
Integrating Java Programming on z/TPF
2022 TPF Users Group Conference
March 27-30, Dallas, TX
Education Session

—
Daniel Gritter

Disclaimer

Any reference to future plans are for planning
purposes only. IBM reserves the right to change
those plans at its discretion. Any reliance on
such a disclosure is solely at your own risk. IBM
makes no commitment to provide additional
information in the future.

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 2

Java on z/TPF – leveraging the value of Java

The IBM lab has chosen Java as a key feature to extend
functionality of z/TPF. In this education, we’ll demonstrate 3
ways that you can use Java to modernize your applications
and facilitate integration with your enterprise solutions.

3z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Java Use Cases on z/TPF

There’s three many categories where we believe Java can
provide a tremendous amount of value:

-Extending Guaranteed Delivery support

-Extending z/TPF applications through service calls

-Implementing Standard interfaces

4z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Extending Guaranteed
Delivery Support

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 5

Extending Guaranteed Delivery

6z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

z/TPF Kafka Broker

JVM

Worker Thread

Worker Thread

Worker Thread

Builtin Kafka
Producer API

TPF Application

tpf_publish_data()

TPF MQ

Other Enterprise
Solutions

Custom
Producer API

Extending Guaranteed Delivery

-Either use Guaranteed Delivery right out of the box for use
with Kafka or customize for additional options

-Minimal time to deployment

-Standard interface with minimal coding to accommodate
different library programming models

7z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Best Practices

Start with the “hello world” model. Build the smallest
possible unit of functionality first then build around that.

Refactor during/after integration

Function first, then performance test to focus improvements

8z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Extending Guaranteed
Delivery support

By default, Guaranteed Delivery supports Apache Kafka.

However, it is designed to be extensible to support multiple

interfaces for use with other data publication targets.

There are two providers support by z/TPF demonstrating the two
main different models:

• Synchronous model: Data is published before a thread reads
another message from the input queue (DF or MQ)

• Asynchronous model: Data is published some period of time
after the message is read from the queue, such that multiple
messages are in flight at the same time.

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 9

Use case: Extending
Guaranteed Delivery

Company X needs to publish data using Google
Pub/Sub.

They have at least three options available on z/TPF:

1) REST API access

2) Use Guaranteed Delivery to write to Kafka,
then redirect to Pub/Sub server using Kafka
Connect

3) Implement custom Guaranteed Delivery
provider.

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 10

Use case: Extending Guaranteed Delivery tradeoffs

1) REST API access

PRO) Simplest and most direct

CON) Potentially inefficient at scale as each message requires a separate request

CON) Potential path length / existence time impact to application or application rewrite to use asynchronous HTTP

2) Use Guaranteed Delivery to write to Kafka, then redirect to Pub/Sub server using Kafka Connect

PRO) Can use as a starter method to familiarize with Guaranteed Delivery

CON) Extra infrastructure overhead / latency / complexity

3) Implement custom Guaranteed Delivery provider.

PRO) Best throughput potential with minimal code

CON) Java programming / integration concepts may not exist yet in your TPF ecosystem

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 11

Use case: Extending Guaranteed Delivery tradeoffs
vs native implementation

Using the infrastructure provided with TPF Guaranteed Delivery allows you to decouple your application
processing for data publish, either as part of a custom Business Events dispatcher or directly from your

application.

There’s a variety of advantages when you compare to the cost of porting standard packages:

• TPF Applications are typically designed for a short lifecycle. Many native library implementations use a
complex threading model which may not be a good fit for TPF applications

• Complexity of porting effort. Many native library implementations have built-in assumptions about codepage
and platform that are not consistent with TPF.

• Time to market. With an easy API and few moving parts it’s straightforward to build a solution in a matter of
weeks.

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 12

Use case: Google Pub/Sub

For the first step in Java
programming, I like to build in
terms of smallest functional
unit.

Distill the problem into the
smallest piece that works
(“hello world”) then extend.

For this use case we’re going
to investigate the Google
Pub/Sub library:

https://cloud.google.com/pub
sub/docs/publisher

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 13

Use case: Google Pub/Sub Investigation

As the investigation into the online document unfolds, you will find there’s a wealth of online resources with
code snippets and guidance and samples, in this case included directly in the documentation:

For pub/sub, there’s a “Publisher” class that you can instantiate an instance of:

Publisher publisher = null;

// Create a publisher instance with default settings bound to the topic

publisher = Publisher.newBuilder(topicName).build();

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 14

Use case: Google Pub/Sub Investigation

There’s some other classes that you use to build a message, and then publish it:

ByteString data = ByteString.copyFromUtf8(message);

PubsubMessage pubsubMessage =
PubsubMessage.newBuilder().setData(data).build();

// Once published, returns a server-assigned message id (unique within the topic)

ApiFuture<String> future = publisher.publish(pubsubMessage);

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 15

Use case: Google Pub/Sub Investigation

The ApiFuture class that’s returned can be used to perform actions on result of publication:

ApiFuture<String> future = publisher.publish(pubsubMessage);

ApiFutures.addCallback(future,

new ApiFutureCallback<String>() {

public void onFailure(Throwable throwable) {}

public void onSuccess(String messageId) {}

},

MoreExecutors.directExecutor());

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 16

Use case: Google Pub/Sub Investigation

Finally, there are methods used to cleanup resources upon completion of publishing messages:

publisher.shutdown();

publisher.awaitTermination(1, TimeUnit.MINUTES);

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 17

This is a fairly simple model but is the best place to
start, copying the sample or tweaking it to make it your
own. Best part of this is you can implement it directly in
a workstation in a Java IDE to get it working quickly and
to interactively understand the flow.

Use case: Google Pub/Sub Investigation

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 18

java.util.concurrent.Future publish(request request);

In order to implement a custom delivery class, it must extend the
com.ibm.tpf.PublishInterface class. This class contains one method:

The return value is a “Future” object, which is only used with DF queue type to identify
when the operation has completed if processing occurs in synchronous mode. The
Future.get() method is called for synchronization.

Use case: Google Pub/Sub Investigation

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 19

The majority of the work is expected to be resolved through use of the
com.ibm.tpf.PublishRequest class. This class contains several methods expected to be
used by a data publish provider:

public String getTopicName();
public String getKey();
public byte[] getData();

public void async();
public void commit();
public void rollback();
public void retry(long errcode, String message);
public void error(long errcode, String message);

Use case: Google Pub/Sub Investigation

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 20

The three getters provide access to the data passed on the tpf_publishData() api from a
TPF application or business events dispatch adapter:

public String getTopicName();
public String getKey();
public byte[] getData();

Use case: Google Pub/Sub Investigation

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 21

The other methods are used to manage the state of the request.

public void async();

public void commit();

public void rollback();

The async() method is used to indicate to the framework that this is an asynchronous
request and additional messages may be read from the input queue while processing the
request.

This method should be called when confirmation is received that processing has been
completed successfully.

This method should be called when the message should be reverted to it’s original
condition. This is different than a “retry” which indicates an attempt was made to deliver
and failed.

Use case: Google Pub/Sub Investigation

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 22

The other methods are used to manage the state of the request.

public void retry(long errcode, String message);

public void error(long errcode, String message);

The retry() method should be called when a “recoverable” error was encountered, and the
operation may be successful at some future time with the current configuration.

The error() method should be called when a “unrecoverable” error was encountered, and
the operation would never be successful given the current configuration.

Use case: Google Pub/Sub Implementation

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 23

Based on the investigation done, we need to merge the two pieces together into a new
producer class. *(this is simplified, does not include required try / catch logic)

class GooglePubSubProvider implements PublishInterface {
java.util.concurrent.Future publish(request request) {

// mark this as an asynchronous request
request.async();

String topic = request.getTopic();
// locate/create the publisher based on topic name
Publisher publisher = publishers.get(topic);
ApiFuture<String> future = publisher.publish(pubsubMessage);

… <next page>
return future;

}

}

Use case: Google Pub/Sub Implementation

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 24

The callback is setup to handle success or failure after completion rather than blocking

ApiFutures.addCallback(future, new ApiFutureCallback<String>() {
public void onFailure(Throwable throwable) {

if (throwable instanceof ApiException) {
ApiException apiException = ((ApiException) throwable);
// details on the API exception
if (apiException.isRetryable()) {
request.retry(apiException.getStatusCode().getCode()),apiException.getMessage()

} else {
request.error(apiException.getStatusCode().getCode()),apiException.getMessage()

}
} else {

request.error(GENERIC_THROWABLE_CODE,throwable.getMessage();
}

}
public void onSuccess(String messageid) {

request.commit();
}
},
MoreExecutors.directExecutor());

<tns:TopicGroupList>
<tns:TopicGroup>

<tns:TargetName> stats </tns:TargetName>

<tns:QueueName> GPS.INPUT.QUEUE </tns:QueueName>
<tns:ErrorQueue> GPS.ERROR.QUEUE </tns:ErrorQueue>
<tns:RetryQueue> GPS.RETRY.QUEUE </tns:RetryQueue>

<tns:TopicHandler> com.company.GooglePubSubProvider</tns:TopicHandler>

<tns:RetryInterval> 100 </tns:RetryInterval>
<tns:RetryCount> 5 </tns:RetryCount>
<tns:NumberWorkerThreads> 5 </tns:NumberWorkerThreads>
<tns:NumberOfInFlightRequests> 10 </tns:NumberOfInFlightRequests>

</tns:TopicGroup>
</tns:TopicGroupList>

Use case: Google Pub/Sub Implementation

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 25

Once the class is packaged, we update the configuration to point to the new class in the
jam.xml configuration:

Use case: Google Pub/Sub Test/Deployment

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 26

Configuration and tuning of the deployment may vary based on a number of factors.

Each library will provide its own set of parameters and configuration to tune for a desired
outcome.

In general, multiple JVMs for scalability should not be necessary until you reach a throughput
limit for a single JVM, either based on the maximum number of threads or simply bottlenecks
due to locking. However, it is recommended that you use a minimum of 2 JVMs for
redundancy.

Extending z/TPF applications
and utilities

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 27

Extending z/TPF
applications and utilities

Support is based on REST, using OpenAPI descriptors

Define desired interface first, then generate code for
implementation of producer / consumer ends

Error handling for scenarios when the JAM is not available

28z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Use case: Calling analytics

Company R needs to extend their application to
include AI model processing into their transaction
for fraud detection

The application currently has embedded rule
processing hard-coded in C and wants to replace
this with a more dynamic approach. They decided
to implement this using a commercial product only
available in the Java programming language.

To invoke the processing, they need to pass 40
different data points into the application, then
return a risk analysis from the application.

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 29

riskcalc.swagger.json

Analytics: Defining the
interface

paths:
/analysis:

post:
summary: Retrieve namespaces
operationId: irskcalc
description: >-
Calculate risk of insurance for traveller, requires input
matrix defined at http://flightrisk.ofc/flightinputs/v1

parameters:
- in: body

name: analysis_request
description: request body
required: true
schema:
$ref: '#/definitions/risk_request'

responses:
'200':

description: normal response
schema:
$ref: '#/definitions/risk_response_200'

30z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

risk_request:
type: object
properties:
input_matrix:
type: array
minItems: 40
maxItems: 40
items:

type: number

risk_response:
type: object
properties:
calculated_risk:
type: number

riskcalc.swagger.json

Analytics: Generating consumer

31z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

tpfrestgen

riskcalc.srvc.json

irskcalcInvoke.c

irskcalc_200Response_t.gen.dfdl.xsd

irskcalcRequest_t.gen.dfdl.xsd

irskcalc.h

irskcalc.c
(provider – not

used)

Generate the TPF artifacts with tpfrestgen

riskcalc.swagger.json

Analytics: Generating producer

32z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

swagger-codegen
JAX-RS

application

Generate the Java artifacts with swagger-codegen or swagger editor to generate the Java producer

TPF JAM

Analytics: Generating stubs

33z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Update code paths to include consumer calls and implement producer logic:

TPF App Generated
REST
consumer

Local
optimized
call

Generated
REST
provider

Java App

Analytics: Deployment steps

• If not already done configure system to at least minimum requirements for Java
https://www.ibm.com/docs/en/ztpf/2022?topic=java-configuring-your-ztpf-
system

• Define file system storage and mount points required for Java

• Define jam.xml including Java Application in classpath
https://www.ibm.com/docs/en/ztpf/2022?topic=descriptors-jam-descriptor

• Enable system monitoring through OtherCommandLineOptions parameter
https://www.ibm.com/docs/en/ztpf/2022?topic=guide-monitor-java-
applications-across-ztpf-system

• Deploy JAM

34z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Analytics: Testing steps

• Unit testing can generally be done off TPF for Java

• Integration testing on VM

• Initial performance testing / validation on VM with Apache
JMeter or load driver

• Configuration testing on “pre-prod”

35z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Analytics: Performance steps

• Using Apache JMeter or TPF application load driver drive
sustained workload

• Connect IBM Healthcenter client (available from eclipse
marketplace) to JAM

• Use Method Profiling and Garbage collection screens to
identify hotspots and garbage collection issues

• Use System monitoring to view JVM performance combined
with CDC metrics in a single view

36z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Analytics: Production

• Define number / size of JVMs based on analysis of
throughput constrainsts in test

• Configure / adopt JVM system monitoring to support
coverage

• Considerations for AutoRecycle YES vs NO

• AutoRecycle currently restarts on every activation change

• Frequently activating multiple loadsets is currently better
supported through process (manual recycle vs auto
recycle)

37z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Implementing Standard
Interfaces

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 38

Implementing Standard Interface

-Java listeners available for any number of interfaces

-Complementary to Guaranteed Delivery support, except for
data subscription instead of publication

-Can easily be integrated into a JAM for consumer model,
standard single port interfaces not compatible with current
recycle model (for example would need every JVM to have
their own unique port)

39z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Use case: Kafka consumer

Just as z/TPF integration with the enterprise is facilitate by
data publication, z/TPF may have a requirement to ingest data
from the enterprise. Presently there are 2 main capabilities
that exist natively on z/TPF: MQ and REST.

Often the enterprise solution can require connectors or
special configuration to adopt these as ingress connectors
into z/TPF. Java on z/TPF can help you natively read from
these enterprise solutions without extra external
configuration.

40z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Use case: Kafka consumer

Implementing a Kafka
consumer can be done as
part of a JAM workload.

While you may wish to
implement some REST
services to configure or
control the client, they are
not required to be
externalized.

41z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

/**
* Entry point into the application
*/
public class KafkaClientApp extends Application {

static {
KafkaClientEngine engine =

KafkaClientEngine.initialize();
engine.begin();

}

@Override
public Set<Class<?>> getClasses() {

Set<Class<?>> classes = new HashSet<>();
classes.add(KafkaClientConfiguration.class);
return classes;

}
}

Use case: Kafka consumer

In our example, we’re going
to start with a simple Kafka
Consumer in a single thread
for simplicity, but you can
scale this out dynamically
or just via configuration.

There’s very few lines of
Java code necessary to
interact with the Kafka
Broker.

42z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Properties config = new Properties();
config.put("client.id", InetAddress.getLocalHost().getHostName());
config.put("group.id", "foo");
config.put("bootstrap.servers", "host1:9092,host2:9092");
KafkaConsumer consumer = new KafkaConsumer<K, V>(config);

while (running) {
ConsumerRecords<K, V> records =
consumer.poll(Long.MAX_VALUE);

process(records); // application-specific
consumer.commitSync();

}

Use case: Kafka consumer

There’s a few choices on how to interact with z/TPF.

For a safe design, we want to place the message into MQ
for guaranteed receipt.

This gives us two options:

1) Standard Java MQ client

2) Custom REST service

43z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Use case: Kafka consumer

1) Standard Java MQ client

a. Least code

b. Network connected to TPF

2) Custom REST service

a. Best performance

b. Minor code

c. Option to use Long-running ECB (stateful services)

44z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Use case: Kafka consumer

Questions to consider when deciding implementation:

1) What’s the expected usage

2) Do I care about latency?

3) Do I care about CPU overhead

4) Do I care about scalability

5) How quickly do I need to deploy this

45z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Use case: Kafka consumer

1) Standard Java MQ client

a. Least code

b. Network connected to TPF

2) Custom REST service

a. Best performance

b. Minor code

c. Option to use stateful services ECB

46z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Technical Details

47z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

z/TPF Kafka Broker

JVM

JVM

Worker Thread

Worker Thread

Worker Thread

1) Kafka
Consumer
API

REST stateful
services ECB

3) MQPUT
API

2) Stateful
service call

TPF MQ

Use case: Kafka consumer

Creating a stateful service:

This is just a REST provider with a providerType set to
StatefulProgram in the service descriptor. This changes
the behavior so that calls from the same Java thread will
all be processed from a common ECB instead of creating
a separate ECB for each request.

The advantages is decreased overhead of MQ
initialization as well as ECB creation as a single Java
thread is expected to make a multitude of REST calls
(potentially one per message)

48z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Use case: Kafka consumer

z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation 49

Making an optimized REST service call from a Java
application

https://www.ibm.com/docs/en/ztpf/2022?topic=java-
calling-local-ztpf-application-services-from

Using the CXF client generated from swagger-codegen you
can use the same procedure from earlier:

1) Define interface

2) Implement service

3) Invoke service from application

Conclusion

Leveraging the capabilities of Java on the z/TPF platform, you
can provide enterprise integration capabilities using built-in as
well as custom solutions with minimal coding and effort.

50z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

Thank you

© Copyright IBM Corporation 2022. All rights reserved. The information contained in these materials is provided for informati onal purposes only, and is provided AS IS without warranty of
any kind, express or implied. Any statement of direction represents IBM’s current intent, is subject to change or withdrawal, and represent only goals and objectives. IBM, the IBM logo, and
ibm.com are trademarks of IBM Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available at Copyright and trademark information.

51z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

52z/TPF | 2022 TPF Users Group | March 27-30, Dallas, TX | ©2022 IBM Corporation

