
1

Software Group | Enterprise Networking and Transformation Solutions (ENTS)

© 2005 IBM Corporation

CS z/OS Application Transparent
Transport Layer Security (AT-TLS)
Background and Introduction

2

IBM Software Group | Enterprise Networking and Transformation Solutions

© 2005 IBM Corporation

AT-TLS background and
introduction

3

IBM Software Group | Enterprise Networking and Transformation Solutions

© 2005 IBM Corporation

�Transport Layer Security (TLS) is defined by the IETF

ƒ Based on Secure Sockets Layer (SSL)

–SSL originally defined by Netscape to protect HTTP traffic

ƒ TLS defines SSL as a version of TLS for compatibility

–TLS clients and server should drop to SSL V3 based on
partner's capabilities

�Traditionally provides security services as a socket layer

service

ƒ Requires reliable transport layer

–UDP applications cannot be TLS enabled

ƒ Application source code changes are generally needed to
SSL/TLS-enable a sockets program

�z/OS applications can be TLS enabled with System SSL

ƒ System SSL is part of z/OS Integrated Security Services
element

ƒ System SSL supports z/OS UNIX System Services C/C++
applications only

SSL/TLS and Kerberos overview on z/OS

Network Interfaces

IP Networking Layer

Transport protocol layer

TCP and UDP

Sockets

Applications

SSL, KRB, GSSAPI

Network Interfaces

IP Networking Layer

Transport protocol layer

TCP and UDP

Sockets

Applications

SSL, KRB, GSSAPI

Application layer

Transport layer

Network layer

Data link layer

Network

SSL/TLS

AT-TLS

Kerberos

�Kerberos support is implemented using the Kerberos and

GSSAPI functions of the z/OS Security Server and provides:

ƒ Third-party authentication

ƒ Optional message integrity

ƒ Optional message privacy (encryption)

�The Kerberos environment must be set up on the z/OS system.

ƒ The Kerberos support is documented in the publication "Network
Authentication and Privacy Service: Administration", SC24-5926

�Some z/OS applications that are kerberized:

ƒ FTP server and client

ƒ UNIX Telnet daemon (OTelnetD)

ƒ UNIX RSH daemon (ORshD)

ƒ z/OS WAS Server

�Mostly of value where a Kerberos-based infrastructure already is
in place

IBM Software Group | Enterprise Networking and Transformation Solutions

© 2005 IBM Corporation

Symmetric encryption (secret or shared key encryption)

secret

key

secret

key

client1
server

client2

esecretkey(data)

esecretkey(data)

Data that is encrypted with the secret
key can only be decrypted by
someone who has the same secret
key (sharing the same secret).

Hello World!!Hello World!!

.*x-yz/%¤&&8/dvvvv

esecretkey(data)

�Symmetric encryption

algorithms are fast and

efficient.

�Key management is a

major concern for

secret key-based

encryption - to whom do
we send the key and
how do we do that
safely?

Someone who does not have a copy
of the secret key cannot decrypt any
intercepted data.

Examples of symmetric encryption algorithms are: DES and AES

Encryption is based on either a symmetric key or
on a set of asymmetric keys.

In the Web server context, the asymmetric key
concept is the one that is used in most cases.

A message that has been encrypted using the
public key can only be decrypted using the
accompanying private key.

A message that has been encrypted using the
private key can be decrypted by everyone who
has the accompanying public key.

IBM Software Group | Enterprise Networking and Transformation Solutions

© 2005 IBM Corporation

RSA public/private key encryption (asymmetric encryption)

public

key

private

key

client1 server

public

key

client2

epublickey(data)

epublickey(data)
Public and
private

keys match, but
they are not the
same value.

?

Hello World!!Hello World!!

.*x-yz/%¤&&8/dvvvv

�Data encrypted by the public key

can only be decrypted by the

matching private key.

�Data encrypted by the private key

can be decrypted by the public key.
�Public/private key encryption

is CPU intensive

�The server's public key can be

distributed freely to anyone who

needs it.
Someone who only has a copy
of the public key cannot decrypt
data that was encrypted with
the same public key.

Encryption is based on either a symmetric key or
on a set of asymmetric keys.

In the Web server context, the asymmetric key
concept is the one that is used in most cases.

A message that has been encrypted using the
public key can only be decrypted using the
accompanying private key.

A message that has been encrypted using the
private key can be decrypted by everyone who
has the accompanying public key.

RSA does not in itself provide authentication, but
combined with digital signatures, RSA can bve
used to provide authentication.

IBM Software Group | Enterprise Networking and Transformation Solutions

© 2005 IBM Corporation

Combining public/private key encryption
with symmetric encryption - session keys

public

key

private

key

client1 server
epublickey(sessionkey)

esessionkey(data)

Secure Sockets Layer (SSL) uses RSA to generate symmetric session keys

1 Server has distributed a public key to client earlier.

2 Client generates a random session key, encrypts it under the server's public key, and
transmits it to the server. Only the server is able to decrypt this message.

3 Server decrypts the message and the server and the client use the session key for
succeeding encrypted data exchanges in this session.

1 Generate a random symmetric
encryption key (a session key)

2 Encrypt it using the partner's
public key and send it to
partner

1 Decrypt the received session
key using my private key

2 Use symmetric encryption with
the session key from here on

The client has the server's public key.

The client generates a random key that is to be
used as a session key. The client encrypts the
session key under the public key and transmits it
to the server. Because the session key has been
encrypted with the public key, only the server that
has the corresponding private key can decrypt it
and obtain the session key.

All further data exchanges are then encrypted
using the session key, which only this client and
the server have knowledge about.

IBM Software Group | Enterprise Networking and Transformation Solutions

© 2005 IBM Corporation

Digital signature / message authentication

data
hashing

algorithm
digest private

key

public

key
client

eprivatekey(digest),data

Client performs same hashing algorithm (for example
MD5 - Message Digest 5) on the data to create a
digest, decrypts the encrypted digest from the server
using the server's public key, and compares the two.
If they match, the client knows that:

a The data could not have been altered between the
server and the client

b It also knows that only the server with the right
private key could have created the message.

Server

By using digital signatures, a client with a public
key that matches the private key of the server,
can verify that the message was not altered on
the path from the server to
the client. If the message had been altered, the
encrypted digest could not be altered too,
because only the correct server that has the
private key would be able to create the correct
encrypted digest.

Digital signatures become more complicated, if
the data part of the message is encrypted under a
session key, but the concept still works even in
that situation.

Hashing algorithms are MD5 and SHA.

One can use the same key [pair for digital
signature and for encryption, but in general it is
not recommend. For digital signatuitures, the

IBM Software Group | Enterprise Networking and Transformation Solutions

© 2005 IBM Corporation

X.509 certificates - trust relationships

Certifying

Authority (CA)

CAprivatekey

CApublickey

Company ABC

server

ABCprivatekey

ABCpublickey
Trusted root:

CA and
CApublickey

Request a new
digital certificate

($$)

Client

Certificate

Trusted root:

CA and
CApublickey

Verify digital signature

of CA. If valid, trust

ABC's public key.

Broadcasts CA

distinguished

name and

CApublickey

ABCpublickey

Distinguished name (ABC)

Digital signature of CA

Certificate

Certi-

ficate

Generate key-pair

Receive new certificate
from CA

1

2

3

4Connect

5 6

The certificate that is returned from the certifying
authority includes:
1 Distinguished name of the company or
person (ABC)
2 The public key of ABC (was included in
the request that was sent to

the CA
3 Distinguished name of the CA
4 Issue date and expiry date
5 Digital signature of the CA

The server stores the certificate and uses it for as
long as it is valid.

Servers and browsers define so-called trusted
roots, which are the distinguished names of
certifying authorities and their public keys. Both
the server and the browser must trust the CA that
issued the certificate (defined as trusted root) in

9

IBM Software Group | Enterprise Networking and Transformation Solutions

© 2005 IBM Corporation

CA flow overview

You Your CA

I need a copy of your CA certificate

Install CA cert as a
trusted root

Generate new key
pair and a
certificate request

Process
request, create
certificate
signed by CAAdd certificate into

your key database
associated with the
key-pair

Optionally add
certificate into other
key databases used
for authentication
purposes

Create new key
database or keyring Return CA's

certificate for
authentication
purposes

CACertRaw.b64 or CA.cert or CA.crt or ..

Send certificate
request to CA

certreq.arm or xxx.csr

cert.arm or xxx.crt

If you use gskkyman key databases and your servers require
client authentication, then you must add the user certificates to
the key database that are used by the servers.

In general, if you need client authentication, using RACF
keyrings would be recommended.

0

IBM Software Group | Enterprise Networking and Transformation Solutions

© 2005 IBM Corporation

Server and client certificates

MYSERVERpublickey

DN: MYSERVER

Digital signature of
CA

Certificate
ALFREDpublickey

DN: ALFRED

Digital signature of CA

Certificate

ALFREDprivatekey MYSERVERprivatekey

MYSERVER sends his certificate to ALFRED and
a message that is signed with MYSERVER's
private key - ALFRED can now establish trust in
MYSERVER if ALFRED can successfully match
the digest MYSERVER sent.

ALFRED sends his certificate to MYSERVER
and a message that is signed with his private key

- MYSERVER can now establish trust in him if
MYSERVER can successfully match the digest

he sent.

�In order to create session keys and encrypt the data stream, only the server needs to have a certificate.

�If the client has a certificate, then the server can use that to authenticate the client. On z/OS a client certificate
can be mapped to a RACF user ID. Password authentication may still be required by the server application, but
the password can at least now be submitted in encrypted form over the network.

I trust MYSERVER! I trust ALFRED!

ALFRED MYSERVER

1

IBM Software Group | Enterprise Networking and Transformation Solutions

© 2005 IBM Corporation

�SSL: Secure Sockets Layer

ƒ Created by Netscape

ƒ Originally implemented inside Web clients and servers

ƒ Above sockets and below application protocol

ƒ SSLv1 no longer supported

ƒ SSLv2 still some

–mostly public access compatibility concern

ƒ SSLv3.0 improved security

�TLS: Transport Layer Security

ƒ TLSv1.0 (SSLv3.1)

ƒ IETF RFC 2246

�End-to-end application pipe

ƒ TCP connections

ƒ Server authentication

ƒ Optional client authentication

ƒ Authentication

–Public key cryptography, third-party signed certificate

ƒ Data privacy

–Negotiated private key cryptography

–SSL record protocol

Background information

2

IBM Software Group | Enterprise Networking and Transformation Solutions

© 2005 IBM Corporation

Background Information

CA

certificateClient

certificate

Server

Application

keyring

CA

certificate

Client

Application

CA

certificate

keyring

Server

certificate

CA

certificate

Server Certificate - Always Required
Authenticates Server to Client

Server must have access to private keys

Used to encrypt data cipher key exchange

Both need server's CA Certificate installed

Client Certificate - Optional
Authenticates Client to Server

Client must have access to private keys

Both need client's CA Certificate installed

3

IBM Software Group | Enterprise Networking and Transformation Solutions

© 2005 IBM Corporation

�Application layer implementation

ƒ Development expense repeated for each application

ƒ Toolkits available for limited programming environments

–C and Java

–Forking or Threaded POSIX model

–Require application change

ƒ Many existing z/OS applications do not fit this model

–COBOL, assembler sockets programs

–CICS sockets transactions

–etc.

ƒ Many applications purchased or otherwise not available for change

–Source code is needed to enable them for SSL/TLS

�Application specific deployment

ƒ Unique configuration for each application

ƒ Different levels of SSL/TLS architecture support

ƒ Not all toolkits support/exploit z/OS and zSeries capabilities

–RACF keyrings

–Certificates associated with user IDs

–Hardware cryptography

Current SSL/TLS API support on z/OS is limited to C and Java

4

IBM Software Group | Enterprise Networking and Transformation Solutions

© 2005 IBM Corporation

Application Transparent Transport Layer Security (AT-TLS)

�Application Transparent

ƒ Support existing applications without change

ƒ Allow applications to optionally exploit/control advanced features

–Simple ioctl

–Extract status, certificate, and associated user ID

–Permit cleartext negotiation prior to starting secure connection

�Transport Layer

ƒ Implement inside the TCP layer of the stack

ƒ Common configuration through policy

ƒ Exploit z/OS

–RACF

–SystemSSL

–ICSF

–Hardware cryptography

�Security

ƒ Multiple Protocols

–TLS (SSL V3.1)

–SSL V3.0

–SSL V2

Safe

communication

5

IBM Software Group | Enterprise Networking and Transformation Solutions

© 2005 IBM Corporation

Transparent application security: policy-controlled transparent
SSL/TLS support - SSL/TLS for all z/OS sockets applications

�Basic TCP/IP stack-based TLS

ƒ TLS process performed at TCP layer without requiring any
application change (transparent)

ƒ All connections to specified port are designated as TLS
required

�Can be further qualified by source/destination IP
addresses

ƒ Transparent TLS policies managed via Policy Agent

�Transparent TLS can be requested by aplication

ƒ Application issues transparent TLS API calls to indicate
that connection should start/stop using TLS

�TCP/IP stack-based TLS with client identification

services for application

ƒ Application issues TLS API calls to receive user identity
information based on X.509 client certificate

�Available to any TCP application

ƒ CICS Sockets and JES/NJE are primary focus of this
support

ƒ All programming languages supported

Network Interfaces

IP Networking Layer

TCP and UDP

Sockets

Application
s

System SSL calls

Encryp-

ted

Optional APIs for
TLS-aware
applications to
control start/stop
of TLS session

Policy
Agent

Transparent
TLS policy
flat file

6

IBM Software Group | Enterprise Networking and Transformation Solutions

© 2005 IBM Corporation

Trademarks, Copyrights, and Disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or typographical errors. IBM
may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's future direction and intent are subject to change or
withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services
available in all countries in which IBM operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used. Any
functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER EXPRESS OR IMPLIED. IBM
EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM
products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under
which they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those
products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or
implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright licenses should be made, in
writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of how those customers have
used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon considerations such as the amount of multiprogramming in
the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance
improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2005. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

