
Deep Dive into 64-Bit Support for IBM MQ
z/TPF Education
Cameron Doggett

2024 TPF Users Group Conference
May 05-08, New Orleans, LA

Disclaimer

Any reference to future plans are for planning
purposes only. IBM reserves the right to change
those plans at its discretion. Any reliance on
such a disclosure is solely at your own risk. IBM
makes no commitment to provide additional
information in the future.

z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation 2

Agenda

3z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• Memory

• Defining MQM

• Creating 64-bit queues

• Message chains

• Checkpoint

• Sweeper

• Monitoring MQM usage

• Restart & recovery

Memory

4z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

31-Bit IBM MQ Memory
• 31-bit IBM MQ queues on z/TPF are only capable of supporting less than 2 GB of

message data in memory at any single point

• Messages are stored in system work blocks (SWBs) which if exhausted results in a
catastrophic system error

• SWBs are used for many system functions, not just IBM MQ, so one function is
capable of depriving others of the resource

• As message sizes and volumes continue to trend larger, the likelihood that the 31-bit
sweeper needs to be engaged to support the growing amount of data also increases

• The 31-bit sweeper frees SWBs to prevent impacting the broader system, but at the
expense of some additional I/O and computational overhead

• When frequently engaged over a longer period of time, this can result in higher CPU
usage and volume of I/O

5z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

64-Bit IBM MQ Memory
• 64-bit IBM MQ queues leverage a new memory type referred to as 64-bit IBM

MQ memory, or MQM
• Note that the IBM MQ product defines MQM as message queue management, but in this presentation MQM will refer to

64-bit IBM MQ memory alone

• MQM takes advantage of the 64-bit addressable space and resides above the 2
GB bar

• This means MQM can be defined in capacities on the order of tens to
hundreds of gigabytes

• At IPL time, the defined MQM size is reserved by the system and later
dispensed as 4 KB entries for storing message data

• This prevents holding up system restart having to initialize the entirety of a
potentially large table

6z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Defining MQM

7z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Defining MQM

8z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• The amount of MQM defined to the system is in keypoint A (CTKA)

• Set and modified online with ZCTKA DEFINE and ZCTKA ALTER and the MQM parameter

• Ensure to keep the offline copy of the keypoint in sync (MQM parameter of CORREQ macro)

• The value specified for MQM is in megabytes

• Can specify a different amount of MQM per memory configuration

• As a quick starting point, defining a multiple of the amount of space reserved for SWBs is
an option

• To tailor the amount of MQM more specifically to the workload of the system, refer to the
following resources:

• Data reductions to gather message rates and sizes to target at least 10 seconds per queue

• Highwater mark in queue manager display (ZMQSC DISPLAY QMGR) after a long period of uptime

Quickly Determining How Much MQM to
Define from SWB Allocation

9z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• Use ZCTKA DISPLAY to view the number of defined SWBs

• Divide the number of SWBs by 1,000 to get number of megabytes that the
SWBs equate to

• Optionally, multiply the result by a factor to supplement the MQM allocation

• A factor of 5 should provide a reasonably sized buffer for growth

• The end result is the number of megabytes to allocate for MQM

• An example:

• A system with 500,000 SWBs equates to 500 MB reserved for those SWBs

• Multiplying by a factor of 5 results in an MQM allocation of 2,500 MB (2.5 GB)

Determining How Much MQM to Define with
Data Reduction

10z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• Collect a data reduction from the running system

• Look for the mean message rates and message lengths for the queues you
intend to migrate to 64-bit

• In the data reduction, the rates and lengths are broken down by persistence type:

• ADD PERSISTENT MESSAGE RATE

• ADD NONPERSISTENT MESSAGE RATE

• ADDED PERSISTENT MESSAGE LENGTH

• ADDED NONPERSISTENT MESSAGE LENGTH

11z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• To compute the rate (bytes per second) that data is being added to a given
queue:

• (mean persistent message rate * mean persistent message length)
+ (mean nonpersistent message rate * mean nonpersistent message
length)

• Divide this rate by 1,000,000 (1e6) to get the rate in megabytes per second

• With the computed rate (megabytes per second) for each queue you intend to
migrate to 64-bit, sum the rates to obtain the total rate

• Determine the minimum number of seconds worth of messages to support in
memory

• We recommend at least 10 seconds, but the more the better

Determining How Much MQM to Define with
Data Reduction

12z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• Multiply the total rate by the number of seconds worth of messages to support
to get the minimum number of megabytes to define for MQM

• Lastly, multiply the obtained figure by a factor to account for growth and to
help prevent ever exhausting MQM

• For example, this factor could be 5 or 10

Determining How Much MQM to Define with
Data Reduction

13z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Example of Determining How Much MQM to Define with Data Reduction
Suppose these values are gathered from a data
reduction in this simple example.

Queue name Mean added
persistent message
rate (msg/sec)

Mean added
persistent message
length (bytes/msg)

Mean added
nonpersistent
message rate
(msg/sec)

Mean added
nonpersistent
message length
(bytes/msg)

Q1 33 64000 650 64000

Q2 1000 12000 100 128000

Q3 1500 10000 0 0

14z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Compute the rate that data is being added to each queue.

Queue name Mean added
persistent
message rate
(msg/sec)

Mean added
persistent
message length
(bytes/msg)

Mean added
nonpersistent
message rate
(msg/sec)

Mean added
nonpersistent
message length
(bytes/msg)

Mean rate of
added message
data (MB/sec)

Q1 33 64000 650 64000 43.71

Q2 1000 12000 100 128000 24.8

Q3 1500 10000 0 0 15

Example of Determining How Much MQM to Define with Data Reduction

15z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Calculate the sum of each of the individual rates to get the
total rate of data being added. Suppose we will target
supporting 10 seconds of message data in memory.

Queue name Mean rate of
added message
data (MB/sec)

Q1 43.71

Q2 24.8

Q3 15

Total rate of data being added to
these queues (MB/sec) = 43.71 +
24.8 + 15 = 83.51

Target number of seconds worth
of messages to support in
memory = 10

Example of Determining How Much MQM to Define with Data Reduction

16z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Multiply the total rate by the target number of seconds to support
to get the minimum amount of MQM required. As suggested, we will
multiply by a factor of 5 to account for future growth.

Total rate of data being added to these queues (MB/sec) = 43.71 + 24.8
+ 15 = 83.51

Target number of seconds worth of messages to support in memory = 10

Minimum amount of MQM to define (MB) = 83.51 * 10 = 835.1

Recommended amount of MQM to define (MB) = 835.1 * 5 = 4,175.5
(4.17 GB)

Example of Determining How Much MQM to Define with Data Reduction

Creating and Migrating to
64-Bit Queues

17z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Create or Migrate to 64-Bit Queues

18z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• Define a new queue

• ZMQSC DEFINE QL-name 64BIT-YES

• Migrate an existing 31-bit queue

• ZMQSC ALTER QL-name 64BIT-YES

• Stages the queue for migration and switches to using 64-bit memory and file
structures upon being emptied, seamlessly migrating the queue all without
application awareness

• If necessary, can fallback a queue to 31-bit using the same mechanism by
specifying 64BIT-NO instead

Considerations for 64-Bit Queues

19z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• The primary use case for 64-bit queues is for high volume, FIFO queues

• For example, business event queues that handle large amounts of data

• The following restrictions are in place for 64-bit queues to enforce sequential
(FIFO) access:

• Browsing is currently not supported

• Searching by message ID is not supported

• Searching by correlation ID is not supported

• A 31-bit queue that uses any of the previous functionality is not a candidate for
migration to 64-bit

Identifying Candidate Queues for Migration

20z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

APAR PJ46881 (Nov 2022) adds the GETDIAG option to ZMQSC DISPLAY QL
to display queues which are using restricted functionality for 64-bit

MQSC0278I 14.39.34 LOCAL QUEUE MQGET DIAGNOSTICS DISPLAY
 SEARCH/ XMITQ LAST
 Queue Name BROWSE GET PROG
 -- ---------- ------ -----
 CalculatorQueue NO N/A
 CalculatorSyncReplyQueue NO N/A
 AsyncCalculatorQueue NO N/A
 MY.MEMQ.1 NO N/A
 MY.MEMQ.2 YES (CMB) N/A ABCD
 MY.XMITQ.1 NO NO
END OF DISPLAY

C = search by correlation ID
M = search by message ID
B = browsing

Message Chains

21z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

MQM Block Chaining

22z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• An individual MQM block is 4 KB, whereas a single SWB is 1 KB

• The larger block size leads to a smaller number of links to form messages

• Making the block size too large, however, would increase the chance of
wasting memory

• For example, a block size of 32 KB with an average message size in the
range of 3 – 7 KB

• MQM blocks are chained together to form the message as it exists on the queue

• The first MQM block for a given message has the MQMM eyecatcher

• Any overflow blocks chained off the MQMM block all have the MQMO
eyecatcher

Single MQM Block Message Example

23z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

A 3200-byte uncompressed message is
MQPUT to a 64-bit local, non-
transmission queue. The message fits
entirely in the first, single MQMM block.

MQMM

Message 1

Multiple SWB Message Example 1

24z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

The same 3200-byte uncompressed
message placed on a 31-bit queue
requires 4 SWBs!

Message 1

MMHD MMOD MMOD MMOD

Multiple MQM Block Message Example

25z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

A 34000-byte message is MQPUT to a 64-bit
local, non-transmission queue. The message
requires eight overflow (MQMO) blocks in
addition to the first block (MQMM).

MQMM

Message 2

MQMO MQMO MQMO MQMO MQMO

MQMO MQMO MQMO

This 34 KB message could
either be uncompressed or
compressed down from an
original size such as 1 MB,
for example.

Multiple SWB Message Example 2

26z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

The same 34000-byte message placed on a 31-bit
queue requires 36 SWBs!

MMOD

Message 2

MMOD MMOD MMODMMHD MMOD MMOD MMOD MMOD MMOD MMOD

MMOD MMOD MMOD MMOD MMOD MMOD MMOD MMOD MMOD MMOD

MMOD MMOD MMOD MMOD MMOD MMOD MMOD MMOD MMOD MMOD

MMOD MMOD MMOD

This 34 KB message could
either be uncompressed or
compressed down from an
original size such as 1 MB,
for example.

MMOD MMOD

MQMOMQMOMQMO

Chaining Between Messages

27z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Messages placed on the same queue are doubly-
linked to each other. This is common between 31-
bit and 64-bit queues.

Msg 2
MQMM

Msg 1
MQMM MQMO

Msg 3
MQMM MQMOMQMO

Msg 4
MQMM

Queue Message Lists

28z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Assuming messages 1 – 4 are
persistent, they are attached to
the queue’s front list for
persistent messages.

Queue definition

Front list persistent
message head

Front list persistent
message tail

MQMOMQMOMQMO
Msg 2

MQMM
Msg 1

MQMM MQMO
Msg 3

MQMM MQMOMQMO
Msg 4

MQMM

Checkpoint

29z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Recovery Log and Checkpoint Overview

30z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• IBM MQ uses the z/TPF recovery log to record every event, such as an MQPUT
or MQGET, relating to a persistent message to guarantee its one-time delivery

• The IBM MQ checkpoint process runs at a regular interval to write persistent
messages to a separate location so that space on the recovery log can be freed

• In the event of a system outage, persistent messages are restored to their
queues from the checkpoint in tandem with the recovery log

• This overall, high-level architecture is shared by both 31-bit and 64-bit IBM MQ

• However, the actual implementations differ significantly

Checkpoint Process Example

31z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Queue definition table (QDT)

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
…

Checkpoint
parent ECB

Checkpoint
child ECB

Write persistent
messages

Checkpoint
child ECB

Checkpoint
child ECB

Checkpoint
child ECB

Checkpoint
child ECB

Checkpoint
child ECB

Checkpoint
child ECB

Checkpoint
child ECB

Checkpoint
child ECB

Checkpoint
child ECB

Multiple ECBs
are used to
enable
checkpoint to
complete in a
timely
manner.

The child
ECBs can be
filing either
31-bit or 64-
bit queues, as
part of the
same
process.

Checkpointing a 31-Bit Queue

32z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• The checkpoint for 31-bit queues performs a full replace, or copy, of the
contents of the queues each time

• This is possible because at most 2 GB of message data can exist across all
the 31-bit queues on the system

• However, if a queue stalls, the same persistent messages are written
repeatedly

• Messages are written to #IMQCK fixed file records

• Checkpointing ECB will process as many as 175 concurrent I/O operations

• The queue lock is held for entire duration that its messages are being written

31-Bit Checkpoint Visual Overview

33z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

31-bit IBM MQ memory
queue

…

#IMQCK fixed file records

Checkpoint

Checkpointing a 64-Bit Queue

34z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• The checkpoint for 64-bit queues is incremental

• Only new messages created (for example, MQPUT) since the last checkpoint and that
still exist at the time of the next checkpoint will be written

• Previously checkpointed messages which have since been consumed (for example,
MQGET) or expired are removed from the checkpoint

• This implies that a persistent message is written at most one time to checkpoint

• Consequently, checkpoint is incredibly efficient when a 64-bit queue stalls

• Messages are written into pool records that are then anchored off an #IMQCX fixed file
record assigned to an individual queue, known as a QCCR

• FARF6 capable and recommended

Checkpointing a 64-Bit Queue

35z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• Checkpointing ECB will process as many as 250 concurrent I/O operations

• The queue lock is held minimally, only to copy message data and never when
blocking for I/O

• This enables messages to be added and removed from the queue while the
queue is being actively checkpointed

64-Bit Checkpoint Visual Overview

36z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

IBM MQ Checkpoint Control
Record (MCCR, Ord 0)

Queue Checkpoint Control Records
(QCCR, Ord 1 — N)

…

Ord 1

Queue
ABC

Ord 0 Ord 2

Unused

Ord 3

Unused

Ord N-1

Unused

Ord N

Unused

Message data

Long-term
pools

#IMQCX fixed file records (NEW)

64-bit IBM MQ memory
queue

Checkpoint

Summary of Checkpoint Improvements

37z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

31-Bit Checkpoint 64-Bit Checkpoint

• Full-replace each time • Incremental

• Redundant I/O with stalled
queue

• No redundant I/O, very
efficient with stalled queue

• 175 concurrent I/Os • 250 concurrent I/Os

• Queue lock held for entire
duration

• Queue lock held minimally

• Excludes application activity (for
example, MQPUT and MQGET)

• Enables concurrent application
activity

Queue Checkpoint Control Record (QCCR)

38z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• #IMQCX ordinals 1 through N – 1

• Where N is the number of #IMQCX records defined

• Acts as the root record off which all message persistence occurs for the queue

• Assigned to an individual 64-bit queue at the time the queue is define or altered
to 64-bit

• This assignment occurs across the complex in a loosely-coupled environment
– it is recommended that the same number of #IMQCX records be defined on
every processor

Queue Checkpoint Control Record (QCCR)

39z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• Points to pool records which index other pools containing message data (two
levels of indirection)

• The index records are doubly-linked to each other, with the first-in-chain record
pointing to the oldest messages in the chain

• Each index record points to 440 pool records which contain the actual message data

• This file structure enables high concurrency for message writes and reads

• Retains up to a single index record dedicated for future use by the queue

• Known as the queue reserved pool set

• Alleviates pool thrashing, especially in steady state with messages processed regularly

QCCR Checkpoint Example

40z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

QCCR
Queue: ABC
In use: Yes

First persistent message
index record

Last persistent message
index record

Index record

Message data
record 0

Index record

Index record

Message data
record 1

Message data
record 438

Message data
record 439

…

IBM MQ Checkpoint Control Record (MCCR)

41z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• #IMQCX ordinal 0

• Control record reserved by IBM MQ

• Can retain many index records for future use by any of the queues

• Known as the subsystem reserved pool set

• Alleviates pool thrashing, especially in steady state

Reusing Obtained Pools

42z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• To help prevent thrashing (quickly allocating and releasing) pool records in
steady state, a number of pools will be retained by 64-bit IBM MQ for reuse,
both on the individual queue level and the queue manager level

• The individual queue’s reserve is known as the queue reserved pool set (441
pools)

• The queue manager’s reserve is known as the subsystem reserved pool set
(up to 88000 pools)

• These reserves are replenished lazily as messages are processed and
previously used index records are no longer needed

• Before allocating new pools from the system, the queue reserved pool set and
subsystem reserved pool set will be interrogated first when pools are needed

RIAT Definition

43z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• Define in the RIAT table the pool types and options to use for the X’FE1B’
record ID, which is the ID used across 64-bit IBM MQ records on z/TPF

• FARF6 can be used and is recommended

• X’FE1B’ pool records should not be made VFA candidates

• During normal operations, message data is only ever written to file and
never read

• X’FE1B’ pool records would therefore overwhelm VFA for little to no benefit

Sweeper

44z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Sweeper Overview

45z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• The IBM MQ sweeper on z/TPF is responsible for moving messages between memory and
DASD to enable a larger number of messages on queues than memory will support

• Sweeping refers to the removal of messages from memory to DASD

• Potentially avoiding the I/O to file the message if already persisted (64-bit sweeper
only)

• Unsweeping refers to the restoration of messages into memory from DASD

• Both persistent and nonpersistent messages can be swept

• The exhaustion of either SWBs or MQM entails a catastrophic system error

• Thus, the sweeper function is critical to ensuring the integrity of the system

• The sweeper runs at least once a second to see if queues need to be swept

31-Bit Sweeper

46z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• The sweeper for 31-bit queues writes messages (both persistent and
nonpersistent) to z/TPFCS, which is separate from the #IMQCK fixed file
records that are used to checkpoint 31-bit queues

• This means the same swept persistent message is rewritten to file even when
it might have already been checkpointed

• This can result in a large amount of redundant, costly I/O

• The queue lock is held intermittently between I/O to copy message data

Sweeping Messages

31-Bit Sweeper

47z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• Swept 31-bit messages are only unswept back into memory reactively, or
when immediately needed by an application or for transmission

• The queue lock is held for the entire duration of the unsweep, even through
I/O operations

• This can result in increased latency and reduced throughput

• On an unsweep, the unswept messages are written to the recovery log

• If the same message is swept and unswept multiple times, it is rewritten to
z/TPFCS and the recovery log each time

Unsweeping Messages

31-Bit Sweeper

48z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• The 31-bit sweeper sweeps queues serially, in the same order each time,
exhaustively, and unidirectionally for the same queue (that is, toward the
front or rear but not both at the same time)

• With little coordination between sweep and unsweep, there is an increased
risk of message thrashing for 31-bit queues in certain scenarios

• Message thrashing is sweeping and unsweeping the same messages in a short
period of time, potentially repeatedly

Processing

31-Bit Sweeper Visual Overview

49z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

31-bit IBM MQ memory
queue

…

#IMQCK fixed file records

Checkpoint

Sweeper

z/TPFCS

Unidirectional Sweeping (31-Bit)

50z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Msg 1 Msg 2 Msg 3 Msg 4 Msg 5 Msg 6 Msg 7

Front Rear

For an already swept queue, the 31-bit sweeper will only sweep
messages in a single direction within the same sweep, either
toward the front or the rear of the queue but not both.

Msg 8

Swept

OR

Direction to sweep

64-Bit Sweeper

51z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• Persistent messages selected to be swept for a 64-bit queue must have been
checkpointed

• This means persistent messages are swept without incurring any I/O

Sweeping Persistent Messages

64-Bit Sweeper

52z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• The sweeper for 64-bit queues writes nonpersistent messages into pool
records anchored off the QCCR, just like the 64-bit checkpoint for persistent
messages

• The queue lock does not need to be held while nonpersistent messages are
filed, because they are detached from the message lists at selection time

• A swept nonpersistent message is written a single time

• This means a previously filed nonpersistent message can be swept without
incurring any additional I/O

Sweeping Nonpersistent Messages

QCCR Sweeper Example

53z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

QCCR
Queue: ABC
In use: Yes

First persistent message
index record

Last persistent message
index record

First nonpersistent message
index record

Last nonpersistent message
index record

Index record

Message data
record 0

Index record

Index record

Message data
record 1

Message data
record 438

Message data
record 439

…

64-Bit Sweeper

54z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• 64-bit queues are proactively unswept ahead of demand, meaning there is
little to no delay for applications or transmission

• A path still exists to reactively unsweep, but is only needed if there is a surge
of activity

• The queue lock is not held during unsweep

• On an unsweep, the unswept messages do not need to be written to the
recovery log

Unsweeping Messages

64-Bit Sweeper

55z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• The 64-bit sweeper performs upfront analysis of the 64-bit queues across the
entire system

• Identifies queues that have the greatest excess of messages proportional
to their dequeue rate (that is, sweep candidates)

• Also identifies swept queues with an insufficient buffer of messages
present in the front of the queue (that is, proactive unsweep candidates)

• Following the analysis, the sweeper can determine the optimal set of queues
to sweep and unsweep, in which order, and with specific targets for each
queue

Processing Intelligence

64-Bit Sweeper

56z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• The sweeper then creates several children ECBs to sweep and unsweep the
64-bit queues concurrently

• As many as 10 ECBs all sweeping or as many as 20 ECBs all unsweeping

• 64-bit queues can be swept bidirectionally (biased toward the rear of the
queue)

• Coordinating the sweep and unsweep closely largely eliminates the possibility
of message thrashing for 64-bit queues

• Also enables the same queue to be swept and proactively unswept within the
same sweeper run

Processing Efficiency

64-Bit Sweeper Visual Overview

57z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

IBM MQ Checkpoint Control
Record (MCCR, Ord 0)

Queue Checkpoint Control Records
(QCCR, Ord 1 — N)

…

Ord 1

Queue
ABC

Ord 0 Ord 2

Unused

Ord 3

Unused

Ord N-1

Unused

Ord N

Unused

Message data

Long-term
pools

#IMQCX fixed file records (NEW)

64-bit IBM MQ memory
queue

Checkpoint

Sweeper

Bidirectional Sweeping (64-Bit)

58z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Msg 1 Msg 2 Msg 3 Msg 4 Msg 5 Msg 6 Msg 7

Front Rear

For an already swept queue, the 64-bit sweeper can sweep in both
directions, toward the front and rear, if necessary, within the same
sweep. Preference is placed on sweeping toward the rear first because
those messages will be accessed later than those near the front. Note
that if the sweeper sweeps the front of the queue, it will always retain a
number of messages in memory proportional to or higher than the
dequeue rate.

Msg 8

Swept

Direction to sweep

Summary of Sweeper Improvements

59z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

31-Bit Sweeper 64-Bit Sweeper

• Rewrites persistent messages
to z/TPFCS

• Removes persistent
messages from memory
without additional I/O

• Unswept messages must be
written to the recovery log

• Unswept messages don’t need
to be written to the recovery log

• Unsweep done reactively at
MQGET or transmission time

• Unsweeps proactively ahead of
anticipated demand

• Sweeps queues serially • Sweeps and unsweeps
queues concurrently

Summary of Sweeper Improvements

60z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

31-Bit Sweeper 64-Bit Sweeper

• Sweeps queues in the same
order each time

• Sweeps queues intelligently,
setting targets and priorities
for each queue

• Queue lock held for entire
duration of unsweep,
preventing all other queue
activity

• Queue lock not held during
unsweep

• Little coordination between
sweep and unsweep,
increasing chances of
message thrashing

• Coordinates sweep and
unsweep for the same queue to
help prevent thrashing

64-Bit Sweeper Example

61z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

64-Bit Sweeper Example

62z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Queue definition table (QDT)

Q1
Q2
Q3
Q4
Q5
…
Q11
Q12
Q13
Q14
Q15

64-bit sweeper
parent ECB

Analyze

64-Bit Sweeper Example

63z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

64-bit sweeper
parent ECB

Yields

Shared control block

Sweep list
Q8, Q1, Q11

Unsweep list
Q2, Q1, Q7, Q6, Q11

64-Bit Sweeper Example

64z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

64-bit sweeper
parent ECB

Spawns

Shared control block

Sweep list
Q8, Q1, Q11

Unsweep list
Q2, Q1, Q7, Q6, Q11

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-Bit Sweeper Example

65z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

64-bit sweeper
parent ECB

Shared control block

Sweep list
Q8, Q1, Q11

Unsweep list
Q2, Q1, Q7, Q6, Q11 64-bit sweeper

child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

Grab first item

64-Bit Sweeper Example

66z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

64-bit sweeper
parent ECB

Shared control block

Sweep list
Q1, Q11

Unsweep list
Q2, Q1, Q7, Q6, Q11 64-bit sweeper

child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

Grab first item

Q8
Sweep

64-Bit Sweeper Example

67z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

64-bit sweeper
parent ECB

Shared control block

Sweep list
Q11

Unsweep list
Q2, Q1, Q7, Q6, Q11

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB

Q8
Sweep

Sweep
Q1

Grab first item

64-Bit Sweeper Example

68z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

64-bit sweeper
parent ECB

Shared control block

Sweep list
Ø

Unsweep list
Ø

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB Q8

Sweep

Sweep
Q1

Sweep
Q11

64-bit sweeper
child ECB

64-bit sweeper
child ECB

64-bit sweeper
child ECB Q2

Unsweep

Unsweep
Q1

Unsweep
Q7

64-bit sweeper
child ECB

64-bit sweeper
child ECB

Unsweep
Q6

Unsweep
Q11

64-Bit Sweeper Example

69z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

64-bit sweeper
parent ECB

Shared control block

Sweep list
Ø

Unsweep list
Ø

Release

The parent ECB is woken
when all sweep and unsweep
work is complete.

64-Bit Sweeper Settings

70z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Parameters

71z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• MQMSWPL and MQMSWPT have been added to CTKA

• MQMSWPL is the in-use percentage of MQM at which point 64-bit queues will
be swept

• The default value is 80%

• MQMSWPT is the target in-use percentage of MQM that the 64-bit sweeper will
work to achieve

• The default value is 60%.

• Modify with ZCTKA ALTER

• Display with ZCTKA DISPLAY or ZMQSC DISPLAY QMGR

Queue Manager Display

72z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

ZMQSC DISPLAY QMGR

MQSC0283I 15.55.27 QUEUE MANAGER DISPLAY
 QMNAME – TPFQM
 …
 MQMSWPL (%) – 80
 MQMSWPT (%) - 60
 END OF DISPLAY+

Parameters

73z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• With correctly tuned MQMSWPL and MQMSWPT parameters and a sufficient MQM
allocation on the system for the workload, sweeping 64-bit queues can be largely
avoided altogether under normal circumstances

• A remote system outage, for example, might still cause a transmission queue
to grow to the point at which sweeping is necessary

Ignored Parameters

74z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• The SWEEP and SWEEPSWB parameters for the queue manager (ZMQSC ALTER
QMGR) are ignored by the 64-bit sweeper

• The SWEEP and SWEEPDEPTH parameters for the local queue definition (ZMQSC
ALTER QL) are ignored by the 64-bit sweeper

• Therefore, the 64-bit sweeper is always enabled for every 64-bit queue

• These parameters remain in use by the 31-bit sweeper the same as before

Tuning MQMSWPL

75z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• Generally, the default MQMSWPL of 80% should be sufficient

• For example, with MQMSWPL at 80% on a system with 50 GB or 100 GB of
MQM, queues will be swept at 40 GB and 80 GB of MQM in use, respectively

• If your MQM allocation falls near the extremes of either very small or very large,
it should be set proportionally

• For example, a system with only 250 MB of MQM should consider setting
MQMSWPL lower, such as to 50%

• For example, a system with 1 TB of MQM should consider setting MQMSWPL
higher, such as to 90%

Tuning MQMSWPT

76z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• The MQMSWPT should be set according to how much the sweeper should try to
sweep out in a single run

• The larger the difference between MQMSWPL and MQMSWPT, the greater the
amount of message data targeted to be swept

• For example, with 50 GB of MQM, MQMSWPL at 80%, and MQMSWPT at 78%, the
sweeper will target 1 GB of data to sweep

System Resource Minimums

77z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• The 64-bit sweeper, 31-bit sweeper, and checkpoint can all run concurrently

• Altogether, these three processes can use as many as 11024 IOBs at a single
time

• With multiple release detection (MRD) enabled for record ID X’FE1B’, the 64-bit
checkpoint cleanup process can use as many as 5000 system frames at a single
time

• While we recommend these minimums for production and stress test
environments, unit test systems (for example, VPARS) and smaller native test
systems are unlikely to approach the message volume needed to peak these
resources’ utilizations

Monitoring MQM Usage

78z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Monitoring MQM Usage

79z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• Display the total allocated, current in-use, and highwater in-use number of
MQM blocks with ZMQSC DISPLAY QMGR

• Display the number of MQM blocks in use by a particular queue with ZMQSC
DISPLAY QL and the STAT parameter specified

• Also shown are the timestamps of the last sweep, proactive unsweep, and
reactive unsweep for the queue

Queue Manager Display

80z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

ZMQSC DISPLAY QMGR

MQSC0283I 16.53.20 QUEUE MANAGER DISPLAY
 QMNAME – TPFQM
 …
 Total MQM – 127997
 In Use MQM - 18300
 HW In Use Count MQM – 61000
 HW In Use Time MQM - 2024-03-27 16:53:04
 …
 END OF DISPLAY+

Queue Display

81z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

ZMQSC DISPLAY QL with STAT specified

MQSC0285I 15.34.48 LOCAL QUEUE STATISTICS DISPLAY: -
rcvry_driver_64bit_1
 Current Depth - 10
 …
 Num of SWBs in use - NONE
 Num of MQMs in use - 10 _
 …
 Time Last 64Bit Swp - 2023/11/12 15.34
 Time Last 64Bit Proactive UnSwp - 2023/11/12 15.34
 Time Last 64Bit Reactive UnSwp - 2023/11/12 10.32
 …
 END OF DISPLAY+

Identifying an Undersized MQM Allocation

82z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• An undersized MQM for the system’s workload will result in the 64-bit sweeper
frequently running

• To quickly identify if the 64-bit sweeper has likely run at all, view the ZMQSC
DISPLAY QMGR display’s highwater in-use mark and total allocated for MQM

• If the highwater mark as a percentage of the total allocated is greater than or
equal to the MQMSWPL, the 64-bit sweeper has run at least once

• When it has been determined that the 64-bit sweeper has run at least once,
examine the console for the presence of MQSC0801I messages, which indicate
sweep activity for the named queue

• If lots of these messages exist on the console, the 31-bit sweeper, 64-bit
sweeper, or both must be frequently active

Identifying an Undersized MQM Allocation

83z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• The next step after seeing many MQSC0801I messages on the console is to
determine whether they pertain to 64-bit queues

• Take the most prevalent queues named in the messages and do ZMQSC
DISPLAY QL to confirm if they are using MQM

Identifying an Undersized MQM Allocation Example

84z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

ZMQSC DISPLAY QMGR

MQSC0283I 14.50.21 QUEUE MANAGER DISPLAY
 QMNAME – TPFQM
 …
 Total MQM – 127997
 In Use MQM - 83326
 HW In Use Count MQM – 102724
 HW In Use Time MQM - 2024-04-10 14:39:46
 MQMSWPL (%) – 80
 MQMSWPT (%) - 60
 END OF DISPLAY+

This queue manager display reveals the highwater mark has likely
triggered the 64-bit sweeper to sweep queues at some point.

80% of the total
MQM was in use

Identifying an Undersized MQM Allocation Example

85z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

MQSC0801I 14.40.27 SWEEP FOR MYQ COMPLETED+
…
MQSC0801I 14.44.02 SWEEP FOR MYQ COMPLETED+
…
MQSC0801I 14.45.08 SWEEP FOR MYQ COMPLETED+
…
MQSC0801I 14.46.15 SWEEP FOR MYQ COMPLETED+

Looking at the console, the presence of MQSC0801I messages
indicates sweep activity for the named queue MYQ.

Identifying an Undersized MQM Allocation Example

86z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

ZMQSC DISPLAY QL

MQSC0282I 15.04.57 LOCAL QUEUE DISPLAY:
 Queue Name – MYQ
 …
 64BIT - YES
 MQM - YES
 64CHKPTORD - 1
 END OF DISPLAY+

This local queue display of queue MYQ confirms that it is using MQM.

Identifying an Undersized MQM Allocation

87z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• If the conclusion from your investigation is that 64-bit queues are being swept
hundreds or thousands of times a day on a recurring basis, the MQM allocation for
the system is too small for the workload

• Note that the example just covered was for the purpose of exemplifying how to
approach this investigation, and does not necessarily depict a system with too little
MQM – it would need much more frequent, regular activity to lead to such a conclusion

Identifying an Oversized MQM Allocation

88z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• An oversized MQM for the system’s workload will be apparent from a highwater
in-use mark that is only a small fraction of the total allocated

• Note, however, that the highwater mark is not persisted across an IPL and
therefore should only be referenced for this purpose of sizing the MQM after a
long period of uptime

Identifying an Oversized MQM Allocation Example

89z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

ZMQSC DISPLAY QMGR

MQSC0283I 18.20.15 QUEUE MANAGER DISPLAY
 QMNAME – TPFQM
 …
 Total MQM – 127997
 In Use MQM - 5000
 HW In Use Count MQM – 12250
 HW In Use Time MQM - 2024-04-08 14:35:30
 MQMSWPL (%) – 80
 MQMSWPT (%) - 60
 END OF DISPLAY+

This queue manager display shows that the highwater mark of in-
use MQM has only reached about 10% of the total allocated.

10% of the total
MQM was in use

Restart & Recovery

90z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Restart & Recovery Overview

91z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• Restart & recovery is the process in IBM MQ responsible for ensuring that no
persistent messages are lost across an outage (IPL)

• This involves processing the recovery log, merging events from the log with the
checkpoint, and then rebuilding persistent messages onto their queues

• The number of persistent messages rebuilt for a given queue in restart is
dependent upon whether the queue is 31-bit or 64-bit (discussed soon)

Rebuilding Queues After An Outage

92z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Recovery log

IBM MQ Resource Mgr.

Put
 Queue: ABC
 Message ID
 Message Data

Get
 Queue: ABC
 Message ID

… = IBM MQ queue ABC

Rebuilt queue

+

Checkpoint

Long-term pools

OR

…

#IMQCK fixed file records

Note that 31-bit queues are rebuilt
entirely in restart, while 64-bit
queues might have some message
restoration deferred to when the
system comes up (especially if the
queue is large)

31-Bit Restart & Recovery

93z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• The 31-bit restart & recovery rebuilds queues serially, entirely, and
synchronous to the overall system restart process

• With large 31-bit queues with many persistent messages, this can represent a
significant bottleneck on the ability to quickly bring a system back up

• If the system was in a low SWB condition prior to an outage, there is a real
possibility that the system comes back up in that same state or even in input
list shutdown, because 31-bit queues are rebuilt in their entirety according to
what was in memory prior

64-Bit Restart & Recovery

94z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• The 64-bit restart & recovery rebuilds queues concurrently, dynamically, and
asynchronous to the overall system restart process past a fixed interval

• The number of restoration workers is a function of the available system resources (that is,
i-streams, ECBs, IOBs)

• If system recovery boost is enabled, 64-bit restart & recovery can take advantage of fenced i-
streams to supplement restoration

• The target number of persistent messages to restore for a single queue is proportional to
the queue’s dequeue rate before the outage

• Queues with large or many messages will continue to be rebuilt as system restart continues,
reducing overall time in bringing the system back up

• Restoring only what will be immediately needed according to anticipated demand greatly reduces
the likelihood that the system will be burdened with sweeping upon coming back up to NORM

64-Bit Restart & Recovery

95z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• Any persistent messages which haven’t been rebuilt as part of restart &
recovery will be rebuilt (unswept) as needed by the 64-bit sweeper

Summary of Restart & Recovery Improvements

96z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

31-Bit Restart & Recovery 64-Bit Restart & Recovery

• Queues are rebuilt serially • Queues are rebuilt
concurrently

• Every message in checkpoint
is rebuilt into memory

• A dynamic number of messages
are rebuilt according to the
queue’s dequeue rate

• All rebuild activity occurs
synchronous to the overall
system restart

• Rebuild activity occurs
asynchronously after a period
of time elapses

Restart Reserved Pool Set & VPARS

97z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• Special restart reserved pool set of index records stored in the MCCR for use by
64-bit IBM MQ restart & recovery only

• Critical because new pools are unobtainable in system restart, and we need them to
write messages from the recovery log to the checkpoint

• This reserve is equivalent in size to 90% of the system’s recovery log allocation

• In a VPARS test environment, we highly recommend allocating the restart
reserved pool set on the base packs before turning over

• This avoids consuming individuals’ databases and time to allocate

• The restart reserve is allocated on queue manager start

• Therefore, must bring up the base VPARS system to NORM state and make sure the
queue manager is started before turning the system over for use by developers

Conclusion

98z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Summary of Settings for 64-Bit Queues

99z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• Define #IMQCX fixed file records in FACE table

• Number should be at least equal to the number of 64-bit queues you plan to
define on your system, but defining a surplus will allow for future growth

• In a loosely coupled complex, be sure to define the same number of these
records on every processor

• Define the X’FE1B’ record ID to the RIAT table to specify the pool settings

• MQM allocation for the system defined in CTKA

• MQMSWPL and MQMSWPT defined in CTKA control the 64-bit sweeper’s sweep
level and target

Scaling with Your Growing Business

100z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

• As message data volumes increase, you can grow the amount of MQM on your
system to support more data in memory at once

• As part of such an increase, also consider adjusting the MQMSWPL and
MQMSWPT if the new allocation is very large

• Should you need to define more 64-bit queues, add additional #IMQCX fixed file
records across your complex

• Consider also increasing MQM on the system if these queues will potentially
represent a large increase in message volumes

Questions?

101z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Thank you

© Copyright IBM Corporation 2024. All rights reserved. The information contained in these materials is provided for informational purposes only,
and is provided AS IS without warranty of any kind, express or implied. Any statement of direction represents IBM’s current intent, is subject to
change or withdrawal, and represent only goals and objectives. IBM, the IBM logo, and ibm.com are trademarks of IBM Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is
available at Copyright and trademark information.

102z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

https://www.ibm.com/legal/copytrade

103z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Queue Message Lists

104z/TPF | 2024 TPF Users Group | May 05-08, New Orleans, LA | ©2024 IBM Corporation

Unique to 64-bit queues,
nonpersistent messages are
separated into their own lists apart
from persistent messages. There
are also lists to separate the front
of the queue from the rear, which
are used specifically in the case of
sweeping.

Altogether, for 64-bit queues,
there are four message lists, each
constituted by a head and tail
message pointer.

Separating out these lists based on
message type helps with efficiently
checkpointing and sweeping 64-bit
queues.

Most importantly, use of these
lists is completely transparent to
applications.

Queue definition

Front

Rear

Persistent Nonpersistent

Head
Tail

Head
Tail

Head
Tail

Head
Tail

