
DB2TS_indexing.ppt Page 1 of 19

This presentation describes DB2® Text Search indexing in detail.

DB2TS_indexing.ppt Page 2 of 19

The key features of DB2 Text Search includes fast indexing of large data volumes, it

supports both initial and incremental update of indexes which is done asynchronously so

as not to impact performance of search applications and it supports both structured and

unstructured document formats. For example plain text, HTML and XML. More key

features include the support of rich text documents with the DB2 Accessories Suite, it

supports the database partitioning feature, range partitioned tables and clustered tables.

DB2 Text Search supports both integrated and stand-alone text server setup. A stand-

alone setup is the one where the DB2 database server and the Text Search server resides

on different machines to separate out the resource intensive text index processing with

that of the database server processing. It provides a stored procedure interface for running

indexing administration commands and it controls the update index processing. The

administrators can now define a time window for updating the text index, thus, avoiding

load on the system during peak time. With the Nickname table support, it can index and

search the documents in other relational databases.

DB2TS_indexing.ppt Page 3 of 19

Basically, DB2 Text Search provides the capability to search the documents that are stored

in a table column of your DB2 database. It uses the primary key of the table to uniquely

identify the document. A text index should be created in order to efficiently search the

documents. As displayed on this slide, DB2 Text Search extracts significant terms from the

document, which are used to build a text index. All the updates to the table column are

tracked and synchronized with the text index through the next incremental update.

When creating a text index, a collection is automatically created. It is a lower level

representation of the text index. The index creation defines the index properties like

update frequency to schedule automated updates, collection directory where the text

search index collection is stored, and so on. It also creates a staging table to track and

record all changes that happened on the base table and the event table to record the

status of all updates during the update of the text index.

After you create the text search index, it is empty and hence, it is not searchable until you

update it.

Refer to the presentation DB2 Text Search - Administration commands for more details on

the usage of the create index command.

DB2TS_indexing.ppt Page 4 of 19

The text index should be updated with the data from the table column to perform

searches. Updating the index for the first time, known as the initial update, adds the data

about all the documents from the column to the text index and creates insert, update and

delete triggers on the base table to capture the changes.

Subsequent updates, known as incremental updates, synchronize the data in the table

and the text index. The incremental updates run asynchronously and can be started

manually or automatically through a schedule. The text index update is not in the same

transaction as the data update. Instead, for each insert, update and delete that happened

on the column, an entry is inserted by way of a trigger into a staging table. This staging

table is then used to control the incremental update and to synchronize the text index with

the data in the base table.

It is also possible to use operating system functions. For example, crontab to schedule

index updates.

You can monitor the index update progress using the DB2 Text Search administration tool.

See the presentation DB2 Text Search - Administration commands for more details on the

usage of the update index command.

DB2TS_indexing.ppt Page 5 of 19

The figure displayed on this slide illustrates the concepts of initial and incremental update

index.

There is a text index as shown by the orange colored block called "productindex" created

on the table as shown by the blue colored block called "PRODUCT".

Once the index is created, it is empty, no data is yet available. An empty collection is

created by the text search server. As depicted from the figure, the initial index update

added data about all the documents in the table column to the text index. At this point,

both text index and table are synchronized.

There is a new insert and update operation on the PRODUCT table which is tracked by

the triggers and captured into the staging table. An incremental index update is issued and

all these changes are applied on the index.

DB2TS_indexing.ppt Page 6 of 19

During the create index, specify the document format being indexed. The document

formats supported are Hypertext Markup Language, or HTML, Extended Markup

Language, referred to as XML and TEXT, which is plain text. Also, rich text document

formats like Microsoft® Office, Open Document, pdf and so on, using the DB2 Accessories

Suite, are supported. For more details on the DB2 Text Search Accessories Suite, see the

DB2 Text Search - Installation, Configuration and Upgrade presentation.

You can use your own transformation function to convert any unsupported format to a

supported format.

The locale specified while creating the text index determines the language to tokenize the

document. It also helps to perform linguistic processing on the search term. For DBCS

languages, both morphological and n-gram approaches are supported.

For a list of supported languages and code pages for DB2 Text Search, visit the

Information Center. The link is displayed on this slide.

This slide illustrates the various administration commands of DB2 Text Search at instance,

database and text index level.

At the Instance Level, you can start and stop DB2 Text Search instance services. You can

also cleanup orphaned text search collections. At the Database Level, you can enable and

disable the database for Text Search, you can also clear command locks placed on all the

text indexes with in the database. At the Text Index Level, you can create, alter, update

and drop a text index. You can also clear events from the event view, clear command

locks placed on the index and start the ‘reset pending’ command to run set integrity for all

dependant staging tables for the index.

DB2TS_indexing.ppt Page 8 of 19

A text index can be created on many different data types, including CHAR, VARCHAR,

LONG VARCHAR, CLOB, DBCLOB, BLOB, GRAPHIC, VARGRAPHIC, LONG

VARGRAPHIC and XML.

You can use your own transformation function to convert any unsupported data type to a

supported data type.

DB2TS_indexing.ppt Page 9 of 19

This slide describes a sample scenario to explain the concept of indexing in DB2 Text

Search. First, DB2 Text Search instance service should be started using the command

"START FOR TEXT".

Enable the database using the command "ENABLE DATABASE FOR TEXT". It creates

system catalog tables and views for storing text index specific information. Next, identify

the table column for searching the data and create the index using the "CREATE INDEX”

command. In this scenario, text index myschema.mytextindex is created on the column

"bookinfo" of table "book". It creates an empty text index and additional infrastructure in

the database used to populate the text index.

Update the text index using the "UPDATE INDEX” command. It can be either an initial or

an incremental update.

Now that the index is populated and up-to-date, searches can be issued.

DB2TS_indexing.ppt Page 10 of 19

This slide displays the catalog views created in the database when it is enabled for Text

Search. The Database-level views are SYSIBMTS.TSDEFAULTS,

SYSIBMTS.TSSERVERS and SYSIBMTS.TSLOCKS.

SYSIBMTS.TSDEFAULTS shows all the default values for all text indexes in the database.

For example, the default values of CODEPAGE, LANGUAGE, FORMAT and so on.

SYSIBMTS.TSSERVERS displays the text search server information like host name, port

number, token and so on. SYSIBMTS.TSLOCKS shows the command lock information at

the database and index level.

The Index-level views are SYSIBMTS.TSINDEXES which shows details about the text

indexes and their information in the database. The SYSIBMTS.TSCONFIGURATION,

displays the values of index configuration parameters for the indexes defined in the

database. SYSIBMTS.TSCOLLECTIONNAMES shows the collection name of each text

index. SYSIBMTS.TSEVENT_nnnnnn also known as event view, provides historical

information of indexing status along with any errors and warnings returned for each

document. SYSIBMTS.TSSTAGING_nnnnnn also known as staging table, captures the

changes that happened on the base table, and nnnnnn is the index identifier which is

generated automatically.

DB2TS_indexing.ppt Page 11 of 19

The basic method of indexing using triggers does not support the scenarios like populating

table with LOAD command and attaching and detaching ranges of range partitioned

tables. Hence, there is a need to enable an additional staging infrastructure to capture

these changes. The information about new and deleted documents is captured in a text

maintained auxiliary table using this infrastructure. Whereas, the information about

updated documents is captured in the staging, or primary log, table.

The combination of range-partitioned tables or tables that use the multidimensional

clustering feature in a single-partition or partitioned database environment is supported.

The text-maintained staging infrastructure uses integrity processing to recognize new and

deleted data and can be applied to partitioned and non-partitioned tables.

DB2TS_indexing.ppt Page 12 of 19

In a database partitioned environment, text index is also partitioned according to the

partitions of the table. For each text index partition, there is a collection created. Except

index update, all administrative operations are started sequentially, non-distributed.

The update processing for a partitioned text search index can be run in parallel or in serial

mode. In parallel mode, the index update is distributed to the database partitions and run

independently on each node. In serial mode, the index update is run without distribution

and stops when a failure is encountered. Serial mode indexing typically takes longer but

requires less resources.

DB2TS_indexing.ppt Page 13 of 19

The figure displayed on this slide depicts a DB2 Text Search instance with four partitions

on two physical machines – Machine1 and Machine2 with two logical partitions per host.

There is only a single DB2 Text Search server serving all the database partitions.

DB2TS_indexing.ppt Page 14 of 19

DB2 Text Search has provided two new index configuration options, INITIALMODE and

LOGTYPE, to control update index processing.

Valid values for the INITIALMODE option are FIRST, SKIP, and NOW. FIRST is the default

value. The initial update happens on the first update. SKIP means an incremental update

is activated and provides the first update. NOW is when the initial update is started at the

end of creating the index.

Valid values for the LOGTYPE option are BASIC and CUSTOM. BASIC is the default

value. When using the CUSTOM value, no triggers are created. You should populate the

log table through any manual mechanism. The BASIC option adds triggers to recognize

changes.

DB2TS_indexing.ppt Page 15 of 19

Text index update processing already provides a feature to specify the commit size by way

of the updateautocommit argument. To provide further control, additional settings are

available now with V10.5 to determine whether the commit size should be treated as rows

or hours, and how many batches to process.

The sample examples provided on this slide display how to create an index using the new

options available with V10.5.

The first example creates an index with a three hour commit cycle for a six hour time

window. The second example creates an index with a total of two commit cycles

committing 300 rows each.

DB2TS_indexing.ppt Page 16 of 19

DB2 Text Search supports creation of text indexes on nickname tables for a federated

database since V10.5 FP1. Only the LOGTYPE index configuration parameter with a

value of "CUSTOM" is supported. Triggers cannot be created on nicknames, hence, the

staging table must be populated manually.

A sample usage scenario is provided on this slide for setting up the text index on a

nickname table.

DB2TS_indexing.ppt Page 17 of 19

There are several configuration parameters available including heap size, queue size,

number of indexing threads, and so on to achieve optimal indexing performance.

For more details visit the Information Center. The link is displayed on this slide.

DB2TS_indexing.ppt Page 18 of 19

This slide displays additional IBM Education Assistant modules related to DB2 Text Search

and it provides the link to the IBM Information Center.

DB2TS_indexing.ppt Page 19 of 19

