
Jim Johnston, TPF Development Lab

March 23, 2015

TPFUG – Dallas, TX

zlib Update

© 2015 IBM Corporation 2

Presentation Summary

I. zlib General Information

II. z/TPF Specific zlib Information

III. zlib Performance

IV. zlib Compression Interfaces and Examples

V. zlib Dictionaries

VI. zlib Tuning Recommendations

© 2015 IBM Corporation 3

zlib General Information

• What is zlib?

• General purpose software compression library which provides both in-memory and to-file system

compression and de-compression.

• Ubiquitous (used by JDK/SDK, MySQL, Curl, Apache, etc.)

• Home Page: http://zlib.net/

• Authors: Jean-Loup Gailly & Mark Adler

• RFCs Implemented by zlib library (compression data formats supported)

• RFC 1951 DEFLATE Compressed Data Format

– Underlying Compression Format

• RFC 1950 ZLIB Compressed Data Format

– wrapper around DEFLATE stream

– default in-memory compression format

• RFC 1952 GZIP file format

– Also a wrapper around the DEFLATE stream

– For compressing files, but can be done in memory as well

http://zlib.net/

© 2015 IBM Corporation 4

zlib General Information

• Useful Tidbits from FAQ

• zlib is Thread Safe

– Multiple threads can work with different data streams at the same time.

– For compression to file system uses existing thread concurrency support.

• 64-bit compatible

• Maximum Amount of data that can be compressed is only limited by memory available to process.

– Multiple calls can be used to compress or uncompress data in chunks.

– Data must be in contiguous storage (no scatter/gather interfaces)

• zlib does not handle *.ZIP files directly (like WinZip, 7-Zip)

– Requires some extra code to access the underlying DEFLATE stream

• No accessing data randomly in a compressed stream without special preparation

– stream maintain indexes of where decompression can begin.

© 2015 IBM Corporation 5

z/TPF Specific zlib Information

• zlib v1.2.8 - PJ42410 (PUT11)

– opensource co-req PJ42641 (PUT 11)

• zlib v1.2.3 – PJ32283 (PUT 4)

• Version upgrade is a replacement of previous version for z/TPF

– same library, CZCM

• No application migration required, backward/forward compatible

• Mostly fixes between v1.2.8 and v1.2.3

• Interesting new API provided between the two versions inflateGetDictionary()

• zlib is SCRT discounted

© 2015 IBM Corporation 6

zlib ‘Knobs’

• Compression Level (0-9)

• 1 = Best Speed, 9 = Best Compression, 6 = Z_DEFAULT_COMPRESSION

• Compression Strategy

• Z_DEFAULT_STRATEGY

– String Matching Optimization (LZ77 algorithm) + Huffman algorithm

• Z_HUFFMAN_ONLY

– Force Huffman Encoding (skip LZ77 processing)

• Z_FILTERED

– Somewhere between Huffman and Default Strategy

 Limits LZ77 encoding by having min criteria for matching length

• Z_RLE

– PNG Data (graphics compression format)

• Z_FIXED

– Disables a specific component of Huffman Encoding

© 2015 IBM Corporation 7

zlib ‘Knobs’

• WindowsBit (8-15)

• History window size (aka dictionary buffer)

• Default setting is 15, base 2 (e.g., size would be 2^15)

• memLevel (1-9)

• Internal memory use setting. 1 = minimum memory 9 = uses maximum memory

• Default setting is 8

• Default WindowsBits and memLevel requires a minimum of 256k Bytes per

compression stream

© 2015 IBM Corporation 8

12kB XML document compression performance

0

0.2

0.4

0.6

0.8

1

1.2

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9

C
o

m
p

re
ss

io
n

 R
at

io

R
es

p
o

n
se

 T
im

es
 (

u
s)

Compression Level (z_default_strategy)

EC12 Compression Response Time Z196 Compression Response Time

EC12 Decompression Response Time Compression Ratio

53% Response Time Degradation
from 95us to 144us

Only 2.8% Extra Compression

87%
Compression

© 2015 IBM Corporation 9

759 byte XML document compression performance

0

0.2

0.4

0.6

0.8

1

1.2

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9

C
o

m
p

re
ss

io
n

 R
at

io

R
es

p
o

n
se

 T
im

es
 (

u
s)

Compression Level (z_default_strategy)

EC12 Compression Response Time Z196 Compression Response Time

EC12 Decompression Response Time Compression Ratio

Only 41% Compression

But Response Time
only
35 us

© 2015 IBM Corporation 10

12kB binary file compression performance

0

0.2

0.4

0.6

0.8

1

1.2

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1 2 3 4 5 6 7 8 9

C
o

m
p

re
ss

io
n

 R
at

io

R
es

p
o

n
se

 T
im

es
 (

u
s)

Compression Level (z_default_strategy)

EC12 Compression Response Time Z196 Compression Response Time

EC12 Decompression Response Time Compression Ratio

118us Response Time, worse then xml

Roughly
Same
Compression

© 2015 IBM Corporation 11

Larger File Compression (EC12)

0

0.2

0.4

0.6

0.8

1

1.2

0

10000

20000

30000

40000

50000

60000

0 1 2 3 4 5 6 7 8 9

C
o

m
p

re
ss

io
n

 R
at

io

R
es

p
o

n
se

 T
im

es
 (

u
s)

Compression Level (z_default_strategy)

288kB XML Compression Response Time 1.45MB XML Compression Response Time

288kB XML Compression Ratio 1.45MB XML Compression Ratio

95% Compression

Response times
in mills. (2.2ms)

© 2015 IBM Corporation 12

12kB Compression Using Huffman Only (EC12)

0

0.2

0.4

0.6

0.8

1

1.2

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8 9

C
o

m
p

re
ss

io
n

 R
at

io

R
es

p
o

n
se

 T
im

es
 (

u
s)

Compression Level (z_huffman_only)

12k Binary Compression Response Time 12k XML Compression Response Time

12k Binary Compression Ratio 12k XML Compression Ratio

Didn’t help XML 95us->137us@64%Compression

Didn’t help Bin 118us->162us@23%Compression

© 2015 IBM Corporation 13

Compression Using Filter Strategy (EC12)

0

0.2

0.4

0.6

0.8

1

1.2

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5 6 7 8 9

C
o

m
p

re
ss

io
n

 R
at

io

R
es

p
o

n
se

 T
im

es
 (

u
s)

Compression Level (z_filtered)

12kB XML Compression Response Time 12kB Binary Compression Response Time

12k XML Compression Ratio 12kB Binary Compression Ratio

Slightly worse response
time at level 1
Compression about
the same.

© 2015 IBM Corporation 14

Compression using MemLevel 3 (EC12)

0

0.2

0.4

0.6

0.8

1

1.2

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1 2 3 4 5 6 7 8 9

C
o

m
p

re
ss

io
n

 R
at

io

R
es

p
o

n
se

 T
im

es
 (

u
s)

Compression Level (z_default_strategy)

12k XML Compression Response Time 412kB XML Compression Response Time

12k XML Compression Ratio 412kB XML Compression Ratio

Response Time Deterioration
95us->120us

Response Time Deterioration
3ms->3.5ms

© 2015 IBM Corporation 15

12kB XML Compression adjusting WindowBits (EC12)

0

0.2

0.4

0.6

0.8

1

1.2

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8 9

C
o

m
p

re
ss

io
n

 R
at

io

R
es

p
o

n
se

 T
im

es
 (

u
s)

Compression Level (z_default_strategy)

WindowBits 8 Compression Response Time WindowBits 11 Compression Response Time

WindowsBit 8 Compression Ratio WindowsBit 11 Compression Ratio

95us(def)->517us->2006us

Response
Deterioration

Compression Suffers too

© 2015 IBM Corporation 16

Deflate Interfaces

Simplest way is to use compress and compress2 APIs (looks like memcpy).

int compress (Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen);
int compress2 (Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen, int level);
int uncompress (Bytef *dest, uLongf *destLen, const Bytef *source, uLong sourceLen);
uLong compressBound (uLong sourceLen);

Things to note when using these APIs:
• Not stream based, the destination buffer must contain enough space or the call

fails.
‒ Use compressBound() to determine destination buffer size.
‒ Save and pass sourceLen size to uncompress() for its destination buffer

size.
• Recommend using compress2() with compression levels 1-3.
• Actual compressed/uncompressed bytes is returned and replaces original

destLen.
• Can’t specify a dictionary.

Example:
size_t compressedSize = compressBound(incomingBuffer);
Bytef out[compressedSize];
int level = 3;
ret = compress2(out, &compressedSize, (const Bytef *)incomingBuffer, (size_t) incomingSizeParm, level);

© 2015 IBM Corporation 17

Deflate Interfaces (continued)

Stream-based zlib APIs to compress and uncompress data, more complex.

int deflateInit (z_streamp strm, int level);
int deflateInit2(z_streamp strm, int level, int method, int windowBits, int memLevel, int strategy);
int deflate (z_streamp strm, int flush);
int deflateEnd(z_streamp strm);
int inflateInit (z_streamp strm);
int inflateInit2(z_streamp strm, int level, int windowBits);
int inflate(z_streamp strm, int flush);
int inflateEnd(z_streamp strm);

Things to note when using these APIs:
• Stream based, useful when many

messages coming into system must be
filed down in order to receive entire
message.

• Complexity arises from filling input
buffers & emptying output buffers at
different rates.

Example:

z_stream strm;
flushflag = Z_NO_FLUSH;
deflateInit(&strm, level);
do {

//Get more input data to compress into inputBuffer
// if no more then set flushflag to Z_FINISH.
strm.avail_in = numberOfInputBytes; //# of Bytes
strm.next_in = inputBuffer[]; //Buffer
do {
strm.avail_out = numberOfOutputBytes;
strm.next_out = outputBuffer[];
deflate(strm, flushflag);
//consume compressed data here, file down, etc.

} while (strm.next_out == 0);
} while (flushflag != Z_FINISH);

deflateEnd(&strm);

© 2015 IBM Corporation 18

GZIP Interfaces

ZLIB APIs for compressing to file system, just like FSTREAM APIs (e.g., fopen, fread…)

gzFile gzopen(const char *path, const char *mode);
int gzread (gzFile file, voidp buf, unsigned len);
int gzwrite (gzFile file, voidpc buf, unsigned len);
int gzprintf(gzFile file, const char *format, ...);
z_off_t gzseek(gzFile file, z_off_t offset, int whence);
int gzrewind(gzFile file);
z_off_t gztell(gzFile file);
int gzeof(gzFile file);
int gzclose(gzFile file);

Things to note when using these APIs:
• gzopen() uses mode similar to fopen but with level & strategy specification

“wb3h” (e.g. compress level 3, using Huffman-only).
• gzread() and gzwrite() will uncompress data from a file and compress data

to a file respectively.
• Multiple gzip streams can be in the same file separated by other bytes.
• gzseek() offset represents byte position of uncompressed data, when file

opened for write only forward seeks are supported.

Example:
gzFile mygzFile;
char buffer[size];
mygzFile = gzopen(“testfile”, “rb3f”);
bytesRead = gzread(mygzFile, &buffer, size);
vel);
gzclose(mygzFile);

© 2015 IBM Corporation 19

Dictionary Use

• Dictionary is optional for zlib.

• Dictionary is limited to window size specified in deflateInit

• ~32k for default WindowsBit setting

• Dictionary simply a character buffer ordered by higher frequency character sequences

at the end of the buffer.

• Dictionary set with API after deflateInit, inflateInit calls

• Inflate call returns error if Dict was used during deflate but not set before inflate.

• Dictionary use didn’t reduce the response time.

• inflateGetDictionary() retrieves the dictionary zlib built as part of inflate

• No need to have compression dictionary specified during deflate to get dictionary.

Example:

z_stream strm;
deflateInit(&strm, level);
ret = deflateSetDictionary(strm, (const Bytef*)

dictionaryBuf, dictLen);
deflate(strm, flushflag);

Example:

dictionaryBuf = malloc(32768);
ret = inflateGetDictionary(&strm, (Bytef *)dictionaryBuf, &dictLen);

//Dictionary fetched with length of: dictLen
//Can write buffer out to file, for re-use later on
inflateEnd(&strm);

© 2015 IBM Corporation 20

Dictionary Compression (12k XML Document)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 3 4 5 6 7 8 9

C
o

m
p

re
ss

io
n

 R
at

io

Compression Level

Custom dictionary using Frequent Strings zlib Dictionary No Dictionary Compression Ratio

Unrealistic
Dictionary Holds Entire
Message

No Dictionary

304 Byte Dictionary

© 2015 IBM Corporation 21

zlib Tuning Recommendations

• Stick with Z_DEFAULT_STRATEGY, other algorithms seem to compress worse and cost more in

terms of Utilization/Response Time

– There may be very specific scenarios where the other algorithms shine…

– Stick with compression levels 1-3

– At level 4 the response time takes a hit as high as 50%

 From compression level 1 to level 9 there appears to be a gain of 3% in compression

• Keep WindowsBit & MemLevel setting to Default

– Response Time deteriorates rapidly when lowering setting on WindowsBit

– There might be use case for lowering this if you are running multiple compressions under

the same process and the messages are small.

• Use compress2 API whenever you can if you have the memory and can compress the message

in one call.

– Very easy to code, allows to set lower compression level

• Initial measurements show little benefit for dictionary use given potential problems of

maintenance across a distributed environment.

– Needs further investigation.

Questions/Comments

