
IBM Software Group

AIM Enterprise Platform Software
IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
© IBM Corporation 2005

TPF Users Group Spring 2005TPF Users Group Spring 2005

Name : Edwin W. van de Grift
Venue : Applications Development Subcommittee

Get Ready For Standard C++!

Any references to future plans are for planning purposes only. IBM reserves the right to change those plans at its discretion. Any reliance on such
a disclosure is solely at your own risk. IBM makes no commitment to provide additional information in the future.

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 1

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

ISO C++

C++ has been standardized by ANSI (The American National Standards
Institute), BSI (The British Standards Institute), DIN (The German national
standards organization), several other national standards bodies, and ISO
(International Standards Organization)

ISO/IEC 14882:1998

Available through the National Committee for Information Technology Standards’
electronic store.
http://www.ncits.org/

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 2

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

ISO C++?

On TPF4.1
The version of the IBM C++ compiler that is supported on TPF4.1, only implements a
subset of the ISO C++ standard.

On z/TPF
The GNU Compiler Collection (GCC) C++ compiler -- G++ -- does support the ISO
C++ standard.

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 3

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

So, what parts of C++ didn’t we have on TPF4.1?

Namespaces
New cast operations
Booleans
Explicit and mutable specifiers
Real-Time Type Information
Standard exceptions
Universal character names
Standard library (including STL)

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 4

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Namespaces

A namespace is an optionally named declarative region.
The name of a namespace can be used to access entities declared in that
namespace; that is, the members of the namespace.
The definition of a namespace can be split over several parts of one or more
translation units.
A name declared outside all named namespaces, blocks and classes has global
namespace scope.

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 5

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Namespaces

Defining a namespace:

Using a namespace:

namespace MyApp {

enum Rc {Ok, Nok};

Rc myFunction();

}

MyApp::Rc rc = MyApp::myFunction();

using namespace MyApp;

Rc rc = myFunction();

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 6

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Why Namespaces?

The way to avoid name collisions (of variables, types, classes or functions).
Especially in big application environments.

TPF installations are an excellent example of this!

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 7

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

New Cast Operations

Const and volatile cast
Reinterpret cast
Static cast
Dynamic cast

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 8

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

C++ Cast Operations

C++ standard cast operations that provide finer control over casting than
previous cast operations.
The dynamic_cast<> operator provides a way to check the actual type of a
pointer to a polymorphic class.
Casts all perform a subset of the casts allowed by the classic cast notation.

For example, const_cast<int*>v could be written (int*)v.
Casts categorize the variety of operations available to express the
programmer's intent more clearly
Casts allow the compiler to better check the code.

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 9

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Const and Volatile Cast

Const and volatile cast can be used to change the const or volatile qualifiers of
objects and pointers.

The volatile keyword specifies that the value associated with the name that follows can
be modified by actions other than those in the user application.
When a name is declared as volatile, the compiler reloads the value from memory
each time it is accessed by the program.

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 10

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Const and Volatile Cast

const int i(42);

. . .

int* j = const_cast<int*>(&i);

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 11

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Reinterpret cast

Reinterpret cast changes the interpretation of the value of an expression.
Is engineered for casts that yield implementation dependent results.

Not likely to use very often.
It can be used to convert between

Pointer and integer types.
Unrelated pointer types.
Pointer-to-member types.
Pointer-to-function types.

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 12

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Static cast

When converting from a type with a small value space to a larger value space,
an implicit cast can be employed as there is no danger of losing data.
On the other hand, when converting from a larger type to a smaller type, it is
possible for the data to be truncated.

Therefore compilers require confirmation in the form of a cast.
This is referred to as a static cast, since only static type information is used in
determining the conversion behavior.
A static cast is often considered dangerous.

Compiler places the responsibility of ensuring the safety of the cast squarely in the
hands of the programmer.

Closest in meaning to conventional C-style casts.

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 13

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Static Cast

int i;

. . .

short s = static_cast<short>(i);

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 14

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Dynamic cast

The dynamic type cast will convert a pointer or reference to one class into a
pointer or reference to another class.

That second class must be the fully-derived class of the object, or a base class of the
fully-derived class.

Under virtual inheritance and multiple inheritance of a single base class, the
dynamic cast must be able to identify a unique match.

If the match is not unique, the cast fails.
For pointer types, if the specified class is not a base of the fully derived class, the
cast returns 0.
For reference types, if the specified class is not a base of the fully derived class,
the cast throws a bad_cast exception.

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 15

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Dynamic Cast

class B { ... };

class C : public B { ... };

class D : public C { ... };

void f(D* d) {

C* c = dynamic_cast<C*>(d); // Ok: C is a direct base class

// c points to C subobject of d

B* b = dynamic_cast<B*>(d); // Ok: B is an indirect base class

// b points to B subobject of d

}

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 16

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Boolean

The bool keyword is a built-in type.
A variable of this type can have values true and false.

Conditional expressions have the type bool and so have values of type bool.
For example, i != 0 now has true or false depending on the value of i.

The values true and false have the following relationship:
!false == true
!true == false

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 17

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Explicit Specifier

Constructors declared explicit will not be considered for implicit conversions.
Can only be applied to in-class constructor declarations.

class X {

public:

explicit X(int);

};

X x = 42; X x = 42;

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 18

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Mutable Specifier

Declare a member non-constant even if it is a member of a const object.
Use of mutable data members might seem like cheating because it enables a const
function to modify an object's data members.
However, when used properly, mutable improves your code quality as it hides
implementation details from users without resorting to dubious things like
const_cast<>.
Most common usage is in object that are logically constant, and bitwise are not.

class String {
public:

 size_t length() const;
private:

 char* _data;
 mutable size_t _length;
 mutable bool _lengthIsValid;
};

size_t String::length() const {

 if(!_lengthIsValid) {

 _length = strlen(_data);
 _lengthIsValid = true;
 }
 return _length;

}

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 19

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

RTTI – Real-Time Type Information

Ability to determine the type of an object dynamically
At runtime versus at compile time

Three components:
Operator typeid
Operator dynamic_cast
Class std::type_info

Animal

Mammal

Dog Cat

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 20

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Sample Snippets: Animal

Animal

Mammal

Dog Cat

class Animal {

public:
 Animal(const Weight& w, const Age& a) : _w(w), _a(a) {}

 virtual ~Animal() {}
 virtual Age& getAge() const { return _a; }
 virtual void eat() = 0;
private:

 Weight _w;
 Age _a;

};

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 21

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Sample Snippets: Mammal

Animal

Mammal

Dog Cat

class Mammal : public Animal {

public:
 Mammal(const Weight& w, const Age& a) : Animal(w,a) {}
 virtual ~Mammal() {}
 virtual void eat() {};

 virtual void speak() = 0;
private:

};

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 22

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Sample Snippets: Dog

Animal

Mammal

Dog Cat

class Dog : public Mammal {

public:
 Dog(const Weight& w, const Age& a) : Mammal(w,a) {}
 virtual ~Dog() {}
 virtual void speak() { cout << "Ruff\n"; }

private:
};

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 23

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Sample Snippets: Cat

Animal

Mammal

Dog Cat

class Cat : public Mammal {

public:
 Cat(const Weight& w, const Age& a) : Mammal(w,a) {}

 virtual ~Cat() {}
 virtual void speak() { cout << "Meow\n"; }
private:
};

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 24

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

RTTI

RTTI is applicable solely to polymorphic objects.
Class must have at least one virtual-member function in order to have RTTI apply to
its objects.

For every distinct type, C++ instantiates a corresponding std::type_info object.
All objects of the same class share a single type_info object.
The most commonly used member functions are name() and operator==.

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 25

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

std::type_info

namespace std {

class type_info {

public:

virtual ~type_info();

bool operator==(const type_info& rhs) const;

bool operator!=(const type_info& rhs) const;

bool before(const type_info& rhs) const;

const char* name() const;

private:

type_info(const type_info& rhs);

type_info& operator=(const type_info& rhs);

};

}

1

2

3

4

namespace std {

class type_info {

public:

virtual ~type_info();

bool operator==(const type_info& rhs) const;

bool operator!=(const type_info& rhs) const;

bool before(const type_info& rhs) const;

const char* name() const;

private:

type_info(const type_info& rhs);

type_info& operator=(const type_info& rhs);

};

}

1

2

3

4

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 26

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

std::type_info

1. Class type_info can serve as a base class
2. Objects can be compare
3. Ordering
4. Class type_info objects cannot be copied

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 27

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Operator typeid

Operator typeid takes either an object or a type name as its argument and
returns a matching type_info object.

void foo(Animal& a) {
 if(typeid(a) == typeid(Mammal)) {
 cout << typeid(a).name() << " says: ";
 a.speak();
 }
}

Dog says: Ruff
Cat says: Meow

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 28

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Dynamic cast

A dynamic_cast<> expression to verify the type of an object can take either a
pointer or a reference for an argument.

dynamic_cast<T&>(r) dynamic_cast<T*>(p)

Returns a T pointer or zero Returns a T reference or throws

a bad_cast exception

dynamic_cast<T&>(r) dynamic_cast<T*>(p)

Returns a T pointer or zero Returns a T reference or throws

a bad_cast exception

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 29

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Dynamic cast of a pointer

After a dynamic_cast<> expression of a pointer always test the pointer for the
result.

MyType* myType = dynamic_cast<MyType*>(p);

if(myType) {

// dynamic_cast succeeded

} else {

// dynamic_cast failed

}

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 30

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Dynamic cast of a reference

Always place a dynamic_cast<> expression of a reference inside a try block
and include a catch statement to handle std::bad_cast exceptions.

try {

MyType& myType = dynamic_cast<MyType&>(p);

}

catch(std::bad_cast& e) {

// dynamic_cast failed

}

// dynamic_cast succeeded

}

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 31

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Performance of typeid versus dynamic_cast<>

From design point of view, dynamic_cast<> should be preferred to typeid
because it enables more flexibility and extensibility.
However, the runtime overhead of typeid can be less expensive than
dynamic_cast<>, depending on the operands.

Invoking operator typeid is a constant time operation.
It takes the same length of time to retrieve the runtime type information of every
polymorphic object, regardless of the object's derivational complexity.

Using dynamic_cast<> is not a constant time operation.
It has to traverse the derivation tree of the operand until it has located the target
object in it.

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 32

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Standard Exceptions

C++ defines a hierarchy of standard exceptions that are thrown at runtime when
abnormal conditions arise:

The standard exception classes are derived from std::exception (defined in the
<stdexcept> header).
std::bad_alloc is defined in <new>.
std::bad_cast is defined in <typeinfo>.
Other exceptions are defined in <stdexcept>.

This hierarchy enables the application to catch these exceptions in a single
catch statement.

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 33

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Universal Character Names

The C++ Standard also allows an implementation to offer extended source
character sets and extended execution character sets. Furthermore, those
additional characters that qualify as letters can be used as part of the name of
an identifier.

Thus, a German implementation might allow you to use umlauted vowels and a
French implementation might allow accented vowels.

A universal character name begins either with \u or \U.
\u is followed by 8 hexadecimal digits
\U by 16 hexadecimal digits
Digits represent the ISO 10646 code for the character

int k\u00FChlNicht(42); int kühlNicht(42);

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 34

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Standard Library

It is big, it is huge, and it is the standard!
All in the std namespace
Almost everything is a template
New header file names

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 35

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Standard Library Header File Names

Old headers deprecated, but still supported.
And will be for many years.

C++ Headers: No file extention
All is in namespace std

C Headers: Prepended with a "c" and no file extention
All is in namespace std

iostream.h

stdio.h

iostream

cstdio

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 36

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Standard Library Contents

The standard C library
Iostreams
Strings
Containers
Algorithms
Support for internationalization

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 37

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Getting ready for standard C++

The compilers are far better assembler programmers than humans will ever be.

Take advantage of 64 bit architecture.
It does not make sense to try to outperform the compiler, or have to worry about
storage mapping.
You shouldn’t want to program in assembler anymore.

Take advantage of standard C++
Universities and colleges teach students standard C++.
Why “un-train” them?

Get training!
Having C programmers design and write standard C++ programs is NOT a good idea.

This does work when using the C++ compiler to merely “optimize” C code: “A
Better C”, but C++ has so much more to offer!

Suboptimal code is much more expensive than training.

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 38

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Questions?

zzzz
z

z
z

zzzz
z

z
z

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 39

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group Hollywood California Spring 2005
 © IBM Corporation 2005

Notes

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your
local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other
claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This presentation and the claims outlined in it were reviewed for compliance with US law. Adaptations of these claims for use in other geographies must be reviewed by the local country counsel for compliance with local laws.

IBM is a trademark of International Business Machines Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Trademarks

TPFUG April 2005 Appl C++.prz 04/14/05 Pages 40

