
z/TPF Automated Test Framework

Jamie Farmer
z/TPF Development

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

• The cost of testing z/TPF application code can be expensive.
• Test resources are required to manually run and validate test cases
• Manual testing takes time, increasing time to market for new application

function
• Perception of z/TPF and the mainframe suffers making it harder to get new

function on the platform

• The quality of code can suffer
• In some cases tests are lost over time as skills and priorities change
• Testing is done with throw away code to get the application tested more quickly

• There is no z/TPF testing framework in place that allows for repeatable,
automated testing

Problem

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

z/TPF Automated Test Framework

• Allows you to create new (or convert old), self-validating programmatic test cases similar
to other testing frameworks, like Google Test.
• Set of TPF unique APIs to create z/TPF automated tests.

• Provides the ability to organize tests by a namespace
• For example, airco.res.overbook

• Framework automatically detects new test cases when they are loaded to the z/TPF system
• Allows for tests to be included with the modules being tested.

• Ability to query / run testcases defined in the z/TPF automated test framework
• Using the new ZDEVO operator command
• Using a Java application (ie. jUnit) on a remote platform

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Creating Automated Test Cases

TPF_TESTSUITE (“airline.overbook”, “TOV*, TOB1”);

TPF_TESTCASE (overbook_firstClass, “overbooking in first class”) {

// Test case logic

}

TPF_TESTCASE (overbook_economy, “Test overbooking in economy”) {

// Test case logic

}

.

. Additional overbook tests

.

TPF_TESTSUITE
• defines the namespace of tests in this

shared object
• Code coverage mask – reserved for

future enhancements

One or more individual test cases that will
be contained in the namespace defined

qovb.c

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Automatic Detection of Test Cases

TPF_TESTSUITE (“airline.overbook”, “TOV*, TOB1”);

TPF_TESTCASE (overbook_firstClass, “overbooking in first

class”) {

// Test case logic

}

TPF_TESTCASE (overbook_economy, “Test overbooking in

economy”) {

// Test case logic

}

qovb.c -> QOVB.so

z/TPF

airline.overbook
overbook_firstClass
overbook_economy

OLD/TLD load
driver program

Automated Test Table

Upon loading, the testsuite/testcases in the
shared object are runnable using command or
from a remote platform.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

TPF_TESTCASE(apptest,…) {

• Perform Test Case
Setup
• ECB fields
• Database Setup
• Data levels

• Calls to application
code

• Verify results
• Return values
• ECB fields
• Read database
• Etc.

• Perform any clean-up
• Return

Application
Code

Test Framework Process

For each test case being run
Create new process and invoke
Wait for test case completion

}

New Process

Operator issues
ZDEVO command to
run one or more tests

Testcase Process

z/TPF Framework Architecture

Invoked from a remote
platform through a
REST request.

Application
must

Return

z/TPF

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Invoking z/TPF Application Code
TPF_TESTCASE (overbook_firstClass, “Test overbooking in first class”) {

struct overbook_input overbook_parms;

… Setup environment for call

TPF_TC_INFO (“Calling overbook routine”);

TPF_TC_TIMEOUT(3);

int rc = process_overbook (&overbook_parms);

if (rc == RETURN_ERROR)

TPF_TC_ERROR (“overbook failure-%d”, overbook_parms.errCode);

return;

… Validate results

}

Call to application function

TPF_TC_INFO to log the
flow through the test case

TPF_TC_ERROR to log error messages

• During the execution of a testcase if a TPF_TC_ERROR at
any time during the test case logic results in a test case
failure

Ability to change timeouts at runtime
Default – 10 seconds

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Test Case Message Logging

zdevo run airline.overbook overbook_firstClass

CSMP0097I 13.55.13 CPU-B SS-BSS SSU-HPN IS-01

DEVO0004I 13.55.13 PROCESSING FOR THE SELECTED TEST

CASES IS STARTED.

-- overbooking in first class --

TEST CASE STARTED

Calling overbook routine

… Additional information / error messages

TEST CASE COMPLETED IN 10ms - PASSED - overbook_firstClass

CSMP0097I 13.55.13 CPU-B SS-BSS SSU-HPN IS-01

DEVO0005I 13.55.13 RESULTS FOR TEST 1 -

overbook_firstClass

CSMP0097I 13.55.13 CPU-B SS-BSS SSU-HPN IS-01

DEVO0018I 13.55.13 1 TEST WERE COMPLETED.

1 PASSED, 0 FAILED, 0 SKIPPED+

END OF DISPLAY

zdevo run airline.overbook overbook_firstClass

CSMP0097I 14.30.18 CPU-B SS-BSS SSU-HPN IS-01

DEVO0004I 14.30.18 PROCESSING FOR THE SELECTED TEST

CASES IS STARTED.

-- overbooking in first class --

TEST CASE STARTED

Calling overbook routine

… Additional information / error messages

ERROR IN QOVB,qovb.c:1813 overbook failure-19

TEST CASE COMPLETED IN 14ms - FAILED - overbook_firstClass

CSMP0097I 14.30.18 CPU-B SS-BSS SSU-HPN IS-01

DEVO0007E 14.30.18 AN ERROR OCCURRED WHILE RUNNING TEST CASE

overbook_firstClass.

PGM: QOVB SOURCE: qovb.c LINE: 1813 - overbook failure-19

CSMP0097I 14.30.18 CPU-B SS-BSS SSU-HPN IS-01

DEVO0005I 14.30.18 RESULTS FOR TEST 1 - overbook_firstClass

CSMP0097I 14.30.18 CPU-B SS-BSS SSU-HPN IS-01

DEVO0020E 14.30.18 1 TEST WERE COMPLETED.

0 PASSED, 1 FAILED, 0 SKIPPED

END OF DISPLAY

Successful Test Case Failed Test Case

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Setting Up Testcase and Validating Results

TPF_TESTCASE (overbook_firstClass, “Test overbooking in first class”) {

struct overbook_input overbook_parms;

… Setup environment for call

TPF_TC_INFO (“Calling overbook routine”);

int rc = process_overbook (&overbook_parms);

if (rc == RETURN_ERROR)

TPF_TC_ERROR (“overbook failure-%d”, overbook_parms.errCode);

return;

… Validate results

and restore environment

}

• Setting up input structures
• Setting up ECB fields
• Setting up data level
• Setting up database

• Validating output
• Validating ECB fields
• Validating data levels
• Validating database
• Validate for memory leaks
• Validate performance (I/O, etc)

How do you setup the environment for a test case? How do you validate results?

May need to restore things to ensure subsequent
tests are consistent and repeatable.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Multi-ECB Test Cases

TPF_TESTSUITE (“airline.overbook”, “TOV*, TOB1”);

TPF_TESTCASE (overbook_multiECB, “overbook multi-ECB”) {

for (int i = 0; i < 10; i++) {

swisc_create(…)

TPF_TC_NEW_ECB(); Indicates another ECB is

} participating in the test

}

void main() {

struct overbook_input overbook_parms;

TPF_TC_INFO (“Calling overbook routine”);

int rc = process_overbook (&overbook_parms);

if (rc == RETURN_ERROR)

TPF_TC_ERROR (“overbook failure”);

return;

TPF_TC_ECB_DONE();

}

void main() {

struct overbook_input overbook_parms;

TPF_TC_INFO (“Calling overbook routine”);

int rc = process_overbook (&overbook_parms);

if (rc == RETURN_ERROR)

TPF_TC_ERROR (“overbook failure”);

return;

TPF_TC_ECB_DONE();

}

.

.

.

• Testcase ECB waits for all ECBs to issue TPF_TC_ECB_DONE before
completion
• If any ECB issues TPF_TC_ERROR the testcase fails

ECB 1

ECB n

ECBs created via SWISC

Use TPF_TC_NEW_ECB/TPF_TC_DONE_ECB to include
created ECBs in the test case

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Passing Parameters

TPF_TESTSUITE (“airline.overbook”, “TOV*”);

TPF_TESTCASE (overbook_multiECB, “overbooking multiECB”)

{

int option = 1;

TPF_TC_SET_PARAMETER(“option”,

(void*) option, sizeof(option));

swisc_create(…)

TPF_TC_NEW_ECB();

}

void main() {

int length = 0;

int option =

*(int *) TPF_TC_GET_PROPERTY(“option”,length);

switch (option) {

…

}

}

• Parameters saved in shared memory

• Parameters can be set or obtained from any
ECB participating in test case.

• Can be used for…
• Test case specific processing in common

routines.
• Serialization of multi-ECB testing

New ECB

Can use TPF_TC_SET_PROPERTY/TPF_TC_GET_PROPERTY
to pass parameters between ECBs and functions

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Invoking Test Cases Using Command

• The ZDEVO command allows you to query and run automated tests that have been loaded to
the z/TPF system.
• Command has two primary parameters – namespace(s) and test case(s)

• ZDEVO RUN airline.overbook overbook_firstClass

• Support for wildcards in namespace and test cases providing a better user experience
• ZDEVO RUN airline* overbook* All namespaces starting with airline and all testcases

starting with overbook
• ZDEVO RUN airline.overbook over*economy All tests starting with “over” and ending

in “economy”

• Testcase output is displayed on console and optionally written to file
• All TPF_TC_INFO and TPF_TC_ERROR messages

• “Quiet” option to only display testcase output on error

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

ZDEVO Examples

zdevo run airline.overbook overbook_economy quiet

CSMP0097I 08.32.22 CPU-B SS-BSS SSU-HPN IS-01

DEVO0004I 08.32.22 PROCESSING FOR THE SELECTED

TEST CASES IS STARTED.

CSMP0097I 08.32.41 CPU-B SS-BSS SSU-HPN IS-01

DEVO0018I 08.32.41 1 TESTS WERE COMPLETED.

1 PASSED, 0 FAILED, 0 SKIPPED+

zdevo info airline.overbook *

CSMP0097I 08.34.24 CPU-B SS-BSS SSU-HPN IS-01

DEVO0010I 08.34.24 TEST CASE INFORMATION DISPLAY

PGM NAME DESCRIPTION

----- ------------------- -----------------

QOVB airline.overbook

QOVB overbook_firstClass overbooking in first class

QOVB overbook_economy overbooking in economy

2 TEST CASES TOTAL

zdevo run airline.overbook * quiet

CSMP0097I 08.32.22 CPU-B SS-BSS SSU-HPN IS-01

DEVO0004I 08.32.22 PROCESSING FOR THE SELECTED

TEST CASES IS STARTED.

CSMP0097I 08.32.41 CPU-B SS-BSS SSU-HPN IS-01

DEVO0018I 08.32.41 2 TESTS WERE COMPLETED.

2 PASSED, 0 FAILED, 0 SKIPPED+

Querying Tests Running Tests

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Invoking Test Cases Remotely

Get list of namespaces defined

Get testcases for a namespace

Run testcases residing on z/TPF

REST services have been created to query and run tests from a remote platform

Linux / Windows / etc

z/TPF System

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Linux / Windows / etc

z/TPF System

jUnit

jUnit z/TPF
Plug-in

Query and Run Test
Cases on z/TPF

Provides the ability to run z/TPF automated tests from a Java
application (ie. jUnit) on a remote platform

The jUnit Plugin for z/TPF

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Linux / Windows / etc

z/TPF System

jUnit

jUnit z/TPF
Plug-in

Query and Run Test
Cases on z/TPF

Integrating Into Automated Testing Platforms

Jenkins Dashboard

Run
z/TPF &

jUnit
Tests

Test Cases
100% Passed
0% Failures

Results

Can integrate into Open Tooling packages like
Jenkins to facilitate automated testing

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Expanding Test Coverage

Linux, Windows, etc

Query and Run Test
Cases on z/TPF

Jenkins
Dashboard

TP
F

To
o

lk
it

Other

• Tests can be invoked on z/TPF from
anywhere!

• Tests residing on z/TPF can be combined
with external block box tests
• Testing end-to-end application

messages

Unit Test
(White Box)

Black Box Testing

F
u

n
c

tio
n

T

e
s

t

Performance Test

Automated Regression
Test

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Value Statement

• The z/TPF automated testing framework allows you to create automated
tests on the z/TPF system
• The test framework can be integrated into automated test platforms.

• A z/TPF automated testing environment…
• Leads to more efficient and effective testing

• Test organizations can focus on more complex testing
• Shifts testing left to find problems earlier

• Reduces costs when problems are found
• Results in a faster time to market
• Improved code quality.

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Recap

• The z/TPF Automated Test Framework requires the following

• PJ45217, 1Q 2018 -- Infrastructure APAR

• PJ43782, 3Q 2018 -- Initial support (invocations from ZDEVO)

• PJ45488, 4Q 2018 -- Remote invocation support
• Includes delivery and support

of the z/TPF jUnit plugin.

Thank You!
Questions or Comments?

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

TPF / 2019 TPF Users Group / April 1st-3rd / ©2019 IBM Corporation

Trademarks

IBM, the IBM logo, ibm.com and Rational are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at “Copyright
and trademark information” at www.ibm.com/legal/copytrade.shtml.

Notes

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The
actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O
configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput
improvements equivalent to the performance ratios stated here.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the
results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and
conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the
information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products
and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

This presentation and the claims outlined in it were reviewed for compliance with US law. Adaptations of these claims for use in other geographies must be reviewed
by the local country counsel for compliance with local laws.

http://www.ibm.com/legal/us/en/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

