

Machine Learning Applications to z/TPF Systems

Robert Blackburn Ph.D.

© 2017 IBM z/TPF | TPF Users Group Spring Conference | IBM Confidential

IBM **z/TPF** April 3rd, 2017

Machine Learning (ML)

- Gives computers the ability to learn without being explicitly programmed
- Artificial Intelligence (AI) has had a long history
 often with optimistic promises
- In the 1990s ML changed its goal from achieving AI to tackling solvable problems of a practical nature
- It shifted away from the symbolic approaches from AI
 - to methods and models used in statistics and probability theory

Machine Learning

- Many methods developed in 70s and 80s by statisticians and mathematicians
 Generally linear methods
- In 90s very large data sets became available
- Combined with increase in computational power
 - Fitting non-linear relationships no longer computationally infeasible
 - Potentially more accurate prediction
 - trade-off between prediction accuracy and model interpretability
- Led to new research in computer science as well as statistics

Extreme Thoughts of 2 Kinds

- ML can solve any problem effortlessly
 - just throw data at it
 - by 'magic'
 - Spend time, effort and \$\$
 - Unrealistic expectations
 - Disappointing results
- ML can never help in my environment
 - missing out on competitive advantage

nt dvantage

Supervised versus Not

- Supervised learning
 - For given inputs the desired outputs are supplied • Fit a model that relates response to predictors(covariates)
 - - Prediction
 - Aim of accurately predicting response for future observations
 - Inference
 - Better understanding relationship between response and predictors
- Unsupervised learning challenging situation
 - We observe vector of measurements x_i
 - But no associated response y_i
 - e.g. Cluster analysis
 - Group data in clusters that are similar to each other

Supervised Learning Example

- Let $X = (X_1, X_2, ..., X_n)$
- X_i might be characteristics in patient's blood sample • Y = variable encoding patient's risk for severe adverse drug reaction
- Predict Y = f(X) + error
 - reducible error
 - Improve accuracy by better ML
 - irreducible error
 - unmeasured variables
 - unmeasurable variation

Prediction vs Inference---TPF example

- Prediction
 - Say we had a function f(x)
 - Used 172 variables
 - e.g. NVP + owners + other things
 - Assume f(x) could predict magnitude of spikes in TPF customer utilization throughout the day
 - clearly of significant value
 - highly non-linear model
 - not very interpretable
 - a black box

Prediction vs Inference---TPF example

- Inference lacksquare
 - variables
 - now f cannot be treated as a black box
 - we need to know its exact form
 - Might try to develop a simpler linear model
 - capture most of black box f predictive ability
 - may not be easy if true relationship is complicated
 - easier inference
 - identify the fewer important predictors
 - Customers potentially could control some input variables

• Interested in understanding the way Y = f(X) is affected by the 172

Shoe Leather - Understanding

• Prof. David Freedman

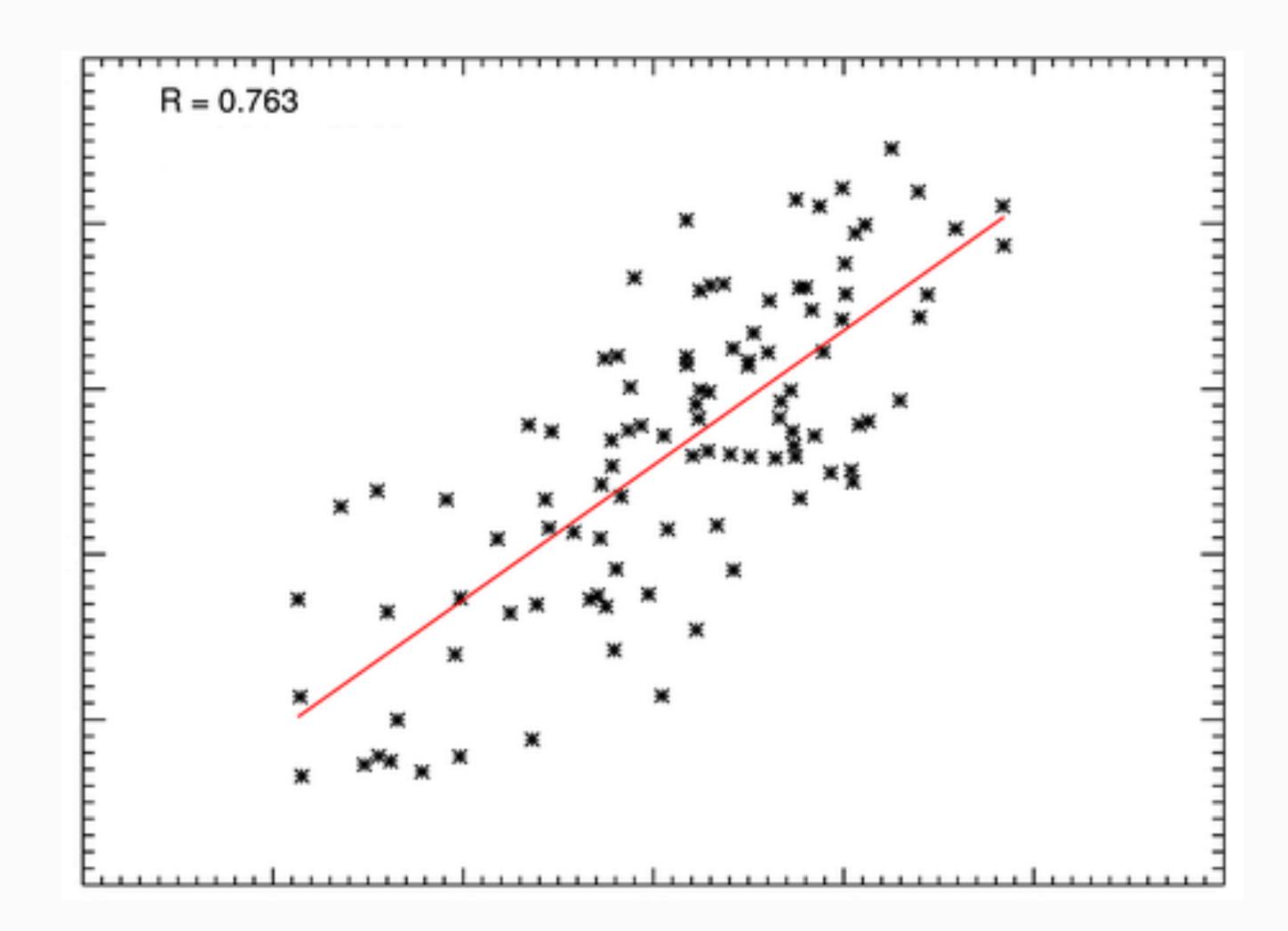
- Text 'Statistical Models and Causal Inference' Ch. 3 Very readable – no deep mathematics
- Snow's analysis on cholera used logic and shoe leather
 - Statistics simple comparison of rates
 - But clever and convincing argument
- Regression models make it too easy to substitute technique for work
 - Asbestos in water vs lung cancer
 - Huge changes in water concentration
 - 5% increase lung cancer
 - Non control for smoking
 - Unconvincing study

Correlation

- correlation function is
 - C(s,t) = corr(X(s),Y(t))
- "Correlation is not causation but it sure is a hint."
- In a z/TPF system if we had an event/failure
 - Look at covariance matrix
 - Say (3,25) matrix
 - 3 events •
 - 25 predictors •
 - Examine correlation changes

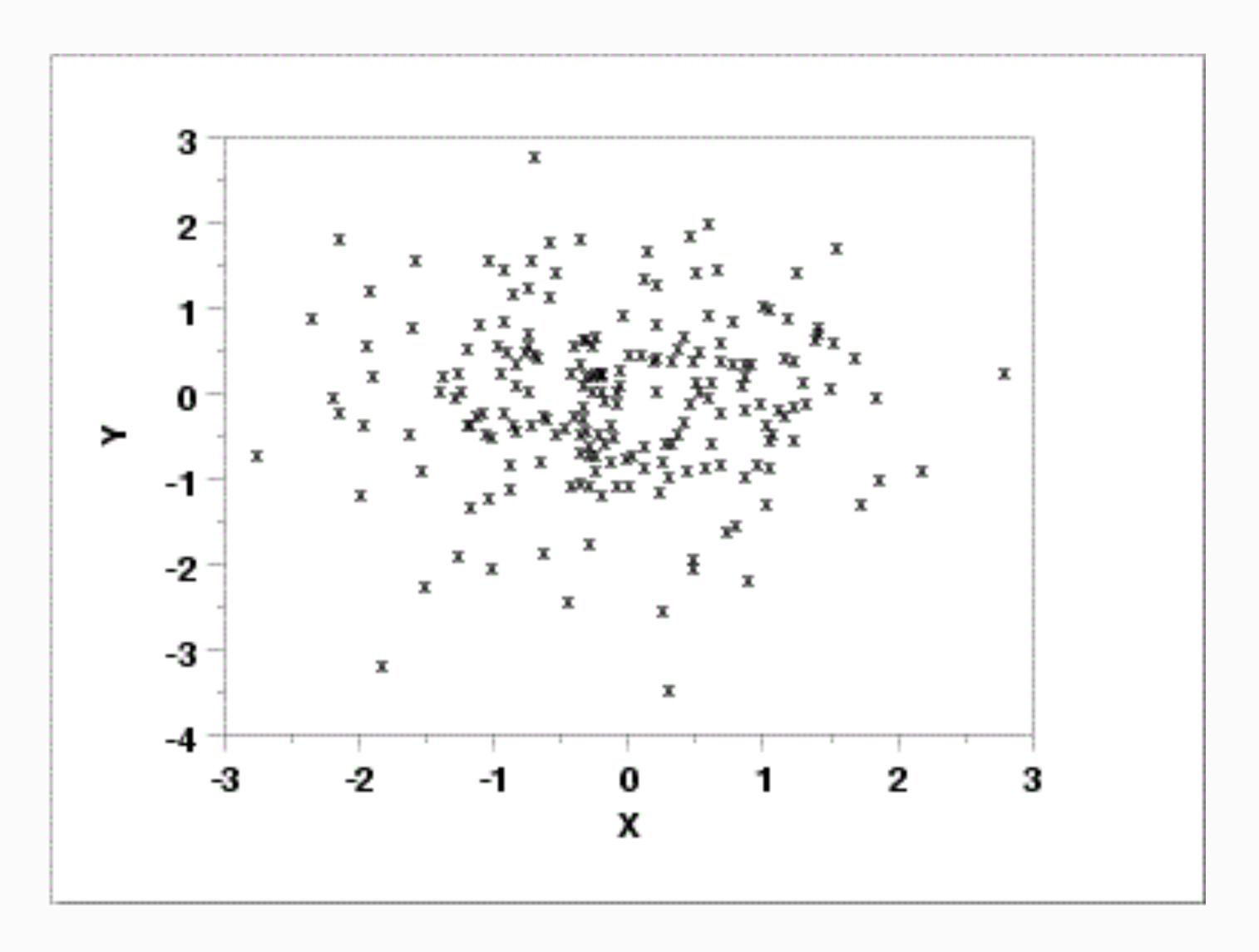
• For possibly distinct random variables X(s) and Y(t) at different time points the

Height and Weight Correlation for Humans



11 I Machine Learning Applications to TPF Systems © 2017 IBM z/TPF | TPF Users Group Spring Conference | IBM Confidential

Stretched Height and Weight Correlation Near 0



12 I Machine Learning Applications to TPF Systems © 2017 IBM z/TPF | TPF Users Group Spring Conference | IBM Confidential

z/TPF Customer Sample Event 1

- Critical hash function by mistake had small width
 - bad program loaded
 - large synonym chains
 - major system loss of service
 - CPU utilization near 100% for long period of time
 - ML could have noticed a very significant deviation in CPU usage density
 - various distance metrics between functions
- ML incorporate z/TPF system changes into algorithms

z/TPF Customer Sample Event 2

- z/TPF periodically going into shutdown for ~10 minutes duration
 - Applications put work (ECBs) on defer list
 - Defer list size got huge and shutdown input list
 - CPU at ~ 100% utilization
 - Usual CPU utilization $\sim 70\%$
- Low rate very expensive searches were consuming all remaining MIPS
- Eventual solution: shut off relevant message ports after month+ of investigation!
- ML combined with Name Value Pair Collection (NVPC) and ECB Owner Names could have found the offered load deviation correlate utilization and message port rate

Sample Space of z/TPF System Events

- Lab and customers (jointly)
 - know z/TPF usages better than anyone else
- Together identify goals for ML
 - many clever algorithms and methods
- Work with ML package
 - Solve z/TPF specific problems

Sample Space of z/TPF System Events

- Problem
 - not enough data (actual failures) Concerned with selection bias Have a few events and ML seemingly applies
- We need to expand to include
 - 'near miss' events
- Use our knowledge and intellect to estimate if ML could have helped

Detection of Stricken CEC in a z/TPF Loosely Coupled (LC) Environment

- ML could have LC heartbeat rates
- Deactivate dead CEC
 - build trust in ML
- Take DASD mods offline
 - build more trust in ML

z/TPF Interface with Outside Systems

ML needs inputs from all systems involving in processing transactions

- not just z/TPF
- careful choice of variables
 - not easy
 - iterative approach
- Critical need for
 - common time source
- Covariance matrix to discover interesting relationships •

Executive summary

- ML's time has come
 - 25 years of growth
- Significant business value
 - predict future events given training data
- Need to find specific TPF problems for ML to work on
 - supervised learning

Customer Recommendations

- Sign up as sponsor users
- Provide IBM with production data to feed into ML
 - exploit NVPC and ECB Owners
 - consoles
- Document failures/outages
 - with some detail
 - With a view 'could ML have assisted?'
- analytics

Add appropriate context information to your business events to enable business