Biisk Machi

IBM, the IBM logo, ibm.com, Initiate, and Initiate Master Data Service are trad ks or
Corp., registered in many jurisdictions worldwide. Other product and senice names mlght be trademarks of IBM or other companies. A current list of
other IBM trademarks is available on the web at "Co [< information” at http://www.ibm.com/legal/copytrade.shtml

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE
MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED
"AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM'S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR
ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT
OR LICENSE GOVERNING THE USE OF IBM PRODUCTS OR SOFTWARE

© Copyright | ional Business Machines Corporation 2012. All rights reserved

32 ©2012 1BM Corporation

IntroBuckets.ppt Page 32 of 32

