
BOB Conceptual Overview

Why BOB and how it is an improvement

v2.4.10

Functionality

• Intelligent build of QSYS objects from IFS source (manageable by git)
• Allow flexible hierarchy and naming
• Self-contained buildable project that that can be reused in many

different contexts
• Minimal specification of dependencies in gmake syntax

3

Challenges for building programs on the IBM i
• SRC-PF

• Fixed record length
• Not accessible to open ecosystem, including git and make
• 10 char names
• All source of same type stored in QxxxSRC to avoid name conflicts (member type does not disambiguate)

• Libraries
• Only 2 level hierarchy to organize, with only short 10 char names

• Source control
• None – sequence number dates
• Home grown
• Proprietary IBM i systems

• Cost
• Smaller market = less investment

• Build system
• Individual CRTXXXMOD + CRTPGM
• CL Scripts
• A couple of vendors have dependency-based build

4

RDi i Projects - lessons learned
• Supports git but …

• Mapping from i Project to exactly one library was too inflexible
• Some customers target many libraries from one project (program / data / source)
• Other customers have huge libraries

• Metadata was very hard to maintain
• Having a parallel directory hierarchy under .ibmi meant that any time a SRC-PF or member

changed names the metadata was lost

• Mapping rigidly to SRC-PF meant inheriting all of its limitations
• Fixed line length
• Fixed directory hierarchy of basically 1 level with only 10 characters

• Build was very limited,
• No disambiguating of PGM vs MOD
• No understanding of binding relationships
• No incremental ability – i.e. only build what had changed

• Fascinating open-source project by Jeff Berman then of S4i https://github.com/s4isystems/Bob
• Incremental compile ability based on gmake
• Some level of ILE binding understanding
• No longer bound to library and SRC-PF structure and naming limitations
• Member level specific metadata using gmake variable
• Consideration of target EBCDIC CCSID for compiler
• Support of old languages whose compilers do not have IFS support yet (DDS, UIM)
• Retrieval of all EVFEVENT files to enable compiler feedback

• Limitations
• Uppercase names required
• Single target library
• Single directory containing source
• No metadata on environment prerequisites,

i.e. LIBL, where to find includes, ASP etc.
• Install was complex – not yum-enabled
• No 1 to 1 mapping of file extensions to compile

(i.e. are we targeting MOD or PGM) 5

Existing bob by S4i

https://github.com/s4isystems/Bob

6

Enhancement
• Project definition

• Know how to build yourself
• Know where to resolve includes
• Know how to set up environment
• Learn from package.json
• But make it flexible so that what is stored in git does not have to be modified from 1 developer or

deployment scenario to another

• No limit on number of directories and their nesting

• No limit on directory naming

• No limit on number of object libraries

• Unambiguous mapping from file name to compile type

7

Use cases: Bob should be usable by …
• PASE command line

• Windows/Mac command line with rsync/scp to do file transfer

• Any VS Code extension for IBM i development like Code for IBM i (halcyon tech)

• RDi

• MERLIN!!

Merlin IDE

RDi

8

iProj – portable, git-storable project
• Single project definition that can be

used in many contexts
• Cloned into different development

environments
• Merlin
• VS Code
• Rdi

• Used to define build in CI/CD
pipelines

• Buildable by ARCAD builder
• Buildable by open source BOB

• Has to specify requirements on
external environment

• LIBL
• Where to resolve includes
• ASP, OVRxxx etc.

• But has to be configurable for each
environment

• Uses &name env variables

Developer A

Developer B

RDi

{}

