
DFDL Enhancements

Bradd Kadlecik
z/TPF Development

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Background

• DFDL (Data Format Description Language) is a universal,
shareable, non-prescriptive description for general text and
binary data formats.

• DFDL can be used to transform data between native, proprietary
formats and standardized formats such as XML, JSON, BSON,
and CSV.

• DFDL is integrated in z/TPF into business events, support for
MongoDb, and REST.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Agenda

• What’s New:
➢ Calculated fields
➢ Hidden groups
➢ User-exit functions
➢ Pointers

• What’s Next:
➢ Default field exclusion
➢ Flatten/unflatten

Calculated fields

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Problem

• Variable length elements and variable size arrays require
length and size elements to be part of the DFDL
description.

• The length and size elements are not transmitted as
separate elements in standardized formats but rather are
implicitly understood.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Pain Points

• Passing the length of elements and size of arrays as
separate elements can cause corruption by inaccurate
values being passed, not to mention an unconventional
interface.

• Excluding the length and size elements causes DFDL to
not be used (or used piecemeal) causing a much higher
development cost.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Value Statement

• DFDL calculated fields (PJ45427) allows standardized formats
involving variable length elements and variable size arrays to be
defined in DFDL in such a way as to not require the passing in of
length and size elements.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

The Details

The DFDL annotation dfdl:outputValueCalc provides:

• Ability to set the length of a variable size string based on the length of the
string in the document using the dfdl:valueLength(<XPath>) function.

• Ability to set the size of a variable size array based on the number of
occurrences in the document using the fn:count(<XPath>) function.

• Ability to set existence information for optional fields using the
fn:exists(<XPath>) function.

Note: Only used during DFDL serialization!

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – variable length field

<xs:element name="addrLen" type="xs:unsignedShort"
dfdl:lengthKind="explicit" dfdl:length="2"
dfdl:lengthUnits="bytes" default="0"
dfdl:outputValueCalc="{dfdl:valueLength(../Address,'bytes’)}" />

<xs:element name="Address" type="xs:string"
dfdl:lengthKind="explicit" dfdl:length="{../addrLen}"
dfdl:lengthUnits="bytes" />

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – variable length field

JSON format:
“Address”:”100 Main St”

dfdl:valueLength(../Address,’bytes’) = 11

Binary Format:
11 “100 Main St”

000B F1F0F040D481899540E2A3

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – variable size array

<xs:schema xmlns:fn="http://www.w3.org/2005/xpath-functions" >

<xs:element name="arrayCount" type="xs:unsignedShort"
dfdl:lengthKind="explicit" dfdl:length="2"
dfdl:lengthUnits="bytes“ default="0"
dfdl:outputValueCalc="{fn:count(../Numbers)}"

<xs:element name=“Numbers" type="xs:int"
dfdl:lengthKind="explicit" dfdl:length=“4"
dfdl:lengthUnits="bytes" minOccurs="0"
maxOccurs="unbounded" dfdl:occursCountKind="expression"
dfdl:occursCount="{../arrayCount}" />

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – variable size array

JSON format:
“Numbers”:[10,20,30,40]

fn:count(../Numbers) = 4

Binary Format:
4 10 20 30 40

0004 0000000A 00000014 0000001E 00000028

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – optional field

<xs:schema xmlns:fn="http://www.w3.org/2005/xpath-functions" >

<xs:element name=“hasAddr" type="xs:boolean"
dfdl:lengthKind="explicit" dfdl:length=“1"
dfdl:lengthUnits="bits" dfdl:alignmentUnits="bits" default="0"
dfdl:leadingSkip="2" dfdl:trailingSkip="5"
dfdl:outputValueCalc="{fn:exists(../Address)}" />

<xs:element name="Address" type="xs:string"
dfdl:lengthKind="explicit" dfdl:length="20"
dfdl:lengthUnits="bytes" nillable="true"
dfdl:useNilForDefault="yes" />

Hidden groups

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Problem

• Some fields have no value in being transmitted (such as
lengths of variable length elements and sizes of variable
size arrays).

• Need to restrict whether or not certain fields are
transmitted based on where the data is going (different
views of the same data).

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Pain Points

• A complicated update to DFDL needs to be made in order
to keep certain elements from being transmitted. This
approach is not accepted on all DFDL parsers when the
hidden element is referenced through a DFDL expression.

• Creating multiple DFDLs for the same data for the
purpose of having different views can be very difficult to
keep in synch as changes are made.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Value Statement

• DFDL hidden groups (PJ45427) provides a standardized way to
define multiple views of the data by restricting certain fields
from being transmitted.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

The Details

The DFDL annotation dfdl:hiddenGroupRef provides:

• Ability to restrict a field or set of fields from being externalized
in standardized formats.

• Ability to conditionally restrict a field or set of fields from being
externalized through DFDL variables, allowing for different views
based on the value(s) of either a DFDL variable or name-value
pair.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – hidden length field

<xs:group name="hiddenLen">
<xs:sequence>

<xs:element name="addrLen" type="xs:unsignedShort"
dfdl:lengthKind="explicit" dfdl:length="2" dfdl:lengthUnits="bytes"
dfdl:outputValueCalc="{dfdl:valueLength(../Address,'bytes’)}" />

</xs:sequence>
</xs:group>

<xs:sequence dfdl:hiddenGroupRef="hiddenLen"/>
<xs:element name="Address" type="xs:string"

dfdl:lengthKind="explicit" dfdl:length="{../addrLen}"
dfdl:lengthUnits="bytes" />

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – alternate views

{
“name”:”John Smith”,
“sex”:”M”,
“age”:40,
“eyes”:”brown”

}

{
“name”:”John Smith”,
“sex”:”M”,
“eyes”:”brown”

}

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – alternate views (contd)

<!-- Define an external variable to control the view -->
<xs:annotation>

<xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:defineVariable name="allowPII" type="xs:boolean" external="true" />

</xs:appinfo>
</xs:annotation>

<xs:group name="PII_Info">
<xs:sequence>

<xs:element name="age" type="xs:unsignedByte"
dfdl:lengthKind="explicit" dfdl:length="1"
dfdl:lengthUnits="bytes" default="0" />

</xs:sequence>
</xs:group>

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – alternate views (contd)

<xs:choice>
<xs:group ref="PII_Info">

<xs:annotation>
<xs:appinfo source="http://www.ogf.org/dfdl/">

<dfdl:discriminator>{$allowPII}</dfdl:discriminator>
</xs:appinfo>

</xs:annotation>
</xs:group>
<xs:sequence dfdl:hiddenGroupRef="PII_Info" />

</xs:choice>

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – alternate views (contd)

try {
tpf_dfdl_initialize_handle(&dh, DFDL_FILE, DFDL_ROOT, 0);
tpf_dfdl_setData(dh, &buf, sizeof(buf));
val.dataType = DFDL_TYPE_BOOLEAN;
val.value.v_ulong = 1;
tpf_dfdl_setVariable(dh, “allowPII", &val, NULL);
JSONdoc = tpf_dfdl_buildDoc(dh, &docLen, TPF_DFDL_JSON, 0);

}

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – name-value pair

<xs:schema xmlns:nv="http://www.ibm.com/xmlns/prod/ztpf/name-value" >

<xs:choice>
<xs:group ref="PII_Info">

<xs:annotation>
<xs:appinfo source="http://www.ogf.org/dfdl/">

<dfdl:discriminator>{$nv:allowPII}</dfdl:discriminator>
</xs:appinfo>

</xs:annotation>
</xs:group>
<xs:sequence dfdl:hiddenGroupRef="PII_Info" />

</xs:choice>

User exit functions

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Problem

• Some fields in a JSON or XML document might not come
from a single data structure but instead be associated
with the ECB or time of transaction.

• Some fields require special formatting to convert
between the native format in the data structure and the
string format in the document.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Pain Points

• Copying data to new structures that contain all the data
needed by a document or modifying infonodes after DFDL
creation can be costly and error prone.

• Special formatting performed by one group using DFDL is
not reusable by other groups without good design and
coordination.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Value Statement

• DFDL calculated fields (PJ45427) provides a standardized way
to add element values to a document that doesn’t come from
the data.

• DFDL user-exit functions (PJ45427) provides the ability to
create and maintain conversion/formatting functions shareable
with all DFDL schemas.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

The Details

The DFDL annotation dfdl:inputValueCalc provides:

• Ability to set the value of an element in a document that’s not
defined in the data structure by using a DFDL variable.

• Ability to peform special formatting for an element by using a
ufn:<user function>(XPath) function.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – data augmentation

Binary:
typedef struct {

unsigned int iob;
unsigned int frame;
unsigned int common;
unsigned int swb;
unsigned int xwb;
unsigned int ecb;
unsigned int frm1mb;

} resource_availablity;

JSON:
{

“resource_availablity”:{
“time”:”2019-03-01T09:30:01”,
“iob”:8192,
“frame”:6192,
“common”:397,
“swb”:3890,
“xwb”:3946,
“ecb”:558,
“frm1mb”:283

}
}

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – data augmentation

<!-- Define an external variable to import a string value -->
<xs:annotation>

<xs:appinfo source="http://www.ogf.org/dfdl/">
<dfdl:defineVariable name="dateTime" type="xs:string" external="true" />

</xs:appinfo>
</xs:annotation>

<xs:complexType name="resource_availablity">
<xs:sequence>

<xs:element name="time" type="xs:string" dfdl:inputValueCalc="{$ns0:dateTime}" />
<xs:element name="iob" type="xs:unsignedInt" dfdl:lengthKind="explicit"

dfdl:length="4" dfdl:lengthUnits="bytes" default="0" />
…

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – data augmentation

try {
tpf_dfdl_initialize_handle(&dh, DFDL_FILE, DFDL_ROOT, 0);
tpf_dfdl_setData(dh, &buf, sizeof(buf));
ts_size = strftime(timestamp, sizeof(timestamp), "%Y-%m-%dT%H:%M:%S", ts);
val.dataType = DFDL_TYPE_STRING;
val.strCcsid = TPF_CCSID_IBM1047;
val.length = ts_size;
val.value.v_pointer = timestamp;
tpf_dfdl_setVariable(dh, “dateTime", &val, NULL);
JSONdoc = tpf_dfdl_buildDoc(dh, &docLen, TPF_DFDL_JSON, 0);

}

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – special formatting

Binary

Enum: 00000001

TOD clock: D5B3FD2F 3B3AE8A3

JSON

“ECOINN”

“02/18/2019 18.46.17”

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – special formatting

<xs:schema xmlns:ufn="http://www.ibm.com/xmlns/prod/ztpf/dfdl/user-functions" >

<xs:group name="hiddenEnum">
<xs:sequence>

<xs:element name="BrandEnum" type="xs:unsignedByte" dfdl:lengthKind="explicit"
dfdl:length="1" dfdl:outputValueCalc="{ufn:BrandNum(../Brand)}" />

</xs:sequence>
</xs:group>

<xs:sequence dfdl:hiddenGroupRef="hiddenEnum"/>
<xs:element name="Brand" type="xs:string"

dfdl:inputValueCalc="{ufn:BrandStr(../BrandEnum)}" />

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – special formatting

base/rt/dfdl_ufn.cpp:

extern "C" void DFDL_user_function(DFDLHandle dfdlhdl, char *fct_name,
dfdl_data *parm, dfdl_data *result) {

size_t fctlen = strlen(fct_name);

switch (fctlen) {
case 8:
{
if (memcmp(fct_name, “BrandNum”, 8) == 0) {

// Convert string in parm to a number, store in result, and return
} else if (memcmp(fct_name, “BrandStr”, 8) == 0) {
}

}

Pointers

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Problem

• DFDL handles only contiguous data

• REST interfaces often deal with structures involving
multiple variable length strings and variable size arrays.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Pain Points

• Data needs to be copied to a contiguous area of memory
to be used by DFDL.

• Variable length strings and variable size areas cause
either large memory requirements or structures that are
difficult to traverse.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Value Statement

• TPF pointer support for DFDL (PJ45427) provides a way to use
non-contiguous data with DFDL.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

The Details

The TPF DFDL annotation indirectKind and indirectLength provides:

• Ability to create and access non-contiguous data with DFDL
through the definition of pointers.

• A proof of concept for possible adoption by DFDL 2.0.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – pointer definition

Before:

typedef struct {
char module[4];
char version[3];
char pathToSO[1023];
char subPaths[4095];
char rootDir[1023];
char timestamp[14];

} tpf_remoteDebugInfoRequest;

After:

typedef struct {
char module[4];
char version[3];
char pathToSO[1023];
unsigned short subPathLen;
char *subPaths;
char rootDir[1023];
char timestamp[14];

} tpf_remoteDebugInfoRequest;

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example – pointer definition

<xs:schema xmlns:tddt="http://www.ibm.com/xmlns/prod/ztpf/xml/lib/tpfattributes" >
<xs:group name="hiddenPathLen">

<xs:sequence>
<xs:element name="subPathLen" type="xs:unsignedShort" dfdl:lengthKind="explicit"

dfdl:length="2" dfdl:lengthUnits="bytes"
dfdl:outputValueCalc="{dfdl:valueLength(../subPaths,'bytes’)}" />

</xs:sequence>
</xs:group>

<xs:sequence dfdl:hiddenGroupRef="hiddenPathLen"/>
<xs:element name="subPaths" type="xs:string" dfdl:occursCountKind="expression"

minOccurs="0" maxOccurs="1" dfdl:occursCount="{if (../subPathLen) then 1 else 0}"
dfdl:lengthKind="explicit" dfdl:length="{../subPathLen}" dfdl:lengthUnits="bytes"
tddt:indirectKind="pointer" tddt:indirectLength="8" />

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Recap

PJ45427 provides the ability to:

• Set the length, occurrence, and existence of elements through calculated
fields

• Hide elements and create multiple views of data through hidden groups
• Access information not part of the data through DFDL variables
• Create custom transformations through user-exit functions
• Define non-contiguous data through pointers

Some problems introduced were fixed by PJ45615.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Disclaimer

Any reference to future plans are for planning purposes
only. IBM reserves the right to change those plans at its
discretion. Any reliance on such a disclosure is solely at
your own risk. IBM makes no commitment to provide
additional information in the future.

Default field exclusion

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Problem

• JSON and XML documents built by DFDL contain every
field defined which can include many elements and array
items where all fields contain a 0 value and do not need
to be transmitted.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Pain Points

• Large documents can create larger network bandwidth
requirements.

• Updating the DFDL to exclude each optional field and
array items is time consuming, error prone, and difficult to
maintain.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Value Statement

• DFDL can create smaller JSON and XML documents by excluding
elements that contain default values.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

The Details

• A new option will be provided for tpf_dfdl_buildDoc in which any
elements that contain a default value are excluded.

For example:
JSONDoc = tpf_dfdl_buildDoc(dfdlhdl, &docLen, TPF_DFDL_JSON,

TPF_DFDL_XDFLT);

• Any empty complex element or trailing empty array items will
also be excluded.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Example

Before:

{
“apar”:”PJ45427”,
“reviewers”:[

{“name”:”John Smith”,
“date”:”2018-10-11”},

{“name”:””,
“date”:””}

],
“coreqs”:false,
“miginfo”:true

}

After:

{
“apar”:”PJ45427”,
“reviewers”:[

{“name”:”John Smith”,
“date”:”2018-10-11”}

],
“miginfo”:true

}

Flatten/unflatten

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Problem

• RESTful interfaces often involve many variable length
strings and variable size arrays.

• Future direction for handling this type of data is through
pointers which simplifies how to traverse the data.

• The data containing pointers may need to be flattened
however in order to be filed or moved to shared memory.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Pain Points

• Writing code to handle navigation of variable length fields
and variable size arrays takes time (money).

• Flattening and unflattening of non-contiguous data for
filing can be expensive to create and maintain.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Value Statement

• DFDL can transform structures with pointers to a flattened
representation with offsets cheaply and in a standardized way.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

The Details

• A new DFDL API will be provided to either flatten or unflatten
structures containing pointer definitions.

• To flatten: a new ECB heap area will be created, 8 or 4 byte
addresses will become a corresponding 8 or 4 byte offset from
the start of the data area.

• To unflatten: 8 or 4 byte offsets will be changed to
corresponding 8 or 4 byte addresses.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Summary

• What’s New: PJ45427
➢ Calculated fields
➢ Hidden groups
➢ User-exit functions
➢ Pointers

• What’s Next:
➢ Default field exclusion
➢ Flatten/unflatten

Content Survey

ibm.biz/tpf-dfdl

Thank You!
Questions or Comments?

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Trademarks

IBM, the IBM logo, ibm.com and Rational are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at “Copyright
and trademark information” at www.ibm.com/legal/copytrade.shtml.

Notes

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The
actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O
configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput
improvements equivalent to the performance ratios stated here.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the
results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and
conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the
information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products
and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

This presentation and the claims outlined in it were reviewed for compliance with US law. Adaptations of these claims for use in other geographies must be reviewed
by the local country counsel for compliance with local laws.

http://www.ibm.com/legal/us/en/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

