IBM z Systems

zlib Update

Jim Johnston, TPF Development Lab

March 23, 2015

TPFUG - Dallas, TX

Presentation Summary

zlib General Information

z/TPF Specific zlib Information

zlib Performance

zlib Compression Interfaces and Examples
zlib Dictionaries

zlib Tuning Recommendations

In
F)

© 2015 IBM Corporation

Zlib General Information

What is zlib?

General purpose software compression library which provides both in-memory and to-file system
compression and de-compression.

Ubiquitous (used by JDK/SDK, MySQL, Curl, Apache, etc.)
Home Page:

Authors: Jean-Loup Gailly & Mark Adler

RFCs Implemented by zlib library (compression data formats supported)
RFC 1951 DEFLATE Compressed Data Format
Underlying Compression Format
RFC 1950 ZLIB Compressed Data Format
wrapper around DEFLATE stream
default in-memory compression format
RFC 1952 GZIP file format
Also a wrapper around the DEFLATE stream
For compressing files, but can be done in memory as well

In
F)

© 2015 IBM Corporation

http://zlib.net/

Zlib General Information

Useful Tidbits from FAQ
zlib is Thread Safe
Multiple threads can work with different data streams at the same time.
For compression to file system uses existing thread concurrency support.
64-bit compatible

Maximum Amount of data that can be compressed is only limited by memory available to process.

Multiple calls can be used to compress or uncompress data in chunks.
Data must be in contiguous storage (no scatter/gather interfaces)

zlib does not handle *.ZIP files directly (like WinZip, 7-Zip)
Requires some extra code to access the underlying DEFLATE stream

No accessing data randomly in a compressed stream without special preparation
stream maintain indexes of where decompression can begin.

In
F)

© 2015 IBM Corporation

zITPF Specific zlib Information

zlib v1.2.8 - PJ42410 (PUT11)
opensource co-req PJ42641 (PUT 11)
zlib v1.2.3 — PJ32283 (PUT 4)
Version upgrade is a replacement of previous version for z/TPF
same library, CZCM
No application migration required, backward/forward compatible
Mostly fixes between v1.2.8 and v1.2.3

Interesting new API provided between the two versions inflateGetDictionary()
zlib is SCRT discounted

In
F)

© 2015 IBM Corporation

zlib ‘Knobs’

Compression Level (0-9)
1 = Best Speed, 9 = Best Compression, 6 = Z DEFAULT COMPRESSION
Compression Strategy
Z DEFAULT_STRATEGY
String Matching Optimization (LZ77 algorithm) + Huffman algorithm
Z HUFFMAN_ONLY
Force Huffman Encoding (skip LZ77 processing)
Z FILTERED
Somewhere between Huffman and Default Strategy

Limits LZ77 encoding by having min criteria for matching length
Z RLE

PNG Data (graphics compression format)
Z FIXED
Disables a specific component of Huffman Encoding

In
F)

© 2015 IBM Corporation

zlib ‘Knobs’

WindowsBit (8-15)

History window size (aka dictionary buffer)

Default setting is 15, base 2 (e.g., size would be 2"15)
memLevel (1-9)

Internal memory use setting. 1 = minimum memory 9 = uses maximum memory
Default setting is 8

Default WindowsBits and memLevel requires a minimum of 256k Bytes per
compression stream

In
F)

© 2015 IBM Corporation

12kB XML document compression performance

53% Response Time Degradation

250
from 95us to 144us

200 \
_ \
el \
3 150 \
E \
g \ 7
§ 100 Only 2.8% Extra Compression
g

50
9
Compression Level (z_default_strategy)
87%

e FC12 Compression Response Time 72196 Compression Response Time

Compre55|on = EC12 Decompression Response Time = = Compression Ratio

1.2

0.8

0.6

0.4

0.2

Compression Ratio

nm
E)

© 2015 IBM Corporation

759 byte XML document compression performance

°0 1.2
50 \ Only 41% Compression .
P 0 ' 0.8
(%]
()
=
g 3 0.6
&
c
o
20 0.4
[}
o
10 0.2
0 0
0 1 2 3 4 5 6 7 3 9
But Response Time Compression Level (z_default_strategy)
only
35 us = EC12 Compression Response Time 2196 Compression Response Time

e EC12 Decompression Response Time == == Compression Ratio

Compression Ratio

nm
E)

© 2015 IBM Corporation

12kB binary file compression performance

2000 1.2

1800

1600 \ !
- \
S 1400
2 \ 0.8
$ 1200 \
£ \
= 1000 . 0.6
@ \ 118us Response Time, worse then xml
S 800 \
x \ 0.4
2 600 \

400 \
\ 0.2
200 - - e - ———— T
0 0
/1 2 3 4 5 6 7 8 9
Compression Level (z_default_strategy)
Roughly = EC12 Compression Response Time Z196 Compression Response Time
Same e EC12 Decompression Response Time == == Compression Ratio

Compression

Compression Ratio

nm
E)

© 2015 IBM Corporation

10

Larger File Compression (EC12)

60000

50000

40000

30000

20000

Response Times (us)

10000

1.2
\ 1
\.
\ Response times 0.8
‘i in mills. (2.2ms)
. 0 i
! 95% Compression 06
.
v 0.4
\
\.
L A e [T
e U ———————— C———— s 0
0 1 2 3 4 5 6 7 8 9

— 288kB XML Compression Response Time

Compression Level (z_default_strategy)

288kB XML Compression Ratio

= == 1.45MB XML Compression Ratio

1.45MB XML Compression Response Time

Compression Ratio

[[om]]
[l
|6||||

© 2015 IBM Corporation

11

12kB Compression Using Huffman Only (EC12)

180 1.2
160
\ 1
140 —
2 N
v 120 Didn’t help Bin 118us->162us@23%Compression 08
E100 Jf N N e e e e e e e e m e e, _—————— - -
'i 0.6
2 80 .
] %
g 60 Didn’t help XML 95us->137us@64%Compression 0.4
40 .. ooo
0.2
20
0 0

0 1 2 3 4 5 6 7 8 9
Compression Level (z_huffman_only)

= 12k Binary Compression Response Time 12k XML Compression Response Time

------ 12k Binary Compression Ratio = = 12k XML Compression Ratio

Compression Ratio

nm
E)

© 2015 IBM Corporation

12

Compression Using Filter Strategy (EC12)

1800

1600

1400
j;’ 1200 Slightly worse response
£ 1000 time at level 1
2 800 Compression about
% 00 the same.
o

400

200 /N S

0

0 1 2 3 4 5 6 7 8
Compression Level (z_filtered)

= 12kB XML Compression Response Time 12kB Binary Compression Response Time

------ 12k XML Compression Ratio = = 12kB Binary Compression Ratio

1.2

0.8

0.6

0.4

0.2

Compression Ratio

nm
E)

© 2015 IBM Corporation

13

Compression using MemLevel 3 (EC12)

18000 1.2
16000
\ 1
14000 \
3 12000 \ . S 0.8
o \ Response Time Deterioration
£ 10000 \
= \ 3ms->3.5ms 06
e 8000 ‘
O .
2 6000 L 0.4
= !
m []
4000 t
/ 0.2
2000 L T Tt T e e e et a s teserosssstessasennannsncensensessnnensensensensensensnnsnnens
0 0

0/1 2 3 4 5 6 7 8 9

Response Time Deterioration Compression Level (z_default_strategy)

95us->120us

= 12k XML Compression Response Time 412kB XML Compression Response Time

------ 12k XML Compression Ratio = = 412kB XML Compression Ratio

[Jom]|
1A
W
LT

..||
il
@

© 2015 IBM Corporation

Compression Ratio

12kB XML Compression adjusting WindowBits (EC12)

2500

2000

1500

Response Times (us)
=
o
o
o

500

95us(def)->517us->2006us

1.2

0.8

0.6

Compression Suffers too

........ 0.4

Response
V. Deterioration
\ T Y £
\
1 2 3 4

5 6 7 8

Compression Level (z_default_strategy)

WindowBits 8 Compression Response Time

WindowsBit 8 Compression Ratio

= = \WindowsBit 11 Compression Ratio

0.2

WindowBits 11 Compression Response Time

Compression Ratio

nm
E)

© 2015 IBM Corporation

15

Deflate Interfaces

Simplest way is to use compress and compress2 APls (looks like memcpy).

int compress (Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourcelen);

int compress2 (Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourcelen, int level);
int uncompress (Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourcelLen);

uLong compressBound (uLong sourcelen);

Things to note when using these APlIs:
* Not stream based, the destination buffer must contain enough space or the call
fails.
— Use compressBound|()to determine destination buffer size.
— Save and pass sourcelensize to uncompress()for its destination buffer
size.
* Recommend using Campre.S'SZ[) with compression levels 1-3.
* Actual compressed/uncompressed bytes is returned and replaces original
destlen.
* Can’t specify a dictionary.

Example:
size_t compressedSize = compressBound(incomingBuffer);

Bytef out[compressedSize];
int level = 3;
ret = compress2(out, &compressedSize, (const Bytef *)incomingBuffer, (size_t) incomingSizeParm, level);

In
F)

© 2015 IBM Corporation

16

Deflate Interfaces (continued)

Stream-based zlib APIs to compress and uncompress data, more complex.

int deflatelnit (z_streamp strm, int level);

int deflatelnit2(z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy);

int deflate (z_streamp strm, int flush);

int deflateEnd(z_streamp strm);

int inflatelnit (z_streamp strm);

int inflatelnit2(z_streamp strm, int level, int windowBits);
int inflate(z_streamp strm, int flush);

int inflateEnd(z_streamp strm);

Things to note when using these APIs:

* Stream based, useful when many
messages coming into system must be
filed down in order to receive entire
message.

* Complexity arises from filling input
buffers & emptying output buffers at
different rates.

In
F)

Example:

z_stream strm;
flushflag =Z NO_FLUSH;
deflatelnit(&strm, level);
do {
//Get more input data to compress into inputBuffer
// if no more then set flushflag to Z_FINISH.
strm.avail_in = numberOfinputBytes; //# of Bytes
strm.next_in = inputBuffer(]; //Buffer
do {
strm.avail_out = numberOfOutputBytes;
strm.next_out = outputBuffer([];
deflate(strm, flushflag);
//consume compressed data here, file down, etc.
} while (strm.next_out == 0);
} while (flushflag !=Z_FINISH);
deflateEnd(&strm);

© 2015 IBM Corporation

17

GZIP Interfaces

ZLIB APIs for compressing to file system, just like FSTREAM APIs (e.g., fopen, fread...)

gzFile gzopen(const char *path, const char *mode);
int gzread (gzFile file, voidp buf, unsigned len);
int gzwrite (gzFile file, voidpc buf, unsigned len);

int gzprintf(gzFile file, const char *format, ...); Example:
z_off_t gzseek(gzFile file, z_off t offset, int whence); gzFile mygzFile;

int gzrewind(gzFile file); char buffer[size];
y 8) mygzFile = gzopen(“testfile”, “rb3f”);

'Z_Off_t the”_(gZFIle file); bytesRead = gzread(mygzFile, &buffer, size);
int gzeof(gzFile file); vel);

int gzclose(gzFile file); gzclose(mygzFile);

Things to note when using these APlIs:

* gzopen() uses mode similar to fopen but with level & strategy specification
“wb3h” (e.g. compress level 3, using Huffman-only).

* gzread() and gzwrite() will uncompress data from a file and compress data
to a file respectively.

* Multiple gzip streams can be in the same file separated by other bytes.

* gzseek() of fset represents byte position of uncompressed data, when file
opened for write only forward seeks are supported.

In
F)

© 2015 IBM Corporation 18

Dictionary Use

Dictionary is optional for zlib.

Dictionary is limited to window size specified in deflatelnit
~32k for default WindowsBit setting

Dictionary simply a character buffer ordered by higher frequency character sequences
at the end of the buffer.

Dictionary set with API after deflatelnit, inflatelnit calls
Inflate call returns error if Dict was used during deflate but not set before inflate.
Dictionary use didn’t reduce the response time.

inflateGetDictionary() retrieves the dictionary zlib built as part of inflate
No need to have compression dictionary specified during deflate to get dictionary.

Example: Example:
z_stream strm; dictionaryBuf = malloc(32768);

deflatelnit(&strm, level); ret = inflateGetDictionary(&strm, (Bytef *)dictionaryBuf, &dictLen);

ret = deflateSetDictionary(strm, (const Bytef*)
dictionaryBuf, dictLen);
deflate(strm, flushflag);

//Dictionary fetched with length of: dictLen
//Can write buffer out to file, for re-use later on
inflateEnd(&strm);

In
F)

© 2015 IBM Corporation 19

Dictionary Compression (12k XML Document)

0.14
No Dictionary
0.12 —_
\

o 0.1
g
c 0.08
kel
5 0.06 Unrealistic 304 Byte Dictionary
§ Dictionary Holds Entire

' / Message
0.02

1 2 3 4 5 6 7 8 9
Compression Level

Custom dictionary using Frequent Strings —7lib Dictionary —No Dictionary Compression Ratio

In
®

© 2015 IBM Corporation 20

zlib Tuning Recommendations

Stick with Z_ DEFAULT_STRATEGY, other algorithms seem to compress worse and cost more in
terms of Utilization/Response Time

There may be very specific scenarios where the other algorithms shine...
Stick with compression levels 1-3
At level 4 the response time takes a hit as high as 50%

From compression level 1 to level 9 there appears to be a gain of 3% in compression
Keep WindowsBit & MemLevel setting to Default

Response Time deteriorates rapidly when lowering setting on WindowsBit

There might be use case for lowering this if you are running multiple compressions under
the same process and the messages are small.

Use compress2 APl whenever you can if you have the memory and can compress the message
in one call.

Very easy to code, allows to set lower compression level

Initial measurements show little benefit for dictionary use given potential problems of
maintenance across a distributed environment.

Needs further investigation.

In
F)

© 2015 IBM Corporation 21

Questions/Comments

