
© 2016 IBM z/TPF | TPF Users Group Spring Conference 1

CP Team!

April 11, 2016!
IBM z/TPF Michael Shershin, TPF Development

Lab

SCP Various Enhancements

©Copyright IBM Corporation 2016.
U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

© 2016 IBM z/TPF | TPF Users Group Spring Conference 2

Agenda

PJ43653 and PI50297 – 1 millisecond time slice

PJ43266 – mymalloc support

PJ43067 – ECB stack validation

PJ43633 – ZDECB enhancements

PJ43632 – ZDHST enhancements

Futures – Tape redirect

 Agenda

© 2016 IBM z/TPF | TPF Users Group Spring Conference 3

PJ43653 and PI50297

1 millisecond time slice

© 2016 IBM z/TPF | TPF Users Group Spring Conference 4

 1 millisecond time slice

•  PJ43653 and PI50297 are on PUT 13!
•  Prior:!

•  10 milliseconds is minimum run time before ECB is time sliced!
•  Could impact existing transactional traffic if significant number of

ECBs use time slice!
•  Current:!

•  1 millisecond is minimum run time before ECB is time sliced!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 5

 1 millisecond time slice changes

•  CPU timer external interrupt changed to 1 millisecond!
•  Time slice work done every millisecond!
•  ECB time out checks (CTL-10) done every millisecond!
•  Other work done by CPU timer external interrupt is on 10

millisecond boundary!
•  ZTMSL command ADD and CHANGE parameters:!

•  RUNTIME option accepts minimum value of 1 millisecond!
•  TMSLC macro with ASSIGN parameter!

•  RUNTIME option accepts minimum value of 1 millisecond!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 6

 1 millisecond time slice changes

•  TPFDF internal changes!
•  TPFDF uses internal control fields for ECB time out checks (CTL-10)!
•  Internal field (PFXATMR) changed!

•  Now a count of 1 millisecond intervals!
•  Was a count of 10 millisecond intervals!

•  Internal DFDFRC and DFDLAY macros changed!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 7

 Example
==> ZTMSL DISPLAY IBMHIPRI
CSMP0097I 13.42.30 CPU-B SS-BSS SSU-HPN IS-01
TMSL0003I 13.42.30
 TIME SLICE ATTRIBUTES FOR NAME IBMHIPRI ON FILE

 MAXECB- 50 MAXTIME- 10000 MINSUSP- 100 RUNTIME-100 SLICES- 0
 END OF DISPLAY+

==> ZTMSL CHANGE IBMHIPRI MINSUSP-1 RUNTIME-1
CSMP0097I 13.43.06 CPU-B SS-BSS SSU-HPN IS-01
TMSL0005I 13.43.06
 OLD TIME SLICE ATTRIBUTES FOR NAME IBMHIPRI ON FILE

 MAXECB- 50 MAXTIME- 10000 MINSUSP- 100 RUNTIME-100 SLICES- 0

 NEW TIME SLICE ATTRIBUTES FOR NAME IBMHIPRI ON FILE
 _
 MAXECB- 50 MAXTIME- 10000 MINSUSP- 1 RUNTIME- 1 SLICES- 0
 END OF DISPLAY+

© 2016 IBM z/TPF | TPF Users Group Spring Conference 8

==> ZTMSL ADD IBMJAVA MAXECB-9999 MAXTIME-0 MINSUSP-1 RUNTIME-1
CSMP0097I 13.41.58 CPU-B SS-BSS SSU-HPN IS-01
TMSL0004I 13.41.58
 NEW TIME SLICE ATTRIBUTES FOR NAME IBMJAVA ON FILE

 MAXECB-9999 MAXTIME- 0 MINSUSP- 1 RUNTIME- 1 SLICES- 0
 END OF DISPLAY+

 Example

© 2016 IBM z/TPF | TPF Users Group Spring Conference 9

PJ43266

mymalloc

© 2016 IBM z/TPF | TPF Users Group Spring Conference 10

 mymalloc

•  PJ43266 is on PUT 12!
•  Reduce instructions for ECB heap requests!

•  Application that has a large number of in use ECB heap buffers of
a similar size!

•  Trade-off:!
•  No malloc diagnostics (trace and obtaining program

information)!
•  Cannot tag a mymalloc buffer (with tpf_eheap_tag)!
•  No checks for corrupted mymalloc heap at free time!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 11

 ECB heap control entry

•  Each malloc request obtains a ECB heap control entry!
•  Great for diagnostics!
•  Large number of ECB heap control entries becomes expensive!

•  150 ECB heap control entries exist when ECB is created!
•  A 4K system heap chunk is obtained for every 31 additional

ECB heap control entries!
•  A 1meg system heap chunk is obtained when 970 ECB heap

control entries are used!
•  Holds the hash for ECB heap control entries!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 12

 mymalloc buffer handling

•  Obtain large ECB heap buffer!
•  Distribute small fixed size buffers from the large buffer!
•  Example: mymalloc for buffer of 8 bytes:!

•  Do malloc to obtain one buffer to hold 512 buffers of 32 bytes
(16,384 bytes)!

•  Return one buffer of 32 bytes to mymalloc caller!
•  Next mymalloc caller for 8 bytes gets another buffer of 32

bytes!
•  Only one ECB heap control entry for the large (16,384 bytes)

buffer!
•  No ECB heap control entry for small buffer of 32 bytes!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 13

 Example of buffer handling
void *workArea1;
void *workArea2;
void *workArea3;
int size;

size=8;
workArea1 = mymalloc(size);

workArea2 = mymalloc(size);

workArea3 = mymalloc(size);

Buffer 2! Buffer 3!

Buffer 6!Buffer 5!Buffer 4!

Buffer 512!Buffer 511!Buffer 510!

Buffer 509!Buffer 508!Buffer 507!

Buffer 1!

Large ECB heap buffer
Allocated on first mymalloc() call

Contains 512 buffers of 32 bytes each

© 2016 IBM z/TPF | TPF Users Group Spring Conference 14

 mymalloc APIs

•  C language!
•  mymalloc(), mycalloc() – obtains ECB heap buffer!
•  myfree() – returns a ECB heap buffer obtained with mymalloc!
•  myrealloc() – re-sizes a ECB heap buffer obtained with mymalloc!

•  Assembler!
•  MYMALOC, MYCALOC!
•  MYFREEC!
•  MYRALOC!

•  Must use myfree() or MYFREEC to return a mymalloc buffer!
•  An error will be given is free() or FREEC is used!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 15

 mymalloc buffers

•  Three mymalloc buffer types!
•  Default buffer types:!

•  Small: size requests of 1 byte to 32 bytes: 512 buffers allocated!
•  Medium: size requests of 33 bytes to 64 bytes: 512 buffers

allocated!
•  Large: size requests of 65 bytes to 128 bytes: 128 buffers allocated!

•  User exit allows customization of mymalloc buffers!
•  Function name: mymallocUserExit()!
•  In file umymalloc.c!
•  Customization can be unique per ECB!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 16

 mymalloc

•  mymalloc requests use standard malloc in the following
conditions!
•  mymalloc is disabled (ZSTRC ALTER NOMYMALLOC)!
•  Threaded ECB!
•  Heap check mode is active (ZSTRC ALTER HEAPCHECK)!
•  Request size is not managed by mymalloc!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 17

 mymalloc for C++

•  Ability to use mymalloc for new and delete operators!
•  In .mak file, add ARCHIVES statement to use mymalloc!

•  new will use mymalloc()!
•  delete will use myfree()!

•  Example taken from test driver qzz5.mak
APP := QZZ5

APP_ENTRY := QZZ5

APP_EXPORT := ENTRY

ARCHIVES := mymalloc

© 2016 IBM z/TPF | TPF Users Group Spring Conference 18

 Example
Taken from rlch.asm:!
!
* @PJ31406
* Setup chain of file addresses being chased @PJ31406
* @PJ31406
 LA R5,RLCH_LEN Size of chaining item @PJ31406
 MYMALOC SIZE=R5 Get a chaining item @PJ43266

...
... Much later in the program
...

RLCH22A1 DS 0H @PJ37297
 MYFREEC BLOCK=R7 @PJ43266
 DECBC FUNC=RELEASE,DECB=(R1) @PJ31406
!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 19

PJ43067

ECB stack validation

© 2016 IBM z/TPF | TPF Users Group Spring Conference 20

 ECB stack validation
•  PJ43067 is on PUT 12!
•  Several customers experienced ECB stack corruption!

•  OPR-4 happens when data collection program collector is active!
•  Provide ability to identify ECB stack corruption!

•  Validates addresses in backward chain field in ECB stack!
•  Validates up to 100 back chain fields in stack!
•  Stops when contents of back chain is zero (initial stack frame)!

•  Validation done at the following times!
•  Entry to C function and Exit from C function!
•  ENTRC and BACKC!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 21

 ECB stack validation error
•  Address in back chain field (ICST_BCH) is:!

•  Not zero and !
•  Not within the virtual area for the ECB stack!

•  System error 064009 is taken!
•  ECB is exited!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 22

 ECB stack validation controls

•  Turn on: ! ZSTRC ALTER STACKVAL!
•  Turn off: ! ZSTRC ALTER NOSTACKVAL!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 23 12D00000

ECB Stack validation

12F5FE40
ICST_BCH = 0

12F5FC80
ICST_BCH = 12F5FE40

12F5F800
ICST_BCH = 12F5FC80

12F5F240
ICST_BCH = 12F5F800

Traverse back chain
12F5F240 – current stack

 12F5F800 – current back chain
 12F5FC80 – next back chain
 12F5FE40 – next back chain
 0 – stop validation

Back chain address is valid when
Address is zero, or
Address is within ECB stack virtual area
12D00000 < address < 12F60000

If address is not valid
System error 064009 is taken
ECB is exited

12F60000

© 2016 IBM z/TPF | TPF Users Group Spring Conference 24

 ECB stack validation
recommendation

•  Use in test systems!
•  Overhead will vary!

•  Stack depth affects overhead!
•  May be able to use in production!

•  Initially use in off hours and measure overhead!
•  Idea: use during low traffic periods when application programs

are loaded, activated, and used!
•  Provides additional diagnostics if error happen!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 25

PJ43633

ZDECB enhancements

© 2016 IBM z/TPF | TPF Users Group Spring Conference 26

 ZDECB - display in use ECBs

•  PJ43633 is on PUT 12!
•  New option: USER!

•  Summary display of in use ECBs that includes!
•  ECB owner name!
•  Named limit set (LSETNAME)!

•  New filter options for all ZDECB summary displays of in use ECBs!
•  Selection by owner name: OWNER-ownername!

•  Qualifier can be for high level owner name!
•  Qualifier can be for high and mid level owner name!

•  Selection by named limit set: LSETNAME-lsetname!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 27

 Example
==> ZDECB USER 10 OWNER-INETD
CSMP0097I 14.34.20 CPU-B SS-BSS SSU-HPN IS-01
DECB0014I 14.34.20 DISPLAY ECB SUMMARY
ECB ADDR IS PGM TRC MIN SC LSETNAME OWNER NAME
1288E000 4 CLTW CLTW 999 24 DEFAULT INETD MONITOR BSS _
128A3000 3 COMX COMX 999 24 DEFAULT INETD LISTENERFTP-BSS
128D3000 2 CLTZ CLTZ 999 24 DEFAULT INETD LISTENERSYSLOGD-BSS
128FD000 4 COMX COMX 999 24 DEFAULT INETD LISTENERTEST2-BSS
12912000 3 COMX COMX 999 24 DEFAULT INETD LISTENERMATIPA-BSS _
12918000 4 COMX COMX 999 24 DEFAULT INETD LISTENERTFTP-BSS
1291E000 2 COMX COMX 999 24 DEFAULT INETD LISTENERDNS-BSS
1292D000 2 COMX COMX 999 24 DEFAULT INETD LISTENERZTPFSOAP-BSS
1293F000 2 COMX COMX 999 24 DEFAULT INETD LISTENERTEST1-BSS _
1295A000 3 COMX COMX 999 24 DEFAULT INETD LISTENERMATIPB-BSS
TOTAL 40
END OF DISPLAY+

© 2016 IBM z/TPF | TPF Users Group Spring Conference 28

 Example
==> ZDECB 0 OWNER-drvrDFCA
CSMP0097I 14.25.02 CPU-B SS-BSS SSU-HPN IS-01
DECB0014I 14.25.02 DISPLAY ECB SUMMARY
ECB ADDR SSU IS PGM TRC MIN SC ORIGIN I H DSP SVC
1584F000 WP1 2 UTDF * UBI5 999 6 CREM QDCH 1 1 41838 FINWC 34A30211 _
158A3000 WP1 1 UTDF * UBI5 999 6 CREM QDCH 1 1 41838 FINWC 34A2FD45
158AF000 WP1 3 UTDF * QDCI 999 6 CREM QDCH 1 1 41826 FIWHC 704B05AD
158BE000 WP1 2 UTDF * UBI5 999 6 CREM QDCH 1 1 41838 FINWC 34A20ECD
15912000 WP1 4 UTDF * UBI5 999 6 CREM QDCH 1 1 41838 FINWC 34A2F521
TOTAL 5
END OF DISPLAY+

© 2016 IBM z/TPF | TPF Users Group Spring Conference 29

 Example
==> ZDECB STAT OWNER-drvrSOCK
CSMP0097I 14.40.47 CPU-B SS-BSS SSU-HPN IS-01
DECB0014I 14.40.47 DISPLAY ECB SUMMARY
ECB ADDR SSU IS PGM TRC MIN SC MILS F4K F1MB FIND FILE GETF
15681000 HPN 1 CTS7 * CTS7 30 2K 3 2 8 0 0 _
14AE7000 HPN 1 CTS4 * CTS4 999 51 9 2 1 1 0 0
14B50000 HPN 1 CTS4 * CTS4 999 51 8 2 1 1 0 0
14B0B000 HPN 1 CTS4 * CTS4 999 51 7 2 1 1 0 0
14B8C000 HPN 1 CTS4 * CTS4 999 51 7 2 1 1 0 0
TOTAL 5 _
END OF DISPLAY+

© 2016 IBM z/TPF | TPF Users Group Spring Conference 30

PJ43632

ZDHST enhancements

© 2016 IBM z/TPF | TPF Users Group Spring Conference 31

 ZDHST - display dump history

•  PJ43632 is on PUT 12!
•  New parameter: PAST-hours!

•  Display dump information for the previous number of hours!
•  Previously required a start date and time!

•  Filter parameters on DBA (dump buffer utilization) option!
•  Start date / end date!
•  PAST number of hours!
•  Previously used all available data!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 32

 Example
==> ZDHST DISPLAY TOTALS PAST-48
CSMP0097I 14.56.51 CPU-A SS-BSS SSU-BSS IS-16
DHST0007I 14.56.51 SYSTEM ERROR TOTALS DISPLAY
FILTERS:
 DISPLAY TOTALS PAST-48
TARGET SS: BSS RETENTION: 5
PROC TYPE CTL OPR SNAP MANUAL TOTALS _
 A DUMP 0 1 0 0 1
 NODUMP 0 5 1 0 6
END OF DISPLAY+

© 2016 IBM z/TPF | TPF Users Group Spring Conference 33

 Example
==> ZDHST DISPLAY TYPE-OPR PAST-48
CSMP0097I 15.04.02 CPU-A SS-BSS SSU-BSS IS-16
DHST0005I 15.04.02 SYSTEM ERROR DETAILS DISPLAY
FILTERS:
 DISPLAY TYPE-OPR PAST-48
TARGET SS: BSS RETENTION: 5
SE # TYP SYSERR PROC IS DATE/ SS/ PRGM EBROUT/ TAPE _
 TIME SSU TRACE LOADSET
 OPR I00000004 A 08 05Mar16 BSS CP 000000A
 19:35:06 BSS M597
 OPR I00000004 A 07 05Mar16 BSS CPP1 000000A
 21:21:48 BSS M597 BASE _
006815 OPR I00DB0138 A 13 06Mar16 BSS UTDF 010000A T1G766
 13:38:18 BSS CADB UTDFDBG3
 OPR I00000004 A 03 07Mar16 BSS CP 000000A
 02:17:50 BSS M597
 OPR I00000004 A 04 07Mar16 BSS CP 000000A _
 04:57:34 BSS M597
 OPR I00000004 A 12 07Mar16 BSS CP 000000A
 08:12:51 BSS M597
END OF DISPLAY+

© 2016 IBM z/TPF | TPF Users Group Spring Conference 34

 Example
==> ZDHST DISPLAY DBA PAST-48
CSMP0097I 15.16.28 CPU-A SS-BSS SSU-BSS IS-16
DHST0008I 15.16.28 DBA UTILIZATION DISPLAY
CURRENT DBA (MB) - 100
CURRENT PEAK THRESHOLD - 10%
 DATE-TIME UTIL - MB UTIL - % CPU
20160306-13.38.18 25 24 A
END OF LIST+

© 2016 IBM z/TPF | TPF Users Group Spring Conference 35

Other enhancements
delivered on PUT 12

© 2016 IBM z/TPF | TPF Users Group Spring Conference 36

 Other enhancements – available now

•  These enhancements were discussed at the last TPF Users Group!
•  PJ42459 – 2GB page support!

•  Performance improvement for zEC12 and z13 machines!
•  Uses one TLB entry for 2 GB of memory!

•  PJ43353 – Format 1 Global enhancements!
•  Allows I-stream growth by reducing I-stream unique storage

areas below 2 GB!
•  PJ42754 – ECB resource monitor enhancements!

•  Ability to monitor groups of ECBs!
•  Ability to profile resource usage!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 37

Future

© 2016 IBM z/TPF | TPF Users Group Spring Conference 38

 Disclaimer

•  Any reference to future plans are for planning purposes only. IBM
reserves the right to change those plans at its discretion. Any
reliance on such a disclosure is solely at your own risk. IBM
makes no commitment to provide additional information in the
future.!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 39

Tape redirect

© 2016 IBM z/TPF | TPF Users Group Spring Conference 40

 Tape redirect

•  Purpose: Improve the ability to consume data that is sent off of
TPF using tape without changing legacy applications!

•  Provide ability to direct data that is written using TPF tape APIs to
either:!
•  MQ queue!
•  File system file!

•  Only for output tapes!
•  Initially only for general tapes!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 41

 Tape redirect

•  Design thoughts!
•  Data writes will be put on tape queue!
•  A daemon will pull data from tape queue and write to specified

location (one location only)!
•  Questions:!

•  Have output location in tape label record?!
•  Limited space in tape label mask records!

•  Have output location on ZTMNT command?!
•  Could be a lot of typing!
•  Auto mount will not be able to specify output location!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 42

 Tape redirect – Sponsor users

•  Making design decisions now!
•  If you are interested in becoming a sponsor user, please contact

your CSR!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 43

 Summary

•  Investing in several key areas!
•  Performance!
•  Scalability!
•  Diagnostics!
•  Operability!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 44

Thank you!
Questions or comments?!

© 2016 IBM z/TPF | TPF Users Group Spring Conference 45

Trademarks
•  IBM, the IBM logo, ibm.com and Rational are trademarks or registered trademarks of International Business Machines Corp.,

registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A
current list of IBM trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

Notes
•  Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in

a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the
amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload
processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the
performance ratios stated here.

•  All customer examples cited or described in this presentation are presented as illustrations of the manner in which some
customers have used IBM products and the results they may have achieved. Actual environmental costs and performance
characteristics will vary depending on individual customer configurations and conditions.

•  This publication was produced in the United States. IBM may not offer the products, services or features discussed in this
document in other countries, and the information may be subject to change without notice. Consult your local IBM business
contact for information on the product or services available in your area.

•  All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals
and objectives only.

•  Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM
has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

•  Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your
geography.

•  This presentation and the claims outlined in it were reviewed for compliance with US law. Adaptations of these claims for use in
other geographies must be reviewed by the local country counsel for compliance with local laws.

!

