

b̂usiness on demand software

© 2008 IBM Corporation

®

z/OS® V1R10 Communications Server

FTP enhancements

This presentation covers FTP enhancements that are not related to security

ftpenh.ppt Page 1 of 26

© 2008 IBM Corporation FTP enhancements 2

FTP client API background

� The FTP client API was first introduced in V1R6
�Provides better control over z/OS “programmed” FTP

client operations

�Allows better control over individual FTP client
functions

�Lets users and ISVs provide detailed monitoring of FTP
client functions

� Support for new programming environments has
been added over multiple releases
�Assembler, REXX™, C/C++

z/OS Communications Server provides an FTP client API that can be used to
programmatically control the z/OS FTP client. z/OS V1R6 provides an FTP client API for
assembler that can be used by applications written in programming languages that
support a callable interface. This FTP client API is suitable for applications written in
languages such as assembler, PL/1 and Cobol. z/OS V1R7 extends the FTP client API to
support the C and C++ programming languages. z/OS V1R8 further extends the FTP
client API to support the REXX programming language.

The FTP client API provides improved control over existing options, such as using batch
jobs or command lists. Using the FTP client API, an application can programmatically
handle replies and errors received from both the FTP client and the FTP server.

ftpenh.ppt Page 2 of 26

© 2008 IBM Corporation FTP enhancements 3

FTP client API background

� Elements of the FTP client API
�Stub program (EZAFTPKS) – link edited with the

application or loaded dynamically and reused

�Request handler (EZAFTPKI) - loaded by the stub
program and reused

�Created FTP client child process for each instance of the
interface

The FTP client API has three main elements. It includes a stub program that is link-
edited with the application or loaded dynamically and reused, a request handler, and a
created FTP client. Each instance of the interface will create a new FTP client address
space.

ftpenh.ppt Page 3 of 26

© 2008 IBM Corporation FTP enhancements 4

Why do a JAVA ™ API?

� Without a client API, it is difficult to use FTP on
z/OS from a Java application
�There is limited existing Java FTP support

�No support for all the features of z/OS

� Difficult for a Java application to programmatically
control the z/OS FTP client
�Must use the Java Native Interface (JNI) to

communicate with the z/OS FTP client

�JNI is a complicated interface

Controlling the z/OS FTP client from within a Java application is difficult. z/OS V1R7
added an FTP client API for C and C++, but a Java application must use the Java Native
Interface (JNI) to use this API. JNI is a complicated, low-level API and is not intended for
use by the typical Java programmer.

There are other options for using FTP from within a Java application without interfacing
with the z/OS FTP client. The core Java programming language has limited support for
FTP using URL syntax. Using this, an application can retrieve a file from a remote FTP
server and receive the results into the application program’s memory. There are also
vendor Java FTP libraries available which allow applications to use FTP to retrieve files
from or store files on a remote FTP server. None of these options support z/OS features,
such as MVS datasets.

ftpenh.ppt Page 4 of 26

© 2008 IBM Corporation FTP enhancements 5

FTP client API for JAVA elements

� In V1R10, the FTP client API provides a Java
interface
�Includes a package of Java classes to control the z/OS

FTP client
� com.ibm.zos.net.ftp

�Includes native JNI code to allow the Java classes to
interface with the z/OS FTP client

� Also provided: a sample program and extensive
documentation using Javadoc

To provide access to the z/OS FTP client from within a Java application, support for the
Java programming language is added to the set of FTP client APIs that ship with z/OS
Communications Server. The Java FTP client API consists of two parts. First, there is a
package of Java classes that is used by a Java programmer to access the FTP client API.
Second, there are native routines written in C++ that are invoked by the Java package
using the Java Native Interface (JNI). Third, a sample program, ftpcapij.java, that uses the
FTP client API for Java is provided.

The FTP client API for Java is documented using Javadoc. The Javadoc files consist of a
set of HTML pages that describe the Java classes and the class methods. The Javadoc
can be downloaded to a local workstation, the Javadoc files extracted, and viewed using
any available Web browser. This is a new method of documentation for z/OS, but is
standard for Java.

ftpenh.ppt Page 5 of 26

© 2008 IBM Corporation FTP enhancements 6

FTP client API structure

An application running on z/OS can use one of four flavors of the FTP client API.

The FTP client API for assembler provides a callable interface to send subcommands to the FTP client. The
FTP client API for assembler sends the subcommands to a created z/OS FTP client.

The FTP client API for C/C++ allows applications written in either C or C++ to send subcommands to the
FTP client. The FTP client API for C/C++ uses the FTP client API for assembler.

The FTP client API for REXX allows applications written in REXX to send subcommands to the FTP client.
The FTP client API for REXX uses the FTP client API for assembler.

The FTP client API for Java allows applications written in Java to send subcommands to the FTP client. The
FTP client API for Java uses the FTP client API for C/C++, which in turn uses the FTP client API for
assembler.

The FTP client API for Java provides an interface to the z/OS FTP client. This interface enables a user
program written in Java to send subcommands for the client to process. The interface also enables you
program to retrieve output that includes the messages from the client, replies from the FTP server, and other
data generated as the result of the request.

Each FTPClient object represents a single instance of the interface. A user program can create multiple
instances of FTPClient. This allows a single user program to establish multiple simultaneous connections to
the same FTP server or different FTP servers. Your program can multitask to different instances of the
interface by requesting that the API not wait for the completion of an FTP subcommand before returning.

The z/OS FTP client that is used by the FTP client API is the standard z/OS FTP client. It is described in File
Transfer Protocol (FTP) in z/OS Communications Server: IP User's Guide and Commands File Transfer
Protocol in z/OS Communications Server: IP Configuration Reference. The z/OS FTP client, when started
with the FTP client API for Java, operates essentially as it does when invoked in an interactive environment
under the z/OS UNIX® shell. See z/OS FTP client behavior when invoked from the FTP client API in the z/OS
Communications Server: IP Programmer's Guide and Reference for a description of the differences.

This package uses JNI to interface with the z/OS FTP client using the FTP client API for C. See the z/OS
Communications Server: IP Programmer's Guide and Reference for more details on the FTP client API for C.

ftpenh.ppt Page 6 of 26

© 2008 IBM Corporation FTP enhancements 7

Typical FTP API program structure

When using the FTP client API for Java, a Java program can create one or more instances of FTPClient.
Each instance of FTPClient provides an interface to a single instance of a z/OS FTP client.

Once the FTPClient object has been created, the Java program must initialize the FTP client API interface.
This is accomplished by invoking the init method on FTPClient. This call must be made before invoking
scmd, poll, getlCopy, getlFind or term. The Java program can optionally pass an initialization string and 0-9
environment variables to the z/OS FTP client.

Once the interface is initialized, the Java program can begin to send subcommands to the FTP client. The
Java program might choose to wait for the z/OS FTP client to complete processing the subcommand or for
the z/OS FTP client to return immediately regardless of whether the subcommand has completed. If the Java
program chooses not to wait for the z/OS FTP client to process the subcommand, the Java program must
use poll to retrieve the results from the subcommand. You cannot start a new subcommand with this
FTPClient until the subcommand is complete.

Once the subcommand is complete, the Java program can retrieve output that is returned by the FTP client.
The FTP client API buffers all lines of output produced by the FTP client. The Java program can use
getlFind to retrieve one line of output at a time, or can use getlCopy to retrieve all lines of output. The Java
program can then process the line or lines.

Once the Java program finishes processing the output from the FTP client, it can then send another
subcommand to the FTP client and repeat the processing above. Once the program is finished with the FTP
session, the Java API should send a “QUIT” subcommand to the FTP client and then invoke the term method
to terminate this instance of the interface. If the term invocation detects that a QUIT subcommand has not
yet been issued to the client, it generates a QUIT subcommand. The generated QUIT subcommand request
will be in the interface trace (if active) with (Generated by TERM) appended to the request record along with
any results that are retrieved.

At any time, the Java program can enable or disable tracing using the traceIt method. This method results in
the FTP client API for assembler trace being enabled or disabled for subsequent invocations of methods for
this FTPClient. Before enabling the trace for the first time, the Java program can use setTraceID. This sets
the identifier used in FTP client API for assembler trace records, and setTraceSClass to set the SYSOUT
class for the FTP client API for assembler trace file.

ftpenh.ppt Page 7 of 26

© 2008 IBM Corporation FTP enhancements 8

FTP client API for Java documentation

� This function is documented in a Javadoc. Here’s
how to access it:
�Download the Javadoc to your workstation

�Extract the documentation using the Java jar utility
� jar –xvf EZAFTPdoc.jar

� Using the jar utility requires that you have Java installed on your
workstation

�Use a Web browser to view
� Open the extracted file index.html with a Web browser

The FTP client API for Java is documented using Javadoc. The Javadoc for the FTP
client API for Java provides documentation for the FTP client API for Java package, and
the classes and exceptions found within the package. All public, external constants,
constructors, and methods are documented. Constructors and methods contains a
description of the constructor or method, all parameters, return values, and exceptions
that might be thrown. All of the documentation contains appropriate hyperlinks to other
sections of the documentation.

The Javadoc for the FTP client API package is stored in
/usr/include/java_classes/EZAFTPdoc.jar. To view the documentation, copy it from z/OS
to your workstation. The file should be transferred as a binary file, and can be retrieved
using FTP or another program.

Once the Javadoc has been downloaded, it must be extracted from the JAR file. Use the
jar utility that ships with Java to extract the contents; this might require you to download
and install Java on the workstation if it is not already installed. Although not required, it is
recommended you place the output files into a separate directory or folder.

Once the Javadoc has been extracted from the JAR file, use a Web browser to open the
extracted file index.html. This file will be placed in the root directory or folder into which
you extracted the Javadoc.

ftpenh.ppt Page 8 of 26

© 2008 IBM Corporation FTP enhancements 9

Example Javadoc screen capture

This slide shows an example screen capture of the FTP client API Javadoc. As you can
see, it is viewed in a browser just like any other hyperlinked Web pages and provides links
to detailed information on provided classes, exceptions, and other provided Java objects.

ftpenh.ppt Page 9 of 26

© 2008 IBM Corporation FTP enhancements 10

FTP dataset contention background

� FTP PUTs to an MVS dataset
�Server requires exclusive access
�Client requires shared access

� FTP GETs to an MVS dataset
�Server requires shared access
�Client requires exclusive access

Whenever a FTP PUT or GET request is processed, FTP must obtain exclusive or shared
access to the required data sets.

For each request, two resources are needed: one for the FTP client and the other for the
FTP server.

ftpenh.ppt Page 10 of 26

© 2008 IBM Corporation FTP enhancements 11

FTP dataset contention background

� If the FTP Get or Put subcommand cannot obtain
appropriate access to the MVS data set, the
request fails

�In V1R9 and earlier, you have no idea what job or
process is holding the MVS data set

�JOB must be resubmitted for processing

If either resource cannot be obtained, the FTP request fails.

When this occurs, in a V1R9 or early z/OS FTP, you have no idea who is using the data
set when the failure occurred.

If the failure occurred in a batch job, you might not know for some time that it failed. This
can become a problem if time sensitive information needs to be transferred between sites.

Upon discovering the job failed, the job must be resubmitted again. Delaying the transfer
of data can have a business impact.

If you know what job prevented the transfer, you can improve scheduling to avoid
conflicts.

ftpenh.ppt Page 11 of 26

© 2008 IBM Corporation FTP enhancements 12

V1R9 example of contention on server

ftp> get ‘deptogj.sales.info‘ +

‘dept.ogj.sales.returns’

200 Port request OK.

450 Data set DEPT.OGJ.SALES.RETURNS is allocated to
another job and is unavailable for RETR command.

ftp> put c:\dept\sales.returns +

‘dept.ogj(sales)'

200 Port request OK.

125 Data set DEPT.OGJ(SALES) is not available

550 DEPT.OGJ(SALES) used exclusively by someone else.

This slide shows an example of V1R9 FTP get and put subcommands failing because the
MVS data set is held by another job on the server.

In the first example, the get subcommand fails because the FTP server is not able to
obtain shared access to the MVS sequential file ‘deptogj.sales.info’. Another job on the
FTP server site has exclusive access to this MVS data set.

In the second example, the put subcommand fails because the FTP server requires
exclusive access to the member ‘sales’ in the MVS partitioned data set ‘dept.ogj’. Another
job on the FTP server site has exclusive access to this member.

In both cases, FTP is only able to display a notification as to why the request failed, but
not what job prevented FTP from transferring the data.

The display lines that begin with a 3-digit numeral are replies sent from the server to the
client; the 3-digit prefix is called a reply code. The 450, 125 and 500 reply codes indicate a
problem that the server has in satisfying the request.

ftpenh.ppt Page 12 of 26

© 2008 IBM Corporation FTP enhancements 13

V1R9 example of contention on client

get ‘deptogj.sales.returns’ +

‘dept.ogj.sales.returns’ (rep

EZA2562W Allocation of DEPT.OGJ.SALES.RETURNS failed (error
code 0210 info code 0000 S99ERSN 00000000)

EZA2799W The data set is allocated to another job and is
unavailable.

put ‘dept.ogj(returns)’ +

‘deptobj.sales.returns’

EZA2563W Data set DEPT.OGJ(RETURNS) used exclusively by
someone else.

This slide shows an example of V1R9 FTP get and put subcommands failing because
another job is holding the MVS data set on FTP client system.

With the get subcommand, a job is currently accessing the MVS sequential file
‘deptogj.sales.returns’. With the put subcommand, the ‘returns’ member in the ‘dept.ogj’
partitioned data set is being held by another job.

Because there are no reply codes associated with these messages, the failure is occurring
on the z/OS system that the client is running on.

Like the previous example, FTP informs you why the FTP subcommand fails but does not
provide any meaningful information about which job prevented the transfer.

ftpenh.ppt Page 13 of 26

© 2008 IBM Corporation FTP enhancements 14

Report holder of an MVS data set

� z/OS FTP will now search z/OS QUEUES for jobs
accessing an MVS data set
�Provide the job names that are accessing the MVS data

set and preventing FTP access

�Provide the type of access
� Shared or Exclusive

� Access that FTP needs

�Support provided for MVS datasets only
�Not for z/OS UNIX file system files

In V1R10, z/OS FTP reports the holder of an MVS data set when it is held by another job.
FTP can obtain the job names holding this MVS data set by searching a few queues.

There are over 70 queues used by z/OS to serialize access to MVS data sets which can
result in FTP not acquiring a data set. FTP focuses on two main queues: SPFEDIT and
SYSDSN.

The SPFEDIT queue is used by z/OS to control who is holding a member of a PDS or
PDSE. This queue is used by FTP and TSO edit to place a hold on the member of the
PDS when they will be updating it. When FTP cannot obtain a hold on a member, the
SPFEDIT queue is searched to locate the job holding the member.

The z/OS SYSDSN queue is used to serialize access to an MVS sequential data set. This
is done by z/OS whenever an application accesses an MVS sequential data set. FTP
searches this queue whenever it cannot obtain an MVS data set.

If FTP detects jobs on these queues which are holding the resource, it provides
information on up to eight jobs that are found. It also provides the type of access FTP
requires and the type of access the jobs holding the MVS data set have.

Now, whenever FTP cannot obtain an MVS data set, a message or reply is issued
containing information that identifies who is holding the MVS data set. The message
also identifies the access that the existing holder has, and the access that FTP needs.

ftpenh.ppt Page 14 of 26

 IVE

 by:

 .OGJ NS f
 000

 set s al

© 2008 IBM Corporation FTP enhancements 15

Dataset contention on client - V1R10 example

EZZ9819I FTP unable to obtain EXCLUSIVE use of

DEPT.OGJ.RETURNS which is held by: 0031 MGR1456 SHR on SYSDSN

EZZ9819I FTP unable to obtain EXCLUS use of

DEPT.OGJ.RETURNS which is held 0043 RTNDEPT SHR on SYSDSN

EZA2562W Allocation of DEPT .RETUR ailed (error code 0210
info code 0000 S99ERSN 00000)

EZA2799W The data i located

MGR1456 and RTNDEPT
have shared locks on file
DEPT.OGJ.RETURNS
on the client side

Notes (both client and server):
• Maximum of eight jobs shown
• Job will show as UNKNOWN if

held on a queue other than
SPFEDIT or SYSDSN

• Not supported for load module
transfer

This slide shows an example of messages from a client if an MVS data set cannot be
obtained.

In this example the FTP client could not acquire the MVS data set because several jobs
were holding shared locks on the data set on the FTP client’s z/OS system.

For both the client and the server, a maximum of eight jobs are shown and a job will show
as UNKNOWN If held on a queue other than SPFEDIT or SYSDSN. When a load module
transfer fails because a job is already holding a PDS or PDSE member, FTP is not able to
determine the holder of the member. Load module transfers are accomplished by calling
the IEBCOPY utility.

ftpenh.ppt Page 15 of 26

© 2008 IBM Corporation FTP enhancements 16

Dataset contention on server - V1R10 example

125-FTP Server unable to obtain SHARED use of

DEPT.OGJ.SALES which is held by: 0031 USER2 EXCL on
SYSDSN

125 Data set DEPT.OGJ.SALES is not available

USER2 has an
exclusive lock
on DEPT.ORG.SALES
on the server side

This slide shows an example of replies from the server if an MVS data set cannot be
obtained.

In this example, only one job was holding the MVS data set on the server with an
exclusive lock. The job and the fact that the lock is exclusive are provide don the 125
reply from the FTP server.

ftpenh.ppt Page 16 of 26

© 2008 IBM Corporation FTP enhancements 17

Even better: wait for availability of MVS data set

� In V1R10, z/OS FTP also provides capability to re-
access the failing MVS data set before terminating
the request.
�for a configurable period of time

� By automatically retrying, FTP can prevent batch
jobs from failing
�because there is no user around to resubmit the job

When V1R9 FTP cannot access an MVS data set because another job already is holding
it, FTP fails the request. Now FTP can report the job that was holding the data set, but the
job will still need to be rerun when there is no conflict. This can be a problem, especially
for batch jobs when there is no user around to resubmit the job.

The solution to avoid rescheduling is to retry accessing the resource until it becomes
available.

You can use the FTP client API or REXX clist to do this, but this requires additional effort
and programming skills which you might not have.

To resolve this situation, FTP now provides the capability to re-access the MVS data set
when a failure occurs because some other job is holding the MVS data set.

If either the FTP server or client cannot obtain the MVS data set, attempts to re-access it
will be made at one minute intervals, up to a specified limit.

Ability to set a default in the FTP.DATA file and by the SITE and LOCSITE subcommands
enables you to customize the amount of time that FTP takes to re-access the MVS data
set.

ftpenh.ppt Page 17 of 26

© 2008 IBM Corporation FTP enhancements 18

Controlling FTP’s wait for dataset contention

DSWAITTIME 60

New FTP.DATA statement
• supported on both client and server side
• Can be modified by SITE or LOCSITE command

FTP will wait up to
60 minutes for dataset
contention to free up
(retries every minute)

The DSWAITTIME statement can be coded in the FTP.DATA configuration file. This
statement has been added to both the EZAFTPAC sample for the FTP client and the
EZAFTPAS sample for the FTP server.

It specifies how long FTP should try to obtain access to an MVS data set.

Values range between 0 and 14400 minutes.

FTP will attempt to acquire an MVS data set every minute. Therefore the DSWAITTIME
value also specifies the number of times that FTP attempts to acquire the MVS data set.

For consistency with earlier releases, the default interval is 0. This means that if an MVS
data set connection fails because the data set is already in use, the FTP request is
terminated.

The FTP client can issue the SITE subcommand to modify the DSWAITTIME value at the
FTP server.

The LOCSITE subcommand can be issued from a z/OS FTP client to modify the
DSWAITTIME for the amount of time that the client should use in retrying to obtain a
local MVS data set.

ftpenh.ppt Page 18 of 26

© 2008 IBM Corporation FTP enhancements 19

Putting it all together – example of FTP server
dataset contention on PUT

EZA1701I >>> STOR ‘customer.info'

125-FTP Server unable to obtain EXCLUSIVE use of CUSTOMER.INFO which is held by: 0032
PRINTJOB SHR on SYSDSN

125-Data set access will be retried in 1 minute intervals - 10 attempts remaining

125-FTP Server unable to obtain EXCLUSIVE use of CUSTOMER.INFO which is held by: 0032
PRINTJOB SHR on SYSDSN

125-FTP Server unable to obtain EXCLUSIVE use of CUSTOMER.INFO which is held by: 0037
USER36D SHR on SYSDSN

125-Data set access will be retried in 1 minute intervals - 9 attempts remaining

. . . .

. . . .

125-FTP Server unable to obtain EXCLUSIVE use of CUSTOMER.INFO which is held by: 0048
BATCHJOB SHR on SYSDSN

125-Data set access will be retried in 1 minute intervals - 5 attempts remaining

125 Storing data set CUSTOMER.INFO

250 Transfer completed successfully.

Succeeded on 5th attempt
after five minutes

This slide shows the information that is displayed when FTP tries to obtain an MVS data
set.

After the server has received the STOR command, FTP attempts to obtain the MVS data
set exclusively, but the job PRINTJOB is already holding this MVS data set in SHR mode.
Information is sent back to the server with the 125- reply code along with an additional
125- reply code indicating that FTP will retry in one minute intervals, and that 10 attempts
remain. The “initial“ attempts remaining number is the setting of the DSWAITTIME value.
The dash following the 125 reply code indicates that there is another 125 reply code to
follow.

When FTP tries again, it locates two jobs (PRINTJOB and USER36) preventing it from
obtaining the MVS data set. It replies with the 125- reply code for the jobs that have the
MVS data set and the number of attempts remaining. The attempts remaining is a
countdown timer. FTP must be able to obtain the MVS data set before it reaches 0, or the
request fails.

In this example, FTP is able to successfully obtain the MVS data set after five attempts or
with five minutes remaining to obtain the MVS data set. It ends with a 125 reply code with
no dash to end the 125 reply, and then follows with the “250 Transfer completed
successfully” reply.

ftpenh.ppt Page 19 of 26

© 2008 IBM Corporation FTP enhancements 20

DSWAITTIME restrictions

�DSWAITTIME is supported for
� Client: GET and MGET / Server: RETR

� Client: PUT and MPUT / Server: STOR

�DSWAITTIME not supported for:
�PDS/PDSE with RECFM=U (load modules)

�Client: APPEND, DELETE,
MDELETE,RENAME,SUNIQUE

�Server: APPE, DELE, STOU

Only a subset of FTP subcommands for GET and PUT are supported for DSWAITTIME,
as listed on this slide.

DSWAITTIME is not supported when a partitioned data set has record format undefined.
The partitioned data set is treated as a load library and IEBCOPY is used to process the
request.

In addition there are subcommands for the client and commands for the server that do not
support DSWAITTIME. For client contention, it is not supported for APPEND, DELETE,
MDELETE, RENAME, or SUNIQUE. For server contention, this function is not supported
for APPE, DELE or STOU (store unique).

ftpenh.ppt Page 20 of 26

© 2008 IBM Corporation FTP enhancements 21

Application data for FTP sockets

� Starting in V1R10, z/OS FTP will set application
data for each FTP socket
�Associate a text string with each FTP socket

�Provide user ID and other fields of interest in the
application data string

� Application data available to:
�NMIs EZBNMIFR and SYSTCPCN
�NETSTAT reports

�SMF Type 119 connection termination records

In v1r9, z/OS Communications Server introduced the ability to associate application data
for TCP sockets. Application data is a 40-byte string that your application can create and
associate with a socket. You can display the socket application data with the Netstat
command; you can inspect APPLDATA in the SMF type 119 connection termination
record, and you can filter sockets by application data from an NMI application.

By setting application data for FTP sockets, the FTP information that network monitoring
applications use is available not only to NMIs, but to Netstat output and to SMF type 119
connection termination records.

ftpenh.ppt Page 21 of 26

© 2008 IBM Corporation FTP enhancements 22

FTP server application data

More fields (see IP Configuration Reference for details) …

Security protection

C for Clear; S for Safe; P for private;

L for Clear but previously safe or private

22

Blank 21

User ID used to log into FTP 12-20

Blank 11

C for a control connection socket

D for a data connection socket

10

Blank 9

The string “EZAFTP0S” 1 – 8

Description Offset

This figure shows the first fields of the FTP server APPLDATA. This is an example of FTP
server application data. The FTP client and daemon provide similar data.

The string “EZAFTP0S” is the first field, and identifies this socket as an FTP server socket.

The next nonblank field is either C or D, to distinguish control connection sockets from
data connection sockets. The control connection is the connection used to log into FTP,
and is active for the entire session. For each file transfer that occurs, FTP establishes a
temporary connection called the data connection that lasts as long as the file transfer
lasts.

The next non blank field is the user ID used to log into FTP.

The next field identifies the level of security used on the connection. ‘Clear’ means data
flows on the connection with no encryption or integrity checking; S and P imply that either
TLS or Kerberos is used to protect the privacy or integrity of the data on this socket.

This data is meant to be exploited by network management applications and can also be
displayed using netstat.

A full list of the fields provided can be seen in the IP Configuration Reference.

ftpenh.ppt Page 22 of 26

 . 6

© 2008 IBM Corporation FTP enhancements 23

Display FTP session data, server example

/u/user1 netstat -G EZAFTP*

MVS TCP/IP NETSTAT CS V1R10 TCPIP Name: TCPCS 01:50:14

User Id Conn Local Socket Foreign Socket State

------­ ---­ -----------­ -------------­ ----­

FTPD1 00000068 1.2.5.36..21 1.2.5.36..1024 Establsh

Application Data: EZAFTP0S C USER2 C

FTPD1 000000BC 1.2.5 36..20 1.2.5.3 ..1026 Establsh

Application Data: EZAFTP0S D USER2 C PSSS

FTP control
connection
for USER2

FTP data
connection
for USER2

These connections
are “in the clear”
(no TLS or Kerberos
protection)

This example demonstrates using the Netstat report to display application data associated
with FTP server sockets. This was done using the USS netstat command with the –G
parameter to indicate you want to display only those sockets with application data that
begins with the string “EZAFTP”. Some lines were removed from the report to keep the
example on one page.

In this example, a user logged into ftp as USER2, and transferred a data set. You can see
application data for the server, for the control connections and data connection. The
data connection lasts only as long as the file transfer, so you might not often capture
application data for FTP data connection socket as was done here.

You can deduce that the two lines in this display belong to the FTP server from the local
port numbers and job name, but now you can note the application ID is set to EZAFTP0S
in each case.

Note the C or D between preceding the string ‘USER2’; this identifies each of these
sockets as control or data connection sockets. The C which follows the string ‘USER2’
corresponds to offset 22 in the FTP server application data format and indicates ‘Clear’: a
connection that is not secured with TLS or Kerberos.

ftpenh.ppt Page 23 of 26

© 2008 IBM Corporation FTP enhancements 24

Keep-alive on data connection background

� Network devices cancel idle sessions

� Keep-alive packets sent periodically keep
connection active

� FTP Control Connection already provides keep-
alive support

� FTP Data Connection is exposed to being
canceled if connection stays idle too long
�Keep-alive interval on TCPCONFIG statement might

not be active, or the interval might exceed a network
device’s cancellation timer

Any TCP/IP connection is subject to monitoring by the network. The session might be canceled if no activity
on the session is detected within a defined period of time as determined by the network device. Cancelling
the session prevents any further communication between the session partners. In cancelling the session, the
session partners might not be notified of this cancellation which can result in a hung session if the session
partners do not provide for this situation.

To prevent cancellation, TCP/IP sends keep-alive packets. A keep-alive packet contains one byte of data
and uses a sequence number of a packet that was already sent. The remote session partner discards the
data packet because it has already received the packet. The benefit is that any device monitoring the session
will detect that the session is active.

The FTP control connection is the connection over which FTP commands are sent from the client to the
server. The keep-alive interval can be customized by the KEEPALIVE statement in the FTP.DATA
configuration file instead of utilizing the TCP/IP stack’s keep-alive interval.

The FTP data connection, over which file data flows during a file transfer between the client and server, does
not support any customization of the keep-alive interval in V1R9. This session is susceptible to being
cancelled if the connection stays idle too long. A long running DB/2 query or a job submitted to JES that has
not completed can cause this to occur.

While the TCP/IP stack provides the ability to configure when keep-alive packets are generated, this interval
might exceed that needed by FTP.

Without the ability to customize a keep-alive interval on the FTP data connection, FTP must rely on the keep-
alive interval defined to the stack. The FTP connection might be monitored by a device whose cancellation
timer is less than the stack keep-alive timer.

Each network has its specific needs and a single stack keep-alive interval might not be able to cover all of
these networks.

ftpenh.ppt Page 24 of 26

© 2008 IBM Corporation FTP enhancements 25

Keep-alive on data connection - FTP.DATA example

DATAKEEPALIVE 90

After 90 seconds of inactivity,
FTP will send a keep-alive packet
out on the data connection.

The DATAKEEPALIVE statement can be coded in the FTP.DATA configuration file to
cause FTP to initiate a keep-alive on the data connection after the configured period of
inactivity. This statement is added to both the EZAFTPAC sample for the FTP client and
the EZAFTPAS sample for the FTP server.

Initially, this statement is commented out in both samples and is defined with a value of 0.
This is the default value and means FTP relies on the stack interval for keep-alives.

If the DATAKEEPALIVE value is specified, the FTP keep-alive interval is used for the
data connection, overriding the TCP/IP stack interval.

The DATAKEEPALIVE value is specified in seconds and ranges from 60 to 86400
seconds which is equivalent to 24 hours.

ftpenh.ppt Page 25 of 26

 © 2008 IBM Corporation

Trademarks, copyrights, and disclaimers
The following terms are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both:

IBM REXX z/OS

A current list of other IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

Java, Javadoc, JNI, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Product data has been reviewed for accuracy as of the date of initial publication. Product data is subject to change without notice. This document could include
technical inaccuracies or typographical errors. IBM may make improvements or changes in the products or programs described herein at any time without notice. Any
statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. References in this
document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or services available in all countries in which IBM
operates or does business. Any reference to an IBM Program Product in this document is not intended to state or imply that only that program product may be used.
Any functionally equivalent program, that does not infringe IBM's intellectual property rights, may be used instead.

Information is provided "AS IS" without warranty of any kind. THE INFORMATION PROVIDED IN THIS DOCUMENT IS DISTRIBUTED "AS IS" WITHOUT ANY
WARRANTY, EITHER EXPRESS OR IMPLIED. IBM EXPRESSLY DISCLAIMS ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NONINFRINGEMENT. IBM shall have no responsibility to update this information. IBM products are warranted, if at all, according to the terms and
conditions of the agreements (for example, IBM Customer Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which
they are provided. Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly
available sources. IBM has not tested those products in connection with this publication and cannot confirm the accuracy of performance, compatibility or any other
claims related to non-IBM products.

IBM makes no representations or warranties, express or implied, regarding non-IBM products and services.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or copyrights. Inquiries regarding
patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. All customer examples described are presented
as illustrations of how those customers have used IBM products and the results they may have achieved. The actual throughput or performance that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration,
and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the
ratios stated here.

© Copyright International Business Machines Corporation 2008. All rights reserved.

Note to U.S. Government Users - Documentation related to restricted rights-Use, duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract and IBM Corp.

FTP enhancements 26

ftpenh.ppt Page 26 of 26

