
REST Message Handlers
Web Services Subcommittee
Bradd Kadlecik

2024 TPF Users Group Conference
May 5-8, New Orleans, LA

Problem Statement

Common REST provider segments must be created by the
application infrastructure to share common processing.
These common segments must be updated for every new
REST service to determine what processing each service
requires and what application program the request needs to
be routed to.

2z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation

Users

z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation 3

Zach
Application
developer

How would I go about
adding authorization to
my REST service?

As-Is User Story

Zach adds the Authorization
header to his OpenAPI
descriptor and generates the
DFDL and C structures by
using tpfrestgen. The
Authorization header appears
as a char * in the C request
structure.

OpenAPI header definition:
{
 “in” : “header”,
 “name” : “Authorization”,
 “required” : “true”,
 “type” : “string”
}

Generated C request structure:
struct {
 struct {
 char *Authorization;
 } header;
} request_t;

z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation 4

As-Is User Story

Zach creates a routine for handling the authorization but
needs to document it internally and make the routine callable
by other programs so that others can use it for their REST
APIs. The Authorization value will also need to be scrubbed
from the structure before continuing.

5z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation

Pain Points

• There’s no interface to be able to add common processing
across multiple REST services.

• Every REST application has access to the authorization
credentials and must be trusted to scrub the data.

6z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation

Value Statement

An application developer can easily orchestrate and manage
common routines needed for REST services such as
authorization, logging, and AAA management.

7z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation

To-Be User Story

Zach adds the Authorization
header to his OpenAPI
descriptor and generates the
DFDL and C structures by
using tpfrestgen. The
Authorization header appears
as a char * in the C request
structure.

OpenAPI header definition:
{
 “in” : “header”,
 “name” : “Authorization”,
 “required” : “true”,
 “type” : “string”
}

Generated C request structure:
struct {
 struct {
 char *Authorization;
 } header;
} request_t;

z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation 8

To-Be User Story

Zach creates a REST message
handler to handle the
authorization. He can locate
the header to process by
using a new C function.

z/TPF service descriptor definition:
“msgHandlers”:[
 {“program” : “QZZ6”, “type” : “request”}
]

QZZ6:
tpf_srvc_msgrtn QZZ6(tpf_srvc_msg *msg)
{
 char *authHdr = tpf_httpGetHeader(
 msg->request->headerList,
 msg->request->headerNum,
 “Authorization”);

z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation 9

To-Be User Story

Zach now doesn’t want the
Authorization header passed
to the application, so he
removes it from the C
structure and changes the
DFDL definition to have the
Authorization element be
defined as document only.

DFDL definition:
<xs:element name=“Authorization"
type="xs:string" tddt:indirectKind="pointer"
tddt:indirectLength="8"
dfdl:lengthKind="delimited"
dfdl:lengthUnits="bytes"
dfdl:terminator="%NUL;"
dfdl:textTrimKind="none"
dfdl:inputValueCalc=“{‘’}” default=""/>

z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation 10

Users

z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation 11

Zach
Application
developer

How do I change how
the REST client sees
errors from DFDL?

As-Is User Story

Zach decided to use DFDL
validation to validate the data
for the REST requests.

z/TPF service descriptor definition:
“request”: {
 “schema” : “apiRequest_t.gen.dfdl.xsd”,
 “root”: “apiRequest_t”,
 “DFDLValidation” : true
}

z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation 12

As-Is User Story

Zach wants to have errors due to data validation returned to
the client in the same way that the provider service would.
DFDL returns the cause of error in processing the request in
the status reason with a status code of 406. He will need to
have something modify the response information being
returned by z/TPF before it’s sent to the REST client.

z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation 13

Pain Points

• DFDL errors are returned in the status reason of the HTTP
response and there’s no way to change it without a user
mod.

14z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation

Value Statement

An application developer can easily modify a DFDL error
response while logging the specific error.

15z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation

To-Be User Story

Zach wants to have errors due to data validation returned to
the client in the same way that the provider service would.
DFDL returns the cause of error in processing the request in
the status reason with a status code of 406.

z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation 16

To-Be User Story

Zach can create a REST
message handler to remedy
this by creating a JSON body
to return the error information
with the status reason
included.

z/TPF service descriptor definition:
“msgHandlers”:[
 {“program” : “QZZ7”, “type” : “response”,
“required” : true}
]

QZZ7:
tpf_srvc_msgrtn QZZ7(tpf_srvc_msg *msg)
{
 if ((msg->action == TPF_SRVC_ACT_PERR) &&
 (msg->errorType == TPF_SRVC_ERR_DFDL)) {
 /* Log error and create JSON body */
 /* modify msg->response for new error return */
 /* return fault to indicate changed response */
 return TPF_SRVC_MSG_FAULT;
 }

z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation 17

Technical Details – PJ47150 (Jan 2024)
Overview

z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation 18

HTTP request HTTP response

Throttle

RMH1

RMH2

RMH4

RMH2

RMH3

RMH4

Application

Y

N

Request

Response

Required

Continue

Fault

Technical Details – PJ47150 (Jan 2024)
z/TPF service descriptor updates
msgHandlers – Contains a list of message handlers to be called

Message Handler object properties:
• program – The 4-character program name of the message handler (required).
• description – A description of the message handler.
• required – Indicates whether the message handler is always to be called for

response handling (even for a request message fault).
• type – Indicates whether the message handler is to be called for the request,

response, or both.
• userParm – A 1- to 8-character string value passed to the message handler.

“msgHandlers”:[{“program”:”RMH1”, “type”:”request”}]

z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation 19

Technical Details – PJ47150 (Jan 2024)
REST message handler interface
TPF_SRVC_MSGRTN <PROG> (tpf_srvc_msg *);

Return value:
TPF_SRVC_MSG_CONT – Normal return, continue processing
TPF_SRVC_MSG_FAULT – Error return, return the error response provided

tpf_srvc_msg:
action – Indicates if being called for request, response or error by REST consumer
or REST provider
msgStatus – The return value from request message handling (or 0 if not called)
errorType – Indicates type of error: fault, timeout, DFDL, interface, service
userParm – The string value specified in the z/TPF service descriptor
request – A pointer to the t_httpClientRequest structure
response – A tpf_httpsvr_resp structure containing the response
z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation 20

Technical Details – PJ47150 (Jan 2024)
ZSRVC DISPLAY update
ZSRVC DISPLAY n-servicePostC5
SRVCNAME-servicePostC5 VERSION-1.0.2
 POST /service/serviceCode5
 HOST-http://127.0.0.1:81
 PROXY-NONE
 TIMEOUT-10000 PROVIDERTYPE-Program PROVIDER-QHH9 _
 UNORDERED-TRUE DFDLFORMAT-NONE EXCLUDE-NONE
 MAXREQUESTS-0 MAXREQUESTSERROR-0 MAXREQUESTSWARNINGINTERVAL-0
 PRIORITY-NONE PRIORITYERROR-0 PRIORITYWARNINGINTERVAL-0
 DFDLVAL-NONE OASVAL-NONE
 MSGHANDLER TYPE USERPARM REQD LOADSET CREATED ON
 RMH1 REQUEST N LOADTPF 09/20/23 17.58.42
 RMH2 ALL P1 Y BASE
 RMH3 RESPONSE N LOADTPF 09/20/23 17.58.42
 RMH4 ALL N BASE

z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation 21

Conclusion

PJ47150 (Jan 2024): REST message handlers
• An application developer can easily orchestrate and

manage common routines needed for REST services such
as authorization, logging, and AAA management.

• An application developer can easily modify a DFDL error
response while logging the specific error.

22z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation

Thank you

© Copyright IBM Corporation 2024. All rights reserved. The information contained in these materials is provided for informational purposes only,
and is provided AS IS without warranty of any kind, express or implied. Any statement of direction represents IBM’s current intent, is subject to
change or withdrawal, and represent only goals and objectives. IBM, the IBM logo, and ibm.com are trademarks of IBM Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is
available at Copyright and trademark information.

23z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation

https://www.ibm.com/legal/copytrade

24z/TPF | 2024 TPF Users Group | May 5-8, New Orleans, LA | ©2024 IBM Corporation

