

HATS Toolkit 7.1 with the IBM WebFacing Tool

Create an Application Bridge between WebFacing

and an EGL application.

Hands-On Tutorial

Table of contents
Introduction:...3
System requirements:...4
Estimated time required: ..4
Prerequisites:..4
Hands-on:...5

Hands-on 1: Setting up the WebFacing and EGL projects...6
Step 1: Importing the WebFacing and EGL projects. ..6

Hands-on 2: Creating a connection to your i5/OS, restoring the save file and setting
up the WebFacing connection. ...7

Step 1: Restoring the save file. ..7
Step 2: Specify the i5/OS host name for the WebFacing project.9

Hands-on 3: Setting up the database connection for the EGL project.10
Step 1: Creating the database connection ..10
Hands-on 3 checkpoint: ...12

Hands-on 4: Application Bridge Web Setting..13
Step 1: Adding Application Bridge Web Setting..13
Hands-on 4 checkpoint: ...15

Hands-on 5: Adding display elements to the EGL Web page.16
Step 1: Adding the display elements. ...16
Step 2: Displaying the data on the Web page...17

Hands-on 6: Setting up the EGL project for the Application Bridge Scenario 1.....19
Step 1: Adding the EGL code...19
Step 2: Binding the returnToWebFacing function to the Web page.....................23

Hands-on 7: Testing the Application Bridge Scenario 1..23
Step 1: Running the Application. ...23
Hands-on 7 checkpoint: ...25

Hands-on 8: Setting up the Application Bridge Scenario 2.26
Step 1: Adding the EGL code...26

Hands-on 9: Testing the Application Bridge Scenario 2..26
Step 1: Running the application. ..26
Hands-on 9 checkpoint: ...28

Tutorial checkpoint: ...28
Troubleshooting tips: ...28

 2

Introduction:
The IBM WebFacing Tool in Host Access Transformation Services (HATS) for
System i toolkit allows you to convert the user interface of your i5/OS business
applications into a Web user interface. Your converted i5/OS DDS display file source
members are deployed as a Web application that communicates with your original
program logic when accessed from a browser. The development-time conversion of
your DDS application allows you to further develop and customize your application
interface and integrate it with Web technologies.

With HATS, you can create HATS projects to transform your critical business
applications on the host into Web or rich client applications. The interoperability
feature of the HATS toolkit allows you to easily integrate your WebFacing and HATS
Web applications when running on the Web.

You may also want to further enhance your i5/OS applications by converting part of
your application into a Web application such as EGL. In this case, you can use the
Application Bridge feature of WebFacing, which allows you to pass data between
Web applications such as EGL and HATS or WebFacing applications so that you can
take your i5/OS applications even further into modern technology. This goes beyond
just getting data from i5/OS in a Web application using database access or by calling
a batch program. It allows you to link your new Web application to an interactive
i5/OS application and share data.

This tutorial will demonstrate how to setup and use an Application Bridge between
WebFacing and an EGL application. The concepts learned in this tutorial can also be
applied to HATS applications and is not limited to EGL Web applications. That is you
can use the Application Bridge between WebFacing or HATS and an EGL application
or any other Web application.

 3

System requirements:
To complete this tutorial you need to have the following tools and components
installed:

 IBM Host Access Transformation Services (HATS) for System i V 7.1 product
with the WebFacing tool installed and all software updates through the IBM
Installation Manager.

 Rational Business Developer (RBD) V 7.1 and Enterprise Generation Language
(EGL).

 Rational Developer for System i (RDi)
 i5/OS® V5R3 or greater is required.

Estimated time required: Around 90 minutes.

Prerequisites:

 Basic Microsoft® Windows operations
 Basic knowledge of how Web applications work.
 The WebFacing server must be running on your i5/OS. Verify that jobs

QQFWFSVR and QQFVTSVR are running. This is done by using the
WRKACTJOB JOB(QQF*) command in a 5250 session.
If it is not started use the STRTCPSVR *webfacing command to start it. Make
sure the user ID starting the WebFacing server has *USE authority for *PUBLIC
user for object type *LIB and object type *OUTQ.

 4

Hands-on:
In this tutorial you will learn how to build an Application Bridge between WebFacing
and an EGL application. You can then use this bridge to communicate or pass data
between the two applications.

There are two scenarios applicable to this bridge:

 5

In this tutorial for:
 Scenario 1: WebFacing will pass some customer details to the EGL

application. The EGL application will then do a search in the database for
the customer and return some additional customer details to the WebFacing
application.

 Scenario 2: This is as simple as invoking a WebFacing job using

programmatic invocation. WebFacing will then return data and control back
to the EGL application using a linkage record.

WebFacing sends data and transfers control to the EGL application when the System i
program does a write on a WebFaced linkage record.

You will learn how to create a linkage record, the WebFacing interface for the
Application Bridge. You will then run the projects that you have set up and will be
able to see the Application Bridge flow.

NOTE: If you face difficulty in any part of the tutorial refer to the Troubleshooting
section at the end of the tutorial. Some common problems and their solutions have
been documented there.
If you want to look up more information on EGL or WebFacing, refer to the Help
Contents or the Tutorials Gallery in the product.
The EGL part of this tutorial builds upon the tutorial “Build a JSF search page with
EGL”. You can find more information for it in the Tutorials Gallery.

Hands-on 1: Setting up the WebFacing and EGL projects.
In this Hands-on you will set up the WebFacing and EGL projects necessary to run the
tutorial.

Step 1: Importing the WebFacing and EGL projects.

1. Download and save the WFEGLTutorial.zip file to your local file system.
2. Open HATS Toolkit 7.1 using a new workspace.

On the desktop task bar click Start > Programs > IBM Software
Development Platform > IBM Rational HATS 7.1 > HATS Toolkit 7.1

3. Import the projects from the project interchange file. Choose File > Import,
and then choose Other > Project Interchange.

4. Click Next.
5. Browse to the location where you stored the project interchange

 6

6. Select All projects and click Finish.
7. If you get this window choose Later.

NOTE: There will be some errors in the EGL project. The errors will go away
when you are done setting up the project.

Hands-on 2: Creating a connection to your i5/OS, restoring the save
file and setting up the WebFacing connection.
Step 1: Restoring the save file.
In this Hands-on you will create a connection to your i5/OS and restore the save file
that contains the display file source and the program source.
1. In the Navigator view, expand the WebFacingWeb project.
2. Right click the WFEGLTUT.savf save file and select Restore on i5/OS.
3. In the “Specify the i5/OS server to restore to:” section click on the New button to

create a new connection.
4. Click Next on the Name personal profile page.
5. On the Remote i5/OS connection page, first enter the Host Name of your i5/OS.
6. Then enter the connection name as System i.
7. The New connection window looks like this:

 7

8. Click Finish.
9. In the Saved from library enter WFEGLTUT.
10. In the Restore to library enter WFEGLTUT.
11. The Restore i5/OS Save File looks like this:

12. Click OK to restore the library.
13. Enter user ID and password to the i5/OS when prompted.
14. You may be prompted QRSETEMP does not exist. Create it? Click Yes.
15. You should see an information window to indicate that the library is restored

properly on the i5/OS.
16. Important Note: You need to change the initial library list associated with the

 8

user profile used for the WebFacing application to include library WFEGLTUT.

Step 2: Specify the i5/OS host name for the WebFacing project.
The WebFacing project needs the i5/OS credentials to be able to communicate with it.
Follow the steps below to specify your i5/OS host name for your WebFacing project.
1. Open the WebFacing perspective by selecting, Window > Open Perspective >

Other… > WebFacing.
2. In the WebFacing Projects Explorer view right click on the WebFacingWeb

project and select Properties.
3. On the Project properties page under Run Time->Project, click on Change… (on

the right beside Host port).

4. In the Host Selection window click on Edit.
5. In the Host name text box enter the host name of your i5/OS.

 9

6. Click OK to close the Edit Host window.
7. Again click OK to close the Host Selection window.
8. Again click OK to close the WebFacing Project properties page.

Hands-on 3: Setting up the database connection for the EGL project.
In this Hands-on, you will setup a database connection for a database that has already
been imported into the EGL project for you.
This connection will enable your EGL application to connect to the database both
when you design the application (the design-time connection) and when you run the
application on the server (the run-time connection).
Step 1: Creating the database connection

1. In the Navigator view, right-click the EGLWeb project and then click
Properties.

2. In the Properties window, click EGL Runtime Data Source.
3. On the EGL Runtime Data Source page, select Load values from a data tools

connection and then click New. The New Connection window opens.
4. In the New Connection window, under Select a database manager, expand

Derby and click 10.1.
5. In the Database location field, select the following folder:

workspace-location/EGLWeb/WebContent/EGLDerbyR7, where
workspace-location is the location of your workspace. You do not need to
change the User ID or Password fields.

6. In the Class location field, enter the path to the file derby.jar.
For your convenience the derby.jar has been place in your EGL project, so the
path to it is workspace-location\EGLWeb\derby.jar
There are other several ways you can find this file:

 If you have installed IBM® WebSphere Application Server, version
6.1, you can use the version of Derby that is included with the server.
Look for derby.jar in the following folder:

install_location/runtimes/base_v61/derby/lib
 If you have installed database tools along with your product, you may

be able to find the file in the following location:
shared_resources/plugins/com.ibm.datatools.db2.cloudscape.driver_ve
rsion/driver
shared_resources

The shared resources directory for your product, such as
C:\Program Files\IBM\SDP70Shared on a Windows system or
/opt/IBM/SDP70Shared on a Linux system. If you installed and

 10

kept a previous version of an IBM product containing EGL before
installing your current product, you may need to specify the
shared resources directory that was set up in the earlier install.

version
The installed version of the plug-in, including three numbers
separated by periods, a string separator, and the date and time that
the plug-in was built; for example, 7.0.0.RFB_20070120_1300. If
more than one is present, use the one with the most recent version
number, unless you have a reason to use an older version.

 If you cannot find the file in the previous two locations, try searching
for the derby.jar file in your product installation directory. Different
installations may have the file in different locations.

 If you cannot find the file on your computer, you can download the
file directly from the Derby Web site: http://db.apache.org/derby/.
You will need to download the most recently released version of
Derby and extract the derby.jar file to a place on your computer.

The New Connection window looks like this, with your own workspace and location
information in the Database location and Class location fields:

7. Click Finish. The new connection is created and the necessary information for

the connection is filled into the fields below:

 11

http://db.apache.org/derby/

Most of this connection information comes from the information that you
entered in the New Connection window. In addition, EGL has given this
connection a JNDI name, which is an identifier for the connection. By default,
the JNDI name is jdbc/EGLDerbyR7, based on the name of the database. The
application will use this name to access the database connection at run time.

8. Click OK.
9. You may see a window asking if you want to update the information in the

project's build descriptor options based on this connection. If you see this
window, click Yes.

Hands-on 3 checkpoint:
In this Hands-on, you set up a database connection for the project. When you used the
EGL Runtime Data Source page of the project's Properties window, you first created a
design-time connection to the database using the workbench's data tools. EGL used
the information in this design-time connection to create a matching connection to be
used at run time for the WebSphere Application Server. In this case, the changes EGL
made to your projects include:

• EGL set the values of certain database-related build descriptor options, as
explained earlier in the Hands-on.

• EGL created a JNDI name to use as a name for the connection. By default, the
JNDI name created for your project is jdbc/EGLDerbyR7, based on the name
of the database.

• EGL added a data source to the EAR project's deployment descriptor. This
data source associates the JNDI name with the database itself. Now, other

 12

projects acting as modules within this EAR project can access the database
through the JNDI name.

• EGL added a resource reference to that JNDI name in the EGLWeb project's
Web deployment descriptor. Now the EGLWeb project can use the data source
defined in the EAR project, using the JNDI name.

Note: If the projects are deployed to another machine the database connection will
need to be setup again.

Hands-on 4: Application Bridge Web Setting.
Step 1: Adding Application Bridge Web Setting.
In this Hands-on you will setup the interface needed in a WebFacing project to enable
an application bridge between WebFacing and an EGL application.

1. Under the DDS folder in the WebFacing Projects view, open the EGLLINK
display file. By double clicking on it.

2. You may need to enter the user ID and password for you System i profile.

 13

3. Currently the display file source is empty. You will be adding two new
records for the two scenarios described for the Application Bridge in the
introduction of this tutorial.

4. Create a new record in the EGLLINK display file with the record name
LINKSCEN1. This record will be used for transferring control and data to
EGL and returning data to WebFacing for scenario 1.

5. Under the DDS folder in the WebFacing Projects view, open the DSPREC
display file by double clicking on it.

6. Copy the fields defined under the record DSPREC in this file with Usage
(Column 38) B (Both) and paste them under record LINKSCEN1 in the
EGLLINK display file.

7. Change the Usage of all the fields under record LINKSCEN1 from B to H
(Hidden).

8. The record LINKSCEN1 looks like this:

9. Now you will add a record level Web Setting to define that this record is to

be used as a linkage record for the Application Bridge.
10. Click on the record LINKSCEN1 in the editor, this will display the Web

Settings that can be specified for this record in the Web Settings Tab found
at the bottom of the workbench (Click on the Web Settings view at the
bottom of the workbench if it is not in focus)

11. In the Web Settings tab choose Application bridge and select the Use this
record for the application bridge parameters.

12. In the Target application URL enter the URL of your application in this
format: /appContextRoot/appEntryPoint
For the tutorial the context root of the EGL project is EGLWeb and the
entry point in the EGL application for scenario 1 is customersearch.faces
Thus the Target application URL would be
/EGLWeb/customersearch.faces
Note: The entry point for the EGL application is actually a
customersearch.jsp Web page. As it is a JSF page you specify it as
customersearch.faces

13. The Web Setting looks like this:

 14

14. Now you will add a Record for scenario 2. Create a record with the record

name LINKSCEN2. For Scenario 2 FRCDTA keyword must be specified
on the record in addition to the Application bridge WebSetting.

15. Copy all the hidden fields from record LINKSCEN1 to LINKSCEN2.
16. Add the FRCDTA keyword on the record LINKSCEN2.
17. Add an Application bridge Web Setting for the LINKSCEN2 record with

the Target Application URL: /EGLWeb/invokewebfacing.faces.
18. The LINKSCEN2 record looks like this:

19. NOTE: The updated display file source has already been compiled for

i5/OS and was present in the save file that you had restored. The display file
source has also been converted in WebFacing. So you do not have to
compile or convert it for the Tutorial. The sole purpose of the above
checkpoint is to show you how to create a linkage record.

Hands-on 4 checkpoint:

You can specify an Application bridge Web Setting on any record with all hidden
fields. You can then use this record for scenario 1, that is, when you do a WRITE
of this linkage record, WebFacing will forward control and data to an EGL
application. The WRITE should be followed by a READ on this record, so that
the System i application can get the updated data. When the EGL application
returns control to WebFacing, the data returned by EGL will be copied to the
linkage record by WebFacing.
For scenario 2 you need to specify the FRCDTA keyword along with the
Application bridge Web Setting on the linkage record to return data and control
back to the EGL application after a WebFacing Application is invoked using

 15

programmatic invocation.

Hands-on 5: Adding display elements to the EGL Web page.
In this Hands-on you will add display elements that will be used to display the data
that would be returned to WebFacing.
Step 1: Adding the display elements.

1. Open the EGL perspective by selecting Window > Open Perspective >
Other… > EGL.

2. Open customersearch.jsp found under EGLWeb > WebContent by
double clicking on it.

3. Place cursor at the end, after the horizontal rule and hit Enter three times.
After the first line break enter text “Data for WebFacing” as shown below.

4. Find the Palette view, which is typically at the right side of the workbench.
If you cannot find that view, click Window > Show View > Other… then
select General > Palette. If the palette is empty refer to Troubleshooting
section 2.

5. In the Palette view, click the EGL drawer to open it.
6. Drag the New Variable icon from the Palette view to the

customersearch.jsp page in the editor. Create a New EGL Data Variable
window opens.

 16

7. Under Type Selection, click Record.
8. Under Record Type, click Customer.
9. In the Enter the name of the field, type this text: webfacingData
10. Under Array properties, uncheck the Array check box.
11. Make sure the Add controls to display the EGL element on the Web page

check box is not selected.
12. The Create a New EGL Data Variable window looks like this:

13. Click OK. An item representing the new variable webfacingData appears in

the Page Data view under JSF Handler > Data. If you cannot find that
view, click Window > Show View > Other… then select Web > Page
Data.

Step 2: Displaying the data on the Web page.

1. In the Page Data view, click the webfacingData Customer variable to select
it.

2. Click and drag the webfacingData Customer variable onto the file
customersearch.jsp, releasing it below the Data for WebFacing text.

3. The Insert List Control window opens. This window lists all of the fields in
the database record. You can use this window to choose which fields will be
shown on the page.

4. Under Create controls for, click the radio button next to Updating an
existing record.

 17

5. Under Fields to display, click the None button. You have deselected all of
the fields.

6. Select the check boxes next to these fields:
 Phone
 Postalcode

7. Click on the options button.
8. Under the buttons tab uncheck the Delete button.
9. For the Submit button label enter Return to WebFacing.
10. The insert controls dialog looks like this:

11. Click OK and then Finish.
12. Save the page by pressing Ctrl-S.
13. The page looks like this:

 18

Hands-on 6: Setting up the EGL project for the Application Bridge
Scenario 1.
Step 1: Adding the EGL code.
In this hands-on you will setup the interface needed on the EGL side to set up the
Application Bridge between the two applications. And you will see how to retrieve
and send the Linkage Data.

1. WebFacing passes the data to EGL as a Java HashMap Object. This object
is set as a request attribute with a key value of “LinkageData”. Thus you
need to declare a variable of type HashMap to retrieve the Hash Map.

2. To declare a variable of type HashMap you first need to define a Java
HashMap Object. Right click on the customersearch.jsp file (in the editor)
and select Edit Page code. Or open the file customersearch.egl found under
EGLWeb > EGLSource > jsfhandlers > customersearch.egl.
Copy this code after the last end in the file:

externalType Object type JavaObject

 { JavaName="Object", PackageName="java.lang" }

 function toString() returns (JavaString);

end

 19

externalType HashMap type JavaObject

 { JavaName = "HashMap", PackageName = "java.util" }

 function putElement(key String in, value String in) { javaName="put" };

function getElement(key String in) returns (Object) { javaName="get" };

end

3. Now you can declare a variable of type HashMap in the customersearch
handler. After the variable declarations enter this code to declare your
HashMap variable: aJHashMap HashMap = new HashMap();

4. Now you will add code to retrieve the HashMap sent by WebFacing. The

HashMap fields follow this convention, Key: the name of the DDS field,
Value: the value of the DDS field. Both keys and values are in Unicode
string format.
For EGL to do the customer search WebFacing will be passing a customer’s
last name and state. EGL will then do a search for the customer’s Phone and
Postal Code and will return this to WebFacing. The code below sets the
searchTerms.LastName and searchTerms.State fields from the data passed
by WebFacing.
Add this code to the onPreRender() function before the last end in the
function:
hasRequestData string = getRequestAttr("forwarded");

 aJHashMap = getRequestAttr("LinkageData");

 if (hasRequestData == null || aJHashMap == null)

 resultMessage = resultMessage::" HashMap null or no LinkageData request attribute";

 else

 searchTerms.LastName = aJHashMap.getElement("LASTNAME").toString().trim();

 searchTerms.State= aJHashMap.getElement("STATE").toString().toString();

 end

 20

5. Note that you call the trim() function on the LASTNAME field this is

because WebFacing sends data with proper space padding. For example, if
the LASTNAME field has length 10 and the field value is “Fili” WebFacing
will send the data with six spaces at the end. Thus when WebFacing
receives data from other Web Applications it also expects field values of the
defined field length. If the length of the field value is not appropriate, the
new value is discarded and the old field value is used, that is, if you change
the LASTNAME to “Smith” and you do not do proper space padding
WebFacing application uses the old value “Fili” not the value passed by
EGL or other Web application. The code currently does not pass the
LASTNAME back to WebFacing.

6. Note the toString() being called twice in “searchTerms.State=

aJHashMap.getElement("STATE").toString().toString();” this is because the first toString
converts the object returned by getElement() to a JavaString and the second
toString converts the JavaString to an EGL string type.

7. The trim() and toString() helper functions for a JavaString were already
defined for you.

8. The onPreRenderfunction() looks like this:

9. Now you will edit the searchFunction() to display the data in the

webFacingData Record you had added to customersearch.jsp. The code
below displays the first customer found and this will later be returned to
WebFacing. Add this code just before the last end of the
searchFunction().
if (numberOfResults>=1)

 webfacingData.Phone=searchResults[1].Phone;

 webfacingData.Postalcode=searchResults[1].Postalcode;

 else

 webfacingData.Phone="";

 webfacingData.Postalcode="";

 21

 end

10. The searchFunction () looks like this:

11. Now you will write the function that returns the data you stored in the EGL

webfacingData record to the WebFaced application.
12. Create a new function named returnToWebFacing(). Put this function

following the end of the onConstruction() function.
13. In this function you will set the appropriate data and key values in the

HashMap and set the HashMap as the “LinkageData” request attribute.
14. You will also set another request attribute forwarded with value of “EGL”.

This will tell WebFacing that the data received is forwarded by EGL.
15. You will then forward the control to the WebFaced application by

forwarding to URL /appContextRoot/appEntryPoint. The appContextRoot
for the WebFacing project is WebFacingWeb and the appEntryPoint for
WebFacing is always /webfacing/WebFacing.do

16. Add this code to the returnToWebFacing() function:
returnData HashMap = new HashMap();

 returnData.putElement("PHONE", webfacingData.Phone);

 returnData.putElement("POSTALCD", webfacingData.Postalcode);

 setRequestAttr("LinkageData", returnData);

 setRequestAttr("forwarded", "EGL");

 //Note the format of the URL /appContextRoot/appEntryPoint

 //The entry point for a WebFaced application is always /webfacing/WebFacing.do

forward to url "/WebFacingWeb/webfacing/WebFacing.do";

17. The returnToWebFacing() function looks like this:

 22

18. Save the changes by pressing CTRL-S.

Step 2: Binding the returnToWebFacing function to the Web page
1. Now you will bind the returnToWebFacing() function to the Return to

WebFacing button you had created on the customersearch.jsp webpage.
2. Open the customersearch.jsp page.
3. In the Page Data view, expand JSF Handler > Actions.
4. Drag and drop returnToWebFacing() directly onto the Return to WebFacing

button on the page. The appearance of the page does not change, but the
function is now bound to the button.

5. Save the page by pressing CTRL-S.

Hands-on 7: Testing the Application Bridge Scenario 1.
Step 1: Running the Application.
In this hands-on, you will run and test Application Bridge Scenario 1 in the
WebSphere test environment.

1. Right click on the WebFacingWeb project.
2. From the pop-up menu, select Run As > Run on Server.
3. You will see the Run on Server window select WebSphere Application

Server v6.1 and click Next.
4. On the Add and Remove projects page select the EGLWeb project and click

Add >, so that the configured projects column has both the WebFacing and the
EGL project.

5. Click Finish.
6. The index.jsp page for WebFacing will come up.
7. Click on Launch CALL WFEGLTUT/PAYROLL button.
8. You will need to enter the user ID and password for your profile.
9. Select Customer Information (work with EGL application Scenario 1) by

entering “x” in the entry field and press Enter.

 23

10. The Customer Information page with one customer’s information will come
up.

11. Press Enter.
12. After Enter is pressed, the application program copies the data read from the

above displayed record to the record LINKSCEN1 and does a write on it.
Since you had specified an Application Bridge Web Setting on this record
WebFacing detects that a WRITE to this record was done and this is a linkage
record. Thus it transfers control and the data in the record to the EGL
application.

13. The EGL code you had specified retrieves the linkage record and sets the
search terms Last Name and State.

14. Click on the Lookup button to search for the customer in the database.
15. The EGL page displayed is:

 24

If you get a database not found error follow the instructions in Troubleshooting
Section number 1.

16. Click on the Return to WebFacing button to send the data and control back to
WebFacing.

17. On receiving control back WebFacing retrieves the data passed back in the
HashMap and puts it in the linkage record LINKSCEN1. The application
program then copies the data into another record to display it.

18. Press Enter to end the application.

Hands-on 7 checkpoint:
The WebFacing and the EGL projects must be deployed to the same server
instance and both the projects must be started on the server for the Application
Bridge to work.

 25

The application program needs to do a WRITE on the linkage record (to transfer
control and data to EGL) immediately followed by a READ on the linkage record
(to get the data received from EGL in the linkage record).
Note: It is not necessary to display the data being passed and received to/from
EGL. Only for tutorial purposes the data from the linkage record is copied to a
display record and then the display record is displayed. A WRITE on the linkage
record transfers control and data to the other application without displaying it. All
the fields in a linkage record are of usage H (Hidden).

Hands-on 8: Setting up the Application Bridge Scenario 2.
Step 1: Adding the EGL code.
In this hands-on, you will do the setup for Application Bridge Scenario 2. In Hands-on
4 you have already set up the interface needed at the WebFacing side as a linkage
record LINKSCEN2 returning to the EGL Webpage invokewebfacing.faces.
The EGL Webpage has already been setup for you. You will just add a simple call to
programmatically invoke the WebFacing job. Note: For this the WebFacing project
must be setup for programmatic invocation. This has been done for you in the tutorial
project. To learn how to setup projects for programmatic invocation refer to
Programmatically invoking WebFacing applications from other Web
applications in the WebFacing Tool product help.

1. Open invokewebfacing.egl found under EGLWeb > EGLSource > jsfhandlers.
2. In the invokeWFPGM() function enter this code:

forward to url "/WebFacingWeb/WFInvocation.do?inv=INV1";
3. The function invokeWebFacing() has already been bound to the button Invoke

WebFacing Job in the EGL page invokewebfacing.jsp
4. Save the change by pressing CTRL-S.

Hands-on 9: Testing the Application Bridge Scenario 2.
Step 1: Running the application.
In this hands-on, you will run and test Application Bridge Scenario 2 in the
WebSphere test environment.
1. In the Project Explorer view under EGLWeb > WebContent right click on

invokewebfacing.jsp and select Run As > Run on Server.
2. The page looks like this:

 26

3. Click on the Invoke WebFacing Job button.
4. The control will then be transferred to WebFacing.
5. Select Application Bridge Scenario 2 by entering “x” in the entry field and press

Enter.

6. Customer data will be displayed press Enter.
7. On pressing enter the application program copies the data from the displayed

record to the linkage record LINKSCEN2 and does a WRITE on LINKSCEN2.
As this is a linkage record WebFacing transfers control to the EGL application
that was specified in the Application Bridge Web Setting.

8. The EGL page displays the data passed by WebFacing.

 27

Hands-on 9 checkpoint:
You learned that WebFacing can be invoked programmatically from EGL. You also
learned to transfer control and data to EGL you do a WRITE on the linkage record.

Tutorial checkpoint:
The tutorial demonstrated how to setup and use an Application Bridge between
WebFacing and an EGL application. The concept learned in this tutorial can also be
applied to create an Application Bridge between WebFacing and any other Web
application.

If you are using the interoperability feature of the HATS toolkit to integrate your
WebFacing and HATS Web applications, the Application Bridge feature described in
this tutorial will also work to pass data between:
• HATS and EGL - when only the linkage record is converted/WebFaced in your

WebFacing project
• WebFacing and EGL - when all DDS source files in your WebFacing project have

been converted
• WebFacing, HATS, and EGL - when part of your application is WebFaced and

the other part runs as a HATS project

This tutorial only covered the Application Bridge feature for WebFacing and EGL as
described for Scenario 1 and 2, but it is easy to try out the other scenarios if you link a
WebFacing project with a HATS project using the interoperability feature and only
convert the linkage record and then convert some of the DDS files in the WebFacing
project.

In a linked project again a WebFaced linkage record will be used for the Application
Bridge communication and if required, a HATS or WebFaced record could be used to
display the data received from the other application. Remember i5/OS V5R4 is
required for HATS/WebFacing linked projects.

Troubleshooting tips:

1. Getting error message on running the application: Derby database connection not
found.

Note: To just see that the Application Bridge pass data back to WebFacing you can
manually enter 5 numeric characters in the postal code field and press the Return to
WebFacing button. If you want to do a lookup from the database and then return the
data, follow the steps below.

 28

i. Remove the project from the server and restart the server.
ii. Do a clean project on the EGL project
iii. Open the build descriptor for the EGL project by double-clicking the

EGLWeb/EGLSource/EGLWeb.eglbld file in the Navigator view. The
build descriptor opens in the build parts editor.

iv. Check to see that the EGL Runtime Data Source window has set the build
descriptor options based on the connection information. The build
descriptor options should look like this:

v. If the build descriptor options do not look like the above screen capture,
follow the instructions below.

Setting up the build descriptor options for the database connection:
a. In the Load DB options using Connection list, select your EGLDerbyR7
connection. Several of the options are set, except for the sqlJNDIName option.
b. Set the sqlJNDIName option to the following JNDI name, exactly as shown:
jdbc/EGLDerbyR7
Note: To open the sqlJNDIName option for editing, click twice slowly in the
Value column next to that option. Also, you can click three times quickly in
the Value column.
The values of the build descriptor options now match those described above.
c. Save and close the build descriptor.
Optionally, set the EGL Runtime Database Connection window to make these
changes in the future by enabling the associated preference. Click Window >
Preferences and then click EGL > Default Build Descriptor. Under Update
default build descriptor options for project when runtime data source is

 29

 30

modified, select Always to update the build descriptor options automatically,
or select Prompt to give you the option. This preference takes effect the next
time you use the EGL Runtime Database Connection window.

2. What if the palette view is empty?

 Switch perspective to any other perspective and then back to the EGL
perspective with the JSP file open in the editor. This should fix the problem
otherwise see the bullet below.

 Restart the Workbench, that is, close HATS Toolkit and open it again for the
same workspace.

3. What if you press the Return to WebFacing button and nothing happens?

 First check if you followed the instructions to bind the returnToWebFacing()
function to this button. If you did, check that you copied the code properly.

	Introduction:
	System requirements:
	Prerequisites:
	Hands-on:
	Hands-on 1: Setting up the WebFacing and EGL projects.
	Step 1: Importing the WebFacing and EGL projects.

	Hands-on 2: Creating a connection to your i5/OS, restoring the save file and setting up the WebFacing connection.
	Step 1: Restoring the save file.
	Step 2: Specify the i5/OS host name for the WebFacing project.

	Hands-on 3: Setting up the database connection for the EGL project.
	Step 1: Creating the database connection
	Hands-on 3 checkpoint:

	Hands-on 4: Application Bridge Web Setting.
	Step 1: Adding Application Bridge Web Setting.
	Hands-on 4 checkpoint:

	Hands-on 5: Adding display elements to the EGL Web page.
	Step 1: Adding the display elements.
	Step 2: Displaying the data on the Web page.

	Hands-on 6: Setting up the EGL project for the Application Bridge Scenario 1.
	Step 1: Adding the EGL code.
	Step 2: Binding the returnToWebFacing function to the Web page

	Hands-on 7: Testing the Application Bridge Scenario 1.
	Step 1: Running the Application.
	Hands-on 7 checkpoint:

	Hands-on 8: Setting up the Application Bridge Scenario 2.
	Step 1: Adding the EGL code.

	Hands-on 9: Testing the Application Bridge Scenario 2.
	Step 1: Running the application.
	Hands-on 9 checkpoint:

	Tutorial checkpoint:
	Troubleshooting tips:

