
EduProbDeterminiation.ppt

This module presents the best practices for problem determination when a performance

problem is encountered while running the InfoSphere™ Federation Server, referred to as

IFS. The audience includes DBAs, users and Application Developers of IFS.

Page 1 of 35

EduProbDeterminiation.ppt

This module first explains the architecture of a typical IFS deployment and the general

characteristics of IFS performance problems. Next, there is a general problem

determination roadmap. You will study the roadmap and steps to attack a problem in detail

and in the end, you will study a case. A list of useful references is included at the end of

this presentation.

Page 2 of 35

EduProbDeterminiation.ppt

This slide displays a picture of the architecture of IFS and how the dataflow goes inside.

To understand a performance problem, you need to know the whole picture for the

architecture and data flow.

You have client, IFS and remote servers in a Federation deployment. First, you might see

some query, namely an SQL statement issued against IFS from the client or applications.

When receiving the SQL statement, IFS will parse it, generate a query execution plan, and

send the plan to runtime for execution.

Runtime will access the objects being referenced by the SQL statement according to the

query plan. When nicknames are referenced, it will call wrapper components to access

remote server and remote tables. The remote tables are accessed by issuing SQLs

against remote servers. These SQLs are called “Remote Statements”.

After the remote statements are started by the remote server, result data is fetched to the

IFS. IFS will then process this data along with the data from local tables. Then, the final

result data is returned to client or application.

Page 3 of 35

EduProbDeterminiation.ppt

For a query, IFS may issue the remote statements and fetch data from remote server, then
process the fetched data locally. So the decision of issuing what remote statements, that is,
pushing down which part of the query to remote server, is key to the overall performance.

For a specific query, IFS can optionally issue different remote statement alternatives to
remote server. For example, select * from N1, N2 where N1.c1 = N2.c1 and N1.c2 > ‘ABC’,
where N1 and N2 are nicknames from the same server. IFS has two options to run this
query. The first option is to fetch the two nickname’s data and then do the join between
them locally. The second option is to push the whole query to remote server and do the
join remotely. IFS will decide where to do the join here. This is often up to cost estimation
by optimizer based on statistics information of the nicknames.

An additional decision is whether to push down predicate N1.c2 > ‘ABC’. It is up to
semantics correctness. For example, if remote server has the same collating sequence as
IFS, IFS will push down the predicate since IFS knows that pushing down the query will
generate the same result as when keeping it not pushed down.

Additionally, for an IFS performance problem, remote server efficiency to run the remote
statements will play an important role. Sometimes, you might find that IFS has made the
right decision of pushing down the query but remote server does not perform well in
running the remote queries.

You may also need to tune the local DB and DBM’s settings for better performance. When
you fetched massive data from remote server, the next stage is to process it locally to
generate the final result. The DB and DBM settings have a great impact on performance of
the local processing so you need to tune them for the best performance.

Page 4 of 35

EduProbDeterminiation.ppt

This slide displays the general roadmap for problem determination. When a performance

problem is observed and the specific SQL, namely a query with poor performance has

been identified, you can follow this roadmap to drill down and find out the root cause.

When you are at one level or one point of the roadmap, you need to check, monitor and

analyze the problem to determine which step to do next. Finally you will narrow down the

root cause and reach the bottom. The following slides will go through each nodes in the

roadmap one by one.

First, if the query involves both local tables and nicknames, you will have to figure out if

the problem exists only for local tables.

Page 5 of 35

EduProbDeterminiation.ppt

Divide the query into two parts. One part is the local part, which only references the local

tables. The second part is the remote part, which references the nicknames.

Then run and time them to see which part is consuming the most elapsed time of the

query.

Next, if possible, you can replace all the nicknames with local tables, populate them with

the same data, re-run the query and check if the performance problem still exists. If so,

you can suspect it’s the local processing of data that causes the performance problem

instead of anything with remote servers.

If by the previous two steps you have determined there is a problem with processing of

local data, you need to tune IFS with regular DB2® performance tuning techniques. The

techniques required here are the same as what you do with local tables.

Page 6 of 35

EduProbDeterminiation.ppt

If the problem can be reproduced only when nicknames are involved, you will check first if

there are any problems with the query plan. This is discussed more later in the

presentation. If there is no problem with the query plan, you want to know which layer is

causing the bad performance. A query involving access to a nickname will go through five

layers. You have to figure out in which layer lies the root cause of the problem.

Page 7 of 35

EduProbDeterminiation.ppt

For a query over nickname, you will have to fetch data from remote server back to IFS.

The data going back to the IFS will go through five layers. The five layers are the remote

data source server, the client code for the data source along with the network wrapper

component of the IFS, the Federation engine and the application or client. Each of the

layers can be the bottleneck and root cause of the slow performance. You have to isolate

them by issuing the query from each of the layers.

Page 8 of 35

EduProbDeterminiation.ppt

Check how much time is being consumed by each of the layers by issuing the query from

each layer. First, you need to get the remote statement from the query plan. You can get

the query plan with the db2exfmt tool after explaining the query. The first layer is the data

source server. On this layer, run the remote statement directly on the remote server box

with the data source’s tool. Meanwhile, record the time the query runs.

The second layer is the data source client layer. Comparing with the first layer, you will

include network communication cost in this layer. On the second layer, you can issue the

remote statement with the data source client tool installed in the same box as IFS.

The third layer is the wrapper layer. This layer involves wrapper code of Federation. You

can issue the remote statement from the passthrough mode. This way, you only touch the

wrapper code and some runtime code to run the query.

The fourth layer is the IFS layer. On this layer, you can run original SQL with IFS client. If

the original SQL from application contains parameter markers, you can replace the

parameter markers with literals.

The fifth layer is the application layer. On this layer, you can run the query with application,

you do not have to do this since you already know the performance problem exists when

running the application.

After running queries on each layer, you can compare times of each layer. If the

performance problem can be reproduced on layer N but not on N-1, you know that the root

cause may reside in layer N.

Page 9 of 35

EduProbDeterminiation.ppt

If the problem can be reproduced with first layer, it may be that the remote server needs to

be tuned to run the query efficiently. Another solution might be changing the query, namely

the remote statement pushed down to remote server. Changing it to a more efficient query

can improve the performance.

Page 10 of 35

EduProbDeterminiation.ppt

If the problem can be reproduced with second layer but cannot with first layer, that is, as

long as network layer is involved, the problem will occur.

If you suspect IFS might be fetching too much data from remote server, this can be

caused by a problem with the query plan. The plan you are using might not be optimal.

Possibly there can be more of the query that can be pushed down and data volume to be

fetched from remote side could be reduced.

If you suspect this may be a problem of data source client or API, the data source client

may not be well-configured. The client along with the remote server are not working well

for the query. This may require support service of the data source server provider. Also, it

may be that the network does not perform well and network communication rate is very

low.

Page 11 of 35

EduProbDeterminiation.ppt

If the problem can be reproduced with third layer but not with the second layer, this may

be a problem with the configuration for the wrapper. The way the wrapper code is

connecting to the remote server may need to be optimized and you may need to contact

IBM support to solve the problem.

Page 12 of 35

EduProbDeterminiation.ppt

If the problem can be reproduced with fourth layer, you may need to tune the query plan or,

there might be a system bottleneck you need to resolve.

Page 13 of 35

EduProbDeterminiation.ppt

If the problem can only be reproduced with fifth layer, this may be a problem with the

application, such as the connection configuration, isolation level and so on.

If the query has a parameter marker or host variable but does not have a performance

problem when running with literal, there should be a problem with the query plan. It can be

that the query plan with the parameter marker has a problem of query push down and is

not efficient. You need to tune the problematic plan with parameter markers.

Page 14 of 35

EduProbDeterminiation.ppt

This presentation will provide details regarding tuning the query plan later. Before that, it

will cover the system bottleneck issue. Looking at the CPU usage, if Iostat/vmstat show

CPU usage of 90% or above, there may be a CPU bottleneck. To lower the CPU usage,

check if there is codepage conversion. Codepage conversion will consume lots of CPU

usage. Try to create Federation database with the same codepage as remote server to

avoid codepage conversion.

Avoid fetching too much data from remote server. If IFS fetches too much data, there is

lots of network interrupts that require CPU attention. To reduce the data fetched from

remote server, consider changing the query plan to push down more predicates to remote

server. Use Fetch First N Rows if applicable. If you only need the first N rows of the final

result, you should add the FETCH FIRST N ROWS ONLY clause. By doing so, this will

limit the query to the rows you are to fetch and process and reduce CPU usage.

If only one CPU is busy, others are idle, it may be that this CPU is busy fetching data or

processing data from remote server. Consider increasing parallelism to keep other CPUs

busy fetching and processing data in parallel. You can add more concurrent connections to

the IFS, each of which queries different nicknames.

Page 15 of 35

EduProbDeterminiation.ppt

Consider if there is a memory configuration problem. From the query plan, if you see the

SORTHEAP size used in the plan is very low and there are spilled disk IOs for SORT in

the plan, the SORTHEAP size may need to be adjusted. You can increase SORTHEAP

size each time by 250M. If there is no available memory, consider decreasing the Buffer

Pool size if you are not accessing local tables in queries. The Buffer Pool is not quite

useful for access to nicknames.

Page 16 of 35

EduProbDeterminiation.ppt

Next, check the network. First ensure the network bandwidth is sufficient and the network

status is stable while you are collecting the performance data of the queries. You can then

tune the data source client parameters for better performance. For a different data source

client, such as different ODBC, JDBC drivers and so on, there may exist different

parameters that can be tuned for performance. Refer to the data source client

configuration guide for details.

Another thing to consider is to increase the DBM configuration parameter RQRIOBLK, it is

the buffer size used by IFS to fetch remote data. If you are using queries that fetch

massive data from remote side, consider increasing this parameter.

Page 17 of 35

EduProbDeterminiation.ppt

If the system bottlenecks are handled, pay attention to the query plan. In fact, a large

portion of the performance problems are due to poor query plans. First, get a query plan

using db2exfmt (DB2 E-X-F-M-T). Refer to the reference page at the end of this

presentation for reference of how to generate a query plan. When reviewing the query plan,

check if there is anything that is NOT pushed down to remote server and if Join Methods

between nicknames or nickname and local table are feasible. Also check the stats of

nickname and cardinality estimation in the plan graph. In DPF mode, check if wrapper was

created with FENCED mode.

Page 18 of 35

EduProbDeterminiation.ppt

To check if there is anything NOT pushed down to remote server, check from the plan if

there is a FILTER just on top of SHIP. If there is a FILTER right above SHIP, you know that

the FILTER is basically for a predicate that is not deemed able to be pushed down to

remote server. This may be due to lack of function mappings or server option settings, or

both.

Is there a local join between two nicknames from the same server? If so, it may be due to

the join predicate not being deemed able to push down or the optimizer decided not to

push down according to cost estimation, or both. If this is the optimizer’s decision, update

nickname stats or set server option db2_maximal_pushdown. This may make a different

plan.

Compare ‘Remote Statement’ with ‘Optimized Statement’, see if there is any predicate not

pushed down. The optimized statement in the plan generated by db2exfmt indicates the

internal format of the SQL statement. It is also the statement based on which IFS makes

the push down decisions. The remote statements are among the information of each SHIP

operator in the plan. It indicates the actual statement pushed down to remote server.

Comparing these two statements, you can tell how much of the query, including the

predicates, are actually pushed down by IFS.

Page 19 of 35

EduProbDeterminiation.ppt

If you confirm that, there is something not pushed down, you need to drill down and see if

it is caused by the missing function mappings. Missing of a function mapping, part of the

query, including predicates, joins, and select list, cannot be pushed down. Pay attention to

functions used in predicates. See the example displayed on this slide.

Note that the ‘local signature’ you use to create the function mapping should be derived

from the ‘Optimized Statement’ from the plan. This is because when IFS is searching for a

function mapping match, it will use signature from the internal SQL, that is the Optimized

Statement of the plan.

Generally, try to avoid use of functions that do not have counterparts in remote server

since function mappings are not possible for them and you will not be able to push down

them.

Also, avoid use of functions that are internally re-written to a format that are not usable by

external users. For example, ROWNUM, since you will not be able to create function

mappings for their internal format.

Page 20 of 35

EduProbDeterminiation.ppt

When there is something not pushed down, you need to also check if the necessary

server options are set properly. There are two kinds of Server Options. Options that

indicate syntax capacity of a remote server, for example, option “pushdown”, and Options

that indicate status of remote server, for example, collating_sequence. From the plan

graph, check if plan operators GROUP BY，SORT and functions MIN, MAX are pushed

down. If not, you might need to consider setting server option collating_sequence. This

server option indicates whether collating sequence of remote server is the same as

Federation. If so, set it to ‘Y’ to facilitate push down. Check if there is any string

comparison predicate not pushed down. If so, consider setting collating_sequence,

varchar_no_trailing_blanks.

Page 21 of 35

EduProbDeterminiation.ppt

If there is any join not pushed down, you suspect that the join predicate is blocking push

down. Consider setting server option db2_same_codeset to ‘Y’ if remote server share the

same code page as Federation. Check if there is any outer join not pushed down. If outer

join is supported by remote server, consider enabling db2_nested_tab_expr (db2 nested

table expression), db2_nested_tab_expr_w_oj (db2 nested table expression with outer

join), and db2_outer_joins. This will enable push down of outer join for this server.

Check if there is any subquery not pushed down. It can be that the remote server does not

support subquery. If it is supported, consider enabling options ((db2 nested table

expression), db2_nested_tab_expr (db2 sub-query with correlation), db2_SQ_w_corr (db2

nested table expression with correlation), db2_nested_tab_expr_w_corr, and (db2 select

scalar sub-query) db2_select_scalar_SQ all to ‘Y’ to push down it.

Page 22 of 35

EduProbDeterminiation.ppt

It may be the decision of IFS Optimizer not to push down the query. This can be caused

by insufficient nickname stats or cost model does not adapt to very particular scenarios. If

this is the case, setting db2_maximal_pushdown to ‘Y’ will make a difference in the plan. If

it is set, Optimizer will try to seek a maximally pushed down plan.

Page 23 of 35

EduProbDeterminiation.ppt

Note that db2_maximal_pushdown basically forces IFS Optimizer to choose the plan with

the minimal number of SHIPs. Setting it may affect all the queries over that server. To

reduce the impact, use the “set server option db2_maximal_pushdown to 'Y' for server

<server_name>” command instead of an “Alter server” command to limit its impact to

session level.

Page 24 of 35

EduProbDeterminiation.ppt

Stats is key for the optimizer to generate the optimal plan. Check the nickname cardinality

in the plan graph. 1000, which is the default value, suggests the cardinality is not

accurately set.

The other way to check stats is using the queries displayed on this slide to lookup all stats

of a nickname. Note that nicknames created over remote views or AS400 servers will

NOT have any effective stats after creation. Avoid creating nicknames based on remote

views.

Page 25 of 35

EduProbDeterminiation.ppt

To fix stats problem, run NNSTAT with method 0. If there is an index on remote table, but

no local index specification for the corresponding nickname, create index specification

manually. For example, create index Ni on N1(C1) specification only. If the cardinality

estimation from the plan graph is not accurate, consider creating stats view on nicknames

to facilitate cost estimation. If you suspect the poor stats is causing a bad plan, try

updating the stats manually for investigation purpose.

Page 26 of 35

EduProbDeterminiation.ppt

For a join between two nicknames from different servers, the join is done in IFS. When

generating plans, three Join Methods are considered by IFS: Nested Loop Join, Merge

Join and Hash Join. Nested Loop Join may cause a problem since the SHIP on its right leg

is started for each record from the left leg.

Page 27 of 35

EduProbDeterminiation.ppt

If you are in DPF mode, check if wrapper is in unfenced mode. Unfenced wrapper will

prevent Optimizer from generating parallelized plans. Avoid unfenced wrapper if possible

and use fenced wrapper instead.

Page 28 of 35

EduProbDeterminiation.ppt

Most of the time a federated query is typically spent in fetching remote data. MQT can be

used to cache nickname data which does not change overtime to accelerate query. Refer

to the link to the article displayed on this slide.

ATQ can be used for increasing parallelism. Refer to the link to the ATQ article displayed

on this slide.

Optimizer Profile can be used to change Join Method. If you want to force a certain join

method between nicknames or tables, consider using Optimizer Profile. Refer to the link to

the Optimizer Profile article displayed on this slide.

Page 29 of 35

EduProbDeterminiation.ppt

Consider the case of IFS running on AIX, federating remote DB2 server with TBs of data

and after an upgrade the performance goes down greatly. See the next slide for the Plan

Analysis.

Page 30 of 35

EduProbDeterminiation.ppt

This slide displays the query plan graph from db2exfmt output.

Page 31 of 35

EduProbDeterminiation.ppt

From the plan, you can see that the cardinality of all the nicknames are correct and it

seems there is no stats problem. However, there is a FILTER above SHIP, suggesting

there might be predicate not pushed down. Looking up information of the FILTER, you can

see that it represents the join predicate T1.c1 = N1.c1. With this FILTER not pushed down,

IFS will have to fetch all rows of the right side nickname, and do the FILTER locally.

Why is it not pushed down? All functions used in the query have their function mappings,

so no missing function mappings. It might be the server options that cause the predicate

not to be pushed down.

Page 32 of 35

EduProbDeterminiation.ppt

To push down the FILTER to remote server, and given that the remote server has the

same codepage as Federation, set server option db2_same_codeset to Y. This server

option setting can push down the FILTER because due to code page conversion, only if

db2_same_codeset is set to ‘Y’, the join predicate T1.c1 = N1.c1 which is a string

comparison with different column lengths, is pushed down. By setting server option

db2_same_codeset to Y, you will have the join predicate pushed down, and index was

then used in remote server to access N1’s remote table. Hence, the performance problem

is resolved.

Page 33 of 35

EduProbDeterminiation.ppt

This slide displays links to websites referenced in this presentation. The first link is

important in that it contains the commands used to collect db2exfmt output and other

diagnose information.

Page 34 of 35

EduProbDeterminiation.ppt Page 35 of 35

