
ADBI: An Object Oriented
Interface to z/TPFDF

Josh Wisniewski
TPF Development Lab

Application Development Subcommittee
March 11, 2014

2 AIM Enterprise Platform Software IBM
z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

Disclaimer

Any reference to future plans are for
planning purposes only. IBM reserves
the right to change those plans at its
discretion. Any reliance on such a
disclosure is solely at your own risk.
IBM makes no commitment to provide
additional information in the future.

3 AIM Enterprise Platform Software IBM
z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

Why have an object oriented interface to z/TPFDF?
• Simplified access to existing and new z/TPFDF

database content without the programmer having
extensive knowledge of z/TPFDF.

• Reduced runway for new developers to become
productive z/TPF developers (ie college new hires).

• Increased developer productivity due to simplified
programming model.

• Object oriented coding model encourages and
facilitates modularization and code reuse.

• Decreased time to market of new applications
written on TPF.

• Builds upon our Big Data and Data Eventing
infrastructure by further exposing data definition of
logical records contained in z/TPFDF databases.

4 AIM Enterprise Platform Software IBM
z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

What is ADBI?
• Application Database Interface (ADBI) is an object

oriented framework for accessing and manipulating
data in a record based hierarchical or network
model database.

• ADBI was developed as the programming model
interface to WebSphere Transaction Cluster Facility
(WTCF).

– WTCF is a middleware solution for
implementing record based hierarchical
database applications on a distributed platform
such as AIX® on IBM Power Systems.

– The WTCF architecture is modeled after the
fundamental architecture of TPF.

5 AIM Enterprise Platform Software IBM
z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

Why ADBI instead of other object oriented models?
• ADBI provides a logically simplified

interface to z/TPFDF data over z/TPFDF
APIs and etc.

• ADBI maintains the extensive benefits of
the z/TPFDF database architecture and
provides access to existing databases
without any change to those databases.

• A variety of WTCF POCs, speed team
(college students) and other efforts have
proven the viability and ease of
development of the ADBI programming
model.

6 AIM Enterprise Platform Software IBM
z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

What ADBI is not?
• ADBI is not a repackaging of the z/TPFDF

API. ADBI will use z/TPFDF under the
covers while hiding the involved details.

• ADBI will support most all z/TPFDF
database types and APIs.

– Limited to R type databases.
– Work files will not be supported.

7 AIM Enterprise Platform Software IBM
z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

ADBI development direction
• ADBI developed applications are written

native to z/TPF.
– ADBI does not provide remote access APIs.

• Primary ADBI development focus on
providing access and ability to modify
existing/new z/TPFDF data.

• Potential future ADBI development will
focus on simplifying the creation of new
databases.

8
AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

ADBI programming model

ADBI z/TPFDF equivalent

 -- All z/TPFDF files for a subsystem or SSU

 -- Logical grouping of z/TPFDF files

 -- z/TPFDF File

 -- z/TPFDF subfile

 -- Logical Record (LREC)

 -- Label in LREC DSECT

• ADBI defines a database hierarchy that is easily relatable.

9
AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

ADBI programming model
• ADBI defines class APIs for each level of the hierarchy and provides

additional helper classes.
• Application specific record and field classes are created using

generated code based on the DFDL definition of the z/TPFDF file.
• Field definitions will include the ability to define objects within objects,

arrays, variable length fields and etc.

10
AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

ADBI programming model example
• Modify phone number for every PNR with matching last and first name.

11
AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

ADBI programming model example
 1 ConnectionPtr conn = Database::connnect("Res1");

 2 conn->startMessage("PNR", "ChangePhone");

 3 FileRoomPtr fr = ADBIManager::getFileRoom(conn, "Reservations");

 4 CabinetPtr pnrCab = fr->getCabinet("PNR");

 5 PNRByLastNameFirstName floc(lastName, firstName);

 6 FolderIteratorPtr folderIt = pnrCab->createFolderIterator(floc);

 7 try

 8 {

 9 while (folderIt->goToNext())

10 {

11 FolderPtr pnr = pnrCab->openFolder(folderIt, ADBI_LOCK);

12 RecordLocator recLoc = RecordLocator(pnrCab, phoneRecord::RECORD_ID);

13 RecordIteratorPtr recIterPtr = pnr->createRecordIterator(recLoc);

14 while (recIterPtr->goToNext())

15 {

16 PhoneRecordPtr phonRecPtr = PhoneRecord::readRecord(pnr, recIterPtr);

17 phonRecPtr->setNumber(newNumber);

18 pnr->updateRecord(phonRecPtr);

19 }

20 pnr->close();

21 }

22 }

23 catch (ExceptionBase &e)

24 Handle Errors;

25 conn->endMessage();

26 Database::disconnect(conn);

12
AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

ADBI programming model example

• Outline of our example:

 SETUP

 LOOP THROUGH PNR FOLDERS WITH MATCHING NAME

 {

 LOOP THROUGH PHONE RECORDS

 {

 UPDATE PHONE NUMBER RECORD

 }

 }

 ERROR HANDLING

 END

13
AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

ADBI programming model example

 1 ConnectionPtr conn = Database::connnect("Res1");

 2 conn->startMessage();

 ...

25 conn->endMessage();

26 Database::disconnect(conn);

• Database class provides access to the database data. ADBI applications
start and end with a connect and disconnect.

• Connection objects provide the link to the database for future calls.
• The Connection startMessage and endMessage serve as bookends of a

message. They are used to ensure integrity and provide debugging aids.
– Multiple startMessage/endMessage pairs can occur during the life of

an ECB to implement a long running server model.
• Database and Connection are primarily maintained for portability with

WTCF and do not have a corresponding z/TPFDF equivalent.

14
AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

ADBI programming model example

 3 FileRoomPtr fr = ADBIManager::

 getFileRoom(conn, "Reservations");

 4 CabinetPtr pnrCab = fr->getCabinet("PNR");

• ADBIManager objects provide access to the FileRoom (a logical group of
Cabinets).

• FileRoom objects provide access to the individual Cabinets (z/TPFDF
File equivalent).

• Cabinet objects encapsulate a collection of Folders (z/TPFDF subfile
equivalent). Cabinet objects provide the means of accessing a Folder by
way of the OpenFolder API (dfopn/DBOPN equivalent).

15
AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

ADBI programming model example

 5 PNRByLastNameFirstName floc(lastName, firstName);

 6 FolderIteratorPtr folderIt =

 pnrCab->createFolderIterator(floc);

• FolderIterator and FolderLocator objects are used together to traverse the
cabinet hierarchy.

• FolderLocator objects describe how the cabinet hierarchy is to be
traversed in descriptive terms. In our example, we are locating all PNRs
that have a matching last and first name from a name index cabinet
(FolderLocators are the equivalent of z/TPFDF Path, algorithm strings and
etc).

• FolderIterator objects provide the ability to iterate through the Folder
(z/TPFDF subfile) matches for the FolderLocator. The destination cabinet
is used to create the FolderIterator.

16
AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

ADBI programming model example

 7 try

 8 {

 ...

22 }

23 catch (ExceptionBase &e)

24 Handle Errors();

• The try, catch, throw programming model is employed for error handling.

17
AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

ADBI programming model example

 9 while (folderIt->goToNext())

10 {

11 FolderPtr pnr = pnrCab->openFolder(folderIt,

 ADBI_LOCK);

 ...

20 pnr->close();

21 }

• As previously noted, FolderIterator objects are used to traverse matches
for the FolderLocator. This is accomplished by a simple test of the
goToFirst or goToNext member function.

• The Folder object (z/TPFDF subfile) is then opened based on the current
position of the FolderIterator. Folders can be opened for read, lock, or
optimistic lock (lock only if a change occurs). The folder must be closed
before the end of your message (Connection::endMessage). Locks are
released when the close is issued.

18
AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

ADBI programming model example

12 RecordLocator recLoc = RecordLocator(pnrCab,

 phoneRecord::RECORD_ID);

13 RecordIteratorPtr recIterPtr = pnr->

 createRecordIterator(recLoc);

14 while (recIterPtr->goToNext())

15 {

 ...

19 }

• RecordLocator and RecordIterator objects provide the ability to traverse
the Records in a Folder (z/TPFDF LRECs in a subfile).

• RecordLocator objects describe how the Records will be searched. This
search can be accomplished by the Record Id (z/TPFDF primary key) or
other fields in the Record (z/TPFDF keys or other labels in the DSECT).

• RecordIterator objects provide the ability to iterate through the Records
(z/TPFDF LREC) matches for the RecordLocator. This is accomplished
by a simple test of the goToFirst or goToNext member function.

19
AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

ADBI programming model example

16 PhoneRecordPtr phonRecPtr =

 PhoneRecord::readRecord(pnr, recIterPtr);

17 phonRecPtr->setNumber(newNumber);

18 pnr->updateRecord(phonRecPtr);

• The Record object (z/TPFDF LREC) is then opened based on the current
position of the RecordIterator. The Record class is created by using a
code generator on the DFDL description of the LREC layout in the
DBDEF DSECT. Getters and setters for each field are generated as
appropriate.

• The Record object is then written back into the Folder using the
updateRecord member function. Record objects can also be created and
inserted into a Folder.

20
AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

ADBI programming model continued
• Notice that the programming model makes extensive use of C++

namespaces to ensure name conflicts do not occur.
• Notice we did not delete any of our objects. Smart pointers are used

such that after the last reference to an object is used, the object is
automatically deleted.

• Notice that the programming model is built upon an object oriented
exception error handling model. The ADBI ExceptionBase class can be
used to catch and test for all ADBI exceptions. z/TPFDF errors will be
caught by ADBI and thrown as exceptions.

• Transaction scopes will be supported.

21
AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

Overall ADBI Architecture
• Bob Dryfoos’ presentation “Unlocking Data on z/TPF” introduced

Data Format Description Language (DFDL) and the TPF data
definition tool.

• DFDL and the TPF data definition tool will be used to provide a
description of the layout of z/TPFDF logical records.

• ADBI will use that description to generate application specific code.

IBM DFDL
schema library

Customer
DFDL schema

library

TPF data
definition tool

Importer

C header (struct)

HLASM macro (DSECT)

TPFDF DBDEF shared object

Hand built DFDL schemas

DFDL schema
set used to
generate

application
specific code.

22
AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

Overall ADBI Architecture

23 AIM Enterprise Platform Software IBM
z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

Overall ADBI Architecture
• In the initial releases of ADBI, the z/TPFDF

DBDEF and DSECT definitions will serve
as the master definition of the database.
Any changes to the database cabinet or
record layout should primarily start by
making the changes there, using the
importer and resolving the differences in
the TPF Data Definition Tooling.

• In the future, the option may be provided
for the DFDL and ADBI metadata to serve
as the master definition of the database.
An option would be provided to generate
the required z/TPFDF DBDEF and DSECT
definitions.

24 AIM Enterprise Platform Software IBM
z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

Anticipated ADBI Delivery Schedule
• TPF Data Definition tool initial release will

be on PUT 11 in support of the Data Events
project.

• ADBI access to existing/new z/TPFDF data
is planned for deliver in the early PUT 12
time frame.

25 AIM Enterprise Platform Software IBM
z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

Continuing the ADBI discussion
• Questions?
• Suggestions?
• Please see myself, Bob Dryfoos, Mark

Gambino or Colette Manoni if you’d like to
discuss this topic in further depth. Or
request a hot topic.

26 AIM Enterprise Platform Software IBM
z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2014

IBM Software Group

Trademarks
• IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business

Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at “
Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Notes

• Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using
standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience
will vary depending upon considerations such as the amount of multiprogramming in the user's job stream,
the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can
 be given that an individual user will achieve throughput improvements equivalent to the performance ratios
stated here.

• All customer examples cited or described in this presentation are presented as illustrations of the manner
in which some customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics will vary depending on individual customer
configurations and conditions.

• This publication was produced in the United States. IBM may not offer the products, services or features
discussed in this document in other countries, and the information may be subject to change without
notice. Consult your local IBM business contact for information on the product or services available in your
area.

• All statements regarding IBM's future direction and intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

• Information about non-IBM products is obtained from the manufacturers of those products or their
published announcements. IBM has not tested those products and cannot confirm the performance,
compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM
products should be addressed to the suppliers of those products.

• Prices subject to change without notice. Contact your IBM representative or Business Partner for the most
current pricing in your geography.

• This presentation and the claims outlined in it were reviewed for compliance with US law. Adaptations of
these claims for use in other geographies must be reviewed by the local country counsel for compliance
with local laws.

http://www.ibm.com/legal/us/en/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

	ADBI: An Object Oriented Interface to z/TPFDF
	Disclaimer
	Why have an object oriented interface to z/TPFDF?
	What is ADBI?
	Why ADBI instead of other object oriented models?
	What ADBI is not?
	ADBI development direction
	ADBI programming model
	Slide 9
	ADBI programming model example
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	ADBI programming model continued
	Overall ADBI Architecture
	Slide 22
	Slide 23
	Anticipated ADBI Delivery Schedule
	Continuing the ADBI discussion
	Trademarks

