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�Transport Layer Security (TLS) is defined by the IETF 

ƒ Based on Secure Sockets Layer (SSL)

–SSL originally defined by Netscape to protect HTTP traffic 

ƒ TLS defines SSL as a version of TLS for compatibility

–TLS clients and server should drop to SSL V3 based on 
partner's capabilities   

�Traditionally provides security services as a socket layer 

service

ƒ Requires reliable transport layer

–UDP applications cannot be TLS enabled

ƒ Application source code changes are generally needed to 
SSL/TLS-enable a sockets program

�z/OS applications can be TLS enabled with System SSL 

ƒ System SSL is part of z/OS Integrated Security Services 
element 

ƒ System SSL supports z/OS UNIX System Services C/C++ 
applications only

SSL/TLS and Kerberos overview on z/OS
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Kerberos

�Kerberos support is implemented using the Kerberos and 

GSSAPI functions of the z/OS Security Server and provides:

ƒ Third-party authentication

ƒ Optional message integrity 

ƒ Optional message privacy (encryption)

�The Kerberos environment must be set up on the z/OS system. 

ƒ The Kerberos support is documented in the publication "Network 
Authentication and Privacy Service: Administration", SC24-5926

�Some z/OS applications that are kerberized:

ƒ FTP server and client

ƒ UNIX Telnet daemon (OTelnetD)

ƒ UNIX RSH daemon (ORshD)

ƒ z/OS WAS Server

�Mostly of value where a Kerberos-based infrastructure already is 
in place
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Symmetric encryption (secret or shared key encryption)

secret

key

secret

key

client1
server

client2

esecretkey(data)

esecretkey(data)

Data that is encrypted with the secret 
key can only be decrypted by 
someone who has the same secret 
key (sharing the same secret).

Hello World!!Hello World!!

.*x-yz/%¤&&8/dvvvv

esecretkey(data)

�Symmetric encryption

algorithms are fast and 

efficient.

�Key management is a

major concern for 

secret key-based

encryption - to whom do 
we send the key and 
how do we do that 
safely?

Someone who does not have a copy 
of the secret key cannot decrypt any 
intercepted data.

Examples of symmetric encryption algorithms are: DES and AES

Encryption is based on either a symmetric key or 
on a set of asymmetric keys.

In the Web server context, the asymmetric key 
concept is the one that is used in most cases.

A message that has been encrypted using the 
public key can only be decrypted using the 
accompanying private key.  

A message that has been encrypted using the 
private key can be decrypted by everyone who 
has the accompanying public key.
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RSA public/private key encryption (asymmetric encryption)

public

key

private

key

client1 server

public

key

client2

epublickey(data)

epublickey(data)
Public and 
private

keys match, but 
they are not the 
same value.

?

Hello World!!Hello World!!

.*x-yz/%¤&&8/dvvvv

�Data encrypted by the public key

can only be decrypted by the 

matching private key.

�Data encrypted by the private key

can be decrypted by the public key.
�Public/private key encryption

is CPU intensive

�The server's public key can be

distributed freely to anyone who

needs it.
Someone who only has a copy 
of the public key cannot decrypt 
data that was encrypted with 
the same public key.

Encryption is based on either a symmetric key or 
on a set of asymmetric keys.

In the Web server context, the asymmetric key 
concept is the one that is used in most cases.

A message that has been encrypted using the 
public key can only be decrypted using the 
accompanying private key.  

A message that has been encrypted using the 
private key can be decrypted by everyone who 
has the accompanying public key.

RSA does not in itself provide authentication, but 
combined with digital signatures, RSA can bve 
used to provide authentication.
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Combining public/private key encryption
with symmetric encryption - session keys

public

key

private

key

client1 server
epublickey(sessionkey)

esessionkey(data)

Secure Sockets Layer (SSL) uses RSA to generate symmetric session keys

1 Server has distributed a public key to client earlier.

2 Client generates a random session key, encrypts it under the server's public key, and 
transmits it to the server.  Only the server is able to decrypt this message.

3 Server decrypts the message and the server and the client use the session key for 
succeeding encrypted data exchanges in this session.

1 Generate a random symmetric 
encryption key (a session key)

2 Encrypt it using the partner's 
public key and send it to 
partner

1 Decrypt the received session 
key  using my private key

2 Use symmetric encryption with 
the session key from here on

The client has the server's public key. 

The client generates a random key that is to be 
used as a session key.  The client encrypts the 
session key under the public key and transmits it 
to the server.  Because the session key has been 
encrypted with the public key, only the server that 
has the corresponding private key can decrypt it 
and obtain the session key.

All further data exchanges are then encrypted 
using the session key, which only this client and 
the server have knowledge about.
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Digital signature / message authentication

data
hashing

algorithm
digest private

key

public

key
client

eprivatekey(digest),data

Client performs same hashing algorithm (for example 
MD5 - Message Digest 5) on the data to create a 
digest, decrypts the encrypted digest from the server 
using the server's public key, and compares the two.  
If they match, the client knows that:

a The data could not have been altered between the 
server and the client

b It also knows that only the server with the right 
private key could have created the message.

Server

By using digital signatures, a client with a public 
key that matches the private key of the server, 
can verify that the message was not altered on 
the path from the server to
the client.  If the message had been altered, the 
encrypted digest could not be altered too, 
because only the correct server that has the 
private key would be able to create the correct 
encrypted digest.

Digital signatures become more complicated, if 
the data part of the message is encrypted under a 
session key, but the concept still works even in 
that situation.

Hashing algorithms are MD5 and SHA.

One can use the same key [pair for digital 
signature and for encryption, but in general it is 
not recommend.  For digital signatuitures, the 
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X.509 certificates - trust relationships

Certifying

Authority (CA)
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Trusted root:

CA and 
CApublickey

Request a new 
digital certificate

($$)

Client

Certificate

Trusted root:

CA and 
CApublickey

Verify digital signature

of CA.  If valid, trust 

ABC's public key.

Broadcasts CA

distinguished

name and 

CApublickey

ABCpublickey
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Digital signature of CA

Certificate

Certi-

ficate

Generate key-pair

Receive new certificate 
from CA

1

2

3

4Connect

5 6

The certificate that is returned from the certifying 
authority includes:
1 Distinguished name of the company or 
person (ABC)
2 The public key of ABC (was included in 
the request that was sent to

the CA
3 Distinguished name of the CA 
4 Issue date and expiry date
5 Digital signature of the CA

The server stores the certificate and uses it for as 
long as it is valid.

Servers and browsers define so-called trusted 
roots, which are the distinguished names of 
certifying authorities and their public keys.  Both 
the server and the browser must trust the CA that 
issued the certificate (defined as trusted root) in 
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CA flow overview

You Your CA

I need a copy of your CA certificate

Install CA cert as a 
trusted root

Generate new key 
pair and a 
certificate request

Process 
request, create 
certificate 
signed by CAAdd certificate into 

your key database 
associated with the 
key-pair

Optionally add 
certificate into other 
key databases used 
for authentication 
purposes

Create new key 
database or keyring Return CA's 

certificate for 
authentication 
purposes

CACertRaw.b64 or CA.cert or CA.crt or ..

Send certificate 
request to CA

certreq.arm or xxx.csr

cert.arm or xxx.crt

If you use gskkyman key databases and your servers require 
client authentication, then you must add the user certificates to 
the key database that are used by the servers.

In general, if you need client authentication, using RACF 
keyrings would be recommended.
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Server and client certificates

MYSERVERpublickey

DN: MYSERVER

Digital signature of 
CA

Certificate
ALFREDpublickey

DN: ALFRED

Digital signature of CA

Certificate

ALFREDprivatekey MYSERVERprivatekey

MYSERVER sends his certificate to ALFRED and 
a message that is signed with MYSERVER's 
private key - ALFRED can now establish trust in 
MYSERVER if ALFRED can successfully match 
the digest MYSERVER sent.

ALFRED sends his certificate to MYSERVER 
and a message that is signed with his private key 

- MYSERVER can now establish trust in him if 
MYSERVER can successfully match the digest 

he sent.

�In order to create session keys and encrypt the data stream, only the server needs to have a certificate.  

�If the client has a certificate, then the server can use that to authenticate the client.  On z/OS a client certificate 
can be mapped to a RACF user ID.  Password authentication may still be required by the server application, but 
the password can at least now be submitted in encrypted form over the network.

I trust MYSERVER! I trust ALFRED!

ALFRED MYSERVER
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�SSL: Secure Sockets Layer

ƒ Created by Netscape

ƒ Originally implemented inside Web clients and servers

ƒ Above sockets and below application protocol

ƒ SSLv1 no longer supported

ƒ SSLv2 still some

–mostly public access compatibility concern

ƒ SSLv3.0 improved security

�TLS: Transport Layer Security

ƒ TLSv1.0 (SSLv3.1)

ƒ IETF RFC 2246

�End-to-end application pipe

ƒ TCP connections

ƒ Server authentication

ƒ Optional client authentication

ƒ Authentication

–Public key cryptography, third-party signed certificate

ƒ Data privacy

–Negotiated private key cryptography

–SSL record protocol

Background information  
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Background Information  

CA

certificateClient

certificate

Server

Application

keyring

CA

certificate

Client

Application

CA

certificate

keyring

Server

certificate

CA

certificate

Server Certificate - Always Required
Authenticates Server to Client

Server must have access to private keys

Used to encrypt data cipher key exchange

Both need server's CA Certificate installed

Client Certificate - Optional
Authenticates Client to Server

Client must have access to private keys

Both need client's CA Certificate installed
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�Application layer implementation

ƒ Development expense repeated for each application

ƒ Toolkits available for limited programming environments

–C and Java

–Forking or Threaded POSIX model

–Require application change

ƒ Many existing z/OS applications do not fit this model

–COBOL, assembler sockets programs

–CICS sockets transactions

–etc.

ƒ Many applications purchased or otherwise not available for change

–Source code is needed to enable them for SSL/TLS

�Application specific deployment

ƒ Unique configuration for each application

ƒ Different levels of SSL/TLS architecture support

ƒ Not all toolkits support/exploit z/OS and zSeries capabilities

–RACF keyrings

–Certificates associated with user IDs

–Hardware cryptography

Current SSL/TLS API support on z/OS is limited to C and Java
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Application Transparent Transport Layer Security (AT-TLS)

�Application Transparent

ƒ Support existing applications without change

ƒ Allow applications to optionally exploit/control advanced features

–Simple ioctl

–Extract status, certificate, and associated user ID

–Permit cleartext negotiation prior to starting secure connection

�Transport Layer

ƒ Implement inside the TCP layer of the stack

ƒ Common configuration through policy

ƒ Exploit z/OS 

–RACF

–SystemSSL

–ICSF

–Hardware cryptography

�Security

ƒ Multiple Protocols

–TLS (SSL V3.1)

–SSL V3.0

–SSL V2 

Safe 

communication
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Transparent application security: policy-controlled transparent 
SSL/TLS support - SSL/TLS for all z/OS sockets applications

�Basic TCP/IP stack-based TLS

ƒ TLS process performed at TCP layer without requiring any 
application change (transparent)

ƒ All connections to specified port are designated as TLS 
required 

�Can be further qualified by source/destination IP 
addresses

ƒ Transparent TLS policies managed via Policy Agent

�Transparent TLS can be requested by aplication

ƒ Application issues transparent TLS API calls to indicate 
that connection should start/stop using TLS

�TCP/IP stack-based TLS with client identification 

services for application

ƒ Application issues TLS API calls to receive user identity 
information based on X.509 client certificate

�Available to any TCP application

ƒ CICS Sockets and JES/NJE are primary focus of this 
support

ƒ All programming languages supported

Network Interfaces

IP Networking Layer

TCP and UDP

Sockets

Application
s

System SSL calls 

Encryp-

ted

Optional APIs for 
TLS-aware 
applications to 
control start/stop 
of TLS session

Policy 
Agent

Transparent 
TLS policy 
flat file
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