
IntroBuckets.ppt

This is the IBM Initiate® “Introduction to buckets” training presentation.

Page 1 of 32

IntroBuckets.ppt

The objective of this presentation is to introduce you to how the IBM Initiate Master Data

Service®, referred to as MDS, uses buckets for searches and comparisons. This

presentation begins by discussing what buckets are and how they are created. By the end

of this presentation you should understand the different bucket types and how entity

management and searches use buckets. You will learn about large buckets and a concept

referred to as “frequency-based bucketing” and finally, you will discover the purpose of

some useful command line utilities.

Page 2 of 32

IntroBuckets.ppt

Before you can learn how buckets work, it is important to understand what they are.

Buckets are defined as a group of records that are numerically or phonetically similar and

share common attributes. Bucket data is the output of the derivation attributes configured

to participate in the candidate selection process.

Essentially, buckets represent the organization or grouping of data that is similar.

Page 3 of 32

IntroBuckets.ppt

To understand what buckets are, a simple analogy is used. In every grocery store you visit

you will typically see cash registers. The cash registers contain a drawer that is typically

divided into two sections; the top half for bills and the lower half for coins.

When the cashier gives you change for a dollar, they do not go to the top half of the cash

drawer. Instead, they go directly to the bottom half where they know the coins are kept.

Imagine how much slower each cash transaction will be if the cashier has to use a single

cash “jar” instead of a cash register to give the customer change.

Page 4 of 32

IntroBuckets.ppt

Buckets work in much the same way. Just as you would not search for a penny in the bills

bucket, you would not want to spend time comparing two sets of member’s data that are

completely different. For example, the two members displayed on this slide would have

their data stored in completely separate buckets.

Conceptually, buckets work the same way. By using buckets, you eliminate unnecessary

processing of data that is completely different. This exponentially increases efficiency by

going directly to the data that is known to be similar. For example, take the two members

displayed on this slide. These members have completely different names, addresses,

gender, and so on. Due to their data disparity, they will never generate common buckets.

Therefore, searches for any attributes associated with one of the members will not waste

any time comparing attributes associated with the other. It is this organization of attributes

or buckets that makes the Master Data Service so efficient.

Page 5 of 32

IntroBuckets.ppt

This slide illustrates how buckets are generated. The interactions that trigger bucket

generation are called member puts, referred to as MEMPUTs or searches. On this slide,

there are three example clients that generate MEMPUTs: Custom applications, the IBM

Initiate Inbound Broker, and IBM Initiate Inspector. When a MEMPUT call is made by any

one of these clients, the Master Data Engine takes the data and standardizes it, creates

buckets, generates the comparison string and finally, stores the data into the IBM Initiate

database. The data is now queued and is ready to be cross matched against all members

that share common buckets.

Page 6 of 32

IntroBuckets.ppt

For search interactions, the same three example clients are used. The custom

applications and Inspector can perform both the MEMPUTs and search interactions. The

front end application, Enterprise Viewer, is only capable of performing searches.

After the search criteria has been entered, the engine standardizes and derives the data,

returning the results to the respective clients. The data that is used to retrieve the

matching buckets is not stored in the database, in other words it is transient. This

temporary information is only used in the comparison process.

Page 7 of 32

IntroBuckets.ppt

The creation of buckets consists of cycles. Standardization is where the data is converted

into caps and all non-print characters are stripped. The system can also be configured to

take all street names with the value of “West”, for instance, and format it as “W”, or

change all occurrences of “Street” to “St”. The standardization process will also strip name

prefixes like Mr., Mrs., and so on. Bucket-val conversion is where the data is converted to

the type that is being used. Types are predefined functions used to generate bucket

values. The bucket-vals themselves are the converted type values. The final cycle is hash

number generation. A hash number is an integer representation of a bucket-val. This is the

bucket that the engine actually uses.

Page 8 of 32

IntroBuckets.ppt

There are several Bucket Generation Types, referred to as gentypes. There is ASIS,

META, EQUI, EQMETA, GEO, SORTED, NRANGE, SRANGE, and DATE. This

presentation only discusses the top four gentypes.

Page 9 of 32

IntroBuckets.ppt

First of the gentypes is “ASIS”. The ASIS gentype does not modify the data after

standardization and can be used with any data type. If you take a look at the example

provided, the raw data contains the first and last name, telephone number, social security

number and the date of birth of the record. In this example, the standardization process

will capitalize all the letters and remove any of the non-print characters before the ASIS

phase begins.

Page 10 of 32

IntroBuckets.ppt

Once the data is standardized, the gentype of "ASIS" is applied. In this case, there are no

further transformations to be made, because the information should be used “as is”. The

bucket-val or token permutation is then created for bucket role 1 which is a combination of

the first and last names. You may notice that the last name is presented first; this is

because the bucket-val is always in alphabetical order. This combination is then converted

into a bucket hash. Next is bucket role 2: first name and telephone number. This is also

converted to a bucket hash. Bucket role 3, first name and social security number, is

converted to a hash, then bucket role 4, social security and last name, and finally bucket

role 5, date of birth and last name. Remember that the bucket hash is the final integer

value that the engine uses. Integers are used to maximize database lookup speed.

Page 11 of 32

IntroBuckets.ppt

Meta1, 2 and 3 are the next bucket gentypes. These use phonetic conversion to break

down the alphabetic characters into “sound-alikes” code. The example once again, uses

the same data and standardization process as in the “ASIS” example on the previous

slide. However, once this initial phase is complete, the data will then be converted using

the Meta1, 2, 3 phonetic algorithm, taking the first name of Patty and converting it to PT.

The last name of Countryman is converted to KNTRMN. These phonetic codes will result

from similar sounding names such as PAT and PETE, and perhaps COUNTERMAN, and

serve to compensate for spelling errors. Notice that the numerical values were not

modified, since this particular gentype will only convert alphabetic characters.

Page 12 of 32

IntroBuckets.ppt

Following the Meta1, 2, 3 transformation, the data is once again converted into a bucket-

val permutation. This produces first name plus last name, first name plus telephone

number, first name plus social security number, social security number plus last name, and

date of birth plus last name. Then, all of those are converted to their respective bucket

hashes. All of the values to the right are the buckets the engine will use. If you review the

bucket hashes from the previous example, you will notice that these are completely

different. The previous bucket hashes were using the gentype of ASIS. In this example the

gentype of META1, 2 and 3 is being used.

Page 13 of 32

IntroBuckets.ppt

Now for the EQUI gentype:

This time a different example is employed. In the last examples, the member “Patty

Countryman” was used. This time, “Jonathan Green” is the member. The EQUI gentype

uses the nickname translation.

First, the data needs to be standardized. Once this is complete, the data is converted

using the nickname translation. The system gathers a list of all the names where

“Jonathan” is considered a nickname. Since it is not considered a nickname, only

“JONATHAN” is used to generate buckets. However, in the case of a search, if the input

data is “John”, the system will then generate search bucket-vals for “JOHN” and

“JONATHAN” since “JOHN” is considered to be a nickname of “JONATHAN”. The same

applies for the last name. If a search entry has “G-R-E-E-N”, the search will generate

bucket-vals for “G-R-E-A-N”, “G-R-E-N” and “G-R-E-E-N”. Typically, last names do not

have nicknames, but it is recommended to use common misspellings as nicknames. It is

very common for names to be misspelled when entered into a system. By assigning those

erroneous names as nicknames you are able to cast a wider net when attempting to locate

a record. From this point, the normal path is followed and bucket-vals are created. The

difference here is that you have the ability to search on records using the configured

nicknames. Searching for J O N G R E N brings back result sets which include

JONATHAN GREEN.

Page 14 of 32

IntroBuckets.ppt

The EQMETA is the combination of EQUI and META. Now, using the same member, the

data is standardized, only this time, the gentype EQMETA is applied. This example starts

by using the EQUI gentype to generate the nicknames for the first name, again these are

John (J O H N), Jon (J O N), NATHAN, and JONATHAN. Next, the META conversion is

applied to the first name. In this case, they are JN for J O H N, JN for J O N, NZN for

Nathan, and JNZN for Jonathan. Since JN appears twice, only one is used, reducing your

first name count.

The same thing is done for last name. First, the list of nicknames is created. Then, the

nicknames are converted using META. Since the phonetic conversion of all the last names

are the same, they are condensed into a single value of “K-R-N”. Since the last name was

short and monosyllabic, the number of permutations is significantly less.

Just as before, the normal path is followed from here: the bucket-vals are created but this

time, only three first names and one last name is used.

Page 15 of 32

IntroBuckets.ppt

With regards to the standardization and the hashing of the bucket-vals, the remainder of

the gentypes work in the same manner. The exception, however, is that the data is

converted into a different bucket-val format.

Page 16 of 32

IntroBuckets.ppt

This example takes a closer look at how the search logic uses buckets. Suppose you are

looking for John Smith. You have the member’s first and last name, their date of birth,

social security number and telephone number. Instead of entering all of the information,

you decide to only use the first and last name to look for the member. By doing this, the

bucket of John plus Smith is created. This bucket is then extracted from the system. The

total number of members retrieved is 1,900. The system is using the bucket hash for

increased speed of lookups.

Out of the 1,900 rows, only 100 score above 1.0. Out of these 100 rows your search

member scores 67th place. This means that you need to review 66 other records before

you find the one record you are searching for. Since all of these members score the same,

their order shown is somewhat random and is displayed based on the order in which they

were retrieved from the database.

Keep in mind that your system must be configured to use a first and last name search at

the very least. Depending on your unique setup you may not be able to use a first name,

last name search only. In some configurations, your system will require additional

information to be entered.

Page 17 of 32

IntroBuckets.ppt

Now you can see what happens when you use the first and last name and the date of birth

to search for the member. In this case, you are going to get the bucket you had before,

plus two additional buckets. You will get the John plus Smith bucket, the John plus date of

birth bucket, and Smith plus date of birth bucket. Just like before, you will retrieve all of the

members. This time you have retrieved 4,400 members. The number of members that

scored over 1.0 is 50.

Before you had 1,900 members and 100 members scored above one, this time you have

half as many that score above one. The reason for this, is due to the addition of an

attribute to your search criteria. This caused 50 of the members that previously scored

above a 1.0 to score much lower this time since their date of birth did not match the date

of birth you provided in your search. Since their date of birth is different, a negative score

can now be applied to the overall score bringing them to below 1.0.

Just by adding the additional attribute of date of birth, your member has risen from 67th

place to third place. This makes finding your member much easier. Negative and positive

scores increase the likelihood of a search returning the correct candidate.

Page 18 of 32

IntroBuckets.ppt

Now you are going to add the social security number to your search criteria. This time,

four buckets are retrieved from the system, the previous three plus one for the social

security number. When sorted, the social security number works very well by itself as a

bucket.

This time the total members retrieved is 4,404. There were only four members that exist in

the social security bucket. The total number of members that score above one is even less

than before. This time there are only 20. By adding the social security number, the number

of returned members has been cut by more than half. A negative score was assigned to

the social security number for the 50 previously compared members. This dropped their

overall score to below 1.0.

Your member is now shown in first place in the result set. This record was the only one

that contained the exact social security number match giving him the top score of 12.4.

Finally, if you enter the remainder of the information like gender, telephone number, and

other attributes, you will eliminate additional members from this list. The more information

you provide, the easier it is to find your intended member the first time around.

Page 19 of 32

IntroBuckets.ppt

Search guidelines are very basic. You should enter as much information as you possibly

can. This will allow you to retrieve as many members as possible to participate in the

comparison process. You will sometimes hear reference to this as “casting a wide net”. By

providing more information, you increase the chances of retrieving your target member.

This is critical in cases where the search data is sparse, anonymous or blocked by

Frequency Based Bucketing. Frequency Based Bucketing is discussed later in this

presentation.

Page 20 of 32

IntroBuckets.ppt

Now take a look at an example with sparse data. In this example, there is a member that

only has the name and social security number attributes populated in the database. In

addition, his name, “John Smith” has been configured as anonymous value due to the

large amounts of members with that name in the system. No buckets exist for the “John

Smith” tokens. Therefore, when you try to retrieve the member by entering his name only,

no records are found, even though a member exists in the database for John Smith.

This member’s record will return in search results if the social security number is used as

the search criteria. Alternately, the record can be explicitly retrieved by entering the

Enterprise ID or Member Record Number in the “Retrieve Person by ID” search.

Page 21 of 32

IntroBuckets.ppt

As far as buckets are concerned, MEMPUT logic works much like the search logic.

However, instead of defining the search data, the custom application and broker clients

provide the data. By sending in a message, the engine standardizes, buckets, generates

the comparison string, and stores the data into the IBM Initiate database. The interactions

are now queued to be processed by the Entity Manager.

Page 22 of 32

IntroBuckets.ppt

The purpose of the Entity Manager is to cross match all members in the queue in a first-in,

first-out manner. For example, take the last member represented by a red arrow on this

slide. You see this member’s record “life cycle” from MEMPUT to successful entity

management.

Page 23 of 32

IntroBuckets.ppt

After a MEMPUT, the Entity Manager works on this member record, and the buckets

associated with the record are called. The engine retrieves all members in all buckets that

the target record is also in. These are called “candidate” records. Then, it removes any

duplicates and uses the remaining candidates for the final similarity comparison.

Page 24 of 32

IntroBuckets.ppt

The first member in the list is compared and scored. This member’s score is positive but

falls below the Clerical Review threshold. Therefore, no task or link is created. This

member is not determined to be an applicable match to the original member.

Page 25 of 32

IntroBuckets.ppt

Now the process continues to the next candidate record. It is compared and evaluated for

a final score. This time the score is above the Clerical Review threshold, but below the

“Autolink” threshold. Therefore, a task is created. A data steward now needs to determine

if these two members are the same.

Page 26 of 32

IntroBuckets.ppt

Finally, the last member in this bucket is compared and scored. The score is above the

“Autolink” threshold so they are linked as the same individual. The auto linking of members

saves a lot of time and manual work that would otherwise have to be performed.

Page 27 of 32

IntroBuckets.ppt

As your member base grows, by the normal addition of new members or by a bulk addition

of one or more source systems, so do your buckets. Both the number of buckets in total

and the amount of records associated with each individual bucket. Large buckets – those

associated with thousands of member records or more - can have a negative effect on

performance, and they can render search results far less useful. Earlier you saw that an

example member was returned in 67th place, following a search, due to insufficient

information. However, similarly poor results can occur when the buckets become too large.

Page 28 of 32

IntroBuckets.ppt

One of the settings that can be configured to help alleviate the problem of large buckets is
Frequency Based Bucketing. Frequency Based Bucketing, or FBB for short, is the setting
of predefined thresholds that are used by the engine before performing any comparisons.
This limits the growth of the bucket predefined size. At the time of your implementation
and based on your demographics, the IBM services team may have performed a bucket
analysis and configured FBB. They may have also made certain names anonymous where
member data was deemed to be large or possessed the probability to grow at an
extremely fast rate. By making certain names anonymous or limiting bucket growth to a
predetermined size, you can ensure that the results of a search are fast and meaningful.

For example, imagine that you live in New York and you want to search for “John Smith”.
The probability of having 10,000 people that live in New York with that name is extremely
high. This will give you a bucket with 10,000 members. Now you add a zip code. The
number of “John Smiths” with the same zip code is approximately 3,000. This is still high.
To narrow the search, add the telephone number to the existing information. Now you
have “John Smith” plus his zip code plus his telephone number. The probability that a
member meets all of this criteria is narrowed down to 10 members. The fact that there are
10 results can be due to typos, but as you see, the number has been greatly reduced and
is now manageable.

In this case it is a good idea to either set the FBB threshold to 3,000 for this particular
bucket, or, alternatively, to make John Smith an anonymous value. By configuring the
name John Smith as anonymous, you will not bring back the 10,000 members. Bringing
back this much data will consume computing resources and slow the system down.
Moreover, the results produced by such a large search, as you have seen in this example,
is useless. It will take you many hours to go through that many results for the right match.
The “John Smith” bucket is not needed since you will normally be submitting additional
information like zip code, telephone number and so on, in your search criteria. This
eliminates the need to cross match 10,000 members, increasing speed and returning
meaningful results.

Page 29 of 32

IntroBuckets.ppt

mpimshow and madcode are two command line utilities that you might find useful when

you are trying to understand the particular members bucket behavior or setting.

mpimshow shows the complete definition of a member including DVD data. The syntax

for this utility is “mpimshow” followed by the member’s memrecno value.

madcode shows the phonetic conversion/translation, which includes Soundex, Nysiis,

MetaPhone, or IdentiPhone. The syntax for this is “madcode” and the name you want to

see converted. For instance, if you want to know what Jonathan Green will look like

converted, type madcode jonathan green and hit enter. A list of the phonetic translations

for this name produced by each algorithm is shown.

Page 30 of 32

IntroBuckets.ppt

This slide provides links to official IBM Initiate documentation online, which you can use to

learn more about algorithms.

Page 31 of 32

IntroBuckets.ppt Page 32 of 32

