
© Copyright International Business Machines Corporation 2004. All rights reserved.

Communications Server z/OS V1R5 and V1R6 Technical Update

FTP Client API on z/OS®

© Copyright International Business Machines Corporation 2004. All rights reserved.

Topics

z/OS V1R6

ƒFTP client programming interface

ƒModernized DBCS/MBCS handling by FTP

�Recent APAR activity

Copyright International Business Machines Corporation 2004. All rights reserved.

FTP Client Application
Programming Interface

© Copyright International Business Machines Corporation 2004. All rights reserved.

�Provides an interface that allows an application to programatically invoke the FTP client on z/OS from common
environments (unix shell, TSO, or MVS batch job)

�Characteristics of the interface:

ƒz/OS V1R6 provides a callable interface to be used from Assembler, Cobol, PL/I (or any z/OS supported programming
language that supports a call interface) - plans to add C and REXX APIs in z/OS V1R7

ƒInterface is reentrant and does support multiple parallel FTP client sessions by tasks within an address space

ƒFor communication between the program and the interface, a simple set of commands and data areas are used.
(Mappings for common programming languages are provided)

ƒBoth blocking (wait for a response), and non-blocking (polling-mode) calls are supported

ƒIn non-blocking mode, progress replies can be returned to the calling application as the transfer progresses

ƒThe simple commands tell the interface what to do, for example: initialize, terminate, execute an FTP client command,
process output from the FTP client command that was executed, poll for command completion.

ƒResults are returned as structured fields in communication area control blocks (return codes from interface and server
replies or possibly local command) along with free-format replies from the FTP client code

ƒDebugging options are provided

1 Initialize

2 open hostnamex

3 user userxyz

4 pass ????

5 cd /etc

6 get inetd.conf

7 quit

FTP
client

API
stub

"normal"
z/OS

FTP
client

Between each command
to the FTP client interface,
the application program
can analyze results from
the previous command
and act based on those
results.

stdin

stdout

stderr

z/OS FTP Client programming interface for
improved automation and integration of z/OS file

transfers in z/OS V1R6

Application program

V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

�Customers utilize the z/OS FTP Client and Server in highly critical applications to transform
and transfer data between hosts and platforms. The z/OS FTP Client handles requests and
drives the Server in performing these tasks.

�The z/OS FTP Client can be invoked in several environments and accepts subcommands
either entered by an interactive user or contained in a pre-built script

�An interactive user can evaluate request results immediately and decide whether and how to
proceed - however, as an "application", an interactive user is slow and costly

Large-scale applications generally use a pre-built script, which limits options for conditional
execution

�Currently, an application using a script must choose whether to exit at the first error in an
eligible subcommand or to ignore all errors and continue processing subcommands

�This limitation requires minute differentiation of tasks within separate steps to enable
granular conditional execution

�z/OS V1R6 introduces a new interface to the z/OS FTP Client that allows customers to
automate and manage not only routine tasks, but also mutable and exceptional events in the
Client and Server, in an informed and directed fashion

Why do we need an FTP client programming
interface? V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

�The FTP Callable Application Programming Interface addresses these requirements and includes
the following features

ƒUses a standard call interface

ƒIs reentrant and reusable

ƒDoes not establish a new enclave within the application run unit

ƒPermits the use of multiple instances of the interface by one program

ƒPolls the Client until a subcommand completes (wait mode) or returns to the application to enable
multitasking (no-wait mode)

ƒAllows the application to poll the client for status of a subcommand

ƒReturns results of the request and collects the output that was generated by the z/OS FTP Client

�Information returned by the FTP Callable API

ƒResults from the interface

–Overall result code (also returned in the return code register)

–Status code

–Interface error code

–Interface service error return and reason codes

ƒResults from the z/OS FTP Client and Server

–Client error code

–Last Server reply code received

–Subcommand code

ƒStatistics about any output generated by the request

ƒNot all results are applicable for any given request

FTP client programming interface - introduction V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

�Elements of the FTP Callable API

ƒThe application program (or driver) that sends requests to the interface and interrogates the
results

ƒAn FTP Callable API control block (FCAI) to define each instance of the interface

ƒThe FTP Callable API stub program (EZAFTPKS) - link edited with the application or loaded
dynamically and reused

ƒThe FTP Callable API request handler (EZAFTPKI) - loaded by the stub program and reused

ƒAn FTP Client child process for each instance of the interface, which executes in the same or new
address space

ƒAn interface buffer for each instance that contains the results from the z/OS FTP Client for the
preceding initialization or subcommand request

FTP client programming interface - introduction V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

�Requirements for using the FTP Callable API

ƒInterface programs must be able to access storage acquired by the application, which includes
FCAI control block(s) and optional buffer(s)

ƒAll requests with the same FCAI must execute under the same TCB

ƒStandard CALL interface with samples for COBOL, PL/I and Assembler

ƒThe only addressing mode currently supported is 31-bit (AMODE 31). The application program
can reside below the line (RMODE 24).

ƒOMVS segment defined or defaulted for the application

ƒThe API has no signal handlers and raises no explicit signals

ƒThe application can catch an implicit SIGCHILD when the Client ends

ƒSo that the interface can trap certain ABENDs, specify TRAP(ON,NOSPIE) to disable invocation
of the ESPIE macro when the application program executes within an LE enclave. For example,
specify the following execution parameter for a COBOL application program: PARM='/
TRAP(ON,NOSPIE)'

–For instructions on specifying run-time options and parameters for LE languages, refer to "Using Run-
Time Options" in z/OS Language Environment Programming Guide.

ƒEZAFTPKS (the interface stub program) must be linked edited with the user program or loaded
dynamically at execution

–Shipped in CSSLIB

–Minimal function to ensure upward compatibility

ƒEZAFTPKI (the interface request handler module) must be available from the linklist or in the
STEPLIB/JOBLIB for the application program

FTP client programming interface - introduction V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

Application
program

Call EZAFTPKS

EZAFTPKS
(FTP

callable API
stub)

Application load module
FCAI - FTP

session
control block

Load and
call

EZAFTPKI

Return directly to caller of EZAFTPKS

EZAFTPKI
(FTP callable

request
handler)

Interface
buffers

EZAFTPLC
(FTP client)

Spawn UNIX

process with
FTP client

stdin,
stdout, and
stderr pipes

One FTP client session
control block and one

UNIX process per FTP
client API session.

Trace

Structure of the FTP client API implementation

Connect to an
FTP server

If trace is requested, trace
is written to a DD-name
specified by the caller or

to a dynamically allocated
SYSOUT file.

This is the
"normal"
FTP client

program.

V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

�In library hlq.SEZACMAC

ƒEZAFTPKA Assembler version of FCAI_Map

�In library hlq.SEZANMAC

ƒEZAFTPKC Enterprise COBOL copy member for FCAI-Map

ƒEZAFTPKP PL/I include member for FCAI_Map

�In library hlq.SEZAINST

ƒEZAFTPAW Sample assembler application

ƒEZAFTPAX Sample Enterprise COBOL application

ƒEZAFTPAY Sample PL/I application

�The application program communicates with the interface by passing parameters on each call and by
using the FCAI control block, which it must acquire in primary space prior to initialization

�The definitions for the FCAI include equates, constants, or level-88 names for setting and interpreting
FCAI fields

�The FCAI must persist for the life of the instance of use of the interface

�The IP Programmer's Reference contains detailed information on the FCAI fields, how to set and
interpret them, and tips on diagnosing error conditions

Programming references V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

* *

* FTP Callable Application Interface (FCAI) control block *

* *

* Each field in the mapping is marked with one of the *

* following: *

* :I Input field that is set by the user program *

* :I* Input field that is set by the user program and *

* is further defined by equated values (see *

* the values at the end of the mapping) *

* :O Output field that is set by the interface *

* :O* Output field that is set by the interface and *

* is further defined by equated values (see *

* the values at the end of the mapping) *

* :R Reserved for use by the interface *

* :U Application work area *

* *

* Fields marked must be set by the user program. *

* *

FCAI_Map DSECT , map the FCAI

FCAI_Eyecatcher DS CL4 eyecatcher = 'FCAI' :I

FCAI_Size DS H size of FCAI area :I

* set to FCAI_NumInterfaceBytes

FCAI_Version DS XL1 version of FCAI :I*

FCAI - Assembler layout - part 1 of 4 V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

* See "Programming notes for the FTP Callable API" in *

* IP Programmer's Reference for a description of *

* FCAI_PollWait and FCAI_ReqTimer. *

FCAI_PollWait DS XL1 seconds to wait before POLL read :I

* 0 = always wait 1 second (default)

* >0 = max progressive wait value

FCAI_ReqTimer DS XL1 Request completion timer :I

* Fields used in the API tracing function *

FCAI_TraceIt DS XL1 trace indicator :I*

FCAI_TraceID DS CL3 ID used in a trace record :I

FCAI_TraceCAPI DS XL1 TRACECAPI FTP.DATA statement :O*

FCAI_TraceStatus DS XL1 status of the trace :O*

FCAI_TraceSClass DS CL1 SYSOUT class for trace :I

FCAI_TraceName DS CL8 ddname of the trace file :O

* Interface token and request ID *

FCAI_Token DS F interface token :O

FCAI_RequestID DS CL4 last request (for example, SCMD) :O

FCAI - Assembler layout - part 2 of 4 V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

* Request Completion Values *

* See "Interpreting results from an interface request" in the *

* IP Programmer's Reference for more information. *

DS 0F start of request completion values

FCAI_Result DS X result of last request :O*

FCAI_Status DS X status code for a request :O*

FCAI_IE DS X interface error (IE) :O*

FCAI_CEC DS X Client Error Code (CEC) :O*

FCAI_ReplyCode DS H server reply code (or 0 if none) :O

FCAI_SCMD DS X client subcommand code :O*

DS XL1 reserved :R

FCAI_ReturnCode DS F return code (see FCAI_IE values :O

* for conditions that set this)

FCAI_ReasonCode DS F reason code (see FCAI_IE values :O

* for conditions that set this)

* Statistics about output in the interface buffer *

FCAI_NumberLines DS F number of lines of output :O

FCAI_LongestLine DS F size of the longest output line :O

FCAI_SizeAll DS F size of all lines of output :O

FCAI_SizeMessages DS F size of all message output lines :O

FCAI_SizeReplies DS F size of all reply output lines :O

FCAI_SizeList DS F size of all LIST or NLST output :O

FCAI_SizeTrace DS F size of all trace output :O

FCAI - Assembler layout - part 3 of 4 V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

* End of fields currently defined to the interface *

FCAI_ReservedForInterface DS 45F reserved :R

FCAI_NumReservedBytes EQU *-FCAI_ReservedForInterface (180)

FCAI_NumInterfaceBytes EQU *-FCAI_Map Total interf bytes (256)

FCAI_UserArea DS 0C User work area :U

FCAI - Assembler layout - part 4 of 4 V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

�The FTP Callable API is invoked by calling EZAFTPKS -- the interface stub program -- from the
application program

�The calling program must obtain storage for an FCAI and initialize selected fields in the FCAI before the
first call to EZAFTPKS

ƒStorage for the FCAI can be static storage in the calling CSECT or it can be acquired dynamically via
STORAGE Obtain or by other means.

�EZAFTPKS call format for COBOL programs

ƒCALL ‘EZAFTPKS’ USING FCAI-Map, request_type, parm1, parm2, ...

�EZAFTPKS call format for assembler programs

ƒCALL EZAFTPKS,(FCAI_Map, request_type, parm1, parm2, ...),VL

�EZAFTPKS call format for PL/I programs

ƒCALL EZAFTPKS (FCAI_Map, request_type, parm1, parm2, ...);

�Call types:

ƒINIT - Initialize an FTP client session

ƒTERM - Terminate an FTP client session

ƒSCMD - Submit an FTP client command (such as: open, user, get, put, locsite, etc.)

ƒGETL - Retrieve output lines from previous SCMD command interaction

ƒPOLL - Query status of asynchronous SCMD command

Call syntax V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

Columns Description Contents

1 Line type

'M' - message
'R' - reply
'L' - LIST/NLST
'T' - Client trace

2-3 Length of following text 0 to 2400

4-n
(unless length is 0)

Text of line Any

M 0025 >>> PORT 127,0,0,1,4,109

R 0020 200 Port request OK.

M 0009 >>> LIST

R 0019 125 List started OK

L 0010 total 3960

L 0067 -rw-r----- 1 IBMUSER SYS1 855 Jan 28 2002 CACertRaw.b64

L 0066 -rw-r----- 1 IBMUSER SYS1 8192 Jun 30 17:42 Document.txt

L 0066 dr-xr--r-- 2 IBMUSER SYS1 8192 Nov 12 2001 Nov2001_cert

L 0064 -rw-r----- 1 IBMUSER SYS1 1230 Jun 30 16:31 Readme.txt

L 0069 -rw-r----- 1 IBMUSER SYS1 21 Sep 4 2001 zos_ebcdic_file

L 0069 -rw-r----- 1 IBMUSER SYS1 0 Jan 22 2003 |touch testfile

R 0032 250 List completed successfully.

M 0024 Command(00-14-LIST-250):

Format of data returned over the API to calling
application V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

Sample assembler program
Part 1 of 5

Only reason for RMODE=24 is
in-line QSAM DCBs (nothing to
do with the FTP API).

I have the FCAI defined as part
of this CSECT.

Eyecatcher, size, and version
must be initialized before
calling INIT.

I enable tracing to a SYSOUT
file with output class=X

I will max wait 2 minutes when
doing synchronous calls to the
API

V1R6

PRINT NOGEN

*

EZAFTPKA

*

FTPAPIS1 INIT 'Sample FTP API Client program 1',RMODE=24

*

OPEN (SYSPRINT,(OUTPUT)),MODE=31

LA R10,FCAI

USING FCAI_Map,R10

*

* Initialize FCAI

*

MVC FCAI_Eyecatcher,=CL4'FCAI'

MVC FCAI_Size,=AL2(FCAI_NumInterfaceBytes)

MVC FCAI_Version,=AL1(FCAI_Version_Number)

MVC FCAI_TraceIt,=AL1(FCAI_TraceIt_Yes)

MVC FCAI_TraceSClass,=CL1'X'

LA R2,2 *Max wait 2 minutes

STC R2,FCAI_ReqTimer

*

* Initialize the API

*

CALL EZAFTPKS,(FCAI,APIINIT),VL

LTR R15,R15 *INIT OK ???

BNZ INITFAIL

.....

DS 0D

FCAI DC XL(FCAI_NumInterfaceBytes)'00'

© Copyright International Business Machines Corporation 2004. All rights reserved.

*

* Send an OPEN command

*

CALL EZAFTPKS,(FCAI,APISCMD,CMDOPEN),VL

LTR R15,R15

BNZ OPENFAIL

*

* Send a USER command and expect a password prompt

*

CALL EZAFTPKS,(FCAI,APISCMD,CMDUSER),VL

CH R15,=AL2(FCAI_Result_Status)

BNE USERFAIL

CLC FCAI_Status,=AL1(FCAI_Status_PromptPass)

BNE USERFAIL

......

CMDOPEN DC AL2(L'OPENTXT)

OPENTXT DC C'OPEN 127.0.0.1'

*

CMDUSER DC AL2(L'USERTXT)

USERTXT DC C'USER USER1'

Sample assembler program
Part 2 of 5

First thing after initializing the
API in this sample is to connect
to an FTP server at the
loopback address:

OPEN 127.0.0.1

If open is successful, we
proceed to log on to the FTP
server:

USER USER1

The expected result of the
USER command is to receive a
prompt for a password, which
is indicated in one of the FCAI
status fields.

V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

*

* Send a password as response to the password prompt

*

CALL EZAFTPKS,(FCAI,APISCMD,CMDPASS),VL

LTR R15,R15

BNZ PASSFAIL

*

* Send a DIR command

*

CALL EZAFTPKS,(FCAI,APISCMD,CMDDIR),VL

LTR R15,R15

BNZ DIRFAIL

.....

*

CMDPASS DC AL2(L'PASSTXT)

PASSTXT DC C'PASS xxxxxx'

*

CMDDIR DC AL2(L'DIRTXT)

DIRTXT DC C'DIR'

*

Sample assembler program
Part 3 of 5

If prompted for a password, we
send a PASS command:

PASS xxxxxx

We're now logged on to the
remote FTP server.

In this very simple sample, we
now just send a DIR command
to the server

DIR

V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

* Retrieve all output lines and print them to SYSPRINT

*

GETLNEXT EQU *

*

CALL EZAFTPKS,(FCAI,APIGETL, C

GETLFIND,GETLTYPE,GETLSEQ,GETLBUF),VL

LTR R15,R15

BZ GETLGOOD

CH R15,=AL2(FCAI_Result_NoMatch)

BE GETLDONE

B GETLFAIL

GETLGOOD EQU *

MVI PRTDATA,C' '

MVC PRTDATA+1(L'PRTDATA-1),PRTDATA

MVC PRTTYPE,LINEID

SR R2,R2

ICM R2,B'0011',LINELEN

LTR R2,R2

BZ LINEFAIL

CVD R2,DORD

OI DORD+7,X'0F'

UNPK PRTLEN,DORD

BCTR R2,0

EX R2,MVCLINE

PUT SYSPRINT,PRTLINE

B GETLNEXT

MVCLINE MVC PRTDATA(*-*),LINE

GETLDONE EQU *

Sample assembler program
Part 4 of 5

In a real application, we
would have analyzed the
output lines from the DIR
command - here we simply
format them and print them
to a SYSPRINT file.

We retrieve the lines one by
one using the GETL request
type - FIND sequential
selected line types (in this
example: A for all).

ƒM Message from the

client.

ƒR Reply from the

server.

ƒL List data from a

DIR or LS

subcommand.

ƒT Trace output from

debug or dump.

ƒA Any type of output

line.

GETLFIND DC CL4'FIND'

GETLTYPE DC CL1'A'

GETLSEQ DC CL1'N'

GETLBUF DC A(BUFFER,0,1024)

V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

*

* Send a QUIT command

*

WTO '*** Calling SCMD with Quit'

CALL EZAFTPKS,(FCAI,APISCMD,CMDQUIT),VL

LTR R15,R15

BNZ QUITFAIL

*

* Send TERM

*

DONE EQU *

CALL EZAFTPKS,(FCAI,APITERM),VL

CLOSE (SYSPRINT),MODE=31

TERM

Sample assembler program
Part 5 of 5

When we're done, we send a
QUIT command for the client
to disconncet from the server
and terminate.

Finally we terminate the FTP
session with callable
interface.

For more details and instructions on how to program to the callable FTP client programming interface, refer to:

IP Programmer's Reference - Chapter 12 "FTP Callable Application Programming Interface", SC31-8787

V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

�The z/OS FTP Client has always issued one of two messages at 10-second intervals to indicate the progress of a long-
running inbound or outbound transfer

�In support of the FTP Callable API, the content of the transfer progress messages has been enhanced to include the
bytes transferred during the interval and the rates of transfer

�The interval is now configurable or the messages can be suppressed entirely

ƒAn interval value of 0 suppresses the messages

ƒOtherwise, the minimum (and default) interval value is 10 seconds

�All users of the z/OS FTP Client can take advantage of these changes, whether or not they invoke the Client from the
API

ƒEZA1485I number bytes transferred - interval second interval rate KB KB/sec - Overall transfer rate KB KB/sec

ƒEZA2509I number megabytes transferred - interval second interval rate KB KB/sec - Overall transfer rate KB KB/sec

�New LOCSITE parameter:

PROGRESS = {10 | number}

�New FTP.DATA statement:

PROGRESS = {10 | number}

ƒnumber - specifies the interval in seconds between progress report messages generated in the FTP client during an
inbound or outbound file transfer. A value of zero turns progress reporting off in the FTP client. The default value is
10 seconds

Improved transfer progress feedback V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

There are several places in the z/OS FTP client where the client prompts the user for a response after a
subcommand is processed. For example, after the USER subcommand is processed, the client prompts for a
password. The FTP Callable API minimizes the number of situations that require a prompt. This simplifies the
reactions required by the user program.

�Prompt for IP address if not supplied as a start parameter on the INIT request

ƒThe FTP client prompts immediately if the IP address was not supplied. The FTP Callable API does not
pass this prompt to the user program. The user program should use SCMD to send an OPEN
subcommand as soon as it wants a session with the FTP server.

�Prompt for userid after an OPEN subcommand

ƒThe FTP client prompts for a userid for login after the session is set up with the server. The FTP Callable
API does not pass this prompt to the user program. The user program should use SCMD to send a
USER subcommand as soon as it wants to login with the FTP server. The user program can provide the
password as well as the userid as parameters with the USER subcommand.

�Prompt for password after a USER subcommand

ƒThe FTP client prompts for a password to complete a login if one was not passed with the USER
subcommand. The FTP Callable API passes this prompt to the user program using
FCAI_Status_PromptPass. The user program should use SCMD to send a PASS subcommand as the next
subcommand. If any subcommand other than PASS is sent, the request fails with FCAI_IE_PassPromptErr.

�Prompt for subcommand after a PROXY subcommand

ƒThe FTP client prompts for a subcommand if PROXY is entered without a subcommand parameter. The

FTP Callable API does not support PROXY without a subcommand. If the client receives PROXY
without a subcommand the request fails with FCAI_CEC_PROXY_ERR.

Operation of the FTP Client under the API
Prompting V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

�Prompt for accounting information after a USER, PASS, or CD (CWD) subcommand

ƒSome FTP servers prompt the FTP client for accounting information after a USER, PASS, or CWD command.
The FTP Callable API passes this prompt to the user program using FCAI_Status_PromptAcct. The user
program should use SCMD to send an ACCT (or ACCOUNT) subcommand as the next subcommand. If any
subcommand other than ACCT (or ACCOUNT) is sent, the request returns FCAI-IE-AcctPromptErr.

ƒTip: When a PASS or ACCT (or ACCOUNT) subcommand is expected, the interface refuses any other SCMD
request until the prompt is satisfied. The user program can issue GETL or TERM without satisfying the prompt.
TERM generates a QUIT subcommand that is accepted and stops the client process.

�Prompt for confirmation for MGET, MPUT, and MDELETE subcommands

ƒThe FTP client prompts for confirmation for these subcommands if the prompting subcommand has toggled
prompting on. (Note that this is the state in which the FTP client starts unless the "-i" start parameter is
specified.) The FTP Callable API does not pass this prompt to the user program. The subcommand is
executed as if prompting were turned off.

�General command prompt: EZA2121I Command (ee-ss-cccc-rrr):

ƒee is the 2-digit decimal client error code for the subcommand (00 if none))

ƒss is the 2-digit decimal subcommand code (this field is blank when INIT does not cause an implicit OPEN to be
performed)

ƒcccc is the final 4-character FTP command sent to the Server (blank if none)

ƒrrr is the numeric code from the last Server reply (blank if none)

Operation of the FTP Client under the API
Prompting V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

�The z/OS FTP client that is used by the FTP Callable API is described in IP User's Guide and Commands and IP

Configuration Reference. The z/OS FTP client, when started with the FTP Callable API, operates essentially as it
does when invoked in an interactive environment under the z/OS UNIX shell.

�When the z/OS FTP client is invoked from a batch job or from TSO, data sets and files can be allocated to DD
names for use by the client. When the z/OS FTP client is spawned from the FTP Callable API, DD names
associated with the application are not available to the client process. Specifically, the use of the following DD
names is not supported by the FTP Callable API:

ƒSYSFTPD and SYSTCPD

ƒNETRC

ƒINPUT (SYSIN) and OUTPUT

�Transfer of data sets by DD name is not possible in the spawned client process. If the application sends a transfer
subcommand (PUT, GET, etc.) that includes //DD:ddname, the client returns FCAI_CEC_FILE_ACCESS.

�When the z/OS FTP Client starts, options (parameters) are processed that affect the operation of the client. The
user program uses the START-PARM parameter on the INIT request to pass its options to the FTP Callable API
which passes them on to the client. All of the options defined for the z/OS FTP client are accepted when the client
is started with the FTP Callable API but note the following:

ƒThe "-e" and "EXIT" options are ignored by the FTP Callable API. These are intended to affect the operation of
the FTP client by causing it to stop when an eligible subcommand encounters an error. In the FTP Callable API
those errors are passed back to the user program as a Client Error Code so the application can process the
error and decide whether and how to continue.

ƒThe "-i" option to disable prompting for m* commands has no effect on the API. m* command prompting is
always off.

Operation of the FTP Client under the API
Miscellaneous V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

�When the z/OS FTP client is executed within the z/OS UNIX shell, a backslash '\' is required before the '('
that signals the start of the MVS-type parameters. Do not use the backslash when invoking the client with
the FTP Callable API.

�The z/OS FTP client describes how you change local site defaults using FTP.DATA. The search order for
locating the FTP.DATA configuration file for the client under the FTP Callable API is:

ƒ$HOME/ftp.data

ƒuserid.FTP.DATA

ƒ/etc/ftp.data

ƒSYS1.TCPPARMS(FTPDATA)

ƒtcpip_hlq.FTP.DATA

�The IP Configuration Reference defines the FTP.DATA statements that can be used to change local site
defaults for the z/OS FTP Client. One of the statements is CLIENTERRCODES which controls return
code settings in the client. When the Client is started by the FTP Callable API, the value on the
CLIENTERRCODES statement does not affect the reporting of results by the interface.

�When the z/OS FTP Server prompts for a password or accounting data, whatever is entered next from the
Client is used to satisfy the prompt. Under the FTP Callable API, the application cannot issue an SCMD
request other than the one expected, but it does have the option to issue GETL or TERM. If the request is
TERM, the interface generates a QUIT subcommand which is accepted, terminates the connection with
the Server, and stops the Client process.

Operation of the FTP Client under the API
Miscellaneous V1R6

Copyright International Business Machines Corporation 2004. All rights reserved.

Modernized DBCS/MBCS support
in FTP

© Copyright International Business Machines Corporation 2004. All rights reserved.

�Enhance Multi-Byte Character Set (MBCS) - primarily support for Asian languages

�Current FTP support for Double Byte Character Set (DBCS) is based on an imbedded support in
TCP/IP for selected conversions and is not ready for the latest z/OS character conversion technology

�z/OS V1R4 provides MBCS encoding support only for Chinese code standard GB18030

�z/OS V1R6 enhances MBCS to include the DBCS

code pages currently supported by the existing old

imbedded support

�Some conversion parameters are not supported

with the new method (they aren't standard)

�The new support is based on use of the standard

FTP protocol (type ASCII) and use of SITE

commands that are compatible with single byte

(SBCS) conversion:

�ENCODING SBCS/MBCS and

�SB/MBDATACONN=(file_system_code_page ,

network_code_page)

�Original codepage support for DBCS using

LOADDBCSTABLES is still supported, but we

recommend moving to the new support if at all

possible

�Objective is to make FTP independent of any

specific code page - as long as the underlying

z/OS conversion supports a code page conversion - so will FTP

�Currently FTP uses iconv() conversion services, but will eventually move to the Unicode Conversion
Services

Enhanced DBCS and MBCS codepage support in
FTP V1R6

© Copyright International Business Machines Corporation 2004. All rights reserved.

Trademarks, Copyrights, and Disclaimers

The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM CICS IMS MQSeries Tivoli
IBM(logo) Cloudscape Informix OS/390 WebSphere
e(logo)business DB2 iSeries OS/400 xSeries
AIX DB2 Universal Database Lotus pSeries zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product and service names may be trademarks or service marks of others.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include technical inaccuracies or
typographical errors. IBM may make improvements and/or changes in the product(s) and/or program(s) described herein at any time without notice. Any statements regarding IBM's
future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this document to IBM products, programs, or
services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM operates or does business. Any reference to an IBM Program
Product in this document is not intended to state or imply that only that program product may be used. Any functionally equivalent program, that does not infringe IBM's intellectual
property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY WARRANTY, EITHER
EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT. IBM shall
have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and conditions of the agreements (e.g., IBM Customer Agreement,
Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided. Information concerning non-IBM products was obtained from the suppliers
of those products, their published announcements or other publicly available sources. IBM has not tested those products in connection with this publication and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. IBM makes no representations or warranties, express or implied, regarding non-IBM products and
services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding patent or copyright
licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented as illustrations of
how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance
can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

© Copyright International Business Machines Corporation 2005. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule Contract and IBM Corp.

