z/ TPF SOA Wi te Paper

Docunment Version: 1.2
Date: April 28, 2006

Edi t ors:

Barry Baker
| BM TPF Lab, Poughkeepsie, NY

Il Cousins

B
| BM TPF Lab, Poughkeepsie, NY

Note to US CGovernment Users Restricted Rights - Use, duplication or
di scl osure restricted by GSA ADP
Schedul e Contract with |IBM Corp

NOTE: Before using this informati on and the product it supports, read
the general information under

"NOTI CES" in this docunent.

Tabl e of Contents

1 Introduction 5
1.1 Background 7

. 2 Purpose 7

.3 Current SOA Support on TPF 8

.4 SOA Myths: [SOA Wb Services Journal] 12
z/ TPF Servi ce Provi der Support 15

.1 z/ TPF Web Services: Server/Provider 15
z/ TPF Servi ce Consumer Support 17

.1 z/ TPF Wb Services: dient/Consumer 17
Artifacts 19

.1 z/ TPF Web Services: Server/Provider 20
.2 z/ TPF Web Services: dient/ Consumer 21
. 2.1 SOAP Message Fl ow 21

.2.2 Static versus Dynamic Cient/Consuner 22
Message Handl ers 24

.1 Message Handl er Tooling 25

Web Service Driver 26

.1 Wb Service Driver Tooling 27

Web Service Stub 28

.1 Wb Service Stub Tooling 29

Web Service Depl oyment Descri ptor 30

.1 Web Service Depl oynent Descriptor Tooling 30
Rol es 32

.1 Devel oprrent Rol es 32

.2 Qperations/Coverage Rol es 32

.3 O her Roles 33

10 Tool i ng 34

11 Web Servi ces Standards 37

12 z/TPF Architecture to Support SOA 40
Conmon SQAP Engi ne 40

.1 SOAP Engi ne Interfaces 40

.2 SOAP Engi ne Internals 42

.2.1 Core 42

. 2.2 Handl er Engine 42

.2.3 Data Transformation 42

Par ser 43

Servi ce Registry 43

Transports 43

.1 HTTP 43

.2 HTTPS 43

.3 M 43

.3.1 MQ Bridge 44

Message Handl er 44

Servi ce W apper 44

Service Stub 44

12.8 Application 45

Appendi x A Web Servi ces Exanpl e 47
Appendi x B Wb Services Scenari os 55
Appendi x C Traditional TPF Devel opnent Rol es 62
Appendi x D Wb Service Project Roles 64

OQOOWOOVONNOOOOODUITONRARDPABRERIREAPMWWNNRERERE,

H
N
ONOUARMDRMDMDWNRRERRERRRE

1 Introduction

TPF custoners have nade extensive investnents in systens and application
resources over the course of

many years and they have | arge anmounts of business |ogic and application
data stored on and managed by

TPF. Service-Oriented Architecture (SOA) refers to an architectura
solution that creates an environment

where services, service consuners, and service providers can coexist,
and still have no dependence on each

other. SOA enables an enterprise to increase the | oose coupling and the
reuse of frequently used software

assets. These software assets, together with the functionality that they
provide, are called services in

t he SQA term nol ogy.

For nmost enterprise-level |IT organizations, the path to SOA will take
time and be acconplished by increnenta

change that provides both short-termand | ong-termval ue. Major

repl acenent projects are risky and expensive,

and are warranted only when the existing systens no | onger satisfy the
busi ness needs. Moving incrementally

toward SOA will cause little disruption to the systens, and, when
properly planned, requires a m ninal

investment in staff skills to make the changes possi bl e.

In the enterprise, SOA can provide two types of val ue: access and
reuse/flexibility. A new application

bei ng devel oped in this environnent would be able to provide for both
types of value, while an existing

application undergoi ng SOA enabl enment can foll ow one of three patterns,
wr appi ng, refacing, and

conponenti zing, depicted in Figure 1

Figure 1: SOA Enabl enent Patterns for Existing Applications

Figure 1 shows the three patterns for transform ng an existing
application, noting that as you nove to the

right, both the amount of work required and the payoff increase. Each
I T organi zation will need to anal yze

their application assets and determ ne which pattern, with its

associ ated costs and benefits, align with

its business goals.

SOA allows for the reuse of existing assets where new services can be
created froman existing IT

infrastructure of systens. In other words, it enabl es businesses to

| everage existing investnents by

allowing themto reuse existing applications, and prom ses

i nteroperability between heterogeneous applications

and technol ogi es. Sonme key aspects to SOA that make it flexible

i ncl ude:

e Services are software conponents that are exposed through
i mpl ement ati on-i ndependent interfaces

* Services performpredeterm ned tasks and are | oosely coupl ed
* Services can be conbined into conposite services

* Services can be dynam cally di scovered and then used.

Wth regard to the SOA progranm ng nodel, three concepts will be
i ntroduced here to provide context: Service

Conponent Architecture (SCA), the Enterprise Service Bus (ESB), and
Service Data hjects (SDOs).

SCA is a set of specifications that describe a nodel for building
applications and systens using a service-oriented

architecture. SCA extends and conpl enments prior approaches to

i npl enenting services and provides an environnent

for conponents to operate in. SCAis not required to apply the
conponenti zi ng SCA enabl enent pattern nentioned

above, but it does help with the reassenbly and exposure of created
conponents. One of the mechanisms SCA utilizes

for wiring service conponents together is Wb services.

The following quote is a concise definition of the ESB, taken fromthe
| BM Systens Journal, Vol. 44, No. 4, 2005,
witten by M-T. Schmidt, et al

The ESB enabl es an SOA by providing the connectivity |ayer between
services. The definition of a service is wide;

it is not restricted by a protocol, such as SOAP (Si npl e Object Access
Protocol) or HITP (Hypertext Transfer

Prot ocol), which connects a service requestor to a service provider; nor
does it require that the service be

descri bed by a specific standard such as WBDL (Web Servi ces Description
Language), though all of these standards

are major contributors to the capabilities and progress of the ESB/ SOA
evolution. A service is a software

conponent that is described by neta-data, which can be understood by a
program The nmetadata is published to

enabl e reuse of the service by conponents that nay be rempte fromit and
t hat need no know edge of the service

i mpl enentati on beyond its published neta-data. O course, a well

desi gned software program may use neta-data to

define interfaces between conmponents and nmay reuse conponents within the
program The distinguishing feature of

a service is that the neta-data descriptions are published to enable
reuse of the service in |oosely coupled

systens, frequently interconnected across networks.

Note that the ESB is the infrastructure for interconnecting services,
but the term ESB does not include the

busi ness | ogic of the service providers thensel ves not the requestor
applications, nor does it include the

contai ners that host the services. Hosting containers and free-standing
applications are enabled for interaction

with ESBs with varying |l evels of integration, depending on the range of
protocols and interoperability

st andar ds supported.

The ESB i npl emrentation for TPF will be defined nore precisely (that is,
restricted) and support the Wb

services formof SOA only. The details of the makeup of the TPF ESB are
presented further in this paper

but basically the ESB will consist of the followi ng support: the
protocol s that are planned to be supported

will be restricted to SOAP/ HTTP, SOAP/ HTTPS, SOAP/ MQ and SQAP/ MQ over
SSL (protocols that nay be consi dered

for future support are SMIP, FTP, and 11 0P); WSDL will be the standard
to describe the netadata for the

services; a TPF-specific design will be included for services

depl oyrment; lastly, nessage handl ers and

drivers/stubs will be enployed to provide medi ation services for nessage
mani pul ation (for exanple, data

translation and encryption/decryption) and enable the ESB to be

ext endabl e for future support for additiona

Web services standards.

The contai ner spoken of in the second quoted paragraph is the TPF
application space. It is supported by new

APls used to access ESB services (described below) and the current TPF
APl set. These ESB APIs will be used by

the service running in the TPF contai ner

SDCs sinplify data access and representation in your service-oriented
software. SDOs repl ace diverse data access

nodel s with a uniformabstraction for creating, retrieving, updating,
and del eti ng busi ness data used by service

i npl enentati ons. They nake devel opers nore productive by freeing them
fromthe technical details of how to access

particul ar back-end data sources, so they can focus principally on
busi ness Il ogic. SDOs define a single and

uni formway to access and nmani pul ate data from het erogeneous dat a
sources including rel ational databases, eXtensible

Mar kup Language (XM.) data sources, Wb services, and enterprise

i nformati on systems (EIS). The TPF statenent of

direction is to expose TPFDF dat abases to application environments off
of TPF (for exanple, WebSphere Application

Server) using SDOs

SCA and Wb services are two different things; SOA is an architecture,
while Web services is one way to inpl ement

the SQOA architecture. Wb services is becoming the preferred way to
realize SOA due to its extensive use of open

standards. Wb services are software assets designed to support

i nt eroperabl e machi ne-to-machi ne i nteracti on over

a network. This interoperability is gained through a set of XM.-based
open standards, such as WSDL, SOAP, and UDDI

These standards provide a common approach for defining, publishing, and
usi ng Wb servi ces.

There is very clear evidence that Service Oriented Architecture (SOA)
based on Wb services represents a shift in

t he dom nant enterprise software devel opnent and depl oynent paradi gm as
wel | as the evolution of enterprise

application integration (EIS) solutions (for exanple, WbSphere M) .

Al though this shift is at an early stage,

there is sufficient evidence that it will have a mgjor industry inmpact
over the next five years. This evidence

clearly shows that Wb services is rapidly shifting from energing
technol ogy to the nainstream

1.1 Background

Thi s paper is an evolutionary progression of the AAA Task Force

hj ectives paper dated March 7, 2003. That paper

i ntroduced Web services concepts to the AAA Task Force, discussed
conditions that led to the formation of Wb

servi ces, and proposed how Wb services could be inplemented on TPF. It

was hoped that the Objectives paper woul d

engender greater interest in devel oping Wb services on TPF and create
requirenents for the TPF product so that

| BM coul d deliver enhancenents to aid in the Wb enabl enent of existing
applications. Indeed, several custoners

i mpl enented their own in-house solutions to acconplish this goal (for
exanple, wote their own HITP server, SOAP

server, XM parser, etc.) Unfortunately, no requirenents were
forthcom ng, probably due nostly to the fluid (at

the tine) environnent of Web services, the confusing number of
“standar ds” being published, and sone | ack of

under st andi ng of the overall concepts. The path to SOA and Wb services
is by now, a well-trodden and wel | -defi ned

one, and this is the tinme for IBMto put into notion a plan to provide
an enterprise-class SOA Wb services sol ution

1.2 Purpose

The purpose of this docunment is to show how z/ TPF can participate in a
uni fied | BM SW5 strategy, thus allow ng

it to be a part of SOA solutions through the use of Wb services. The
scope of this docunment includes sections

that introduce the concepts and conmponents necessary to inplenent this
support on z/ TPF. There are three primary

conponents necessary to support an SOA environnent: Provider services
which allow z/ TPF to be a host site for

servi ces; Consumer services which allow applications running on z/ TPF to
access Wb services on renote hosts;

and Tool i ng services which assist the z/ TPF application devel oper to
nore easily architect solutions for the

SQA environment. This support will support the three SOA enabl enent
patterns nmentioned above, but w Il not

provide explicit information about how to deconstruct an existing
application into conponents and then reassenbl e

themas is required in the conponentizing pattern. This is left to the
customer (and potentially a future paper

to provide informati on on available tooling), but once this work is
done, the processing and tooling described

here can be used to expose the newy created conponents as Wb services.

Al so documented in this paper are the internal specifications and APlIs
that will formthe basis of SQA support

in z/TPF. Part of this design is an SOA Engine that is intended to

i mpl ement on z/ TPF a framework that is comon

wi th other SWG products (such as CICS, DB2, and IMS) that will allow
code sharing anong these products when new

requi renents are inplenmented. These APIs assist in standardizing
satellite conponents such as the Message Handl er

Parser, Service Registry, Transport Handl ers, and Service

W apper/ St ub/ Appl i cation. The prinmary conponents and

satellite conponents conplete the SOA for z/TPF inplenentation picture.

1.3 Current SOA Support on z/TPF
Processing a SOAP nessage on z/ TPF invol ves a variety of conponents. The

flow of a SOAP message through the
z/ TPF system vari es dependi ng on the SOAP nessage itself, whether each

conponent is able to conplete its

portion of the processing, and any special coding in the appropriate
user exits.

The follow ng figure sunmari zes the conponents through which a SOAP
nessage flows and the paths that it

may or may not take:

SOAP conmuni cati ons bi ndi ng

A communi cations binding on z/ TPF recei ves a SOAP nessage fromthe
networ k. The binding calls the

t pf _soap_handl er C function to pass the nessage to the SOAP handl er.
VWhen SOAP nmessage processing is

conpl eted, the comruni cations binding receives the response nessage from
t he SOAP handl er and sends

the nessage to the SOAP client.

Currently, the Apache HTTP server is available for the custonmer to
install on their z/TPF system Apache

is able to process SOAP nessages only after the nod_tpf _soap piece of
t he Apache program has been installed,

whi ch enabl es recognition of a SOAP nmessage and passes it to the SOAP
handl er. The Apache HTTP server and the

nod_t pf _soap program for Apache are not included in the z/TPF base.
Not e:

SCAP support on the z/ TPF systemis not conpatible with the version of
t he Apache HTTP server with SSL support.

SOAP handl er

Net wor k

SCAP

Communi cat i ons

Bi ndi ng

SCOAP

Handl er

t pf _soap_appl _handl er

user exit

TPF

Application

B2B

XML

Scanner

| Node

Tabl e

t pf _soap_handl er _exi t

user exit

t pf _soap_build fault

C function

Transl ati on

Functi ons

XML API's

The SCAP handler is a programthat receives a SOAP nessage from HTTP or
ot her communi cati ons binding on the

z/ TPF system and perfornms sone or all of the follow ng tasks, each
followed by a return before noving on to

t he next appropriate task:

* Calls the SOAP handl er user exit (tpf_soap_handler_exit) for any user-
speci fic processing

e Calls translation functions, if needed, to ensure that the SOAP
nmessage is in the host encoding

 Passes the SOAP nessage to an XM. scanner
e Perfornms the SCAP syntax checks.

e Calls the tpf_soap_build fault C function, when needed, to create a
fault nessage or passes information
to the SQOAP application handl er user exit (tpf_soap_ appl _handl er)

* Returns the appropriate response to the HTTP server or other
conmuni cations binding to send to the SOAP client.

SOAP handl er user exit

The t pf_soap_handl er _exit user exit is called by the SOAP handler. This
user exit, by default, sinply returns

t he SOAP nessage unchanged. Custoners can use this user exit for any
user-specific instructions that are

appropriate for their system For exanple, they may need to add sone
translation routines in this user exit

to ensure that the SOAP nessage is in the proper host encoding

B2B XML scanner

The B2B XM. scanner receives the SOAP nessage fromthe SOAP handl er. The
scanner is an internal conponent

that processes a SOAP nessage to create a series of structures that are
in the cbnode. h header file. This

header file is essentially a copy of the SOAP message in a structured,
tree format. Once this processing

is conpleted, the B2B XM. scanner returns to the SOAP Handl er.

Not e:

Application programrers can use z/ TPF XML APl support to access data
fromthe request and to create response

nmessages without having to interact directly with the structures in the
cbnode. h header file.

The SOAP nessage is changed by the B2B XML scanner to nornalize the
nessage. Nornalization is a norma

parsi ng process and is defined by the WBC on their Wb site at
http://ww. w3. org/. The changed SOAP nmessage

cannot be parsed again after the nessage has been normalized by the XM
scanner.

Changes nmade to the SOAP nessage conformwi th the WBC specification with
the foll owi ng exception:

If a character reference cannot be represented in the encoding of the
SOAP i nput nessage encoding, it is

handl ed as text and renmi ns unchanged.

The XML scanner does not validate the XM. structure.

SOAP application handl er user exit

The t pf_soap_appl _handl er user exit is called by the SOAP handler. This
user exit is used to specify how

the data contained in the SOAP message i s processed, including passing
that data to an application on the

customer’s z/ TPF system

The custoner can call the follow ng conponents as needed.

Faul t bui |l der

The tpf_soap_build fault C function builds an XM.-based fault nessage
when an error occurs al ong the SOAP

nmessage path. This fault nmessage is returned to the SOAP client.

A fault nessage is built for each of the follow ng conditions:

e An error occurs during SOAP application processing. (The SOAP fault is
built with identification of either

recei ver or sender error.)

* A SOAP translation error during SOAP handl er processing.

e The SOAP nessage sent by the client arrives at z/ TPF encoded in a
character set other than UTF-8, Latin 1

(1 SO 8859-1), or EBCDIC and tpf_soap_handl er_exit does not translate the
nessage.

* \Wen tpf_soap_handl er_exit detects an error in the input nessage, a
SendEr ror Repl ySender return val ue nust
be set to return to caller

* \Wen an application handler returns with ErrorRepl yNeeded, the SCAP
handler will build a fault nmessage with
faul t Code Receiver to return to the client.

The tpf_soap_build fault C function can also be called to build a fault
nessage by ot her conponents or

applications at any tine.

z/ TPF application

This is an application that customers will supply on their z/ TPF system
to handl e SOAP nessages. It may or

may not call translation functions, the tpf_soap build fault C function,
or any other supported z/ TPF functi ons.

VWhen translating from Unicode to the single-byte EBCDI C character set, a
substitute character replaces sone

Uni code sequences that are not valid (sonetines referred to as illogica
sequences). A customer’s application

nmust be able to take correct action on nessages that have been
translated from UTF-8 to EBCDIC. The correct

action is application- and data-specific.

Transl ati on functions

Transl ation functions allow the custonmer to translate a nmessage from one
character set to another. GCenerally,

a SOAP nessage nust be in the host encodi ng before being processed by a
z/ TPF application. If a SOAP nessage

is sent to the client in response, it also nust be encoded in the
preferred character set of the client

bef ore bei ng sent.

When the input nmessage is encoded in a Unicode character set but
contai ns characters that cannot be transl ated,

a substitute character is used. For exanple, a euro synbol (U+20AC,
which is represented as OxE282AC i n UTF-8)

in an i nput nessage encoded in Unicode format UTF-8 will be repl aced by
t he Ox3F EBCDI C substitute character

during translation. The converted message will instead have the Ox3F
EBCDI C substitute character

1.4 SOA Myths: [SOA Wb Services Journal]

Wth the introduction of any new architecture or technol ogy, nyths about
its abilities, costs, and pl acenent
in the current IT spectrumare created, spread, and end up setting

expectations. Years later, when the

expectations created by these nyths go unnet, the relationship between
t he business and I T organi zation are

damaged. This can cause the |IT organization to be isolated and

mar gi nal i zed by the business. The follow ng

section attenpts to skewer some of the common nyths that are
unfortunately taking hold in the comunity,

and to ensure a greater |inkage between the business and IT

or gani zati ons.

Myth #1: SOA is a solution (panacea) to all software probl ens

SQA is an architectural approach used to build solutions that are
characterized by the presence of a set of

services, service consumers, service providers, and service contracts.
The approach of SOA needs to be used

in light of business processes to arrive at a solution that can provide
busi ness benefits. Though SQA provi des

a sound architectural foundation to the overall solution, the specific
probl em regardi ng donmai n/ busi ness needs

to be sol ved using the domain/busi ness expertise, over and above the SCA
sol uti on.

Myth #2: SOA is |ike a product, and can be downl oaded for tria

SQA is an architectural approach for building solutions that are | oosely
coupled in a stepwi se, phased nanner

resulting ultimately in the realization of a conplex, federated,
service-oriented enterprise. The

busi ness-specific services are initially identified over the SOA
architecture, and then mapped to a set of

t echnol ogy-specific inplenentation architectures for the purpose of
realization.

Though SQA concepts are reasonably sinple to understand and apply, it is
a rather involved process to build

an SOA-rich enterprise, covering all aspects of the SOA characteristics.
These sol utions evol ve over tine,

and they need to be crafted carefully and jointly along with the
custonmer to ensure that the journey in the

SQOA architecture evolution is progressing in the "correct" direction.
Due to this very nature, many SOA

solutions typically do not fall into the category of "products."

Myth #3: SOA is a conplete, off-the-shelf solution

SQA sol utions are conposed of prefabricated buil ding bl ocks that
typically represent the services identified

during architecture workshops. The concept of prefabricated building
bl ocks (services) reduces tine to market,

ri sk, pronotes reusability, and provides a head start. Wile the
generic, technol ogy-neutral SQA approach

continues to strive for increasing levels of reusability, the

t echnol ogy-speci fic SOA sol ution always requires

sone degree of custom zation. The degree of custonization is based on
factors including if the custoner's

environnent already has a set of services or an environment wth

di fferent degrees of |egacy applications

and integrations. The service-oriented approach provides a significant
differentiation in building a

federated service-oriented enterprise, and helps in realizing the
busi ness services reasonably quickly.

Myt h #4: SOA software al ways needs to be devel oped using Wb services
SQA is a technol ogy-neutral architecture, and can be realized using any
technol ogy. The sel ection of

technol ogy is performed by considering the various possible factors such
as the functional requirenments

to be addressed, the performance and reliability requirenents, the
avai | abl e budget, and so on. Based on

these factors, the technology is chosen. Wb services offer just one
such technol ogy option that is used

to realize SOA solutions. However, it is possible to use other
alternatives (apart from Wb services), and

still realize SOA sol utions.

Myth #5: Any software devel opment using Web services is aligned with SOA
Web services, coupled with the other relevant tools and technol ogi es,

of fer one option that can be used to

build and realize an SOA sol uti on. However, a solution cannot be
classified as SOA just by virtue of being

built using Wb services. A solution is conpliant with SOAif it neets
the foll owi ng requirenents:

 Interaction between service providers and consuners
 Usage of service contracts

» Usage of metadata.

This can be conpared to object-oriented architecture (OO . It is
possi ble to use an OO | anguage such as C++

and still end up in non-QO architecture, unless the necessary
characteristics of an OO solution are addressed

whi | e buil ding the sol ution.

Myth #6: Each service is always atomic in nature

Services in the context of SOA represent the functionality provided by
software assets. These services,

when invoked, performa specific task. At the | owest |evel, these
services are mapped to a specific task.

The services that always performone atomc task are referred to as

"l eaf " services. The services that

are created by the federation of other services are called "conposite"
services. In other words, it is

possi ble to define services in the SOA context that are, in turn
conposed of other SQA atom c services.

Myth #7: SOA is not aligned with any standards

SQA i s based on several industry-standard initiatives, namely the QASI S
wor ki ng group, the Wb services

st andards bodi es, and so on.

Myth #8: SOA is the sane as EAl There is a general misconception that
SQA is the same as enterprise

application integration (EAl). EAl is the integration approach in which
various applications are integrated

using a mddl eware, through the use of a set of connectors (or
adapters). These adapters provide access to

and exposure of all of the atom c interfaces of the underlying
applications.

However, SOA is not the same as EAl. SOA is based on service aggregation
that is based on functionality,

and not on atomic APls. SOA can be visualized as a further evolution of
EAl .

SQA advocates integration based on services rather than on atonic APIs.
SQA integration is simlar to a

richer formof ESB (enterprise service bus) integration, and represents
a significant evolution fromtraditiona

EAl integration. Using SOA as an architectural approach results in
significant inmprovenent in the perfornmance,

flexibility, usability, and TCO (total cost of ownership) of the overal
sol uti on.

SQA is nore sophisticated than "classical/traditional" EAl in severa
ways. First, SOA provides an aggregation

capability (support for conposite services) that is lacking in EA . EAl
deal s with basic atomic APIs and data

Second, SOA provides support to work with service-1evel data, whereas
EAl al ways deals with application

integration using atom c APl (application programmng interface). Al so,
nost i nportant, SQA provides support

for transformati ons and mappi ngs, whereas EAl does not support these
directly. Keeping all this in mnd, it

is possible to say that SOA is a nore advanced architectura

net hodol ogy.

Myth #9: SOA is a very expensive solution

SCA sol utions are deployed in an evol utionary, stepwi se manner that
requires incremental investnents.

However, the framework allows for the consistency across the increnenta
sol uti on.

The cost of the solution depends on several factors, anong which the

| evel of automation and the |evel

of sophistication required in the solution are forenost. It is possible
to arrive at a reasonable |eve

of automation, and design and build an SCA solution that is cost-
effective. Also, the cost depends on the

choi ce of the other paraneters such as the technol ogy chosen, the
products chosen (in case of green-field

customers), and so on. All of the factors that contribute to the cost
need to be considered carefully,

and appropriate choices need to be made in order to reduce the cost. By
doing so, it is possible to build

a reasonably feature-rich and yet cheap solution. The enterprise
architecture plays a crucial role in the

SOA roadmap for the enterprise and precedes any major conmmtnents. The
concept of service and a means of

interaction are nore inportant than changi ng technol ogi es overni ght.
Myth #10: SOA sol ution conponents (services, contracts, and data nodel)
are conpletely reusabl e

SQA strives for the highest possible anbunt of reuse, and the amount of
reuse achi evabl e i ncreases over

time.

In terns of the service, a |large anbunt of reuse is possible in the

t echnol ogy- neutral representation

However, as the inplenmentation is associated with the chosen technol ogy,
the reuse is limted if the

technol ogy i s changed. However, when newer services are designed using
exi sting services, a |large anmount

of reuse is possible. In any case, the learning and the know edge can
definitely be reused, in addition

to possi bl e code reuse.

2 z/ TPF Service Provider Support

The service provider creates a Wb service and possibly publishes its
interface and access information

to the service registry. Each provider nust decide which services to
expose, how to nake trade-offs between

security and easy availability, howto price the services, or, if they
are for free, howto exploit them

for other value. The provider also has to deci de what category the
service should be listed in for a given

br oker service and what sort of trading partner agreenents are required
to use the service.

Customers using z/ TPF can | everage their existing | egacy applications by
using the z/ TPF SQA/ SDO support

to transformtheminto Wb services, accessible by clients and hosts
using an Intranet/Internet connection

I ndeed, custoners are now able to include the z/ TPF systemin their
application solutions architected for

a Wb services environnent.

2.1 z/ TPF Web Services: Server/ Provider

Figure 2: TPF Wb services Support - Server/Provider Side: Structure
Di agr am

This figure attenpts to show a structural diagram of the server/provider
side of Wb services support that

is either already available in z/ TPF (shown in green) and the proposed
additions (shown in red). As z/TPF

i mpl ements the proposed additions, the current path through the support
wi Il be maintained to not affect

current users. Currently, the tpf_soap_handl er passes requests up to

t he user-i npl enent ed

t pf _soap_appl _handler. The main function of the tpf_soap_appl _handl er
is to route requests to the appropriate

application, and the applications would then be responsible for
accessing the request information fromthe

out put of the B2BScanner (i nfonode structure instance), invoke the
application, and build the SOAP response

nessage. The proposed support would rely on the depl oynent nechani sm
(which relies on the Web service

depl oyrment descriptors and indirectly the Wb service description) to,
anong ot her things, performthe

necessary SOAP Header processing (via the nmessage handl ers), and the
routing of requests to a particular

Web service driver that is used for exposing one Wb service. The Wb
service driver would be responsible

for, and thus shield the application fromhaving to be updated to,
accessing the request information, invoke

the application, and build the Body of the SOAP response nmessage. After
this Body is built, the nessage

handl ers woul d create the necessary SOAP headers. This architecture

provides for the isolation of where

certain new skills may be required. For example, the functionality that
is contained in the various Wb

service drivers requires skills and know edge in areas of SOAP and XM,
whi ch may be skills that current

application owners do not have. By isolating where these new skills are
required, you limt the nunber of

devel opers that you nay need to train in those new skills.

3 z/ TPF Service Consumner Support

The service consuner (or Web service client) locates entries in the
broker registry using various find

operations and then binds to the service provider in order to invoke one
of its Web services. A client

is not coupled to a server, but to a service. Therefore, the integration
of the server takes place outside

the scope of the client application prograns.

3.1 z/ TPF Wb Services: Cient/Consumer

Figure 3: TPF Wb services Support - Cient/Consuner Side: Structure
Di agr am

This figure attenpts to show a structural diagramof the client/consumer
side of Wb services support that

is proposed for z/ TPF (shown in red). The proposed support woul d

provi de applications with a SOAP dient

(API's) guided by input and feedback fromthe TPF Users Goup since the
only standard APl in this area is

in Java ™(for exanple, JAXM JAXR, and JAX-RPC). The application that
wi shes to consunme a Wb service

woul d instantiate a Wb service handl e (using the TPF SOAP Cient) and
requests to call a particular service

by name. The TPF SOAP dient woul d then inspect the depl oynent
mechanismto deternmine if this z/TPF

system has been configured to provide access to the requested service.
If the z/ TPF system has been

configured to support this service, the correspondi ng nessage handl ers
and Web service stub nane woul d

be provided to the TPF SOAP Cient. The application would then be able
toinitiate the consunption of

the requested service. To satisfy the request of the application, the
TPF SQAP Client would rely on the

Web service Stub to take in the paraneters fromthe application and
build the Body of the SOAP request

message. After the SOAP Body has been constructed, the TPF SCAP C i ent
woul d use the nmessage handl er

list (returned fromthe depl oyment mechanism) to direct the buil ding of
t he SCAP Headers and the conplete

SOAP request message. The SOAP request nmessage woul d then flow through
a transport to the renote service

provider. The response fromthis request woul d performthe reverse of
this flow through the nessage handl ers

to correctly process the SOAP Header and then through the Wb service
stub to performthe data transformation

fromXMWM. format to the structures used by the application.

4 Artifacts

A discussion of artifacts should begin with the higher |evel discussion
of a programm ng nodel. How IBMs

Sof tware G oup defines programm ng nodel in the context of a Service
Oiented Architecture (SQA) is
sunmari zed bel ow

A progranmmi ng nodel is central to | BM SCA and | BM products in general.
It defines the concepts and

abstractions that developers build and use. Runtime products run or host
t he progranmm ng nodel artifacts.

Devel opnent tools support the nodeling and inplenmentation of programm ng
nodel artifacts, their assenbly

into applications (solutions), and their deploynent into the runtines.
Final ly, systens managenent

products, agents, and instrunentation support the adm nistration of the
runti nmes and the progranm ng

nodel artifacts they host.

What is a progranm ng nodel ? Al though there is no generally accepted
definition, we like to define it as:

* A set of part types that programmers build. Part types enconpass
the diversity of programming node
artifacts.

* A set of roles that groups nenbers of the devel opnent and
admini strative conmmunity who have sinilar
skills and know edge. Categorizing developers in this way hel ps produce
rol e-appropriate tools that enable
non-progranmers to i npl enent services and assenbl e solutions from
servi ces. Each role contains:
o Skills that the rol e possesses.
o Part types and application interfaces with which the role
i nteracts.
0o Tools that the role uses.

The typical z/ TPF application consists of a collection of shared objects
(SCs) that may call/utilize user

and/ or systemlibraries, or call/use systemservices. After allocating
and | oadi ng these new SCs to a

z/ TPF systemthere may be additional work or activities to nake the
application accessible to users.

For exanple, if the application receives input via TCP/IP connectivity,
then you may need to define a

new server to the Internet daenon; for term nal -based applications, you
may need to update systemtabl es

(for exanple, ANT, RCAT) used by COW SOURCE to route input nessages to
the appropriate application,

or for applications that rely on z/ TPF M) Series niddl eware, you may
need to define a |local queue to

the z/ TPF system (if the queue is to reside on z/ TPF). Beyond naking
the application accessible on

z/ TPF, users of the application will need to be made aware of the
specifics of where the application

is and how to access the application (that is, nessage format). Wth
regard to artifacts, the current

z/ TPF application (the source code and the built SGs) can be considered
artifacts as well as the various

server definitions, systemtables, and | ocal queue definitions.

As custoners nove to a service-oriented architecture (SOA) through the
use of Wb services, anong ot her

t echnol ogi es and techni ques (for exanple, Enterprise Service Bus,
servi ce conmponent architecture (SCA),

service data object (SDO..), new concepts, activities, and artifacts
wi Il be defined and perfornmed. At

its core, Wb services technol ogi es provide a common abstraction | ayer
focused on dealing with

interoperability between services. To achieve this, Wb services
speci fications provide a standard

way of constructing and integrating applications using XM.-based open
standards over an Internet/intranet

backbone.

As z/ TPF evolves to participate in an SOA, there are some issues that
shoul d be kept in the forefront.

The primary issue is that Wb services technol ogi es have been devel oped
in the context of Java™and to a

| esser extent, or inherently, object-oriented progranm ng. These two
cont extual points do not preclude

z/ TPF frominpl ementi ng Web servi ces specifications and playing a role
in an SOA, but they do affect the

roadmap, and sone of the specifics, of how z/ TPF will inplenent the
various specifications. Because of

t hese issues, z/TPF' s adoption of the various Wb services
specifications may be very specific to the

particulars of z/TPF and may not be able to take advantage of or use
commonl y avail abl e sol uti ons/tooling

since the npjority of these solutions/tooling assunes a Java™ based
runtine. Considering this context,

z/ TPF will incorporate the Wb services technologies in such a way as to
NOT i ntroduce new concepts,

activities, and artifacts beyond those explained in the commonly
accepted SOA programi ng nodel. The

intention is to not require devel opers working on the z/ TPF platformto
have to obtain any special skills

that are not required for the devel opers working on other platforns that
are participating in an SOA.

4.1 z/ TPF Web Services: Server/Provider

Figure 4. TPF Wb services Support - Server/Provider Side: Structure
Di agram

This figure, which was already introduced in Section 2, attenpts to show
a structural diagramof the

server/provi der side of Wb services support that is either already

avail able in z/TPF (shown in green)

and the proposed additions (shown in red). The additions in red consi st
of new conponents (the z/ TPF XM

APl and the depl oynent mechanism) and artifacts. The following is the
list of artifacts that nay need

to be created and depl oyed by soneone who wants to expose an application
as a Wb service:

* The application (source code and SOs)

* Wb Service Driver

» Message handl er (s)

e Web Service Depl oynent Descri ptor
Wb Service Description (WsDL)

4.2 z/ TPF Web Services: dient/Consumer

Figure 5: TPF Wb services Support - Client/Consuner Side: Structure
Di agram

This figure, which was already introduced in Section 3, attenpts to show
a structural diagramof the

client/consuner side of Wb services support that is proposed for z/TPF
(shown in red). The additions

in red consist of new components (the TPF SCAP Client and the depl oynent
nmechani sn) and artifacts. The

following is the Iist of artifacts that nay need to be created and

depl oyed by sonmeone who wants to

consunme a Web servi ce:

 The application (source code and SOs)

» Wb Service Stub
e Message handl er (s)
» Web Service Depl oynent Descri ptor

Wb Service Description (WsDL)

4.2.1 SOAP Message Fl ow

Fromthe previous structural diagrams, it can be hard to understand the
flow of a SOAP nessage through
the z/ TPF system The following figure attenpts to address this:

Figure 6: SOAP Message Fl ow

The figure covers both consumer and provi der perspectives of SOAP
support. On one end of the diagram

there is a SOAP nessage and on the other end is an application. The
SOAP support can nost sinply be

t hought of as processing the transfornms SOAP nessages into native data
structures (and back), and al so

performs routing of SOAP requests to and fromthe z/ TPF system The

z/ TPF SOAP Handl er and the

col l ection of nmessage handlers that are used for a particular Wb
service are responsi ble for SOAP

nessage validation and handling any of the extensibility points defined
in the Header portion of the

SOAP nessage. Note that this figure shows the nessage handl ers as
conprising a “pipeline” between the

z/ TPF SOAP Handl er and either the particular Wb service Driver or Stub,
but the architecture could

easily be one in which the z/ TPF SOAP Handl er directs the calling of
each of the Message Handl ers for

a particular Web service. Once through the z/ TPF SOAP Handl er and the
set of message handl ers, the SOAP

nessage is passed along to the Wb service driver that is defined for a
particul ar Wb service, which is

responsi ble for building a data structure or paraneter data that can be
used to activate an application.

The response on the provider side flows back through the Wb service
driver building the Body portion of

t he SCAP response nessage, followed by the nessage handl ers and the

z/ TPF SOAP Handl er, which are responsible

for building the necessary Header portions of the SOAP response nessage
and buil ding the conplete

SOAP nessage and delivering it to the appropriate transport. The
consuner side is just the opposite

flow, starting with the Application building a data structure that is
known to a Wb service stub,

which is responsible for building the Body portion of the SOAP request.

4.2.2 Static versus Dynam c dient/ Consurer

The type of Web services Cient described previously is considered
static because, before an application

can consune a particular Wb service, offline tasks nmust be perforned to
create both a Wb service

Depl oynment Descriptor and a Wb service Stub. The other end of the Wb
services Client spectrum woul d

be consi dered dynani ¢ because such a Client would allow the application
to either search for a particular

servi ce based on sone required functionality netadata and be able to use
a Web Service Description

(WSDL) to direct the formatting of the SOAP request nessage and
correctly handl e the SOAP response

nmessage. The two nmain reasons for using a dynam c approach are to 1) be
able to handl e frequent changes

to a particular Wb Service Description (WSDL) and 2) to be able to

sel ect a service provider at runtine.

At the time of this witing it is not believed that applications for

z/ TPF woul d nake use of a dynam c

client due to the response tine constraints of the typical z/TPF
application, but this is not to say

that it would not be considered in the future based on custoner needs.

Sections 5-8 will provide further detail about each of the previously

nmentioned artifacts.
5 Message Handl ers

As described previously, the nessage handl ers are responsible for
processing the different elenents
found in the Header portion of a SOAP nessage (see figure follow ng).

<soap: Envel ope xm ns: soap='http://ww. w3. or g/ 2001/ 10/ soap- envel ope' >
<soap: Header >
<-- Headers go here -->
</ soap: Header >
<soap: Body>
<-- Request/ Response goes here -->
</ soap: Body>
</ soap: Envel ope>

SOAP Message Fornat: Header

The Header el enent in SOAP provides an extensibility nechanism This

el ement can contain any nunber of

nanespace qualified child el enents. Each of these elenments is sone form
of extension to the base SOAP

protocol . Perhaps one el ement contains data associated with conversation
or session nanagenment between

a client and a server. Another elenent might contain authentication

i nformati on or even information

pertaining to an ongoi ng transacti on. \Watever their content or
senmantics, each header el enent nodifies

the SQAP protocol in sone way, providing extra context for the
processi ng of the body of the nessage.

Beyond the standard extensions to the SOAP protocol, the user of z/TPF
SOAP support can devel op and

depl oy custom nessage handlers to performinstallation/environnent
specific processing. For exanple,

if a set of deployed Wb services requires that each Request for them
nmust be logged to a certain | ogging

facility, this can be done by devel opi ng a | oggi ng nessage handl er and
deploying it to z/ TPF SOAP support.

A nmessage handler will consist of:
1. C source that inplenents the processing to be perforned per nessage

2. A depl oynment descriptor that is used to deploy the nessage handler to
z/ TPF SOAP support and nake it
avai |l abl e for use by depl oyed Consuner/Provi der Wb servi ces.

The C source that inplenents the nmessage handler will be bound by a
specific interface and will | ook
simlar to the interface for the TPF SOAP Handl er

The nmessage handlers will operate on the soapMsg structure passed in on

t he i nput Msg paraneter or the

out put Msg paraneter based on the direction of the flow through the
handl er, and either the comsBi ndi ng

structure will be enhanced or a new structure will be created to help
control the processing of the

nmessage handlers. Wat is needed is a way to allow for a nessage
handler to build and return a SOAP

fault nessage, if necessary, and signify to the other message handl ers
that may be encountered that a

SOAP fault has occurred so that those nessage handl ers can react
appropriately.

5.1 Message Handl er Tooling

The tooling that woul d assist the devel opment and depl oynent of nessage
handl ers consists of a tenplate

generator to create the structure of the C source that inplenents the
nessage handl er and a depl oynent

descriptor generator used to deploy the nmessage handler to z/ TPF SCAP
support.

In the TPF Tool kit, a new project type of Wb service Message Handl er
could be created with a correspondi ng

wi zard that takes, as input, a nmessage handl er nane, a 4-character
program nane, and a hi gh-1eve

description of the Wb service Message Handl er and generates the C
source tenplate and the conplete

depl oyment descri ptor.

When a Wb service nessage handl er has been coded, the TPF Tool kit
could al so provide a nmechanismto

depl oy the nessage handl er by hel ping with the | oading of the nmessage
handl er nodul e and FTPi ng t he

depl oyment descriptor to the z/ TPF system and issuing a Z-command to
updat e the depl oyment mechani sm

It is inmportant to note that the nunber of devel oped and depl oyed
nessage handlers is expected to be on

the order of 10s, thus enabling this portion of tooling to be easily
repl aced with mnor documentation

and sanple tenplates. See the Tooling section of this docunent for
further information.

6 Wb Service Driver

As described previously, at a high I evel the Wb service driver is
responsi ble for transfornming the

Body portion of a SOAP (see figure bel ow) request nmessage into a
representation that is nore readily

usable by the z/TPF application. Wen it has done this, the z/TPF
application can be invoked. Upon

return, the Web service driver is responsible for starting the building
of the SOAP response nessage,

specifically transform ng the z/ TPF application response data into the
Body of the SOAP nessage.

There is a one-to-one nappi ng between depl oyed Wb services and Wb
service drivers.

<soap: Envel ope xm ns:soap="http://ww. w3. org/ 2001/ 10/ soap- envel ope' >
<soap: Header >
<-- Headers go here -->
</ soap: Header >
<soap: Body>
<-- Request/Response goes here -->
</ soap: Body>
</ soap: Envel ope>

SOAP Message Format: Body

The Body portion of the SOAP nessage contains the information that is
specific to a particular operation

of a Web service. A Wb service can be a collection of nany operations
and their respective nessages

that define the structure of the input and output data. A Wb service
name i s the high-1evel name (for

exanpl e, nane on the URI for HITP) that is used by the z/ TPF SCAP
Handl er to query the depl oynent

nmechani smto obtain the |ist of nessage handl ers that a SOAP nessage
shoul d flow through and its associ at ed

Web service driver.

The Web service driver will be responsible for accessing and converting
all of the required data in the

Body portion of the SOAP nmessage into a native format that can be used
by the application, and it wll

have to inspect the Body data to determne the requested operation and
call the correct application

Here we start to get into the dirty details of the various formats that
are possible for the Body. The

various formats that are possible for the Body are known as WSDL Styl es.
At the time of this witing,

the W5-1 is working to standardi ze on one of the WSDL styles to ease the
creation of interoperabl e SOAP

runtines and Tooling support. The current style that is expected to
becone the standard is

Docunent/Literal Wapped (Doc/Literal wapped is the interoperability

| eader supported by Apache Axis,

gSoap, Websphere, and .NET). The follow ng shows an exanpl e Body that
uses Document/Literal Wapped is

shown bel ow

<soap: Body>
<nmyQper ati on>
<x>5</ x>
</ nyQOper ati on>
</ soap: Body>
Sanpl e Docunent/Literal Wapped SOAP Body

As you can see fromthis exanple, the SOAP Body will contain an el enent
that is naned for the operation

that is requested (nyQperation in this exanple). This elenent will
contain children el enents that define

the paranmeter date that is to be passed to the application that
corresponds to nyOperation. The Wb

service driver for this Wb service will consist of processing that
accesses the operation nane from

t he SOAP Body, and then accesses the paraneter data that is required
based on the operation nane and

translates it into a C datatype that is usable by the application.
After this is done the application

is called, and when it returns to the Wb service driver, the driver is
responsi ble for creating the

Body of the SOAP response nessage based on the definition of the
response nmessage as described in the

WEDL for the operation, and then returns down the chain of nessage
handl ers as discussed in the previous

section.

As you can see, the Wb service driver is dependent on the WBDL for the
Web service and the interface

and data structures of the application. At the time of this witing,
WEDL 2.0 is considered a Candi date

Reconmendati on, slowly approaching the final Recommendation status, and
the tineline of this devel opnment

will need to be considered when inplenenting support that is strictly
based on WSDL.

The “bottom up” approach to deploying a Provider Wb service consists of
taki ng an existing application

and making it available as a Wb service where a WSDL for the Wb
servi ce does not exist. The ultimte

goal is to require no application changes to deploy an application that
al ready exists. To achieve this,

the user would want tooling to be able to inspect the interface of the
application (that is, C

par anet ers/structures) and generate the XM. schenma definition of the

i nput and out put nmessages for

each of the operations. And you would want the Wb service drivers to
be generated to nake calls to

XML conversion routines that transform between the XML data in the Body
of the SOAP nessage and the C

paraneters/structures. Because the XML Schenma specification defines
many different datatypes, sone of

which do not map to C/ C++ datatypes, this tooling and runtinme support
wi Il support a subset of the XM

Schema dat at ypes.

The “top-down” approach to deploying a Provider Wb service consists of
starting with a pre-existing

WEDL description of a service (of interest are the abstract portions of
the WBDL, nanely Port Types,

Messages, and Types for WSDL 1.1) and creating an inplenentation of the
various operations defined to

the Web service. For this case, the devel oper requires that there be
tooling to help with the creation

of skeleton code for the application and the interface information (C
header file), including passed

paraneters/structures. The sane restriction applies to the “bottom up”
approach that the tooling that

hel ps to create the interface information fromthe abstract WSDL
information will not be able to support

all of the datatypes defined by the XM. Schema specification.

6.1 Wb Service Driver Tooling

For creating Web service drivers, tooling is essential if we are to
succeed in limting how nuch about
the vari ous Web services specifications we require custoners to know.
It is fair to require that
custoners understand the concepts contained in the specifications, but
our goal should be to shield
themfromthe details as is done on other SOAP platforms. Due to sone
of the z/TPF uni que application

interfaces, it is not expected that the tooling will be able to generate
conpl ete Web service drivers,

but rather tenplates that are about 70-80% conmplete. See the Tooling
section of this docunment for
further information.
7 Wb Service Stub

When the Web service driver has been defined, conceptually it is easy to
under st and what the Wb

service stub is responsible for. The Wb service stub is used when

z/ TPF is acting as the Consuner

of a particular Web service. The Wb service stub perforns the reverse
processi ng of the Wb service

driver. The Wb service stub will first be invoked by the application

t hrough the use of z/ TPF SOAP

support and it will build the Body portion of the SOAP request and then
pass the request along to

the chain of nessage handlers that are associated with the depl oyed Wb
service (Consuner). Upon

return fromthe Provider of the Wb service, the response nessage wl|
eventual |y nake its way

t hrough z/ TPF SOAP support and nmessage handlers, and will end up back at
the Web service stub.

The stub would then transformthe Body portion of the SQOAP response
nmessage into a data structure

to be returned to the calling application

There is currently no standard C/ C++ SOAP APlI, so we will be introducing
a z/ TPF-specific one that

wi Il be nodel ed after those found in other |anguages. |n general, it is
expected that a SOAP

Cient/Consuner APl woul d consist of a couple of APIs that are listed
bel ow (in the order that

t hey woul d be expected to be used):

1. tpf _init _SOAPReq(): This APl would be the first that a Consuner
woul d use to initialize a

SOAP request structure. One paraneter would be a Wb service nane.

This APl woul d query the

sanme depl oynent nechani smused by the TPF SOAP Handl er on the Provider
side. Fromthe depl oynent

definition returned by the depl oynent nechani sm the SOAP request
structure would be popul ated with

i nfornati on about the depl oyed Wb service, including the Wb service
stub nanme and the set of nessage

handl ers.

2. tpf_getopts SOAPReq(): This APl will allow the user to inspect the

returned SOAP request structure

to determine if there are any optional nessage handlers that can be used
for this nessage. For exanple,

the Web service could be depl oyed as allowing for a | ogging nessage
handl er to be used optionally.

3. tpf_setopts SOAPReq(): This APl will allow the user to specify the
operation that is being requested,

attach an area of storage containing the paranmeter data for the
response, and to turn on and off the

optional nessage handl ers associated with this depl oyed Wb service.

4. tpf_send_SOAPReq(): This APl results in the SOAP request to be
conpletely built and sent to the

Provider. z/TPF SOAP Support will invoke the Wb service stub that
corresponds with the requested Wb
servi ce.

5. tpf_termnate SOAPReq(): This APl will be responsible for rel easing
any storage that was obtained
by SOAP Support to satisfy the request.

NOTE: Further investigation is needed to validate the conpl eteness and
concept ual under pi nni ngs of
this API.

When the tpf_send SOAPReq() APl returns successfully, the SOAP request
structure will point to an
area of storage containing the data returned to by the Provider.

The di scussi on about the rel evance of WSDL to the creation of the Wb
service drivers also pertains

to the creation of the Web service stubs and will not be repeated here
(see section 1.1.2 for nore

i nfornation).

7.1 Wb Service Stub Tooling

The Web service stub tooling is responsible for generating (conpletely)
a Wb service stub and a

C header file for a Consuner Wb service deployed to z/ TPF, sinilar to
t he “top-down” approach

described in the Wb service Driver section. The Wb service stub wll
contain code to perform

the reverse of the data translation that is perforned for the Wb
service driver: upon calling

the tpf_send_SOAPReq() API, the Wb service stub is activated to
translate the data structure

defined in the generated header file for the Wb service into the
appropriate Body portion of

the SOAP request, and upon being activated with the SOAP response
message, the Wb service stub

will translate the response information in to a response data structure.

8 Wb Service Depl oyment Descri ptor

The Web service depl oynent descriptor is the artifact that ties all of

t he previously nentioned

artifacts together to define a conpletely depl oyed Wb service (Consuner
and Provider). There

will be a one-to-one nmappi ng between a depl oyed Wb service and a Wb
servi ce depl oynent descriptor.

Figure 7. Wb Service Depl oynent Descri ptor

This figure shows what a Web service depl oynent descriptor (file name
extension .wsdd) for a given

Web service contains. It maps a Wb service nane, MyService, to its
supported transports, nessage

handl ers, and the Wb service driver or stub (depending on whether this
depl oyment is a Consurmer

or Provider deploynent).

The depl oynment descriptors will be XM. files that conformto an XM
Schema format defined by z/ TPF

To deploy a Wb service to the z/ TPF SOAP support, all of the required
code (i.e. nmessage handl ers,

Web service driver/stub, and application) will need to be | oaded to the
z/ TPF system Fol | owi ng

this, the deploynment descriptor file for a given Wb service must be

| oaded to a specific directory

on the z/ TPF filesystem Once in the z/TPF fil esystem a z/TPF comand
can be issued to |load the

depl oynent descriptor in to the Deployment Mechanism There will also
be ot her z/ TPF commands to

do things |ike deactivate a Wb service, deactivate/activate all Wb
servi ces, and display Wb services.

8.1 Web Service Deploynment Descriptor Tooling

The creation of Wb service depl oynment descriptors should occur at the
same tinme that either the

Web service driver or stub is being created for a particular Wb
service. The conplexity of the

Web service depl oynent descriptors it not expected to be high, and nuch
of the information needed

to create themw ||l have already been provided for the creation of the
Web service driver or stub.
The XML schema definition of the depl oyment descriptors will need to be

| oaded to both the TPF

Tool kit (probably just included in the installed version of the TPF

Tool kit because its format is

entirely controlled by IBM and to the z/TPF fil esystemto be used for
val idation of created and

| oaded depl oynent descriptors. Regardless of the conplexity of the

depl oynment descriptors, it

woul d not be a good idea to push the creation of thementirely on to the
user because the format

of themis specific to z/ TPF. (O her Wb service runtimes utilized

depl oynment descriptors and, in

the J2EE space, their format is standardi zed; but because z/ TPF does not

support J2EE, nuch of what
is in these standard depl oynent descriptors does nmap to z/ TPF SQOAP
support.

9 Rol es

Additional roles will be taken on by existing TPF devel oprent and
operati ons/coverage staff to
support the SOA devel opnent and production environnents. |ndeed,
opportunities will exist to

enabl e nontraditional support staff, such as business anal ysts and

mar keting specialists, to

| everage new and existing services to create new business solutions. In
an SOA environnent,

devel opnent programrers will build services, use services, and devel op
sol utions that aggregate
servi ces. Qperations/coverage personnel w |l nmanage services by

perform ng depl oyment, publishing,
and activation activities on the z/ TPF host.

You can refer to the table in Appendix A for a definition of roles in a
traditional z/TPF data

processi ng environnent. Appendix B contains a table listing a

conpr ehensi ve set of roles that

pertain to an SOA data processing environment. These tables can be used
to hel p determ ne how

best to broaden roles in an existing z/ TPF data processing environment
to realize the benefits

of an SOA environnent. These tables will also assist in determning what
new rol es can be used

to devel op busi ness sol utions using services available to an enterprise
across het erogeneous hosts.

9.1 Devel oprent Rol es

Traditional roles for the devel opnment programmer typically consist of
creating artifacts such
as source code, runtinme SCs, and docunentation. The responsibilities of
a devel oprment progranmer
will expand to create new artifacts to define services for the runtine
artifacts. New roles

may be created to | everage these services to create new business
sol utions using aggregation.

Rol es to support devel opnent in an SOA environment can incl ude:

Appl i cation Programmer, devel ops the business application and services
according to the planned
architecture

Busi ness Customi zer, custonizes business application conponents and
processes.

Conponent Devel oper, creates individual nmodul es of software intended to
be integrated into and
reused across multiple applications.

I ntegrati on Devel oper, creates new business functions by conbini ng
exi sting components.

9.2 Operations/Coverage Rol es

Traditional roles for a z/ TPF operator and coverage programrer are the
depl oyment of applications

on the z/ TPF host, the nonitoring of the host, and the day-to-day

adm ni stration the host may

require. Newroles will need to be created to manage the configuring,
operating, and nonitoring
of services that z/ TPF will contain. Roles to support operations and

coverage may i ncl ude:

Coverage Progranmer, is responsible for daily activities of the system
and application operation;
i ncl udi ng system mai nt enance and software updates.

System Programmer, provides second-|evel support of the system and
ensures systemintegrity by

nonitoring systemresource usage. Al so provides system support for
har dware and system software

upgr ades.

Rel ease Depl oyer, installs and depl oys new or updated busi ness sol utions
onto the host.

Asset Manager, identifies, collects, and maintains inventory of business
assets throughout their

lifecycle.

9.3 O her Roles

O her roles will exist that would not necessarily be part of the z/TPF
devel opnent team but woul d

nmake use of services residing on the z/ TPF host. These roles would

| everage the services avail abl e

to an enterprise across all of their hosts, regardless of the system
type. Even services residing

outside an enterprise’'s realmcan be used to devel op a busi ness solution
(for exanple, a check

cl earing service).

Busi ness Strategist, analyzes business issues and recomends sol utions.

System Anal yst, anal yzes, eval uates, and designs systens to neet
identified business requirenents.

Sof tware Architect, defines the architecture for a software application
or conponent.

10 Tool i ng

Tooling is crucial to the consumability and, therefore, adoption of Wb
services. Consumability

refers to the time and effort that it takes for custonmers to get to the
poi nt where they are actually

using the functionality provided in the runtime. Said another way, if
z/ TPF provi des Wb services

support in the runtinme (or online system) without the requisite tooling
support, z/TPF custoners

will be forced | earn about HTTP, XM. (nanespaces, schemm, .), SOAP,
WSDL, UDDI, and the W5-1 just

for starters. At the tine of this witing there are dozens of W5 *
standards and profiles in devel opnent

that extend, enrich, and conplicate the entire Wb services space. By
pushing this responsibility

to custonmers we are ensuring that, at best, the slow adoption of Wb
servi ces, and, at worst, no

adopti on of Wb services; further isolating and restricting the access
to z/ TPF in the enterprise

At a high level, the main goal of adopting Wb services is to easily
integrate the business |ogic

and/or data assets of one systemw th those on other heterogeneous
platforms that may exist internally

or externally to your organi zation/conpany. This neans that the
adopti on of Wb services does not

entail the discarding of assets. On the contrary, businesses should, in
the first phases of Wb services

adoption, exam ne the current assets that exist on their platforns and
consi der exposi ng portions of them

via Wb services interfaces. The benefit of doing this is that by
exposi ng sonet hing as a Wb servi ce,

it is available to all the various platforns that conprise an enterprise
t hrough one channel versus n

channel s. Subsequent phases of Wb services depl oynent can include the
deconposition of current assets

into their conponents, sonme of which nmay be better addressed or

i mpl emented off of the current platform

and possibly by a third part/partner, thus allowing for platform

optim zati on.

Figure 8: Enterprise Integration

As an architectural concept, SOA permits multiple approaches for the
realization and depl oyment of an

IT systemthat has been designed and built around its principles. In
fact, there have been nany enabling

technol ogi es for building SOAs over the years, including CORBA J2EE
DCOM and MXeries. These

t echnol ogi es provi ded advancenents at the time, but each has specific
[imtations.

From the technol ogy side, the past 15 years have resulted in a
realization of the inportance of m ddl eware
standards and architectures, learning in particular fromthe successes

and failures of distributed object
systens and nessage-oriented m ddl eware.

One specific technol ogy that arguably has the nopst significant
conmmercial visibility and traction is Wb
servi ces.

Web services describe a standardi zed way of constructing and integrating
applications using XM. based

open standards over an Internet backbone. Wat makes the application of
Web services as an enabling

technol ogy for SOA so powerful is that, for the first tine, we have an
under | yi ng nechani smthat uses

wel | defined, standardized interfaces and “wire level” formats and
protocols that facilitate

interoperability and al so effectively freeing the calling programfrom
the need to deal with the

intricacies of invoking the underlying services that conprise the
applications — i.e. virtualising

the application and its conmposite services. Wiile there are other

t echnol ogi es that could provide a

foundati on for building and delivering SOA the key value of Wb
services is its al nbst universa

support across the I T industry.

If you take the driving factor nmentioned of “freeing the calling program
fromthe need to deal with

the intricacies of invoking the underlying services”, and extend it to

i nclude the idea of freeing an

application fromhaving to deal with the intricacies of exposing itself
as a service, the inportance

of tooling to conplenent the Wb services runtine then becones cl ear.

As nmentioned throughout the Artifacts section of this docunment, tooling
is a key point to the depl oynent

of Web services. The goal of the tooling is to shield the user from
having to know the particul ars and

details about the various Wb services specifications (for exanple,
WSDL, SOAP, UDDI, and XM.). At the

core of the tooling requirenment is the capability of taking a
description of a Wb service (the WSDL

description) and creating the code that can transform between the data
encapsul ated in the SOAP nessages

and native data structures that can be used by the applications that are
operating on a particular runtinmne.

Sone runtinmes have benefited from being viewed as the “runtime of the
day”, like J2EE, from the standpoint

of tooling support for Web services (for exanple, Java2WsDL, WsDL2Java,
Java2Schena, and Schema2Java),

but this ignores the | arge anobunt of “legacy” assets that exist in the
enterprise today. What is needed

at this point is a simlar effort to create C C++ based tooling that can
generate code to work with

C/ C++ based runti nmes.

This lack of tooling has not stalled the deployment of Wb services for
all of the C C++ based

runtines, but it has resulted in each runtime having to create its own
tooling. Myving toward a

common set of C/ C++ based tooling would accel erate the depl oynment of Wb

servi ces.

For further details, shown in the following figure, there is tooling in
t he J2EE space that

generates code based on a service's WBDL that woul d be anal ogous to the
Web service drivers and

Web service stubs. The J2EE tooling also provides for the generation of
WSDL from.class files.

Figure 9: Wb services Data Transfornmation
Tool i ng Requi rements:

The following section will briefly explain the tooling in relation to
the Web servi ces standards.

WSDL
e Top-down: Starting with a WSDL

o Provider: Starting fromthe WSDL, the tooling would generate the
majority of a Wb service driver,

and skel eton code for the application that is called by the Wb service
driver. The user is left to

fill in the business logic of the application

o Consuner: Starting fromthe WSDL, the tooling would generate a Wb
service stub and a C header file
for the application to use.

* Bottomup: Starting with an application

o Provider: Starting fromthe application, the tooling would help create
the WBDL and generate the
majority of a Wb service driver.

SOAP Messages

» Wb service Drivers: This is code (generated by the tooling) to be
installed into the runtine that

can take as input SOAP requests (XM. Schena datatypes) and transformthe
data in themto datatypes

that are native to the runtinme, and then take application return
information and transformthat from

the native datatypes of the runtinme into SOAP response data. The fornat
of these SOAP requests and

responses is defined by the WSDL for a Wb service. These are for
Provi der - si de depl oynents.

* Wb service Stubs: This is code (generated by the tooling) to be
installed into the runtinme that

can take as input application request data and transformthat fromthe
native datatypes of the

runtine into SOAP request data (XM. Schema dat atypes), and then take the
SOAP response data and

transformthat to datatypes that are native to the runtine for the

requesting application to use.

The format of these SOAP requests and response is defined by the WSDL
for the Wb service. These

are for Consuner-side deploynents.

ubD

e At the time of this witing, UDD support in the runtine for z/TPF is
not foreseen, but this does

not mean that UDDI support in sone fashion in the tooling is not needed.
At a high level, UDD can

be used to advertise Provider Wb services that have been deployed to a
specific runtine, thus

al l owi ng potential Consumers to obtain the WSDL for these Wb services.
The tooling support for

UDDI should include the ability to publish WSDL fil es and any ot her
requi red description files

(WBIL?), to a UDDI service registry.

11 Web Servi ces Standards

Any paper discussing SOA and an inpl enentati on of SOA based on Wb
services woul d be inconplete

wi t hout a discussion of the various applicable standards and the future
direction for the adoption

of these standards. Many new to the area of Wb services, and even sone
who have been working in

the area for a while, find the proliferation of all the new, and often
times conflicting Ws-*

standards, confusing and overly conplex. This section will attenpt to
provide the reader with a

hi gher level view of the set of Wb services standards and describe the
manner in which support

for themw |l be provided. To start, the Wb services standards can be
deconposed into three

cat egori es: base standards, optional standards, and profil es.

Base St andards

The following is a list of what could be considered the Base standards
in the area of Wb services:

« WBDL 1.1

SOAP 1.1/1.2

« UDDI 2

These provide for the find-bind-execute paradi gmof Wb services. The
z/ TPF Runtinme currently

provi des support for the Provider side of SOAP 1.1/1.2. SOAP consumer
and internediary support

inthe z/ TPF Runtine is currently not included in any commtted pl an,
but is actively being

i nvestigated for inclusion in a future product update.

There are currently no plans for the inclusion of WsDL and UDDI in the
z/ TPF Runtime. As mentioned

in section 4.2.2, there are currently no plans to inpl enent dynamc
Consuner/ d ient support, which

is mainly what WSDL and UDDI woul d be used for in the z/TPF Runti me.
For WSDL and UDDI support in

the TPF Toolkit, there are currently no committed plans, but the two are
actively being investigated

for inclusion in a future release. WSDL could be used in the z/TPF
Runtine to provide for, say,

SOAP nessage validation, but this is currently not in plan because the
XM. Scanner that is currently

used in the runtime does not support it, and if it were possible with
our current XM. Scanner it

woul d still not likely be supported due to the performance inpacts of
XM. nessage val i dation based

on an XML Schema

Note that inplicitly all of the Base standards build upon the standards
around t he eXtensible Mrkup

Language (XM.), as each of the above standards define | anguages that are
XM. based.

Optional Standards

As nentioned above, the Base standards provide for the basic find-bind-
execut e sequence. Those Base

standards do this in a way that does not provide security, transactions,
robust nessaging, etc... The

goal of the Optional standards is to address these other capabilities
and requirenents. As nentioned

in Section 5, nessage handlers provide for this optionally processing at
t he SQAP | ayer, neani ng that

to inplement a new Wb services standard in the z/ TPF Runtinme, a new
nmessage handl er woul d be

devel oped that inplements the particul ar standard.

The two main standards organi zations involved in Wb services are
e Wrld Wde Web Consortium (WBC) at http://ww. w3c.org

e Organization for the Advancenent of Structured Information Standards
(QCASIS) at http://ww. oasi s-open. org

This site contains an exhaustive list of the current and proposed
standards in the Wb services

area. There is no standard definition of the Wb Services Protoco
stack, though the WBC Wb

Services Architecture Wrking Goup did publish a Wb Services
Architecture document, which provides a

n excell ent context for the various protocols. The follow ng figure
shows the various standards and

categori zes theminto domains:

Fi gure 10: Wb Services Standards and Donai ns

Profiles

Al t hough the basic premise of Web services and the role of the standards
bodi es are to achieve

interoperability across platforns, operating systens, and progranmm ng

| anguages, standards specifications

are always open to interpretation. As a nmeans to constrain the nyriad
permut ati ons of Web service

functional conbinations, the Ws-1 organi zati on has begun publi shing
“usage scenarios” and “profiles”,

whi ch docunment usage guidelines, required support, usage constraints,
sanmpl e applications and test

verification suites. These naned profiles provide a sinplified
vocabul ary for discussing Wb Servi ces,

whi ch hel ps producers and consuners of Wb services technol ogy to focus
on under standi ng and addr essi ng

real needs for interoperability.

O her organizations, |ike industry-specific groups or conpanies, can be
producers of profiles to address

certain usage scenari os that may not be covered by other profiles, but
need to be agreed upon for the

efficient operation of an industry or group. It is expected that either
such profiles would be adopted,

and owned, by an organization like the Ws-1 or reach a |l evel of maturity
where they night be useful to

ot her organi zations or groups.

Based on this, z/TPF will focus on supporting standard profiles versus
i ndividually selecting fromthe

W5-* set of standards unless driven by an explicit customer requirenent.
So, as can be seen bel ow,

we plan to inplenent and conformto the Ws-1 Basic Profile and the Ws-
Si npl e SOAP Bi nding Profile,

which are the profiles that address interoperability issues related to
t he Base SOAP, WSDL and UDDI

whil e using HTTP as the transport. The Ws-1 Basic Security Profile is
the next Profile that will be

supported based on the general concern of "we need security" from our
custoners, while not being able

to explicitly define in a formal requirenent what is neant by "secure
Web services". Many actually

view Ws-|I profiles as the mark of maturity in that a standard cannot be
deened mature until such tine

as there is a profile that describes howto use it in an interoperable
way. A forner Merrill Lynch

CTO has been quoted as saying, “If you're an infrastructure player and
don't buy into the W5-1 group

[Web Services Interoperability], don't even show up--we won't do

busi ness with you.”

The following list includes the Profiles that are not in a conmtted
pl an, but are being actively

investigated for inclusion in a future z/ TPF PUT rel ease:

* W5-1 Basic Profile

e« W5-1 Sinple SOAP Binding Profile

* Ws-1 Basic Security Profile

The following two Profiles are energi ng and becom ng wi dely adopted. and
z/ TPF woul d consi der

supporting them based on explicit custoner need:

e W5-1 Attachnents Profile

e | BM Reliabl e Asynchronous Messagi ng Profile (RAMP)

12 z/ TPF Architecture to Support SOA

12.1 Common SOAP Engi ne

The foll owi ng di agram shows the proposed SOAP Engine with its interfaces
whi ch i s being devel oped

in the Comunications Infrastructure Workgroup of the Enterprise

Sof tware Architecture Board.

Note that the interfaces shown in this section are witten such that
they do not conply with z/TPF

APl name standards for externalized APls because this SOAP Engine is
bei ng devel oped in conjunction

with nultiple teans across IBM The z/TPF i npl enmentati on of the Comon
SQAP Engi ne woul d i ncl ude

mappi ngs fromthese interfaces to the z/ TPF-specific interfaces that
conformto nane standards.

12.1.1 SCQAP Engi ne Interfaces

The SCAP engi ne consists of the eight categories of interfaces listed
bel ow:

* Consuner Interface

 Provider Interface

* Parser Interface

 Service Registry Interface
 Transport Interface

 Handler Interface

* Application/Wapper/Stub Interface

e SOAP Fault Builder Interface

Sone of the interfaces that are listed will contain a singular C API,
whi l e others nmay consist of a

collection of C APls. For interfaces that contain nultiple APIs, the
general approach of creating a

handl e-type structure will be used if necessary. The design of the
handl e structures will need to

provide for extensibility. Each of the interfaces are expanded upon
bel ow.

Consuner Interface: The Consuner |Interface provides access to service
providers by applications |ocated

on the host with this SOAP engine. The following APIs will make use of
t he SOAPRequest Handl e:

» Bui | dSOAPRequest ()

* Set Opt sSOAPRequest ()
» SendSOAPRequest ()

* Recei veSOAPRepl y()

Provider Interface: The Provider Interface provides access the
applications operating on the sanme host

as the SQOAP engi ne.

* Handl eSOAPRequest (struct SOAPnsg *input, struct SOAPnsg *out put,
struct TransportHandl e *coms)

Parser Interface: The Parser Interface provides the SOAP engine with
access to a parser for parsing

SOAP nessages, for the creation of SOAP nessages, and for data
transl ati on between XM. schema dat at ypes

and datatypes native to the operating environment. These APIs will make
use of the XM.ParserHandl e.

Service Registry Interface: The Service Registry Interface provides for
the ability to dynam cally

alter (not requiring code changes or reconpiles) 1) which applications
are depl oyed/ avail abl e on the

provi der and consuner sides, 2) the nessage handlers that are required
for a particular Wb service

(consuner or provider), 3) the transports allowed for particular Wb
services, and 4) the service

wrappers/stubs for a particular Wb service. The main interface for the
service registry is a | ookup

interface that will search the registry for information about the
requested Wb service nane. The

SQAPreg structure will contain instructions to be used by the three
portions of the SCAP Engi ne (for

exanpl e, Core, Handl er Engine, and Data Transformation) to correctly
handl e the Consuner or Provider

request/response.

* LookUpSQAPRegi stry(struct SOAPreg *regentry)

Transport Interface: The Transport Interface is used to provide the
SOAP engi ne with the necessary

i nfornmati on to handl e SOAP Provi der and Consuner requests. The
following APls will make use of the

Transport Handl e:

e InitTransportHandl e()

* Set Opt sTransport ()

e OpenTransport Connection()
* C oseTransport Connection()
e GetTransportProperty()

e Set Transport Property()

e Get Transport Servi ceNanme()

» Term nat eTr anspot Handl e()

Handl er Interface: The Handler Interface is meant to allow for the easy
addi ti on of nessage-|eve

handl ers that operate on, or create portions of, the SOAP nessage
header. For example, there could be a

nmessage handl er that inplenents W5 Security.

Application/Wapper/Stub Interface: The Application/ Wapper/Stub
Interface provides the interface between

t he SCAP engi ne and the Applications that are either the Providers or
t he Consuners, and they are responsible

for any renmining data transfornmation that nust be perforned.

SOAP Fault Builder Interface: The SOAP Fault Builder Interface wll
create a well-fornmed SOAP fault nessage

to be returned to the caller of either the Consuner or Provider

I nterface.

e Buil dSOAPFaul t (struct SOAPfault *fault, struct SQAPmsg *out put)

12.1.2 SQAP Engine Internals

12.1.2.1 Core

The Core of the Commobn SOAP Engine is responsible for inplementing the
SOAP specification, ensuring that

t he SOAP nessages (requests and responses) conformto the applicable
version of the SOAP specification

The SOAP Core will need to provide for the ability to specify which
version of SOAP to conformto (that is,

SOAP v1.2 or SOAP vl1.1+W5-1 Basic Profile vl1.1).

12.1.2.2 Handl er Engi ne

As nentioned in the Artifacts section, the SOAP specification provides
an extensibility nechani sm whereby

optional functionality can be performed on SOAP nessages. Because this
functionality is optional, it is

expected that deployers of Wb services will want to pick and choose
whi ch optional functionality is

required for a given Wb service. The definition of a depl oyed Wb
service (either Consumer or Provider)

contained in the service registry entry will contain a list of the
nmessage handl ers that must be invol ved

in the processing of request and responses nmessages. For exanple, if a
Provi der Wb service is depl oyed,

naned MyService, requires W5 Security processing, which is not required
for all messages flow ng through

the SOAP engine, the service registry entry for M/Service will then

i nclude the Ws-Security nessage

handl er name. This nessage handler name will then point to the
installed inplenentation of the nessage

handl er, and the Handl er engine will be responsible for ensuring that
all nessages for MyService flow

t hrough the WS- Security handl er

12.1.2.3 Data Transfornmation

The Data Transformation portion of the SOAP Engine is very simlar to
the Handl er Engine. It is a

nmechani smthat directs which functionality is perforned on a particul ar
SOAP message, and this functionality

is responsible for the transformati on bet ween SOAP/ XM. dat at ypes and the
native datatypes of the operating

environnent of the application. Like the Handl er Engine, the definition
of a depl oyed Wb service contained

in the service registry entry will contain either the nanme of the Wb
service driver (Provider Wb service)

or the Wb service stub (Consuner Wb service) that the data
transformati on portion of the SOAP engine

shoul d use to process SOAP nessages.

12.2 Parser

Different parsers have different processing behavior and
characteristics, and the SOAP Engi ne shoul d not

pl ace requirenents on the particular systemto use a particular XM
parser. The parser APl will be used

pervasi vely throughout the SOAP Engine. It will be used by the Core of
t he SQAP engi ne to perform SOAP m

essage format validation, the individual nmessage Handl ers to inplenent
the optional functionality for a

particul ar Wb service, and the Data Transformati on (drivers/stubs) to
performthe conversion between

SOAP/ XML dat atypes and the native datatypes. This APl will need to be
defined and used by Tooling to

support the SOAP Engi ne because it is this Tooling that will be
generating the Wb service drivers and

st ubs.
12.3 Service Registry

The service registry is a nechanismthat is accessed by the SOAP Engi ne
to access definitions of the

depl oyed Wb services (Consuner and Provider) and Message Handlers in
the system On the Consuner side,

an application will invoke a | ookup request to the service registry for
a given Wb service. The service

registry would return the definition of that Consuner Wb service. The
application will then call an API

to set up paraneter information and set any options for the request.
Lastly, the application will cal

an invoke APl to actually cause the SOAP request to be built and
transferred to the Provider. The

definition of the Wb service returned by the service registry provides
all of the information needed

by the SOAP Core, Handl er Engi ne, and Data Transformati on conponent. On
t he Provider side, a request

that arrives at the SOAP Engine via the Provider interface will result
in a | ookup request to the service

registry for the requested Wb service, which is a paraneter on the
Provider API. Like the case for the

Consuner side, the returned definition is then used by the SOAP Core,
Handl er Engi ne, and Data

Transformati on conponent to provide for the requested Wb service.

12.4 Transports

12. 4.1 HITP

Apache 1.3 is the supported transport for HTTP.
12. 4.2 HTTPS

The TPF statenment of direction is to support HTTPS using Apache 1.3 +
nmod_ssl .
12. 4.3 MXEeries

12.4.3.1 MQ Bri dge

z/ TPF SOAP server support can be used with WbSphere MQ In this case, a
user-written Websphere MQ

nonitor that receives a nessage can call the tpf_soap_handl er ()

directly. The nonitor nust set up the

appl Routinglnfo string in the commsBi nding structure (defined in the
c_soap. h header file) that is used

for routing the SOAP request to the appropriate z/ TPF application. The
app! Routinglnfo string can be set

up in many ways; for example, it can be established by a one-to-one
mappi ng between a queue nane and an

appl Routinglnfo string, or by defining the MQ nessage structure to
contain both the SOAP nessage and the

appl Routinglnfo informati on. Regardl ess of the approach, the

t pf _soap_appl _handl er() user exit nust be

updated, simlar to howit is updated for SQAP over HITP requests, to
access the z/TPF applicati on.

12.5 Message Handl er

The Message Handl ers will be nmodul es (executable code) |oaded to the
systemthat inplenent sonme functionality

that is not in the base SOAP specification, but rather is optiona
functionality fromthe standpoint that

not every nessage that flows through the SOAP Engi ne may be required to
use it. Each Message Handler will

have to inmplenent two interfaces: one for processing a SOAP Request
nmessage (either Consuner or Provider

side) and one for processing a SOAP Response nessage (either Consuner or
Provi der side). A Message

Handl er is deployed to the SOAP Engine in a similar manner to how Wb
services are deployed to the

SOAP Engi ne by way of a deploynent descriptor. The depl oynent
descriptor is an XM file that confornms

to the Message Handl er XM. Schema (provided by this support), and it
provides all of the necessary information

needed by the Handl er Engi ne to nake use of the particul ar Message
Handl er.

12.6 Service W apper

The Service Wappers map one to one to the Wb services that are

depl oyed (as Providers) to the SQAP Engi ne.

These will be nodules |oaded to the systemthat provide the follow ng
functionality for a particular Wb service:

e Transformthe SOAP Body/ XML paraneter data fromthe request into the
native datatypes for use by the

application that inplenents the Wb service

 Invoke the appropriate application with the paraneter data

* Handl e the response fromthat application and transformthe native
dat atype returned by the application
into the SOAP Body/ XML for the response.

When a Provider Wb service is deployed to the SOAP Engine, its
depl oyrment descriptor, which conforms to

the Web service depl oynent descriptor XM Schema (provided by this
support), wll reference the Service

W apper that is to be used to satisfy SOAP requests.

12.7 Service Stub

The Service Stubs map one to one to the Wb services that are depl oyed
(as Consuners) to the SOAP Engi ne.

These will be nodules |oaded to the systemthat provide the follow ng
functionality for a particular Wb

servi ce:

« Transformthe native datatype paraneter data for the request into the
SOAP Body/ XML for the request

* Invoke the SOAP Engine to conplete the creation of the SOAP request
and send it to the Provider

e Handl e the response from Provider, via the SOAP Engine, and transform
t he SQAP Body/ XM. response

information into the native datatypes and return this to the
application.

VWhen a Consuner Wb service is deployed to the SOAP Engine, its
depl oyrment descriptor, which conforms to

the Web service depl oynent descriptor XM. Schema (provided by this
support), will reference the Service

Stub that is to be used to satisfy SOAP requests.

12.8 Application

There are three ways that an application can participate in a z/ TPF SOA
environnent: as a service provider

by using the Service Wapper to interface with the SOAP Engi ne, as a
servi ce consumer by using the Service

Stub to communi cate a service request to the SOAP Engi ne (these are not
nmut ual Iy excl usive), and by direct

connection to the SOAP Engi ne and bei ng responsi bl e for manipul ating the
SOAP/ XML nessage and formatting

t he response SOAP/ XML nessage itself.

Appendi x A Wb Servi ces Exampl e

This exanple will show a nmythical airlines availability transaction and
hi ghli ght two patterns of enabling

the transaction as a Wb service. The first pattern will show how

W appi ng can be used to expose a transaction

as a Wb service, and the second pattern will use Refacing to expose the
transaction. Artifacts that are
conmon to both patterns will be shown first, as well as the nessage

format of our nythical transaction and
other prerequisite information.

Transaction Criterion

This transaction will consist of a primary action code, ‘5, indicating
an availability request, followed
by a date in the fornat of DDMW and then a city-pair. W wll use the
foll ow ng message i n our exanples:

517JULIFKLAX
This transaction is initially processed by segnent Ul1l and its primary

action code indicates that the
nessage is to be processed by TXAO. The availability package w ||l

attenpt to find up to 5 flights that

match the criterion, and each iteration will enter FMSG to build the
response and then enter FMSG a fina

tinme indicating that the response nessage is to be sent.

Depl oynent Descri ptor

A new Web services driver will be witten (WKAO) that will handle the
new XM./ SCAP i nterfaces. The function

it delivers will differ between the two patterns. These differences wll
be shown in their respective

sections. The following is the deploynent descriptor that will be used
to i npl ement the driver:

<?xm version="1.0" encodi ng="UTF-8""?>

<WebServi ce xm ns="http://ww.ibm conltpf"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://ww. i bm com t pf/ webservi ces/t pf WebSer vi ce. xsd
">

<WebSer vi ceNanme>Avai | abi | i ty</WbSer vi ceNanme>

<Cont ext Pat h>/ par s/ webser vi ces/ </ Cont ext Pat h>

<Dri ver Name>WKAO</ Dri ver Nanme>

<I npl emrent at i onLanguage>Assenbl y</ webSer vi cel npl enent at i onLanguage>
<W8I Conpl i ance>Yes</ wsi Conpl i ance>

<Act i vati onType>Aut omati c</acti vati onType>

<Qper at i on>get PARSSer vi ce</ Oper ati on>

<Qper ati on>get Avai |l abi | i ty</ Operati on>
</ webServi ce>

W appi ng Pattern

This pattern sinply exposes the interface to the application. It allows
for increased access but is

limted in the reuse and flexibility capabilities of other patterns.
The advantage of this pattern

is that it requires mninmal changes to the application.

WSDL

The XM/ SOAP nmessage described by the WADL is essentially a
“screenscrape” of the existing request

and response nessages. The consumer of the service nust be aware of the
esoteric nessage fornat. The

following is an exanple of the WEDL to support this pattern

<?xm version="1.0" encodi ng="UTF-8" ?>
<wsdl : definitions xm ns:soap="http://schemas. xnl soap. or g/ wsdl / soap/ "
xmns:tns="http://tenpuri.org/ PARSService/"
xm ns: wsdl ="http://schemas. xm soap. org/ wsdl /"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena" nanme="PARSSer vi ce"
t ar get Namespace="htt p://tenmpuri. or g/ PARSServi ce/ ">
<wsdl : types>
<xsd: schema t arget Nanespace="http://tenpuri.org/ PARSServi ce/"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma" >
<xsd: conpl exType name="get PARSServi ce" >
<xsd: sequence>

<xsd: el ement nane="ScreenScrapeReq" type="xsd:string" />

</ xsd: sequence>

</ xsd: conpl exType>
<xsd: conpl exType name="get PARSSer vi ceResponse" >
<xsd: sequence>
<xsd: el ement nane="ScreenScrapeRes" type="xsd:string" />
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: el enent nane="PARSSer vi ceRequest" type="tns: get PARSServi ce" />
<xsd: el enent nane="PARSSer vi ceResponse"
type="t ns: get PARSSer vi ceResponse" />
</ xsd: schema>
</ wsdl : types>
<wsdl : message nane="PARSServi ceResponse" >
<wsdl : part nanme="PARSSer vi ceResponse"
el ement ="t ns: PARSSer vi ceResponse” />
</ wsdl : nressage>
<wsdl : message nane="PARSServi ceRequest ">
<wsdl : part name="PARSSer vi ceRequest "
el ement ="t ns: PARSSer vi ceRequest " />
</ wsdl : nessage>
<wsdl : port Type nane="PARSServi ce">
<wsdl : operati on nane="get PARSSer vi ce" >
<wsdl : i nput nmessage="t ns: PARSSer vi ceRequest " />
<wsdl : out put nmessage="t ns: PARSSer vi ceResponse" />
</ wsdl : operati on>
</ wsdl : port Type>
<wsdl : bi ndi ng name="PARSSer vi ceSOAP" type="tns: PARSServi ce">
<soap: bi ndi ng styl e="docunent"
transport="http://schenas. xnm soap. org/ soap/ http" />
<wsdl : operati on nane="get PARSSer vi ce" >
<soap: operati on
soapActi on="http://ww.tpfsystem conl WebSer vi ces/ PARSSer vi ce/ "
styl e="docunent" />
<wsdl : i nput >
<soap: body use="literal" />
</ wsdl : i nput >
<wsdl : out put >
<soap: body use="literal" />
</ wsdl : out put >
</ wsdl : oper ati on>
</ wsdl : bi ndi ng>
<wsdl : servi ce name="PARSServi ce" >
<wsdl : port bi ndi ng="tns: PARSSer vi ceSOAP" nane="PARSSer vi ceSOAP" >
<soap: address | ocation="http://ww.tpfsystem com WebServi ces" />
</ wsdl : port >
</wsdl : servi ce>
</wsdl : definitions>

Driver

The Web services driver programreceives control fromthe SOAP engi ne
when an availability request is

recei ved (as specified by the depl oynent descriptor). The driver wll
perform validations of the request

and report anonalies via the SOAPFault interface. \Wen the request
message has been validated, a core

block is retrieved on level 0 and prefornmatted to appear as an M OM
z/ TPF standard i nput nessage.

XML el ement ScreenScrapeReq is retrieved fromthe XM/ SOAP request
nessage. The string in this el enent

is then copied to the MOM core block and the nmessage length is
updated. An indicator is set in the ECB

to mark this as a Web services transaction. Control is then sent via an
ENTRC macro to the initial

avail ability segment, TXAO.

Application

The application changes are sinply to check whether this ECB is a Wb
services ECB before entering FVMSG

for the final time. If this is a Wb services ECB, a BACKC nmacro is

i ssued instead to allow the driver to

gain control and format the XM./ SOAP response.

Driver

When control is returned to this driver, a new XM/ SOAP docunent is
created to formthe response nmessage.

The OMDSG z/ TPF standard out put nmessage is retrieved fromlevel 6 and
the data that woul d have been

di spl ayed on the agent screen is instead added to the ScreenScrapeRes
XM. el ement. Chai ned messages wil |l

need to be handl ed when applicable. The XM/ SOAP response nmessage i s now
conplete, and the driver will

return to the SOAP engine to transnit the response back to the service
cConsurrer.

Sanpl e Request Message

<?xm version="1.0" encodi ng="1SO 8859-1"?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / ww. W3. or g/ 2002/ 06/ soap- envel ope"
SOAP- ENV: encodi ngSt yl e="htt p://ww. w3. or g/ 2003/ 05/ soap- encodi ng" >
<SOAP- ENV: Body>
<nsl: get PARSServi ce xm ns:nsl
="http://ww.tpfsystem coni WebServi ces/ PARSSer vi ce" >
<Scr eenScr apeReq>17JULJFKLAX</ Scr eenScr apeReq>
</ nsl: get PARSSer vi ce>
</ SCAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Sanpl e Response Message

<?xm version="1.0" encodi ng="I1SO 8859-1" ?>
<SQOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / www. W3. or g/ 2002/ 06/ soap- envel ope”
SOAP- ENV: encodi ngStyl e="http://ww. w3. or g/ 2003/ 05/ soap- encodi ng" >
<SQOAP- ENV: Body>
<r: get PARSSer vi ceResponse
xm ns:r="http://ww.tpfsystem coml WebSer vi ces/ PARSSer vi ce" >
<ScreenScr apeRes>
AB 1023 1100 17JUL JFKLAX Y1 245. 00

BC 99 1230 17JUL JFKORD Y1 215. 00

BC 109 1415 17JUL ORDLAX S4

QQ 745 1500 17JUL JFKLAX Y2 275. 00+
</ Scr eenScr apeRes>
</ r: get PARSSer vi ceResponse>
</ SCAP- ENV: Body>
</ SCAP- ENV: Envel ope>

Ref aci ng Pattern

The Refacing pattern would entail a minor refactoring effort that wll
separate the business logic

fromthe nessage interface. In this way the original access to the
application would remain intact

and the Wb services interface can be added. (Indeed, other nethods of

i nterface can be added as

well.) This pattern provides for increased access and facilitates usage
of the service by a consuner.

G eater reuse and flexibility are realized with this pattern

WEDL

The XMP/ SOAP nessage described by the WEDL defines each individual field
necessary for the availability

service to process the request. This is equally true for the response
nessage. This facilitates the

comuni cati on between the consuner and provider by renoving the
necessity of know edge of esoteric nessage

formats. The followi ng is an exanple of the WSDL to support this
pattern:

<?xm version="1.0" encodi ng="UTF-8" 7>
<wsdl : definitions xm ns:soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns:tns="http://tenpuri.org/ Avail abilityService/"
xm ns: wsdl ="http://schemas. xm soap. or g/ wsdl /"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema" namne="Avai |l abilityService"
t arget Namespace="http://tenpuri.org/ Avail abilityService/">
<wsdl : types>
<xsd: schena t arget Nanespace="http://tenpuri.org/ Avail abilityServicel/"
xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schenma" >
<xsd: conpl exType nane="CityPair">
<xsd: sequence>
<xsd: el ement nane="DepartureC ty" type="xsd:string" />
<xsd: el ement nane="DestinationCity" type="xsd:string" />
</ xsd: sequence>
<xsd: attribute nane="non-stop" type="xsd:string" use="optional" />
</ xsd: conpl exType>
<xsd: conpl exType nanme="Dat e">
<xsd: sequence>
<xsd: el enent nane="Day" type="xsd:string" />
<xsd: el ement nane="Mnth" type="xsd:string" />
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="get Availability">
<xsd: sequence>
<xsd: el ement nane="Date" type="tns:Date" />
<xsd: el ement nanme="CityPair" type="tns:CityPair" />
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="get Avai |l abi |l ityResponse">
<xsd: sequence>
<xsd: el enent nane="carrier" type="xsd:string" />
<xsd: el ement nane="flight" type="xsd:string" />

<xsd: el ement nane="time" type="xsd:string" />
<xsd: el enrent nane="Date" type="tns:Date" />

<xsd: el ement nane="CityPair" type="tns:CityPair" />
<xsd: el ement nane="cl ass-of -servi ce" type="xsd:string" />
<xsd: el enent nane="price" type="xsd:string" />
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: el ement nanme="avail abilityRequest" type="tns:getAvailability" />
<xsd: el enent nane="avail abi |l it yResponse"
type="tns: getAvail abilityResponse" />
</ xsd: schema>
</ wsdl : types>
<wsdl : message nanme="avail abilityResponse">
<wsdl : part nanme="avail abilityResponse"
el ement ="tns: avai |l abi |l it yResponse" />
</ wsdl : nressage>
<wsdl : nessage name="avail abi |l i t yRequest" >
<wsdl : part nanme="avail abilityRequest"
el ement ="tns: avail abi l i tyRequest" />
</ wsdl : nressage>
<wsdl : port Type nanme="Avail abilityService">
<wsdl : operati on name="get Avail ability">
<wsdl : i nput nessage="tns:avail abilityRequest" />
<wsdl : out put nessage="tns: avail abilityResponse" />
</ wsdl : operati on>
</ wsdl : port Type>
<wsdl : bi ndi ng name="Avai |l abi | i t yServi ceSOAP"
type="tns: Avail abilityService">
<soap: bi ndi ng styl e="docunent"
transport="http://schenas. xnm soap. org/ soap/ http" />
<wsdl : operati on name="get Avail ability">
<soap: operati on
soapActi on="http://ww.tpfsystem conl WebServi ces/ Avai | abi | ityService/"
styl e="docunent" />
<wsdl : i nput >
<soap: body use="literal" />
</ wsdl : i nput >
<wsdl : out put >
<soap: body use="literal" />
</ wsdl : out put >
</ wsdl : oper ati on>
</ wsdl : bi ndi ng>
<wsdl : servi ce nanme="Avail abilityService">
<wsdl : port bindi ng="tns: Avai |l abi | i t yServi ceSOAP"
nane="Avai | abi | i t ySer vi ceSOAP" >
<soap: address | ocation="http://ww.tpfsystem conf WebServi ces" />
</ wsdl : port>
</wsdl : service>
</ wsdl : definitions>

Driver

The Web services driver programreceives control fromthe SOAP engi ne
when an availability request

is received (as specified by the depl oynent descriptor). The driver wll
perform validations of the

request and report anomalies via the SOAPFault interface. Wen the
request nessage has been vali dated,

the individual fields in the XM/ SQOAP request nessage that are pertinent
to the availability nmessage

are extracted and placed in a DSECT or C struct that is defined for this
purpose. Control is then

sent via an ENTRC macro to the initial availability segment, TXAO.
Application

The application is refactored to separate the business logic fromthe
nmessage interface. References to

the input data are now nade to a DSECT/C struct instead of direct
reference to the MOM core bl ock.

Conversely, output is nowwitten to a DSECT/C struct to contain the
response array. Wen processing

is conplete, a BACKC macro is executed to return to the appropriate
driver that will fornat the response

DSECT/ C struct block into the format expected by the requester/consuner.

Driver

When control is returned to this driver, a new XM/ SOAP docunent is
created to formthe response nmessage.

The DSECT/C struct that is defined to contain the response data is used
to extract the information that

is to be returned to the consunmer. This data is added to the XM
elements in the response nessage. The

XM/ SOAP response nessage is now conplete, and the driver will return to
the SOAP engine to transmt the

response back to the service consuner.

Sanpl e Request Message

<?xm version="1.0" encodi ng="1SO 8859-1"?>
<SQOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / www. w3. or g/ 2002/ 06/ soap- envel ope"
SOAP- ENV: encodi ngStyl e="http://ww. w3. or g/ 2003/ 05/ soap- encodi ng" >
<SQOAP- ENV: Body>
<nsl:getAvailability xmns:nsl
="http://ww.tpfsystem conf WebServi ces/ Avai | abi | ityService">
<Dat e>
<Day>17</ Day>
<Mont h>JUL</ Mont h>
</ Dat e>
<Ci tyPai r>
<DepartureC ty>JFK</ DepartureC ty>
<Destinati onC t y>LAX</ Desti nati onCty>
</CityPair>
</nsl:getAvailability>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Sanpl e Response Message

<?xm version="1.0" encodi ng="1S0O 8859-1" ?>
<SOAP- ENV: Envel ope
xm ns: SOAP- ENV="ht t p: / / ww. W3. or g/ 2002/ 06/ soap- envel ope"
SOAP- ENV: encodi ngSt yl e="htt p://ww. wW3. or g/ 2003/ 05/ soap- encodi ng" >
<SOAP- ENV: Body>
<r:getAvail abilityResponse
xmns:r="http://ww.tpfsystem conf WebSer vi ces/ Avai | abi | i tyService">
<carrier>AB</carrier>
<flight>1023</flight>
<time>1100</ti me>

<Dat e>
<Day>17</ Day>
<Mont h>JUL</ Mont h>
</ Dat e>
<G tyPair>
<DepartureCity>JFK</ DepartureCty>
<Destinati onCi t y>LAX</ DestinationCity>
</CityPair>
<cl ass- of - servi ce>Y1</ cl ass- of - servi ce>
<price>245. 00</price>
<carrier>BB</carrier>
<flight>99</flight>
<ti ne>1230</tinme>
<Dat e>
<Day>17</ Day>
<Mont h>JUL</ Mont h>
</ Dat e>
<CityPair>
<DepartureCi ty>JFK</ DepartureCty>
<Desti nati onCi t y>ORD</ Desti nati onCity>
</CityPair>
<cl ass- of - servi ce>Y1</ cl ass- of -servi ce>
<price>215. 00</price>
<carrier>BB</carrier>
<flight>109</flight>
<tine>1415</ti nme>
<Dat e>
<Day>17</ Day>
<Mont h>JUL</ Mont h>
</ Dat e>
<G tyPair>
<DepartureC t y>ORD</ DepartureC ty>
<Desti nati onCi t y>LAX</ Desti nationCity>
</CityPair>
<cl ass- of - servi ce>S4</ cl ass- of - servi ce>
<price></price>
<carrier>QQ</carrier>
<flight>745</flight >
<ti me>1500</ti nme>
<Dat e>
<Day>17</ Day>
<Mont h>JUL</ Mont h>
</ Dat e>
<Ci tyPair>
<DepartureC ty>JFK</ DepartureC ty>
<Destinati onC t y>LAX</ Desti nati onC ty>
</CityPair>
<cl ass- of - servi ce>Y2</ cl ass- of - servi ce>
<price>275. 00</price>
</r:getAvail abilityResponse>
</ SOAP- ENV: Body>
</ SOAP- ENV: Envel ope>

Appendi x B Wb Services Scenari os

This section presents three scenarios of Wb services transactions.

give the reader a feel for

They

how transactions in the SOA environment are constructed; nore

i mportantly, how the z/ TPF system partici pates

inthis architecture. As the astute reader will see, the role of the
Web- enabl ed z/ TPF application in the

SQA environment is not unlike its role in traditional z/TPF
environnents; z/TPF s strengths are (and

historically have been): ultra-high availability, super-fast
transacti ons, and massive databases. These

characteristics play well for z/TPF to performas the ‘naster’ server
that lies at the heart of an

enterprise’'s data center.

Scenari o Number One

In this scenario, a custoner planning a weekend getaway is | ooking for
i nexpensi ve seats to her favorite
destinati on:

1. Sally, fromher home conputer, connects to her favorite purveyor of
i nexpensive airline seats. She
requests availability to her weekend destinati on.

2. CheepSeats.com sends queries to a list of airlines that fly from
Sally’s honmetown to her destination.
In our example, Zzyzx Airways is the last airline that is queried.

3. Zzyzx Airways has a front-end Wb server (AirlineBroker.com that
perfornms as the gateway to their

system of record. The front-end builds a SOAP nessage to send to their
z/ TPF system where all of their

reservation data is kept.

4. The Zzyzx z/ TPF system processes the SOAP nessage and routes the
request to the Wb-enabled Availability

application. The Availability application processes the request and
sends the response back to the requester.

5. The response is forwarded to CheepSeats.comand then to Sally’s

Fi ref ox Wb browser. Now she is free to
pl an the rest of her getaway.

Scenari o Number Two

In this scenario, a custoner uses a bank’'s phone systemto query account
bal ances and nake funds transfers:

0. Now that Harry, Sally’s husband, took over the home conputer system
to play online poker, Sally calls

her bank’s aut omated phone systemto nake sure she has enough funds in
her checki ng account so she can go
shoppi ng during her weekend get away.

1. Sally first uses her bank’s automated phone systemto query the
bal ances for her checking and savi ngs
accounts.

2. The Ajax Bank phone systemformats a SOAP nessage with the account
query information and sends it to
their z/ TPF system where the Account Bal ance application is |ocated.

3. The Ajax Bank’'s z/TPF system processes the SOAP nessage and routes
the request to the Web-enabl ed

Account Bal ance application. The Account Bal ance application processes
t he request and sends the response

back to the requester

4. The A ax Bank phone system processes the response and presents the
results back to Sally.

5. Sally decides to transfer $1,500 from her savings account to her
checki ng account. She indicates her
request to the Aj ax Bank phone system

6. The bank’ s phone systemformats the request into a SOAP nessage with
the transfer information and
sends it to the Account Transfer application, which happens to reside on
the Ajax Bank’s z/ TPF system

7. The Ajax Bank’'s z/ TPF system processes the SOAP nessage and routes
the request to the Wb-enabl ed

Account Transfer application. The Account Transfer application processes
t he request and sends the

response back to the requester.

8. The Aj ax Bank phone system processes the response and presents the
results back to Sally.

9. Sally conpl eted her banking transactions and hangs-up fromthe A ax
Bank automated phone system

Scenari o Nunmber Three

In this scenario, a custonmer purchases an airline itinerary and car
rental for a weekend getaway:

1. Sally, back on her honme conputer, reconnects to CheepSeats.comto
purchase her airline tickets,
as well as a car rental

2. CheepSeats.comtakes Sally's request and formats a SOAP nessage and
sends it to the Zzyzx Airways
i nternet gateway.

3. The Zzyzx Airways gateway finds the type of SOAP request and routes
the request to the airline’s web
application server system

4. The Zzyzx A rways application server finds the type of SOAP request
and routes the request to the
airline’ s Booking application, residing on the Zzyzx z/ TPF system

5. As part of its processing, the Booking application builds a SOAP
request to send to the Fare Quote

application to calculate the fare for the itinerary. The Fare Quote
application processes the request

and formats a SOAP nessage to respond to the requester.

6. The Booking application now formats a SOAP request to send to the
Hom ny Car Rental Conpany in order

to book the car rental. Hom ny's car rental reservation system processes
t he SOAP nessage and formats a

SOAP response back to Zzyzx.

7. The Booking application conpletes the processing and formats a SOAP
response with confirnmation
i nfornmati on back to the requester.

8. The response is forwarded back to CheepSeats.comand then to Sally’s
Wb browser.

Scenari o Number Three: Internal z/TPF Detail

Appendi x C Traditional z/TPF Devel opnent Rol es

The following are the roles found in a typical z/TPF devel opnent
environnent. These roles will

continue in an SCA devel opment environnent and in many cases will have
their responsibilities growto

support the SQA roles.

System QOper ati ons

Qper ati ons
Manages the day-to-day operation of the enterprise IT environment.

Oper ati ons Manager
Overal | operations managenent; oversees all conputer systems in an
enterprise’s | T departnent

Qper at or
Monitors one or nore specific operating system hosts

Cover age Manager
Provi des overall |eadership for all operation system and application
integrity

Cover age Progranmer

Assumes responsibility for the daily activities of system and
application operation; includes
system nmaintenance, software upgrades, and probl em di agnosi s

Syst em Manager
Provi des overall |eadership for all z/TPF systemintegrity

Syst em Pr ogr ammer

Assunes responsibility for the daily activities of z/TPF system
operation; includes system
mai nt enance, software upgrades, and probl em di agnosi s

Test

Test Team

Overall responsibility for the design, inplenmentation, and eval uation
for all nodifications schedul ed
for the production z/ TPF system

QA Manager
Provi des overall |eadership for all z/TPF systemintegrity for the
producti on system

QA Tester

Assumes responsibility for the daily activities of the test effort
i ncluding test inplenmentation,

execution, validation, and diagnosis

SA Manager
Provi des overall |eadership for integration for application projects
into a production environment

SA Tester

Assunes responsibility for the daily activities of the test effort
i ncludi ng test inplenentation

execution, validation, and diagnosis

Devel opnent

Devel oper

| mpl enent s the business applications and services (e.g., data
conponents, information, and
requi red devel opment tools) according to the architecture nodel

Application Manager

Provi des overall|l people and resource nmanagenent (and sonetines project
managenment) to drive

busi ness requirenents

Appl i cation Programmer

Devel ops the business applications and services according to the
pl anned architecture, incorporating

both functional as well as presentation aspects of the offering

Appendi x D Wb Service Project Roles

The following are some additional roles in a Service Oiented
Architecture devel opnent environnent

as presented in a Devel operWrks article. This docunent can be revi ewed
at

http://ww 128. i bm conif devel oper wor ks/ webservi ces/ i brary/ws-rol es/

The actual roles defined are at the discretion of the enterprise; nore
than one rol e can be assigned

to a single person and not every role needs to be filled. No roles are
specific to z/ TPF that cannot

fit into one of these role categories.

Ext ended rol es

Product Vendor

Supplies a Ws-1-conpliant Web services runtine container, and optiona
service registry and SOAP

gat eway servi ces.

Depl oyer

Takes the devel opnent artifacts and installs themin the target runtine
envi ronnent. Cenerates stubs
and skel etons for the target environnment from WSDL and installs them
together with the service inplenmentations.

Test er

In charge of the various standard test stages such as integration,
| oad, and acceptance test. Al so
defines test cases for Wb services interoperability and conformance
tests.

Tool smith

Desi gns and i npl ements project-specific scripts, generators, and other
utilities. The degree of
standardi zation in the Wb services world makes it possible to, for
exanpl e, devel op cust om WSDL-,
JAX- RPC- or JSR-109-aware tool s.

Know edge Transfer Facilitator

Provi des access to subject matter experts and technical instructors who
bring in extended know edge

regardi ng Web services concepts and inpl ementati on assets.

Extra rol es

SCA Architect

Responsi bl e for the end-to-end service requester and provi der design.
Takes care of inquiring

on and stating the non-functional service requirenents.

Servi ce Model er

Applies data and function nodeling techniques to define the service
interface contracts, including
t he shemas of exchanged nessages.

Process Fl ow Desi gner

Investigates explicit, declarative service orchestration (aggregation,
conposition) possibilities.
An optional role.

Servi ce Devel oper

J2EE devel oper fanmiliar with Wb services concepts and XM.. Devel ops
service interface and

i npl enent ati on (provider side) and service invocation code (requester
si de).

Interoperability Tester

Verifies that the devel oped requester and provider inplenentations
i nteroperate seam essly and
ensures Web Services Interoperability (W5 1) conformance.

UDDI Admi ni strat or
Defi nes how the generic UDDI data nodel is custom zed and popul ated. An
optional role

NOTI CES

| BM may not offer the products, services, or features discussed in
this information in other countries. Consult your |ocal |BM
representative for informati on on the products and services currently
avail able in your area. Any reference to an | BM product, program or
service is not intended to state or inply that only that |BM product,
program or service may be used. Any functionally equival ent product,
program or service that does not infringe any IBMintellectua
property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operati on of any non-1BM
product, program or service. |BM nmay have patents or pendi ng patent
applications covering subject natter described in this information.
The furnishing of this informati on does not give you any license to

t hese patents. You can send license inquiries, in witing, to:

| BM Director of Licensing
| BM Cor porati on

North Castle Drive
Armonk, NY 10504- 1785

US A

Li censees of this programwho wi sh to have information about it for

t he purpose of enabling: (i) the exchange of information between

i ndependently created prograns and ot her prograns (including this one)
and (ii) the nutual use of the information which has been exchanged,
shoul d contact:

| BM Cor por ation

Depart ment 830A

Mai | Drop P131

2455 Sout h Road
Poughkeepsi e, NY 12601- 5400
US A

Such i nformati on nay be avail abl e, subject to appropriate terns and
conditions, including in some cases, payment of a fee. Any references
in this information to non-1BM Wb sites are provided for convenience
only and do not in any nanner serve as an endorsenent of those Wb
sites. The materials at those Wb sites are not part of the materials
for this IBM product and use of those Wb sites is at your own risk.

TRADEMARKS

The following terns are trademarks of the International Business
Machi nes Corporation in the United States, or other countries,
or both:

| BM
clCs
DB2
| N5

MXBeri es
WebSpher e

Java and all Java-based trademarks are trademarks of Sun M crosystens,
Inc. in the

United States, other countries, or both.

QO her conpany, product, and service nanes nmay be tradenarks
or service marks of others.

