
z/TPF ECB Heap Enhancements
Systems Control Program
Michael Shershin

2024 TPF Users Group Conference
May 5-8, New Orleans, LA

Disclaimer

Any reference to future plans are for planning
purposes only. IBM reserves the right to change
those plans at its discretion. Any reliance on
such a disclosure is solely at your own risk. IBM
makes no commitment to provide additional
information in the future.

z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation 2

Problem Statement

Use of ECB heap has been growing over the past several years
and it will only continue to grow. It is a key piece of
infrastructure that is used in application modernization efforts.
• The current implementation has overhead especially in the threaded

environment.

• There are several tuning values that can be used in z/TPF to reduce the
overhead of ECB heap usage. However, usage data that is provided in
data reduction and ZMOWN is not sufficient to set some of the tuning
values.

3z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

As-Is General Background

malloc() and MALOC HEAP=31BIT
Ø Get an ECB heap buffer in the 31-bit ECB heap area

malloc64() and MALOC HEAP=64BIT
Ø Get an ECB heap buffer in the 64-bit ECB heap area

calloc() and CALOC HEAP=31BIT
Ø Get an ECB heap buffer and initialize it to zero in the 31-bit ECB heap area

calloc64() and CALOC HEAP=64BIT
Ø Get an ECB heap buffer and initialize it to zero in the 64-bit ECB heap area

4z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

As-Is General Background

realloc() and RALOC HEAP=31BIT
Ø Reallocate an existing ECB heap buffer to a different size buffer in the 31-bit

ECB heap area

realloc64() and RALOC HEAP=64BIT
Ø Reallocate an existing ECB heap buffer to a different size buffer in the 64-bit

ECB heap area

free() and FREEC
Ø Return an ECB heap buffer

5z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

As-Is General Background

6z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Available lists

ECB heap control table

+04C – AVL2 – 0 items on chain
+034 – AVL1 – 0 items on chain

+064 – AVL3 – 0 items on chain
+07C – AVL4 – 0 items on chain
+094 – AVL5 – 0 items on chain

ECB heap control table

Ø Every ECB has its own ECB heap control table

Available lists: AVL1, AVL2, AVL3, AVL4, and AVL5

Ø Each AVL list contains pointers to a chain of ECB
heap control entries that reference buffers that
are available to be dispensed for use.

• Managed in a first-in first out (FIFO) order

Ø AVL1, AVL2, AVL3, and AVL4 contain fixed size
buffers

• Sizes of buffers on AVL1, AVL2, AVL3, and AVL4
are user configurable.

Ø AVL5 contains buffers of different sizes

Ø Only buffers on AVL5 are coalesced when a
malloc() cannot find a buffer large enough to
satisfy the request.

As-Is General Background

7z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Hash table

Available lists

ECB heap control table

+04C – AVL2 – 0 items on chain
+034 – AVL1 – 0 items on chain

+064 – AVL3 – 0 items on chain
+07C – AVL4 – 0 items on chain
+094 – AVL5 – 0 items on chain

+170
+168

+478

+160

ECB heap hash table

Ø Initial allocation has 97 entries, but can be
expanded dynamically

Ø ECB heap buffer address is used to locate a hash
entry

Ø The hash entry points to the associated ECB heap
control entry for an in-use heap buffer

Ø When the heap buffer is freed, the hash entry is
cleared

As-Is General Background

8z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Hash table

Available lists

ECB heap control table

+04C – AVL2 – 0 items on chain
+034 – AVL1 – 0 items on chain

+064 – AVL3 – 0 items on chain
+07C – AVL4 – 0 items on chain
+094 – AVL5 – 0 items on chain

+170
+168

+478

+160

+500
+480

+580
+600

+4F80

Control entries

ECB heap control entries

Ø Initially contains 151 entries but can be expanded
dynamically

Ø Each entry contains information about an ECB
heap buffer that is either in-use or on an available
list

As-Is General Background

9z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Hash table

Available lists

ECB heap control table

+04C – AVL2 – 0 items on chain
+034 – AVL1 – 0 items on chain

+064 – AVL3 – 0 items on chain
+07C – AVL4 – 0 items on chain
+094 – AVL5 – 0 items on chain

+170
+168

+478

+160

+500
+480

+580
+600

+4F80

Control entries

31-bit ECB heap buffer area

ECB heap buffer

Ø 31-bit buffer area (memory below 2 GB in the EVM)

Ø 64-bit buffer area (memory above 4 GB in the EVM)

As-Is General Background

10z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Hash table

Available lists

ECB heap control table

+04C – AVL2 – 0 items on chain
+034 – AVL1 – 0 items on chain

+064 – AVL3 – 0 items on chain
+07C – AVL4 – 0 items on chain
+094 – AVL5 – 0 items on chain

+170 Point to control entry at +480
+168

+478

+160

+500
+480 ADR = 18DC0000, Size = 64

+580
+600

+4F80

31-bit ECB heap buffer area
18DC0000 – 1st ECB heap buffer address

AVL1 size = 64 bytes

Obtain ECB heap buffer
Ø malloc(8) is called
Ø Buffer address 18DC0000 is returned

Control entries

As-Is General Background

11z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Hash table

Available lists

ECB heap control table

+04C – AVL2 – 0 items on chain
+034 – AVL1 – 0 items on chain

+064 – AVL3 – 0 items on chain
+07C – AVL4 – 0 items on chain
+094 – AVL5 – 0 items on chain

+170 Point to control entry at +480
+168

+478

+160 Point to control entry at +500

+500 ADR = 18DC0040, Size = 64
+480 ADR = 18DC0000, Size = 64

+580
+600

+4F80

AVL1 size = 64 bytes

Obtain ECB heap buffer
Ø malloc(32) is called
Ø Buffer address 18DC0040 is returned

Control entries

31-bit ECB heap buffer area
18DC0000 – 1st ECB heap buffer address
18DC0040 – 2nd ECB heap buffer address

As-Is General Background

12z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Hash table

Available lists

ECB heap control table

+04C – AVL2 – 0 items on chain
+034 – AVL1 – 1 item on chain

+064 – AVL3 – 0 items on chain
+07C – AVL4 – 0 items on chain
+094 – AVL5 – 0 items on chain

+170
+168

+478

+160 Point to control entry at +500

+500 ADR = 18DC0040, Size = 64
+480 ADR = 18DC0000, Size = 64

+580
+600

+4F80

AVL1 size = 64 bytes

Free ECB heap buffer
Ø free(18DC0000) is called

Control entries

31-bit ECB heap buffer area
18DC0000 – 1st ECB heap buffer address
18DC0040 – 2nd ECB heap buffer address

As-Is General Background

13z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Hash table

Control entries

Available lists

ECB heap control table

+04C – AVL2 – 0 items on chain
+034 – AVL1 – 0 items on chain

+064 – AVL3 – 0 items on chain
+07C – AVL4 – 0 items on chain
+094 – AVL5 – 0 items on chain

+170 Point to control entry at +480
+168

+478

+160 Point to control entry at +500

+500 ADR = 18DC0040, Size = 64
+480 ADR = 18DC0000, Size = 64

+580
+600

+4F80

31-bit ECB heap buffer area

AVL1 size = 64 bytes

Obtain ECB heap buffer
Ø malloc(48) is called
Ø Buffer address 18DC0000 is reused

31-bit ECB heap buffer area
18DC0000 – 1st ECB heap buffer address
18DC0040 – 2nd ECB heap buffer address

z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation 14

ECB Heap Management

As-Is: ECB Heap Control Table Initialization
The ECB heap control table is used to manage ECB heap.
Ø The size of the ECB heap control table is x’5000’ (20,480) bytes.

Ø All x’5000’ bytes are initialized when the first malloc() call is done by the ECB.

Ø 151 ECB heap control entries are initialized.

An overflow area in system heap is obtained if more than 151 control
entries are used.
Ø The size of one overflow area is x’8000’ (32,768) bytes and it contains 255

control entries.

Ø All 255 control entries are initialized when an overflow area is obtained.
15z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Pain Points: ECB Heap Control Table
Initialization
Overhead to initialize the ECB heap control table

Ø If an ECB does not use 151 control entries in the control table, initializing the
unused control entries is wasteful.

• Overhead to initialize unused control entries

• Causes memory cache inefficiencies.

Ø If an overflow area is obtained and all 255 entries are not used, initializing the
unused control entries is wasteful.

16z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

To-Be: ECB Heap Control Table Initialization

The following changes will be made:
Ø The entire ECB heap control table (x’5000’) bytes will NOT be initialized on first

malloc() call.

• The AVL lists and the hash table will be initialized.

• The 151 ECB heap control entries will NOT be initialized.

• Each ECB heap control entry will be initialized when it is first used.

Ø If an overflow area is needed for ECB heap control entries, the entire system
heap buffer of x’8000’ bytes will NOT be initialized when the buffer is obtained.

• Each ECB heap control entry will be initialized when it is first needed.

17z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

As-Is: AVL List Management
AVL1, AVL2, AVL3, and AVL4 lists contain buffers that are fixed sizes. The
AVL5 list contains buffers that can be various sizes.
Ø For example, if the size of AVL1 buffers is 64 bytes, all buffers on AVL1 will be 64

bytes in size. If the size of AVL2 buffers is 512 bytes, all buffers on AVL2 will be
512 bytes.

Each AVL list contains pointers to a chain of ECB heap control entries for
ECB heap buffers.
Ø Management of ECB heap control entries on AVL1, AVL2, AVL3, and AVL4 are

done using a first-in first-out (FIFO) order.

18z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Pain Points: AVL List Management
Overhead due to the use of FIFO ordering for AVL1, AVL2, AVL3, and AVL4

Ø Memory cache inefficiencies occur

Ø When the next buffer is dispensed, FIFO ordering causes the buffer that has
been on the AVL list the longest to be dispensed.

Ø The buffer being dispensed might have aged out of memory cache because of
the delay between usage.

Ø The processor might incur added overhead to bring the cache line into memory
cache.

19z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

To-Be: AVL List Management

The following change will be made:
Ø AVL1, AVL2, AVL3, and AVL4 lists will be managed in a last-in first-out (LIFO)

order.

• Reusing buffers quickly improves memory cache usage and improves
performance.

20z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

As-Is: Coalescing of Available ECB Heap
Buffers
Coalescing of ECB heap buffers
Ø Coalescing reduces buffer fragmentation by combining adjacent available

buffers into a single larger buffer.

Ø Coalescing is only done when a malloc() cannot find an available buffer on AVL5.

Ø Coalescing is only done on buffers that are on the AVL5 list.

Ø Coalescing does not use buffers that are on the AVL1, AVL2, AVL3, or AVL4 lists.

• When a buffer is allocated based on the size for AVL1, AVL2, AVL3, or AVL4,
the buffer remains that size until the ECB exits.

21z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Pain Points: Coalescing of Available ECB
Heap Buffers
Fragmentation can happen in buffers on the AVL5 list

Ø Fragmentation in the ECB heap can result in a malloc() request not being able to
obtain a buffer even though there is enough space. The problem is that the
available space might not be in one continuous buffer.

• Coalescing happens late only after a malloc() cannot find a buffer of the
requested size on the AVL5 list.

• As a result, buffers of varying sizes are obtained before coalescing is
performed which increases the fragmentation in the ECB heap.

22z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

To-Be: Coalescing of Available ECB Heap
Buffers
The following change will be made:
Ø Coalescing of buffers on the AVL5 list will happen when a free() is done on a

buffer.

• Coalescing is done earlier which maintains larger buffers on the AVL5 list.

• Fragmentation within ECB heap is reduced, which increases the probability
finding available space to satisfy a malloc() request.

23z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation 24

ECB Heap in a Threaded Environment

As-Is: ECB Heap Hash Table Expansion
ECB heap hash table is typically expanded in a threaded environment.

Ø The hash table is in the ECB heap control table

Ø The hash size is 97 entries.

Ø If there are more than 971 ECB heap control entries in use, the hash table is
expanded.

• Searching the synonym chains when there are 97 hash table entries is
too expensive

• The expanded hash table is in a 1 MB system heap block.

• The expanded hash table has 131,071 entries.

• When the hash table is expanded, all entries in the original hash table are
moved to the expanded hash table.

25z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Pain Points: ECB Heap Hash Table Expansion
Overhead in a threaded environment (for example SSL and Java)

Ø Overhead exists to move 971 entries from the original hash table to the
expanded hash table.

26z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

To-Be: ECB Heap Hash Table Expansion
The following changes will be made:
Ø The ECB heap hash table will be expanded when the threaded environment

(process) is created. It will not wait for 971 entries to be in-use before
expanding.

• Fewer entries will need to be moved from the original hash table to the
expanded hash table. Overhead will be reduced.

27z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

As-Is: Serialization
Ø The ECB heap control table is shared across all threads (ECBs) in a

process.

Ø On every malloc(), calloc(), realloc(), and free() call the process lock is
obtained to serialize access to the ECB heap control table across the
threads in the process.
• The storage protect key for the process lock is key F.

• Because E-type code runs with key 1, every malloc(), calloc(), realloc(), and
free() result in the equivalent assembler macro being called. The assembler
macro issues an SVC and processes in the control program where the process
lock is obtained.

• In a nonthreaded environment processing for most malloc(), calloc(), and free()
requests are done in the C function. The assembler macro is not called.

28z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Pain Points: Serialization
Overhead in a threaded environment (for example SSL and Java)

Ø Every ECB heap API call incurs the overhead of an SVC call to obtain the process
lock.

29z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

To-Be: Serialization
The following changes will be made:
Ø A new ECB heap lock will be created and used in place of the process lock.

• The new lock will be in the ECB heap control table. The storage key is 1.

• Standard E-type code that runs in PSW key 1 will be able to obtain the new
lock. As a result, C function service routines for malloc(), calloc(), and free()
will be able to obtain the lock.

• An SVC call is no longer needed to obtain the new lock.

Ø Processing for most malloc(), calloc(), and free() will be done in the C function

• Both threads and non-threaded ECBs will not need to do an SVC call.

30z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

As-Is: ECB Heap Trace
Ø A single ECB heap trace table is shared across all threads (ECBs) in a

process.

31z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Pain Points: ECB Heap Trace
Overhead in a threaded environment (for example SSL and Java)

Ø Memory cache inefficiencies happen because the cache lines for the ECB heap
trace table are bounced between I-streams.

Ø Updates to the ECB heap trace table must be serialized across the threads in
the process. The process lock is obtained to provide serialization.

32z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

To-Be: ECB Heap Trace
The following changes will be made:
Ø ECB heap trace table will be thread unique.

Ø Eliminates bouncing of memory cache lines between I-streams.

Ø Eliminates the need to obtain a lock to serialize updates to the table.

33z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

As-Is: AVL Lists for Threads
Ø The AVL lists in the ECB heap control table are process shared.

• Because the AVL lists are process shared, an ECB heap buffer can be used by
one thread on one I-stream; freed by the thread; and then obtained by a
different thread on different I-stream.

• The process lock is obtained to serialize updates to the ECB control table.

34z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

As-Is: AVL Lists for Threads

35z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Process shared
Hash table

Process shared
available lists

Process shared ECB heap control table

+170
+168

+478

+160 Point to control entry at +500

+500 ADR = 18DC0040, Size = 64
+480 ADR = 18DC0000, Size = 64

+580 ADR = 18DC0080, Size = 64
+600 ADR = 18DC00C0, Size = 64

+4F80

Process shared
control entries

31-bit ECB heap buffer area
18DC0000 – 1st ECB heap buffer address
18DC0040 – 2nd ECB heap buffer address
18DC0080 – 3rd ECB heap buffer address
18DC00C0 – 4th ECB heap buffer address

+04C – AVL2 – 0 items on chain
+034 – AVL1 – 3 items on chain

+064 – AVL3 – 0 items on chain
+07C – AVL4 – 0 items on chain
+094 – AVL5 – 0 items on chain

Assume the following scenario
Ø 1 buffer is in-use
Ø 3 buffers have been obtained and

released and they are on the AVL1 list

When a thread requests an ECB heap buffer,
the process lock is obtained and process
shared AVL1 lists are used.

Pain Points: AVL Lists for Threads
Overhead in a threaded environment (for example SSL and Java)

Ø Reuse of a buffer on a different I-stream causes memory cache inefficiencies.

Ø Management of ECB heap control entries on the AVL lists requires serialization
between the threads. A lock must be obtained to provide serialization.

36z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

To-Be: AVL Lists for Threads
Thread unique AVL1, AVL2, AVL3, and AVL4 lists will be created.
Ø AVL1, AVL2, AVL3 and AVL4 lists will have “thread unique lists” and “process

shared lists”.

• The AVL5 list will be “process shared” only.

Ø A lock will NOT be needed to manage the “thread unique AVL lists”.

Ø When a free() is done and the buffer is put on an AVL1, AVL2, AVL3, or AVL4 list,
the processing steps are as follows:

1. Add the ECB heap control entry to the “thread unique AVL list” if the number
of buffers on the “thread unique AVL list” is less than a predefined limit.

2. Otherwise, add the ECB heap control entry to the “process shared AVL list”.
The ECB heap lock must be obtained to add to the “process shared AVL list”.

37z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

To-Be: AVL Lists for Threads
Thread unique AVL1, AVL2, AVL3, and AVL4 lists will be created.
Ø When a malloc() is done and the buffer is obtained from an AVL1, AVL2, AVL3, or

AVL4 list, the processing steps are as follows:

1. Check the appropriate “thread unique AVL list”. If a pointer to an ECB heap
control entry is on the list, the first buffer will be used.

2. If there are no entries on the appropriate “thread unique AVL list”, check the
appropriate “process shared AVL list”. The ECB heap lock must be obtained
before using the “process shared AVL list”.

3. If there are no entries on the appropriate “process shared AVL list”, check
the “process shared AVL5 list” for available buffers. The ECB heap lock must
be obtained before using the “process shared AVL5 list”.

4. Otherwise, return an error.
38z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

To-Be: AVL Lists for threads

39z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Process shared
Hash table

Process shared
available lists

Process shared ECB heap control table

+170
+168

+478

+160 Point to control entry at +500

+500 ADR = 18DC0040, Size = 64
+480 ADR = 18DC0000, Size = 64

+580 ADR = 18DC0080, Size = 64
+600 ADR = 18DC00C0, Size = 64

+4F80

Process shared
control entries

31-bit ECB heap buffer area
18DC0000 – 1st ECB heap buffer address
18DC0040 – 2nd ECB heap buffer address
18DC0080 – 3rd ECB heap buffer address
18DC00C0 – 4th ECB heap buffer address

+04C – AVL2 – 0 items on chain
+034 – AVL1 – 1 item on chain

+064 – AVL3 – 0 items on chain
+07C – AVL4 – 0 items on chain
+094 – AVL5 – 0 items on chain

Assume:
Ø 1 buffer is in-use
Ø 1 buffer is on the

“process shared
AVL1” list

Ø 1 buffer is on the
“thread unique AVL1”
list for Thread 1

Ø The same for Thread 2

AVL2 – 0 items on chain
AVL1 – 1 item on chain

AVL3 – 0 items on chain
AVL4 – 0 items on chain

AVL2 – 0 items on chain
AVL1 – 1 item on chain

AVL3 – 0 items on chain
AVL4 – 0 items on chain

Thread 1
Thread unique AVL lists

Thread 2
Thread unique AVL lists

To-Be: AVL Lists for Threads

40z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Process shared
Hash table

Process shared
available lists

Process shared ECB heap control table

+170
+168 Point to control entry at +580

+478

+160 Point to control entry at +500

+500 ADR = 18DC0040, Size = 64
+480 ADR = 18DC0000, Size = 64

+580 ADR = 18DC0080, Size = 64
+600 ADR = 18DC00C0, Size = 64

+4F80

Process shared
control entries

31-bit ECB heap buffer area
18DC0000 – 1st ECB heap buffer address
18DC0040 – 2nd ECB heap buffer address
18DC0080 – 3rd ECB heap buffer address
18DC00C0 – 4th ECB heap buffer address

+04C – AVL2 – 0 items on chain
+034 – AVL1 – 1 item on chain

+064 – AVL3 – 0 items on chain
+07C – AVL4 – 0 items on chain
+094 – AVL5 – 0 items on chain

AVL2 – 0 items on chain
AVL1 – 1 item on chain

AVL3 – 0 items on chain
AVL4 – 0 items on chain

AVL2 – 0 items on chain
AVL1 – 0 items on chain

AVL3 – 0 items on chain
AVL4 – 0 items on chain

Thread 1
Thread unique AVL lists

Thread 2
Thread unique AVL lists

Thread 1
Obtain ECB heap buffer
Ø malloc(24) is called
Ø Buffer address

18DC0080 is returned
from thread unique
AVL1 list
Ø The new ECB heap

lock is NOT obtained

To-Be: AVL Lists for Threads

41z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Process shared
Hash table

Process shared
available lists

Process shared ECB heap control table

+170 Point to control entry at +480
+168 Point to control entry at +580

+478

+160 Point to control entry at +500

+500 ADR = 18DC0040, Size = 64
+480 ADR = 18DC0000, Size = 64

+580 ADR = 18DC0080, Size = 64
+600 ADR = 18DC00C0, Size = 64

+4F80

Process shared
control entries

31-bit ECB heap buffer area
18DC0000 – 1st ECB heap buffer address
18DC0040 – 2nd ECB heap buffer address
18DC0080 – 3rd ECB heap buffer address
18DC00C0 – 4th ECB heap buffer address

+04C – AVL2 – 0 items on chain
+034 – AVL1 – 0 items on chain

+064 – AVL3 – 0 items on chain
+07C – AVL4 – 0 items on chain
+094 – AVL5 – 0 items on chain

Thread 1
Obtain ECB heap buffer
Ø malloc(40) is called
Ø Buffer address

18DC0000 is returned
from process shared
AVL1 list
Ø The new ECB heap

lock is obtained
AVL2 – 0 items on chain
AVL1 – 1 item on chain

AVL3 – 0 items on chain
AVL4 – 0 items on chain

AVL2 – 0 items on chain
AVL1 – 0 items on chain

AVL3 – 0 items on chain
AVL4 – 0 items on chain

Thread 1
Thread unique AVL lists

Thread 2
Thread unique AVL lists

z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation 42

ECB Heap Tuning

As-Is ECB Heap Tuning Values
The following are ECB heap values that can be set:
Ø Size of the preallocated ECB heap area, which is used for 31-bit ECB heap.

Ø Size of buffers on the AVL1, AVL2, AVL3, and AVL4 lists.

Ø Number of preallocated buffers on the AVL1, AVL2, AVL3, and AVL4 lists.

Ø Maximum size of the virtual area for both 31-bit and 64-bit ECB heap.

Ø Maximum amount or memory that an ECB can obtain for both 31-bit and 64-bit
ECB heap.

43z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

As-Is ECB Heap Data Collection
The following are data collection reports that are used to set the ECB heap
tuning values:
Ø Data reduction: ECB HEAP STATISTICS

• Used to set the number of preallocated buffers on the AVL1, AVL2, AVL3,
and AVL4 lists.

Ø Data reduction: TPF ECB 31-BIT HEAP AREA USAGE REPORT

• Used to understand the usage of 31-bit ECB heap

Ø Data reduction: TPF ECB 64-BIT HEAP AREA USAGE REPORT

• Used to understand the usage of 64-bit ECB heap

44z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

As-Is ECB Heap Data Collection
The following are data collection reports that are used to set the ECB heap
tuning values:
Ø Data reduction: TPF 31-BIT PREALLOCATED ECB HEAP STORAGE USAGE

REPORT

• Used to understand the usage of the preallocated ECB heap area.

Ø Data reduction: TPF ECB HEAP REQUEST SIZE REPORT

• Used to set the buffer sizes for the AVL1, AVL2, AVL3, and AVL4 lists.

45z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

As-Is ECB Heap Data Collection
The following are data collection reports that are used to understand ECB
heap usage within an application:
Ø ZMOWN: Number of ECB heap buffers obtained by ECB owner name

Ø ZMOWN: Number of ECB control entries obtained by ECB owner name.

Ø Name-value pair collection: Number of ECB heap buffers obtained by name-
value pair

Ø Name-value pair collection: Number of ECB control entries obtained by name-
value pair

46z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Pain Points
Data collection and reporting lacks information.

Ø There is no report to help determine how large to make the preallocated ECB
heap area.

Ø The TPF ECB HEAP REQUEST SIZE REPORT is not granular enough to
determine how to set the buffer sizes for AVL1, AVL2, AVL3, and AVL4 lists.

• The smallest size in the report is 128 bytes.

• A large percentage of ECB heap buffers are 128 bytes or smaller.

Ø Data provided by ZMOWN and name-value pair collection is very high level. It
does not provide enough detail to understand application behavior.

Ø Do not know how often the ECB heap hash table is expanded.

47z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

To-Be ECB Heap Data Collection

The following changes will be made:
Ø The TPF ECB HEAP REQUEST SIZE REPORT will be changed to use smaller

size intervals.

Ø A new report called TPF 31-BIT VIRTUAL ECB HEAP STORAGE USAGE
REPORT will be created.

Ø Show usage of the 31-bit virtual area in 4 KB sizes.

Ø Intended to better size 31-bit preallocated ECB heap

48z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

To-Be ECB Heap Data Collection
ZMOWN and name-value pair collection will provide the following
information:
Ø Number of ECBs that obtain at least one ECB heap buffer.

Ø Number of ECBs that expand the ECB heap hash table.

Ø Number of ECBs that obtain at least one 1 MB frame ECB heap for both 31-bit and
64-bit ECB heap.

Ø Number of 1 MB frames obtained for both the 31-bit and 64-bit ECB heap.

Ø Number of AVL1, AVL2, AVL3, AVL4, and AVL5 buffers obtained.

Ø Number of AVL1, AVL2, AVL3, AVL4, and AVL5 buffers that were freed.

Ø High-water mark for usage in both 31-bit and 64-bit ECB heap.
49z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

To-Be ECB Heap Tuning Value

The following tuning value will be removed:
Ø Number of preallocated buffers on the AVL1, AVL2, AVL3, and AVL4 lists.

• Most AVL lists have zero, one, or two preallocated buffers. Experience has
shown that a small number of preallocated buffers provides better performance.

• Changes in how the ECB heap control table is initialized need to have no
preallocated AVL buffers.

50z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Value Statement
Ø Improved performance when using ECB heap

• For all ECB heap users

• Use LIFO management of buffers on the AVL1, AVL2, AVL3, and AVL4 lists

• For threaded environments

• Thread unique AVL1, AVL2, AVL3, and AVL4 lists

• Thread unique trace table

• New ECB heap lock

Ø Improved tuning capabilities

Ø Better management of the ECB heap buffer area

• Less fragmentation
51z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Target Delivery Date

The target delivery date is 4Q2024.

52z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Be a sponsor user

z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation 53

Sponsor users assist in design and implementation,
and your feedback drives our development cycle.

 Target personas
• Systems developers
• Performance analyst

Begins
On going

Interested? Contact
Michael Shershin e-mail: shershin@us.ibm.com

Thank you

© Copyright IBM Corporation 2024. All rights reserved. The information contained in these materials is provided for informational purposes only,
and is provided AS IS without warranty of any kind, express or implied. Any statement of direction represents IBM’s current intent, is subject to
change or withdrawal, and represent only goals and objectives. IBM, the IBM logo, and ibm.com are trademarks of IBM Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is
available at Copyright and trademark information.

54z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

https://www.ibm.com/legal/copytrade

55z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

