zITPF V1.1

2013 TPF Users Group

Title: z/TPF Debugger Educationl

Joshua WisniewskKi
Ongoing TPF Education

AIM Enterprise Platform Software
IBM z/Transaction Processing Facility Enterprise Edition 1.1

Any reference to future plans are for planning purposes only. IBM reserves the right to change those plans at its discretion. Any reliance on such a
disclosure is solely at your own risk. IBM makes no commitment to provide additional information in the future.

© 2013 IBM Corporation

IBM Software Group -

Agenda
* What's new in the realm of debugger education?
» Education resources and links
* Debugger education articles
* Problem diagnosis
« Custom communication packages
» Determining code path
* Hints and Tips
« Starting the debugger effectively
cQ&A

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

What’'s new in the realm of debugger education?
* A new set of practical education articles have been written.

« They focus on how to use debugger features together to solve
problems.

« They also focus on the lesser known or hard to find features.
« A sample of this content will be the main focus this presentation.

* The list of the new articles is available on the next slide.

* A new set of appendices have been added to the z/TPF Application
Modernization using Standard and Open Middleware Redbook

» They focus on step by step examples of how to use debugger
features. These appendices are applicable to anyone new to the
TPF Toolkit or wanting to learn about a variety of features.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Education resources and Links

» The following resources focus on how to use debugger features
together to solve problems and on lesser known features.

« http://www-01.ibm.com/software/ntp/tpf/. See the Fast links
section on the lower left side. Select Tools -> z/TPF Debugger
and then view the contents of the education material table.

» developerworks.com article

» Debugging Entry Control Blocks created by custom
communication packages on z/TPF

« Debugger education articles

» Determining code path

« Starting the debugger effectively
* Problem diagnosis

* Hints and Tips

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Education resources and Links

» These resources are a good source for seeing step by step usage:

« http://www-01.ibm.com/software/htp/tpf/. See the Fast links section on
the lower left side. Select Tools -> z/TPF Debugger and then view the
contents of the education material table.

« ZITPF Application Modernization using Standard and Open
Middleware Redbook

» There are several appendices with step by step demonstrations of
building and loading an application in the TPF Toolkit, Web Services
features, Debugger, Code Coverage Tool, Performance Analyzer,
Dump viewer, Trace Log and etc.

« Debugger Demo Movie

» This demo movie was created several years ago to highlight the
function that was available at that time. Even though this movie is
out of date, the education delivered in this format has been found to
be very useful and the core function described continues to exist.

arprise Platform:Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Education resources and Links

» These existing resources are a good source learn what functionality exists.

* http://www-01.ibm.com/software/ntp/tpf/. See the Fast links section on the
lower left side.

* TPFUG presentations — select TPFUG Presentations. A debugger and
TPF Toolkit update is often provided at each TPFUG to announce new
features, provide education and so on. These presentations are usually
given in the TPF Toolkit Task Force or the Development Tools
Subcommittee.

 The Debugger User's Guide — select TPF Family Libraries -> Open
Current Information Center -> z/TPF PUT -> Library -> Debugger User’s
Guide.

* TPF Toolkit help that is found in the Help menu also provides information
regarding the features that are available. Select the Help menu -> Help
contents. Then select Debugging TPF Applications, Analyzing Code
Coverage of TPF Applications, or Analyzing Performance of TPF
Applications.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Problem diagnosis
* Topics

« Dump viewer

Debugging stack corruption

Debugging heap corruption

Debugging infinite loops

Debugging memory leaks

AIM Ente{rprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Dump viewer
« The dump viewer is a debugger like interface to view the contents of a dump.

« The dump viewer is especially useful for C/C++ code with the ability to use
the variables view to see all C/C++ variables at a glance. You can click
through the stack frames and see C/C++ variables on previous stack
frames.

* The dump viewer provides the ability to apply XML maps in the memory
views of given data areas to make it easier to read the data in the memory
of the application.

* Most debugger views will work as normal such as the SWOOSR view,
DETAC view, DECB view, TPF malloc view and so on, which could be
difficult or impossible to view in a traditional z/TPF dump.

« Enter ZASER DUMPON DBUG to collect dump viewer dumps.

* The user exit UDDC_debuggerDumpCaptureUserExit in cdbaux.cpp allows
you to capture additional data areas.

« These dumps are portable for viewing from z/TPF system to z/TPF system
because the program attribute table (PAT) entries, database definition
DBDEFs), and so on are completely copied to the dump file.

arprise Platform:Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPFE Users Group - Spring 2013 | © 2013 IBM Corporation

Dump viewer

» The ECB trace can tell you what the ECB was doing recently. It
will show you the macros and functions called as well as
parameters passed in and values returned. The ECB trace is
available while viewing dumps through the debug console
command ECBTrace. A variety of other debug console
commands are available.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group

Dump viewer

File Edit Navigate Search Preoject Run Window Help

P E & kG W ARE S AL R R

i [Remote System Explorer | %5, TPF Debug | [TPF Toolkit

%5 Debug 3 | e ® B o w5 - 7 0|/ ecssummary | £ Modues 00~ variables 12 | L E~ o8

5 QDBO [Incoming Remote Debug Session] Name | Value |
= Platform: ZTPF Connection: 9.57.13.89:1113 ® type 1

=g Thread:TPF Thread DF3AB000 (Stopped) ® NONDISPTESTL Value is protected and can not be displayed (see NDSPC macro documentation)
~+= Execution Pt. : : 0x0000000409A 1EEGE ® ciatic NONDISPTEST char_ar Value is protected and can not be displayed (see NDSPC macro documentation)
~= _Z13enCDebugInfo3QDBGDRY _Ti : gdbler.o : QDBO e list_ptr
= errCases : qdbler.o : QDBO @ ® snapc_list
~= QDBO : qdb0.o : QDED ® NONDISPTESTZ2 Value is protected and can not be displayed (see NDSPC macro documentation)
+= invokeDriver : cvzz.o : CVZZ #® NONDISPTEST Walue is protected and can not be displayed (see NDSPC macro documentation)
H -2 V77 : curz.n s CV77 ® 0
qdbOer.cpp £2 : k 0x0000000000000000
Line 162 Column 1 Insert Browse ® 1 v
n 3 4 5 8 1 i 3
L : 2 ! @ st 0x0000000011c0f028
156 @DBO printf("case 1: ctrl-3\n"); gj = ® st
= s
157 =
158 =6 ® corr string Walue is protected and can not be displayed (see NDSPC macro documentation)
159 Satr ® casehum i
160
161 /*i must = & to cause ctrl 3% -
163
164 J++r
165 it+;
166
167 QDBO_printf ("case 1: completed\n");
168 break;

—_—

@

UQ‘;&E:;\ Em|m‘§‘_n€rm| Iﬁmtsc| Emm|a%ﬂalalm| a Mem-y|
ecbtrace

DBUGE8095I ECB F3AB000 processing "ecbtrace™
DBUGE030I START OF ECB TRACE DISFLAY.

8|5 R %K tad

[TR GROUP LOADMOD LOADSET CBJECT NAME DSH OBJ DSP FUNCTICN CALL OR MACRO TIMESTRAMP
IEM DEFT QDEDJW LOADSET-EBEBE el /
1 1CA return(void) ermn C5CBB859 A0487SED
from QDEQ_printf
1 126 return(void) errno=00000000 C5CBBE859 A049T78ED
from QDBO_OUTFUT
IEM DEFT CTAL LOADSET-BASE OBJECT-cwWtopc
1 380 return(int 00000000} errno=00000000 CS5CBE859 A04977A0

from wtopc
IEM DEFT QDEDJW LOADSET-EBEBE OBJECT-

64PU1 1 0 QDBED WICPC C5CBE859 A04945C0
IEM DEFT CTAL LOADSET-BASE OBJECT-cwtopc
1 52 call wtopc| C5CBB859 A0494080
const char* text prr=0000000011COEGE
g

int rout=0000C000,

(3] T
F/dmgﬁmr

| [Enter |

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Debugging stack corruption

* The following techniques apply to both the debugger and
dump viewer.

« Click through the stack frames in the debug view and see what the
local variable values are in the Variables view. You may notice that
a character array containing a valid string appears to pour over into
other variables in your stack. This can be an indication that your
application is mishandling that string variable.

* As you click through the stack frames, the properties view will show
you details about that stack frame (size, address, etc).

* You can also see the contents of the stack frame. Right click on a
stack frame and choose map memory element to open an XML
map of the stack frame in the memory. View picture on the next
slide.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group

Debugging stack corruption

| L —

= j‘_{!]ﬂ(![lnmngRﬂnntEDeh.lgSmm]
= 1f Platform: ZTPF Connection: 9.57.13.89: 1113
: Eg?nraadTPFnraadtfanﬂma(smpped]
= Execution Pt @ : 000000004094 1EEGE
_Z13errCDebugInfo3QDEGDRY_Ti : gdbOer.o : QDEO
errCases ; qdbOer.o : QDBO

: ctrl+c
- Find... Ctrl+F
vz Eh I
Line 286 Column 1| =& DropToFrame
I———+————1————+————2——
_Step Into F5
0000000409BDEE6GD 0000 .
DO000004009BDERE4 0000| ‘=rStep Over F& 12,%"
0000000409BDER6EE 0000 _@StepReturn F7 R1,X"
0000000409BDEEEE 0000 RZ,X"
0000000409BDEET72 0000| P.Use Step Filters 478 (1
0000000409BDEETE 0000 458 (4
[Resume F&

0000000409BDEETE 0000

> 000000040s8D88s2 0008 (I * 7"
0000000409BD8E86 0000 [W Terminate Cirl4+F2
0000000409BDEBBEC D000| M, Terminate and Relaunch
0000000409BDEES0 0000 i
00000004098DEE34 oo o DEconnect
0000000409BDEESA 0000 e
0000000409BDEER0 0000
0000000409BDEEA2 0000 @ Relaunch
0000000409BD88A6 0000 4 EditQDBO...

QO Emsorce L.,

Lookup Source
Emm‘ﬂiﬂﬂn‘ﬁm T :'Emd
- x iTmIEﬂsmrnect
- 11c0f5en

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group

Debugging stack corruption

Emm|ﬁ§aaﬂ|ﬁm|.m|__mm -um|5mm|ﬁ%mmmﬂu 5 e || Bl B-7=08
lordirs +x%w+~mm | 1icDfécO : X1ICOFGCD <Hex> £ i New Renderings...
------ % 11c0fbecd | value | Offset# || Address | o-3 |2 -7 | 8 -8B |E=F | |

llt; ICSTK : Layout config\[CSTK.xml 0x0 0000000011COF610 00000000 00000000 00000000 00000002
@ 1CST_STR 00 00 00 00 11 COF8 BO 0000000011COF620 00000000 11DFO500 00000000 11DFO540

* 1csT_BCH 0000000011COF630 00000000 00000000 00000000 00000000

¢ I1CST_RES 00 0000 0380 26 28 B0 0000000011COF640 00000001 00000003 00000000 00000001

2 B 1csT R2 0000000011COF650 00000001 00000000 0000000D 11CO1F3F
¢ ST R2 00 00 00 00 00 00 00 00 0000000011COF660 00000000 11DFO000 00000000 11DFOOOA

¢ I1CSTR3 00 00 00 00 00 00 00 00 0000000011COFE70 00000000 11COFSEQ 00000001 00000000

¢ 15T R4 a0 00 00 00 D8 €4 C2F0 0000000011COF680 00000000 OACALLFO 00000000 11DF1400

¢ I1CST RS 0000000011COF630 00000000 00000000 00000000 00000000

¢ 1CSTRE 0000000011COF6AD 00000000 00000000 00000000 02433000

¢ 1csT R7 0000000011COF6B0 00000004 09AZ58F2 00000000 00001000

& ICST RS 00 0000 00 00 00 00 0000000011CoF6CO |JEREEEEEEN 11coFsE0 00000003 B02B28E0

¢ 1CSTRY 00 00 00 00 00 00 00 00 0000000011COF6D0 00000000 00000000 00000000 00000000

¢ 1CST R1D 00 00 00 00 00 00 00 00 0000000011COF6ED 00000000 DBC4C2F0 00000004 OAT743176

¢ ST RIL 00 00 00 00 00 00 00 14 0000000011COF6F0 00000004 09SEDFIEE 00000000 11DF0000

¢ st R12 00 00 00 0409 BD ED 00 DO11COF700 00000000 000000CS 00000000 00000000

¢ ICSTR13 00 00 00 0409 BD A4 30 DO11COF710 00000000 00000000 00000000 00000014

¢ ST R14 0000000000 13F75E (Oxteerononilgl DO11COF720 00000004 O9BDEDOO 00000004 O9BDA430

¢ ICSTRi5 00 0000 00 11 COF6 CO 0000000011COF730 00000000 0013F75E 00000000 11COF6CO

¢ 1csT_FO 40,00 00 00 00 1460 B8 QO00000011COF740 00000000 0014BE0EE 00000000 00000014

¢ ST F2 ! QUO0011COF750 00000004 0SBDEOOO 00000004 O9BDA4ES

¢ ICST_F4 00 00 00 0409 BD EO T 00000000 OE408440 00000004 0O9EDSEE2

¢ ST Fs 00 00 00 0409 BD A4 68 00000000 O0OOFBSE C3ESESES 80000000

@ Fo 1c5T_sRA 00010000 140A8048 11COFE40 00000000
@ Bo 1csT_Fra 00000000 0014009A 00000004 09BDEC4E4
= 2o 1csT_pat 0xA0 47FOT09E 41DZEF3A 06DI45BF
& 1CST PAT 00 00 00 00 OF 40 84 40 OxAD 0000000011COFTE FZE0ODOE 00000000 11COFAEQ

¢ 1CST_CRET 0000000011COFTCO 00002000 00000004 O0OGBETAR

@ 1CST_BASE 000000000 X 4o DUTTCUE O DT 00140092 00000000 11COFECE

& ICST_TRNAME cvzz 0xB& 0000000011COF7E0 00000000 0O0OFB58 00000000 11COFE13

& 1CST_PAFF 80 0xBC 0000000011COF7F0 00000000 00010EZ0 00000000 FFFFFFOO

¢ 0T TRLVL 00 00 OxBE 0000000011COFE00 00000000 11COFSCO 00000004 ORBE3SSE

¢ 1CST_ISNA 0001 0xCo 0000000011COFB10 00000000 14062000 00000000 00002000

¢ 1c5T_PEI 0000 oxc2 0000000011COF820 00000004 006BESAZ 00000000 O0013FTSE

¢ 1CST_FLG 14 0xC4 0000000011COF830 00000000 11COF7EE 00000000 11COFEZA

& 1CsT_PETK 11COFE 40 oxCa 0000000011COFE40 00000000 04A39078 00000000 OF300000

& ST LBV 00 00 00 00 0xCC 0000000011COFES0 00000000 0014E0BE 00000000 00001000

¢ 1CST_BRO 00 00 00 00 00 1400 9A 0xDO 0000000011COFB60 00000000 00002000 00000000 04230F12

@ 1cST_BR1 00 00 00 0409 BD 8C 44 0xD8 0000000011COF870 00000004 OROSEEE4 00000000 11COFE00

@ rcor onn — 4730 0 0 A7 60 0 S nwen QJ| 0000000011COFBE0 11COFE40 00000000 00000000 11COFAEQ

IQJ S D

AIM Entelrprise Platform Software

TPE Users Group = Spring 2013

IBM z/Transaction Processing Facility Enterprise Edition 1.1

© 2013 IBM Corporation

IBM Software Group -

Debugging stack corruption

« A couple things to take notice of in the stack frame:

* Regqister 14 (R14) is the typical return address register in the z/TPF
system. However, if R14 points into CPSO0, it is likely a C/C++ cross
module call and the return address is found in CRET.

* A bad back chain pointer (BCH) often indicates that the application is
overwriting the stack by way of a memcpy, MVC, and so on.

« This tip works frequently. Look at the stack contents rendered in EBCDIC
or ASCII for a text string. Try doing a grep for that string in your
application code. sprintf and similar functions are often the cause of stack
corruption and this approach has been used to solve many of these types
of dumps.

* Another approach is to examine the contents of the entry control block
(ECB) trace for function and macro parameters and return values that
point into the stack address range as they may be the cause of the stack
corruption.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Debugging stack corruption

* If you are using the debugger and know that a particular stack
address will become corrupted (such as the back chain pointer
or a variable such as i), you can use the watch breakpoint
support to stop the debugger when the change occurs.

(9= Variables 4948 Registers | [Monitors| &) Modules| [

% %[0 .

5 Go to File
Add Breakpaint Address...
Edit Breakpoint... Entry...

k] Enable
] bisable
® Remove
% Remove Al Stop At All Function Entries
Select Al Cirl+A
Copy Cirl+C
() Paste Ctrl+v

o Import Breakpoints. ..
f",,; Export Breakpoints. ..

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

© 2013 IBM Corporation

TPE Users Group = Spring 2013

IBM Software Group -

De b u g g I N g StaC k CO rru ptl O N &* Add a Watch Breakpoint

Required information
» Enter an address as 0x1234, | esereeeniosme e dmomats sedicsdi= ﬁ‘
a pointer expression or & of tem to Watc

. (*) Address or expression: | t |
the variable such as &port. Oregster = 5

Mumber of bytes to watch:

» The debugger will stop at the | [2)

source Ilnell_nstructlon gfter [
the source line/instruction that |

modified the storage. [Ttop Finsructon adress i the speifedrange:

i®) Module

MModule | QDBO w |

Dhject (optionaly | L |

i Address range

Frorm: | |

Tz | |

User label {optional):

@ <gack | mext> || Fmsh || cancel

arprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPFE Users Group - Spring 2013 © 2013 IBM Corporation

IBM Software Group

Debugging stack

corruptlon

#Deh.lggg

£-7°0

(= varisbies | ©g Breakpoints £5 | Uit Registers| I Monitors| & v

=] ,ﬁ‘: 9.5.13.89.qu0 [Incoming Remote Debug Session]
7@ Platform: ZTPF Connection: tpfosa 1h89. pok.ibm. com: 1023
. B o Thread:TPF Thread 10333000 (Stopped)

= Execution Pt. : : 0x000000009DD3I0008

QDEN : qdbi0.o -00 g2 : QDBO : BASE

imvokeDriver : cvzz.o -03 g2 : CVZZ : BASE

CVZZ : cvzz.o 03 92 : CVWZZ : BASE

.] Process: 10333000 Program: QDED

L T |

char
5'? char

58 char

59 char

&0

61 /¥ Parser grammer. */
62 char

a3

a4

685

a8

a7

&8

&

-]

file ptr;

*—

addr = NULL;

file = NULL;

threadParm = NULL;

sys_state = (char *) cinfc fasc (CINFC_CMMSTI);

L

* grammar ptr =
IPRSE STRICT GRAMMAR IPRSE MIXED CASE GRAMMER
mym
myn
"{ ERR—d++"
" GO-d++"
"| EXP-d+4+"

53
(9]

® %|&

rt] [thread spedific: TPF Thread

qdb0.cpp £2] =
Line 55 Column 1 Insert Browse
I———+————1————+————2————+————3————+————4————+————5————+————6————+————7————+————3————+————9————+———1D—-
43 enum debugdavalpt testgroup:r !J
44 int num parms = 0; // for saving IPRSE parse rc
45 int i= 0
46 int testcase = 0; E]
47 int childDbgCase = 0O;
48 int num_total = NUM TOTAL;
45 unsigned =hort port = T7885;
50 char * block ptr: M
51 char * input ptr: /{ pointer to message text
22 char * ip prr;
53 char * pgm ptr;
-

Mo details to display for the current selection.

AIM Entelrprise Platform Software

IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013

© 2013 IBM Corporation

Debugging heap corruption

« A CTL-75 is a dump indicating that heap (malloc) corruption has
occurred.

* In z/TPF this dump is typically issued when the OXFFFFFFFF
FFFFFFFF fence field immmediately following an allocated malloc
block is corrupted.

* However, this detection for the CTL-75 dump occurs when the
malloc block is freed.

« CTL-75 dumps occur in the control program and as a result, you
can not run the debugger to the dumping location or use register
by system error for these dumps.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Debugging heap corruption

* The TPF Malloc view can be used to locate corruption of malloc
blocks.

« If the corruption column is shown in the Malloc view, the
corruption detection will be performed. Malloc entries that are
corrupted will appear in the changed pane at all times, as shown

on the next slide.

* One thing to note, using corruption detection in the TPF Malloc
view may impact debugger performance.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

Debugging h

IBM Software Group

TPF Debu:

eap corruption

Fie Edit Navigate Search Project Run Window Help
iC-HE ik Qe Y AR TR TR R
T Ef Remote System Explorer | % TPF Debug | [J& TPF Toolkit

o T

AIM Entelrprise Platform Software

TPE Users Group = Spring 2013

45 Debug 51 | e W mo@ s | 3 @ T = 0| ecesumary | § modules | 00- varisbles | % trestpoints | B TeF Maloc 13 | =0
= 4 9.57.13.89.qdb0 [Incoming Remate Debug Session] | @IEIQ]}%' Hﬂ[%l -I%]v
B Platform: ZTPF Connection: 9.57.13.89:1118 T —
& 4P Thread:TPF Thread OF 3BA000 (Stopped) =)
= Execution Pt : : 0x00000004094 1F4D5 (|| = mDDR | LEN| aPGM| REGM| In use| Corrupted| -~
= errCases : gdbler.o : QDBO !’ 11DASC00 10E QDEBO ves yes Address 11DASCO0
= QDBO : qdb0.0 : QDB Size (user) 10E
= invokeDriver ; cvzz.o : CVZZ | Size (fence) 118
= CV7Z: cvzzoo : OVZZ Size (real) 400
-ull Process: NF3RANNN Pracram: ONRA | Tag (char)
- Tag (hex)
qdober.pp 2 -a Corrupted Yes
Line 368 Column 1 Insert Browse ADDR | LEN| = State In TUse
- 1 2 3 4 5 7 B hREETT A9 Heapcheck No
362 case 27: RO 3 ECB SVA F3BAOOO
S siaz = 2E 11DA05C0 8 [[hread id o
364 malloc ptr = malloc(size); 110B1F00 G QDED SWASDAE. e enennl Allocating Program
365 last byte = (char *)malloc ptr + size + 2; Address 408R1F432
366 QDBD_ptintf ("attempting to write past the end of mallo Hodule QDEOJW
*(last byte) =_yalue; Object gdbOer. cpp
Function errCases
QDBO_printf ("Did get CTL-75 "); APGM CE3TRNAME QDBEO
370
371
372 = 270;
] malloc ptr = malloc(size);
374 memset (malloc ptr,d,3ize+l) ;s
QJ DT | :J
11DA1600 | < 2
Emm‘ﬂiﬂm‘%m|mum|§_mm‘=ﬁm‘5mmm|ﬂ%mu = (Bp-~ =0
rriors + X % [RCRNSRR & v | e TR
-4 echptr Address o -3 4 -7 - B le-F | Address |o-3/2a-7 8-8|c-F| |
0000000011DASCO0 DI0003DC 00000000/ 000002D8 00000000 0000000011DASCO0 Rrld rrrr @ Trrr
0000000011DA5C10 00000000 0ogooogfl 00000000 11DRSCIC 0000000011DASC10 rrrr rrrr rrrr | 43%
0000000011DASC20 11DASCIC 11DAS 11DASE20 11DASC2C D000000011DASC20 43% 2=z 4=:0 43+
0000000011DASC30 11DASC2C 11DA! 11DASEBO 00000000 0000000011DA5C30 43=1 4=:0 43:° rrrr
0000000011DASC40 00000000 0009HD00 OF382A20 OF382AA0 0000000011DASC40 rrrr rrrr HID ¥
0000000011DASCS0 OF3BA000 1185800 FFOOFFOO 0300FC16 0000000011DASCS0 #lnr 4="p ¥r¥r 08
0000000011DASCE0 C1FEBCES 6E2E7 = C2ZE2E240 00000000 D00000D011DASC60 A8 e IFSK BSS rrrr
000000D011DASCTO 181RBEFF 000000 00000000 DO0D0000 D000000011DASCTO 1090 rrrEr . rrrr [
0000000011DASCE0 00000000 0000000 | 00000000 O0DD0O0D0 DD000000L11DASCE0 [rrr rrrr rrrr [X
0000000011DASCS0 00000000 4000000000 00000000 00000000 0000000011DASCS0 rrrr rrrr rrrr [
0000000011DASCAOD 00000000 00000000 00000000 D00000001ADASCAD [rrr [Frr [I[T rrrr II;
0000000011DASCBO 00000000 00000000 00000000 DD00000011DASCEBO [rrr [rrr [FrF rrrr ’
0000000011DASCCO 00000000 00000000 00000000 D000Q00011DASCCO [rrr [rrr [FrF rrrr
0000000011DASCDO 00000000 00000000 00000000 D000Q00011DASCDO [rrr [rrr [FrF rrrr ’
0000000011DASCED 00000000 00000000 00000000 D000C000L1DASCEOD [rrr [rrr [FrF rrrr g
0000000011DASCFO 00000000 00000000 00000000 D000Q000L11DASCFO [rrr [rrr [rrr rrrr
0000000011DASDO0 00000000 00000000 00000000 0000000011DASDE0 [rrr [rrr [FrF rrrr
0000000011DASD10 FFFFFFEF 00000000 00000000 00000000110a5010 KN 00 rrrer rrrr
0000000011DASD20 00000000 00000000 00000000 00000000 0000000011DASD20 [rrr [rrfr [FFF Irrr
0000000011DASD30 00000000 00000000 00000000 00000000 0000000011DASD30 [rrr [rrr [FrF Irrr
0000000011DASD40 00000000 00000000 00000000 00000000 0000000011DASD40 [rrr [rrr [IFF rrrr
0000000011DASD50 00000000 00000000 0000000011DASDS0 [rrr [rrr [IFF rrrr
nnnnnnnn11nnr.nén nnnnnnnn nOnnnnnnn nnnnnnnn11nn:nén - e - - QJ

IBM z/Transaction Processing Facility Enterprise Edition 1.1

© 2013 IBM Corporation

IBM Software Group -

Debugging heap corruption

» While the TPF malloc view is a great way to learn about your
malloc blocks and effectively shows you what corruption has
occurred, it cannot indicate when that corruption occurred.

* The perform heap check on stop feature tells the debugger to
detect any heap corruption whenever the execution of the
application is stopped.

* When heap corruption is detected, a pop up window is displayed
Indicating that corruption has been detected.

* However, the user must step or run the application such that the
application is periodically stopping.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Debugging heap corruption

* To turn on the perform heap check on stop feature, right click
In the stack frame and choose perform heap check on stop.

I IR T |

=5 Platform: ZTPF Connection: 9.57.13.89:1119 Al
- B Thread:TPF Thread OF378000 (Stopped) i
: 4 =cution Pt. : : Ox0
[{ZCopy Stack cirl+C
R OTL Find... Cchrl+F
QDBO : gdb0.0 : QDB

= invokeDriver : cvzz.o =%, Drop To Frame

J Process: OF378000 Program: T_Step Into F3
= 5tep Over F& ~
qdbOer.cpp 52] _f5tep Return F7 =g
Line 365 Column 1 =¥ Use Step Filters
———+-———l-———4————2——— " "
35S Show Source: 3
356
357 [Jb»Resume F8
358 [0 Suspend
359 [Terminate ctrl+F2
222 B, Terminate and Relaunch
. £-¥ Disconnect
Jag &Remove All Terminated
364

» eS| @ Relaunch

366 4 Edit 9.57.13.89.qdb0... 5 write past fh

367 EyEitSnl.rceLochp..
368 Lookup Source
369 CTL-75 ") ;
T B, Terminate and Remave)
371 [j Terminate Disconnect Al
372 .
Properties
373
374 Map Memory Element

Show Stopping Thread

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Debugging heap corruption

« When corruption is detected, as in this case where a step into
each line occurred a pop up appears like this:

e) B B-IRRT | B H-TCO
9513.59qdau[lrmngnmulznemgs;assm] -~
.Iﬂ'natﬁm ZTPF Connection: 9.57.13.89:1119
Eﬂ?meadrwmeadwmontsmpped)
;----_Emrumpt. : Dx0000000403A1F4CA
= errCases ; qdbOer.o : QDBO

= QDEO : qdb0.0 : QDBO

?NEE invokeDriver : cvzz.o @ CVZZ

L= CVEZEZ : ovaz.o : CVEZ

=]

- h;.« 5__'-:

& qdboer.cpp 32 =B

Line 3&7 Column 1 Insert Browse

last_bgte = (char *)malloc pt

free (malloc ptr);

369 QDBO_printf ("Did not get CTL-75 ");

370 break;

371 case 28:

372 size = 270;

F7E malloc ptr = malloc(size):

374 menmset (malloc ptr, 0, size+l);

375 QDE0 _printf ("attempting to write past the e of mallo
376 free (malloc ptr): EJ
377 RDBO printf("Did not get CIL-75 "};

break;

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Debugging heap corruption

« CTL-75 dumps occur in the control program and as a result, you
cannot run the debugger to the dumping location or use register by
system error for these dumps.

« However, Iif your heap corruption is writing past the fence (a typical
case) you can use the heapcheck system feature in conjunction with
the debugger to quickly locate the problem code.

* Heapcheck mode causes every malloc to use at least one 4 K frame,
the malloc area with the fence is located at the end of the 4 K frame,
and the next 4 K frame Is invalidated.

* When the application writes past the fence in corrupting the malloc
buffer, the application will start to write over the invalid frame and an
OPR-4 will occur. The application must write beyond the fence
because overwriting the fence is not enough to cause the OPR-4.

« As a result, you can debug the application, clear the breakpoints, and
run to the OPR-4. Or you can register the OPR-4 in the system error
registration.

arprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPFE Users Group - Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Debugging infinite loops

» CTL-10 dumps occur in the control program and as a result the
debugger cannot stop the application at the location of the error.

* The debugger attempts to do infinite loop detection.

* However, the application must periodically stop in order for the
debugger to perform its detection. This is because the debugger
attempts to allow the application to run as fast as possible to
provide the optimal debugging experience. As a result, the
Infinite loop detection cannot occur without you setting
breakpoints or stepping of some sort.

* The debugger attempts to make you aware of dumps that occur
when the application dumps.

arprise Platform:Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

© 2013 IBM Corporation

TPE Users Group = Spring 2013

| IBM Software Group

Debugging infinite loops

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPE Users Group = Spring 2013 © 2013 IBM Corporation

Debugging infinite loops

« Use ZDMAP to determine as low of an address as possible and
as high of an address as possible. Doing a ZDMAP a-XXXX
where XXXX is the address in R15 may be a good way to
narrow in on a module to create breakpoints around. Notice that

the value in R15 in the figure above falls into the range of QDBO
In the figure below.

* This gives us an address range of: 409A1AC50 to 409A1AC50
+ AAE4 (409A25734). Now start the debugger on your

application and use these two addresses to create address
breakpoints.

AIM Ente|rprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -
Debugging infinite loops

Em"“""'“é“"| & I""""'j‘ﬂh“]: = u = TPF"E"“C‘ €2 Add an Address Breakpoint
K 5% |68 m . . .
% i | Required information

| Go to File Sets a breakpoint to stop execution at a spedfic address

Add Breakpoint

Edit Breakpoint... Enfry...

Line... Address or expression: | 0x409425734

k] Enable Load...
[] Disable Macro...
B remove Watch. ..
% Remove Al Stop At All Function Entries

Select Al Cirl+A
Copy Cirl+C
(B Paste Cirl+v
‘09 Export Breakpoints. ..
@ Import Breakpaints. ..

- <gack [Next> || _Fnsh || cancel |

[BB Summary | £ Modules H=Vaid:le5‘[€|TFFMalnc

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Debugging infinite loops
* Infinite loop detection is controlled by a time out that you can
set. The default setting is 30 seconds. You can use the

TPFTimeout debug console command to shorten the time you
will need to walit.

* Next push the resume button and walit the specified number of
seconds. A pop up will appear indicating that a possible CTL-10
has been found as shown on the next slide.

* The debugger will show you the current stopping location for you
to investigate. You can continue to debug as normal or press
the resume button to run to the next possible infinite loop
detection point.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group

Debugging infinite loops

Fle Edt Navigsts Search Frojset Run Window Hslp
iN-EE& A iQ- (- b

I B Remote System Exlorer |3, ToF Debug | I TPF Toolkit

4 9.57.13.89.qdb0 [Incoming Remote Debug Session]

= (1 Platform: ZTPF Connection: 9,57, 13.89: 1122

b G R L R R S
[#1# Address [000000D409A25734:QD80::59185]

Y

Jebug Engine M

Column 1 Insert Browse
- 1 2 3 4 5
303 QDBDC1F1 (type, caseNum) ;
304 break;
305 case 21:
3086 f*errl 1%/
307
308 while(1 }
309 i
310 Jt+t:
513 Aty
312 L1++;
R R e G R e G|
312 }
315
316 while{ 1 }
317 {
318 k = (int¥*) malloc(10);
319 J++r
320 it++r EJ
321 1++;
322 i=1/3 + 1*j - i:
323 errCDebugInfo(type,0)
324 free (k) ; !]
LT ——]

L2 pebug Console Xlﬁﬁm‘@m|%m|§‘_mﬂc =M‘Emm|q§mhm| i] Munn-y|

8@ %

DBUGS8145I Debug Information for module UCST is available in the BSS subsystem in
location /tpfdbgelf/uc/ucst/20090304164839. Loaded on Tue Mar 16 10:47:45 2010.
DBUG21541 UCST is not part of your application. It is used by the TPF Debugger
to evaluate expressions.
TEFTImeout v-3
DBUGS0S5I ECE F33%0000 processing "TPFIImeout v-3"
DBUGB065I The z/TPF Debugger time out value has been set.

DBUG80&64I Debugger time out value is 0x3 seconds.

DBUGS164W Execution may have stopped between statements

gj

| 42

[Ee
[glmmmm».a.&».a-h.a
‘I WhEOWMm-1608 W

Debug Engine C | TPFTImeoutv-3

AIM Entelrprise Platform Software

TPE Users Group = Spring 2013

IBM z/Transaction Processing Facility Enterprise Edition 1.1

© 2013 IBM Corporation

IBM Software Group -

Debugging memory leaks

» The z/TPF debugger provides a few features to help identify
memory leaks in the application. However they do require that
you do some investigating because the debugger cannot
determine when a malloc block is no longer used.

 The ECBHEAP debug console command allows you to gather
Information regarding the use of heap by the application.

* The ECBHEAP STATS debug console command shows how
much memory is in use and what types of memory is in use. In
the slide that follows, notice that no 64 bit memory is in use.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

| IBM Software Group

Debugging memory leaks

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

- & TPF Debug - \RemoteSystemsTempFiles\LINUXTPF.POK.IBM.COM\home'jwisnie\maint\sabre03292010\debug\qdb0.4
Debugging memory leaks e o e s 1
Nw b= = S AR S R SRR

£ & Remote System Explorer | 4 TPF Debug | [TPF Tookit

e e AL L P
* The ECBHEAP CNTS [sortent] ez

|HEAF COUNI TAELE (AFF) for all

debug console command

Y NJEC|E!Ramwecuude|quahhad| @ Memory

0 processing "ecbheap cnts"
COUNTS DISPLAY.

0x00000010 1
0x00000020
I 0x00000028
provides the counts or a
0x00000048

0x00000070

malloc entries based on size. e

It can sort based on size or e

0x00000858

L e I s B T I S

0x00002008

based on the number of .. e W
malloc entries of a given size.

-

|NOTE: Enter "ECBHEap HELF" for ¢ lanation.
lecbheap cnts sortcnt
DBUGE095I ECB F3A8000 processing "ecbheap cnts sortcnt™
DBUG8166I START OF ECE HEAP COUNTS DISPLAY.

|HEAP COUNT TABLE (APP) for all memory types
Size Count

0x00000010
0x00000020
0x00000028
0x00000048
0x00000070
0x000000D0
0x00000130
0x00000170
0x000001E0
0x000002D8
0x00000858
0x00004038
0x00000038
0x00000258
0x00002008
Tot = 0x0000BY9&60 21

DBUGS167I END OF ECB TRACE COUNTS DISFLAY.

[NOTE: Enter "ECBHEap HELP" for table explanation.

L e I e S = S =

w

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Debugging memory leaks

* One way to use this feature is to step over a function, perform
some action, and so on and then look at the ECBHEap counts to
see what has changed. Make note of what memory sizes are
not getting freed. Use the TPF malloc view to choose a given
size entry and use the selected block pane to know what code is
allocating malloc of that size.

» Another thing to look at is which part of the application is using
the largest blocks of memory. Use the malloc view to examine
the malloc blocks further (for example sort the malloc view data
by size and Look at largest blocks)

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Custom communication packages
* Topics

Using tpf flag for debug

Using CDBX_DebuggerTBTRegistrationTerminalUserExit

Using tpf flag for debug and
CDBX_DebuggerTBTRegistrationTerminalUserExit together

User defined registration: The ultimate solution

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Custom communication packages: Intro

* When a user registers by LNIATA, IP address, or LU, TPF
marks ECBs as candidates for trace by terminal debugging.

* If those candidate ECBs enter the registered program, function
or etc, a debugger session is started.

z/TPF Mainframe

Trace by terminal candidate

User Workstation .
determination
TPF Toolkit v 4
(di:?gr?,ger <«—TCP/IP—» z/TPF Internal
Communications
(ECB Creation Code)

v

Application Code

AIM Ente‘rprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Custom communication packages: Intro

« If you implemented a custom communication package (TN3270,
Inter-processor communications, etc), it is possible that the
ECBs in your system will not be marked as candidates for trace
by terminal debugging.

User Workstation z/TPF Mainframe
TPF Toolkit
(debugger «—TCP/IP—p
client)
. : External z/TPF
Custom Communications Proprietary :
(-El:r?sz()?Ig <4—TCP/IP—p Packages <4—Communications —p ot[r;]aelp:‘)r?flr: ae dc;rd
(ECB Creation Code) Protocol
¢ system
Application Code

AIM Ente‘rprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

Using tpf _flag_for debug

« tpf _flag_for debug is a system service that allows your custom
communication package to mark ECBs as candidates for trace
by terminal debugging.

z/TPF Mainframe

User Workstation Trace by terml_nal _candldate
determination
TPF Toolkit
(debugger «—TCP/IP—p ¢ ?
client) tpf_flag_for_debug
¢ . ? , External z/TPF
Custom Communications Proprietary :
gggg;g <— TCP/IP—» Packages <~ Communications —» ot[?]aelpgi?f{g ae d(;rd
(ECB Creation Code) Protocol
¢ system
Application Code

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Using CDBX_ DebuggerTBTRegistrationTerminalUserExit

» This user exit is in the routine that marks ECBs as candidates
for trace by terminal debugging. It allows you to inspect the
ECB and provide a custom terminal to the debugger.

* For example, If you z/TPF Mainframe
have implemented CDBX_DebuggerTBTRegistat
TN3270 support, this ®(Custom terminal

. determination)
user exit could return [user workstation I .
an LNIATA for an ECB TPF Toolkit Trace by terminal candidate
created by your (debugger «—TCP/IP—p, determination
lient
package such that the ctent v 1
z/TPF Internal
debugger USer can Communications
register for trace by (ECB Creation Code)
terminal by LNIATA. v
Application Code

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Using tpf flag for debug and

CDBX_DebuggerTBTRegistrationTerminalUserExit together

» Using these two features together allows your custom
communications package to call to mark the ECB as a candidate
for debugging and allows you to specify the terminal to use.

z/TPF Mainframe

CDBX_DebuggerTBTRegistrat
ionTerminalUserExit
(Custom terminal
determination)

v i

Trace by terminal candidate

User Workstation o
determination
TPF Toolkit
(debugger «—TCP/IP— ¢ ?
client) tpf_flag_for_debug
¢ . ? . External z/TPF
Custom Communications Proprietary .
(-25232;2 <4— TCP/IP—p Packa_ges <4—Communications —p oirr\]aelpgrfaflrg : dc;rd
(ECB Creation Code) Protocol system

v

Application Code

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

User defined registration: The ultimate solution

» This feature allows you to start the debugger virtually anywhere in your
application under the conditions you define.

» For example, the user could register: their ID, a transaction type, a
transaction identifier, and etc to debug only the ECB they need to debug.

« See the developerworks article, the redbook or the debugger user’s guide for
an example implementation.

User Workstation z/TPF Mainframe
TPF Toolkit
(debugger «—TCP/IP—p
client)
TN3270 Custom Communications Proprietary Er::taei;?zrigsr
¢— TCP/IP—» Packages €¢— Communications —>
Console . other offloaded
(ECB Creation Code) Protocol
¢ system
Application Code <« User defined registration

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

User defined registration: The ultimate solution
* Define conditions to test

* Modify the file <TPF Toolkit install dir>\Config\TPFSHARE\Debug
Registration\customDebugRegTypes.xml to

+ define the names of the conditions (parameters) to be tested
» define the name of the registration type
- define the registration type id

» Restart the TPF Toolkit

<CUstomRegistratiomn=
<id=101</7d>
<namex=MyRegistration</namax-
<pdrameter=User Id</parameter>
<parameter>=Message Type«/parameter>
<parameter>=EEROUT</parameter=
<pdarameter>value_of_i</parameter:=

</customRegistrations

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

User defined L —
New Debug Registration Session #q

registration: e formton i d oo WG
The ultimate solution I

Workstation name | = Workstation TCP/IP address | = |
* The names of the T |
CondlthnS WI” be (*)LNIATA (_)IP Address (LU Name

shown to the user with [o——— =
a text box for the user .
MmsageTwﬂQuerv

|
to provide the e :
comparison value. tohe oty [cd |

[]Trace aeated entries
[] Trace global variable initialization functions

User token |
~ Condition
ECE field or reqgister to compare Condition Value to compare
| | |Equal to V| | |
[Limit comparizon to: |:| bytes (e.g. X'145F' for Hex, or C'test’ for Char, etc.)
- Session registration :

|:| Automatically register new session upon creation

@ <gack [mext> || Emsh || cancel

arprise Platform:Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPFE Users Group - Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

User defined registration: The ultimate solution

* Define where to test the conditions: The next thing that you need to do
IS to modify your application to call the test program with the conditions in
your application to be tested against the comparison values registered by
the user. C/C++ and Assembler interfaces are provided.

» The first line of this block of code uses the performance-sensitive
macro tpf UserDefRegTypPerfCheck to see whether a given user-
defined registration type is actively registered on the system. Because
the user-defined registration code is contained within a block that is
encapsulated by the performance-sensitive macro, this code can be
left in your production-level code for test points that can be used in the
future.

* Now define an instance of the tpf_UserDefRegTypStruct structure and
populate it with the registration type ID, a resolving function (in this
example, we'll just use the user exit provided), and the comparison
values to be passed as parameters.

« Lastly, you call tpf UserDefRegTypHandler.

arprise Platform:Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

| IBM Software Group

User defined registration: The ultimate solution

 Build and load your application.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

User defined registration: The ultimate solution
* Define how to test the conditions

* Implement the code that performs the test of the conditions, for
example in the user exit code cdbxud.c. It can be defined in
assembler, in other code locations and etc.

* The contents of the UDRT _ptr (the state of the executing ECB) are
compared to the contents of tbu_entry (the comparison values
registered by the user as stored in the debugger registration
entries).

» Notice that you can compare the registered variable against the
values in the ECB, system or etc.

« The parameters are passed as void pointers so that your code must
know how to interpret the comparison values, such as using
functions like atol, sscanf, and etc.

« Set rc to true to tell the debugger to start.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

| IBM Software Group

User defined registration: The ultimate solution
« Build and load your code that tests the conditions.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

User defined registration: The ultimate solution

» Using user-defined registration

» Register your user-defined debugger registration entry as you
would for other registration types and then run your application.

* When the debugger is notified by your condition-testing code
(cdbxud.c) that a debugger session should be started, the
debugger will stop the application at the next line of code following
the code snippet in your application that passed in the state of the

application.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

User defined registration: The ultimate solution

£ TPF Debug - ‘RemoteSystemsTempFiles\LINUXTPF. POK.IEM.COM\home\jwisnietmaint\PJ4097 4\debug\gdbl.cpp - IB
File Edit MNavigate Search Project Run Window Help

L B s e ml R s D DR o R S e e

M (0 Profiling [z Code Coverage ﬂRanums-;slmEﬂmr & TPF Tookkit

%5 Debug 12 | Retoe Il W R D6

= 4 9.57.13.89.myreg [Incoming Remote Debug Session]
=1 Platform: ZTPF Connection: tpfosa1h89. pok.ibm.com: 1065
. E-® Thread:TPF Thread 1034E000 (Stopped)
----- = Execution Pt.: : 0x000000009DCEB216
= QDE0 : qdb0.o -00 -g2 : QDEOD : BEBEE
= invokeDriver : cvzz.o 403 g2 : CVZZ : BASE
‘2= CVEZ : ovzz.o -03 -g2 : CVIZ : BASE
------ .ﬁ Process: 1034E000 Program: QDBO

&l qdb0.cpp 2
Line 138 Column 1 Insertc Browse
I———+————1————+————2————+————3————+————4————+————5————+————6————+————T————+————B————+————9

127 if (tpf UserDefRegTypPerfCheck (101))
128 {
128 struct tpf UserDefRegTlypStruct temp = {0};
130 temp.udrt_id = 101;
131 temp.udrt funcptr = (tpf UserDefRegTypUserExit *)cdbxud user exit;
132 temp.udrt _parm? = (voild®)reglype;
LEE temp.udrt parmd = (vold*)&1;
134 tpf UserDefRegTypHandler (&temp) ;
135 }
138
137 f* display help manual if parser error *

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

User defined registration: The ultimate solution
* Example Uses

» Thousands of ECBs might be started per second in a given
program (CRETC, network traffic, etc), and you might need to
debug only one specific ECB (for example, the one ECB out of a
thousand with O on data level 1).

» Perhaps your system has a proprietary communication package
that requires the user to register multiple pieces of information.

« Maybe you need to debug a particular location in code where a set
of conditions occur, such as a single entry point transaction
application where a query is performed on a particular account
number.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

User defined registration: The ultimate solution
- APAR PJ36059

« PUT6
* TPF Toolkit Level v3.4.3

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Determining code path
* Topics
 Using trace log and the code coverage tool together
» Debugger: stop on all functions and high level breakpoints

« Debugger: ECB Summary view, animated step into, execute
shortcuts

» Debugger: optimized debugging vs non-optimized debugging

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Using trace log and the code coverage tool together

» A trace log is an integrated macro and function trace that
provides you parameter values, return values, macro call details
and the path through the application code at a high level.

* The code coverage tool allows you to see what source lines,
macros and instructions your application has executed. The

code coverage tool gives you lower level detail allowing you to
Infer code path.

» Using trace log and the code coverage tool together can help
you better understand the code path of your application.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Using trace log and the code coverage tool together
1. Register and start code coverage for your application.
2. Register the debugger for the entry point of your application.

3. If necessary, change the number of trace log sessions allowed
on your system with ZASER TRLOG-X

4. Start your application, the debugger starts.

5. Turn on trace log

Poebug 32| RO I B | B2 | BB L0

= 4" 9.57.13.73.dfbriver [Incoming Remote Debug Session]

=@ Platform: ZTPF Connection: tpfosa th73. pok.ibm. com: 1026
= Thread:TPF Thread 10566000 (Stopped)

= Execution Pt. : : 0x0000000400D8EBS4

= vz ovzzo: OVEIZ
----- pil Process: 10566000 Program: QXHP

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Using trace log and the code coverage tool together

6. Click the resume button to run your
application to completion.

7. Double click the report file created In
the Files subsystem (GUI FTP interface
to the file system on TPF)

8. The report file opens in the editor
window showing you the trace log
contents. The default view shows you
functions and macros called in an
Indented fashion to show the call stack.

See next slide.

AIM Entelrprise Platform Software

IBM z/Transaction Processing Facility Enterprise Edition 1.1

0= Outiine ‘='EI|
L8| o B|IGST

E.ﬁ Mew Connection '

----- -5-. Linux on System z ...

Foee Lo dforiver
Eu_ll}g Code Coverage
- B3P dbriver

o March 12, 2012 8:18:14
Eg Performance Analyzer

|1y SOAP Message Handlers

E!ﬂ TPF Dump Viewer

2@ Provider Web Services

E-“i Consumer Web Services

=] ECB Launcher

EI:I proc

EI:I sys
I S 1] 54 15 1ECDE46C35 Lreport
. fip.log0&1508

TPE Users Group = Spring 2013

© 2013 IBM Corporation

IBM Software Group

Using trace log and the code coverage tool together

) conpiEcoEsCIsLrepat L -0

: =]

Function call or Macro | Trace Group | Load Module | ObjectName | PSW | IS| ObjDisp| Time stamp |

B @ strlen IBM_DEFT QXHP PSW 1 D9A234 Mar 12, 2012 08:28:05.751712 =
& return from strlen IBM_DEFT QXHP PSW 1 D9AZCS Mar 12, 2012 08:28:05.751726
= ® memcmp IBM_DEFT GQXHP PSW 1 D9A204 Mar 12, 2012 08:28:05.751732
& return from mememp IBM_DEFT QXHP PSW 1 D9AZSE Mar 12, 2012 08:28:05.751740
= @ strlen IBM_DEFT QXHP PSW 1 D9A294 Mar 12, 2012 08:28:05,.751747
@@ return from strlen IBM_DEFT QXHP PSW 1 D9AZC8& Mar 12, 2012 08:28:05.751758
= ® IPRSE_parse IBM_DEFT CTBX crfh PSW 1 24 Mar 12, 2012 08:28:05. 751769
B ® setGrammarOptions IBM_DEFT CTBX afh PSW 1 4FC Mar 12, 2012 08:28:05.751770
B @ _ ctype_b_loc IBM_DEFT CISO ctype-info PSW 1 24 Mar 12, 2012 08:28:05.751817
4 return from __ctype_b_loc IBM_DEFT CISO ctype-info PSW 1 72 Mar 12, 2012 08:28:05.751818
< return from setGrammarOptions IBM_DEFT CTBX afb PSW 1 870 Mar 12, 2012 08:28:05.751819
Ep.@ IPRSE_parseString IBM_DEFT CTBX afd PSW 1 2750 Mar 12, 2012 08:28:05. 751820
% @ IPRSE_getToken IBM_DEFT CTBX afc PSW 1 24 Mar 12, 2012 08:28:05.751821
B @ _ ctype_b_loc IBM_DEFT CISO ctype-info PSW 1 24 Mar 12, 2012 08:28:05. 751822
4 return from __ctype_b_loc IBM_DEFT CISO ctype-info PSW 1 72 Mar 12, 2012 08:28:05.751823
B @ _ ctype_b_loc IBM_DEFT CISO ctype-info PSW 1 24 Mar 12, 2012 08:28:05. 751824
43 return from __ctype_b_loc IBM_DEFT CISO ctype-info PSW 1 72 Mar 12, 2012 08:28:05, 751825
B e _ ctype_b_loc IBM_DEFT IS0 ctype-info PSW 1 24 Mar 12, 2012 08:28:05. 751826
@ return from __ctype_b_loc IBM_DEFT CISO ctype-info PSW 1 72 Mar 12, 2012 08:28:05. 751826
B ® _ ctype_b_loc IBM_DEFT CISO ctype-info PSW 1 24 Mar 12, 2012 08:28:05. 751828
& return from __ctype_b_loc IBM_DEFT CISO ctype-info PSW 1 72 Mar 12, 2012 08:28:05. 751828
B ® _ ctype_b_loc IBM_DEFT CISO ctype-info PSW 1 24 Mar 12, 2012 08:28:05, 751829
4@ return from __ctype_b_loc IBM_DEFT IS0 ctype-info PSW 1 72 Mar 12, 2012 08:28:05.751830
B @ _ ctype_b_loc IBM_DEFT CISO ctype-info PSW 1 24 Mar 12, 2012 08:28:05. 751830
4 return from __ctype_b_loc IBM_DEFT CISO ctype-info PSW 1 72 Mar 12, 2012 08:28:05. 751831
B @ _ ctype_b_loc IBM_DEFT CISO ctype-info PSW 1 24 Mar 12, 2012 08:28:05.751832
< return from __ctype_b_loc IBM_DEFT CISO ctype-info PSW 1 72 Mar 12, 2012 08:28:05. 751832
B @ _ ctype_b_loc IBM_DEFT CISO ctype-info PSW 1 24 Mar 12, 2012 08:28:05.751833
43 return from __ctype_b_loc IBM_DEFT CISO ctype-info PSW 1 72 Mar 12, 2012 08:28:05, 751833
B e _ ctype_b_loc IBM_DEFT IS0 ctype-info PSW 1 24 Mar 12, 2012 08:28:05.751834
@ return from __ctype_b_loc IBM_DEFT CISO ctype-info PSW 1 72 Mar 12, 2012 08:28:05. 751835
49 return from IPRSE_getToken IBM_DEFT CTBX afc PSW 1 CDC Mar 12, 2012 08:28:05. 751836
B @ newsiring IBM_DEFT CTBX orfd PSW 1 1280 Mar 12, 2012 08:28:05.751836

= @ clloc IBM_DEFT CTIS cealoc PSW 1 52 Mar 12, 2012 08:28:05, 751839 Q|

Property | value |
Trace Log] Scu\:e|

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Using trace log and the code coverage tool together

9. Examine the function/macro parameters and return values,
search or filter the results in an LPEX editor view, press the
analyze button to see statistics about what macros were used,
memory allocation, segments entered and etc, and generally
understand the overall path of execution of your application.

10. Stop and save the code coverage session and run source
analysis.

11.Use the code coverage view to navigate to modules, objects,
functions and source files of interest. Examine the execution
statistics.

12. Examine the source lines or instructions executed. See next
slide.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Using trace log and the code coverage tool together

case FLIGHT DE:
stroct gxhf parms *flight parms; /f Create Parameter Struct

pr ptr—>IPRSE walue) ;

case INIT FUNC:
case BUILD FUHC:

case IBUTLD FUHC: f/D18438

AIM Ente|rprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1 _
TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Using trace log and the code coverage tool together
« Use this methodology to...

« learn about the code path of an application you don’t know.

» learn why your code fix did not work properly. For example, was
your new code even executed?

» determine the best place to start a debugger session.

« understand deviations between two slightly different situations.
For example, run both scenarios separately as described above,
use the code coverage comparison tool to identify where the
paths deviate, and then use trace log to see parameters and
return values to understand why the deviation occurred.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Debugger: stop on all functions and high level breakpoints

* You can use debugger features such as stop on all functions
and high level breakpoints to understand the execution path of
your code.

1. Register the debugger for the entry point of your application

2. Set up stop on all functions and/or other high level
breakpoints.

3. Use the resume button to run from location to location to
understand the path of execution of your application.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Debugger: stop on all functions, high level breakpoints, etc

« Stop on all function entries behaves as if you set a breakpoint
at every C/C++ function entry point (including TMSPC and
PRLGC) and BAL external entry points.

£ TPF Debug - \RemoteSystemsTempFiles\LINUXTPF.POK.IBM.COMihome\jwisnieimaint\sabre03292010\debug\qdb0.cpp - TPF Toolkit Enterprise

File Edit Mavigate Search Project Run Window Help

PCE-EH S R Qe Y A R TR N R R

i EH Remote System Explorer ErPFTmHt |
%5 Debug 23 | Kb] W Bt RSB L T " O @ sedpoints 53| 9= variables | f 1P Malkoc| =0

= 4 9.57.13.89.qdb0 [Incoming Remote Debug Session] x%'ﬁ\| I ?D| BER

- Platform: ZTPF Connection: 9.57. 13.89: 1084

. E-gf® Thread:TPF Thread OF384000 (Stopped) :
= Ewecution Pt. : : Ox0000000409A1B3E2 = Go to File
----- f QDBO : gdb0.0 : QDB Address. ..
----- f invokeDriver : cvzz.o @ CVZZ Edit Breakpoint. .. Entry...
: == CWEL rovez.o CVEZ Line...
"3 Process: OF384000 Program: QDBO b Enable Load...
[] Disable Macro...
b0 5 | =5]| | % renove Watch..
Line 139 Columnn 1 Insert Browse ¢ Remove Al Stop At All Function Entries
I———+————1————+————2————+————3————+————4————+————5————+————6————+————']'————+————B————+——- Select All
133 J* Call the parser */ g] Cnpy
134 EE Paste
135 num parms = IPRSE parse (input ptr,grammar ptr,&parse results,
136 IFRSE ALLOC | IPRSE PFRINT , "DBUG"):; ‘90 Export Bre,
137 = 8
138 /* displav help manual if parser error i -
»
140 {
141 dispHelpn ()
142 H
143
144 !’*****‘A'I'I'I'I'I'I'I'I'I'I'I'I'I'************************************
145 I */
146 I */

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPFE Users Group - Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Debugger: stop on all functions, high level breakpoints, etc
» Load breakpoints stop the execution of your ECB at the entry

point of a module the first time it is called. Such as specifying *

for the module.

i1 Registers |) Modules = ©: Add a Load Breakpoint
x%@@\l|lﬂm|{fp|§iv Required information

Sets a breakpoint to stop execution when a dynamically loaded library is loaded

Library name: | =3

4 Go to File User label (optional): |

Add Breakpoint Address...

Edit Breakpoint. .. Entry...

Line....

2 Ensbie
[] Disable Macro...
X Remove Watch...
¢ Remove Al Stop At All Function Entries

Select All Cirl+4
Copy Cirl+C
(B Pas Cirl+v

e
a5 Import Breakpoints...

f‘"g Export Breakpoints. ..

drprise Platform Software

®

<gack | mext> || Finsh || cancel

IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPFE Users Group - Spring 2013

© 2013 IBM Corporation

IBM Software Group

Debugger: stop on all functions, high level breakpoints, etc

« Macro and Macro group breakpoints stop on the execution of
macros. Macro groups such as ENTER (all ENTxC and
BACKC), DFALL (all TPFDF) and ALLSVC may be particularly

useful in this capacity.

9= Variables | f[2 TPF Malloc = O

XR@AIw | EERT

R AP0 5 top at all function entries

£ Add a Macro Breakpoint

o Go to File
Add Breakpoint Address...
Edit Breakpoint... Entry...

Line...

k] Enable Load. ..

[] Disable

¥ remove Watch...

% Remove Al v Stop At All Function Entries
Select all Cirl+4

Copy Crl+C

[E Pas Cirl+v
-

L rﬂ(t Breakpaints. ..

o> Import Breakpoints. ..

drprise Platform Software

Required information

Sets a macro breakpoint

Executable (Optional)

- M
Object (Optional)

- M
Macro

) Macro | y|
(*) Macro group | @
@ <gack [mext> || Ansh || cancel

IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPFE Users Group - Spring 2013

© 2013 IBM Corporation

IBM Software Group -

Debugger: ECB Summary view, animated step into, execute shortcuts

« Suppose the code path of your application is less important to
the debugging of a problem than the current state of the ECB,
such as in debugging a recursive program.

1. Minimize the editor view.

2. Arrange other views to view the state of the application at a
glance such as the ECB Summary view, SWOOSR view,
DECB view, variables view or etc. Ensure the debug view is
visible.

3. Use stop on all functions and high level breakpoints
previously discussed and watch the state of the application
change. Or use execute shortcut keys to execute the
application manually. Or use animated step into to walk
through your application step by step automatically. Or use
step debug to debug a small set of applications.

arprise Platform:Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group

Debugger: ECB Summary view, animated step into, execute shortcuts
- ECB Summary and the animated step button for automatic stepping.

TPF Debug - .1
File Edit Mavigate Search Project Run Window Help
A== R R R = I CIE =R = e
[Z Remote System Explorer | %% TPF Debug | [TPF Toolkit
e 0 W L@t @ @ S T - 7 = OB s summary 5 |) Modues| IEHEE RS
= 4 9.57.13.89.qdb0 [Incoming Remote Debug Session] ~L
&)
E"ﬂ_ﬂp‘ﬂfﬁ’"’":z PP Connection: $.57.13.89:1112 0000000000000000 R1 0000000000000000 R2 D0D00D000F334F2]
=-qf¥ Thread:TPF Thread OF345000 {Stopped) R3 000000000F334020 Re 0000000000000000 RS 000000000F334F2)
RE 0000000000000000 R7 0000000011CEBETSE RS 000000000932B07,
qdb3 : gdb3.0 : QDB3 R 000000000F300000 R10 0000000011C6BET0 R11 000000000932BC4|
qdb2: gdb2.0 : QDB2 R12 0000000000002000 R13 0O000000ODEC4C2F3 R14 000000000000200)
expCases : qdb0xp.o : QDBO R15 , 000000000006090A
| QDO : qdb0.0 : QDBD PSW , 4715100080000000 A 000000000332B0EC
er : cuzz.0 CV77 J S]
= mokeler oo — @ i [
Jlistinggdb3 2 8
e 22 5 Colm‘mz 1 Aasert = L = = ! W00 0102E4C7 004 00000000 008 B51AB350 012 005D0Z82 |
o E E E = E - E = E E = E] 016 00000000 020 005E0282 024 00020106 028 0OOS10FFF i
=
:z:z » ror b o] 032 CF040C0O0 036 00000192 040 01000000 044 00160017 =
ebu er river rogram. L
aaes - 2 e , 048 00000020 052 [E2D4D7C2 056 010000C2 060 80BO000O
|=
A O TreEEems ST EES W IR _) 064 00001164 068 00000000 072 00008400 076 04000000 &
4253 * T
« iptiom:
4254 * Descriptian:) FAP 0000000000000000 GLA 0240A000 HLD 00
amaE v 1. set up DECBs in 2 E-type programs 00000003 SUI 00 55U FF00
4256 * 2. defines various type of assembler
em o ISH 0001 CPD B GLY 02412000
AmEm o I0C 0001 OUT 010000 DET 0F302E84
azeE BAT 0000000D0DESESSES
4260 *
4261 * define various type of constant
amam O Name | CE1FAx | CE1FM= | CEiCRx | cEicT=| cEiccx sup| DcT |
000000000932B0EE 00ES 58F0 8BCC 4263 LITTEST1 L R15,=BL4'011000001001000010 Do 00000000 00000000 OF332E80 0021 017D 0o 00
000000000932B0EC OOEC 58F0 BBE3 4264 LITTEST2 L R15,=CL11'HELLO'' WORLD® D1 00000000 00000000 OF334000 0001 OFFF oo 00
000000000932B0F0 00FQ 58F0 EBBS 4265 LITTESTS L R15,=FL8'1123343130003" D2 00000000 00000000 00000000 0001 0000 00 00
000000000932B0F4 00F4 58F0 EBDO 4266 LITTEST4 L R15,=HL4'12345' D3 00000000 00000000 00000000 0001 0000 00 00
000000000932B0F8 00F8 58F0 BBEE 4267 LITTESTS L R15,=AL3 (LITTEST2-LITTEST1) D4 00000000 00000000 OF332A80 0021 0170 00 01
000000000933B0FC 0OFC 58F0 BBDE 4268 LITTEST6 L R15,=P'12.3' D5 00000000 00000000 OEAATOO0 0031 041F 00 01
0000000009328100 0100 58F0 BBF1 4269 LITTEST7 L R15,=Z2'13.5"' D6 00000000 00000000 OEAAFOOD 0051 OFFF oo 01
000000000932810¢ 0104 58F0 EBD4 4270 LITTESTE L R15,=E'13444.334' o7 00000000 00000000 00000000 0001 0000 00 oo
0000000009328108 0108 58F0 EBCO 4271 LITTESTS L R15,=D'134432456.1' o SEEETEG | OEinEern | Aosemern Ao Tem am o
000000000932810C 010C 58F0 EBAS 2272 LITTEST10 L R15,=L'343.21' - e e e W o
0000000009328110 0110 58F0 EBEQ 4273 LITIESTIL L R1s,=S (:) e e e o000 W o
0000000009328114 0114 58F0 EBDS g;: LITTEST12 L R15,=A(*) o8 | oooooooo | 0oooooon | oooooood | 001 2000 o0 oo
DC 00000000 0O0O0OOO 00000000 0001 0000 00 oo
2278 IDECE REGTRI DD 00000000 DO0O0OOD 00000000 0001 0000 00 o0
000000000932B118 0118 0A3B 2337 DECEC FUNC=CREATE, DECB=(R3) , NAM
DE 00000000 00000000 00000000 0001 0000 00 00
— _— .
(] I] DF 00000000 00000000 00000000 0001 0000 00 o0
[Bndugcm S@]Eﬁaam|ﬁmm|mm|ﬁ_mmc Eﬁw|5mm|%mum|ﬂm|lrmm| Z B m X % ued |c:>§DE='E]
!
0* | \ | ¢ stepping e

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013

IBM Software Group -

Debugger: ECB Summary view, animated step into, execute shortcuts

* TPF Toolkit provides short cut keys to issue execute actions
without clicking buttons which can help you to focus on the state
of your application:

* F5 — Step into

* F6 — Step over

* F7 — Step return
* F8 — Resume

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Debugger: ECB Summary view, animated step into, execute shortcuts

« step debug is a feature that allows you to limit your debugging
to a list of specified modules.

1. In the debug console, use the step debug set command to set up
the list of programs to limit the application stopping

_Eﬁaaﬂ EEE{B|mmm E_DETAC | 8(ALASC Emm|ﬂammmﬂ|ﬂm|irmm| £ﬁ|x
location /ftpfdbgelf/qgd/qdbd/20100326200537. Loaded on Tue Apr & 10:50:39 2010. !]

stepdebug setc—qgdbZ, gdb3
EBUGBI]BEI ECE F336000 processing "stepdebug set—qgdb?,gdb3™
BEUGE068T The STEPDebug S5Et command was successfiul.

Saved : No list i=s saved
List : QDB2,(QDB3

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPE Users Group = Spring 2013

© 2013 IBM Corporation

IBM Software Group -

Debugger: ECB Summary view, animated step into, execute shortcuts
2. Toggle on the step debug (step filters) button on

H %DPDD.£‘~T|§§}'?}.ﬂ:“é}_n{3%|@ﬁvvzﬁ:

=-o® Thread:TPF Thread OF 336000 (Stopped) ~

Execution Pt. : @ Ox000000000932B073

qdb3 : gdb3.0 : QDE3 T

qdbZ : qdb2.0 : QDEZ

expCases : gdblxp.o : QDB 'g
i
|

QDED : qdb0.o : QDBED
----- = invokeDriver ; cvzz.o ; CVZZ
----- = CVZZ:cvzz.o : CVZZ

3. Now use the step into button. It will only stop in the modules listed in the
step debug list or stop at any breakpoints that you've set.

H Siﬂhﬂﬂl&ﬁl%'ﬂ.@_ﬁz%|l__ﬁjﬁ-?=ﬁ

=5/ Thread:TPF Thread 0F 336000 (Stopped) -~

..... = qdb3 : qdb3.0 : QDB3 T
= qdb2: qdb2.0 : QDB2

..... = expCases : qdb0xp.o : QDBED i

= i

I

= QDBO0 : gdb.0 : QDBED
----- = invokeDriver : cvzz.o : CVZZ
----- = CVZZ:cviz.o: CVZZ

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Debugger: ECB Summary view, animated step into, execute shortcuts

« IMPORTANT NOTE: make sure you toggle off the step debug
(step filters) button when you are finished. The setting of the
step debug (step filters) button setting is saved. A pop up box
warns you the first time you press the step into button and it is
behaving as step debug. Do not ignore this warning! Many
users have thought the debugger was broken when they
simply forgot to turn this step debug feature off.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Debugger: optimized debugging vs non-optimized debugging

* The features used to determine code path can be used to debug
optimized code with or without debug information loaded.

* Once you have a high level view of your application, you can
begin to use other debugger features to narrow in on the source
of your problem.

< As you narrow in on the area of the problem, rebuild those
segments —O0 and load the code with debug information to have
an ideal debugging experience with all available variables and
linear code execution when stepping.

» Assembler code does not need to be rebuilt, just load debug
Information. You can also use the Remote Debug Information
feature to have the debugger automatically load the debug
Information for you.

arprise Platform:Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Hints and Tips

* Topics
* What code am | debugging?
» Debugger performance

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

What code am | debugging?

» The stack view can be used to see the loadset for each module
on the stack.

» The stack view also shows the compiler options for each object.

Fopebug 32| R 4T OB) M LT B 3D RS =

= i?ﬂﬂﬂﬂq&ﬂﬁmﬁmﬁ%@ﬂ&mﬂ]
=-af# Platform: ZTPF Connection: tpfosa1ha9.pok.ibm.com: 2725
=" uFThvead “TPF Thread 10354000 (Stopped)
. = Execution Pt. : : 0x000000009DC9S8FCE
QODBD : gdb0.o|-00 g2 | QDBD I:HI'I.I'EFlll
imvokeDriver : cvzz.q -03 92 | CVZZ | BASE
CVZZ i cvzz.q O3 g2 | CVZL | BASE

------ .E Process: 10354000 Program: QDBO

arprise Platform:Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

What code am | debugging?

* On the z/TPF system, use the ZDDBG DISPLAY DBGINFO-
prog command to see what debug information is available on
the system for a specific module. The loadset name is provided
SO you can ensure that your code has debug information.

AIM Ente|rprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

What code am | debugging?

 Click on a stack frame and look at the properties view to see the
compile time and other information.

Bhpebugpl R M De I W T R DRT &£-7°0
= 4§ 9.57.13.89.qdb0 [Incoming Remote Debug Session]
=-aff Platform: ZTPF Connection: tpfosa1h89.pak.ibm.com: 1023
= ﬂ? Thread:TPF Thread 10333000 (Stopped)
= Execution Pt. : : 0x000000009DDSFFCS
------ = invokeDriver : cvzz.o -03 g2 : CVZZ: B
------ = CVZZ: cvzz.o 03 g2 : CVZZ : BASE
----- p| Process: 10333000 Program: QDBO
= properties 53 HE ==
Property - Value |
Call Statement 41
Compile DateTime 20121102 13:55:11
Entry Address 9DDEFFSC
Function QDED
Module QDBO : BASE
Ohject qdb0.o <00 g2
Recursion 0o
Stack Frame 12C0F428
Stack Size 624

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Debugger performance

« Set up your Edit Source Lookup to perform well:

* Choose TPF project (limit the definition of project filters to a small set of
files) or Remote folder since they are known to perform better.

» Do not specify root directories (such as /ztpf/).
» Specify directories as close to source as possible.
» Specify as few paths as possible.

« Do not search for multiple matches unless it is absolutely needed. This
feature will search all directories and sub-directories on all paths for the
matching file name and present a list of all matches to the user.

* Do not search subfolders. Select the folders where your source exists
explicitly.

* If network performance is a drastic issue, copy source code to a local
location on the hard drive, remove all network paths and set the path to
this single local location. This will give the best performance in locating
files but introduces source file synchronization issues.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Debugger performance
« Open fewer debugger views.

» Give focus to views with static data (breakpoints, monitors,
modules, etc) to hide more dynamic views.

» Hide complex or costly views until you need them.
» Variables view if lots of variables are present.
« SWOOSR view
« ECB Summary view
« TPF Malloc view (hide the corruption detection column)

 Limit the use of labor intensive features such as perform
heapcheck on stop.

» Turn off hover expression evaluation: from the preference option
Window menu->Preferences->Run/Debug->Compiled Debug-
>Allow hover evaluation checkbox.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Debugger performance
* Define remote debug information directories well.

» Specify as few paths as possible

« Specify a small timeout value. If FTP must timeout on each system
and path and the timeout value is set significantly high, the user
may need to wait a long time for the timeout to occur for each
system and path (accumulating to a long wait time).

* If the network is performing poorly, load debug information by way
of the loaders instead of relying on the remote debug information
feature. Or use debugging techniques that do not require debug
Information to be loaded.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Starting the debugger effectively
* Topics

» Understand your application

* Debugging the right ECB

* Registration types

» Tips for registering on shared test systems

AIM Ente{rprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Understand your application

» The answer to the following questions determines how you must register the
debugger to debug the right ECB.

 How is my ECB started? Is this ECB started by a CREMC, CRETC,
TPF_fork, SWISC CREATE or so on? Is this ECB started by a
pthread_create? Or is this ECB started from a communications terminal
such as an incoming message on an LNIATA, IP or LU.

* How does my application behave? Does it create ECBs such as CREMC
and so on? Does it create threads? Are there events, LOCKCs, signals,
waiting for user input (ZPAGE), waiting for responses from another
system, and so on?

* What part of my application do | need to debug? Does it call global
constructors? Is a library malfunctioning or is the mainline path? Is a
system function or macro not returning the expected result?

* Where is the right spot in my application to start debugging such that I'm
close to the cause of the problem?

* Maybe you don't know your application in this level of detail. Do you know
a main entry point name, a library used, or so on?

arprise Platform:Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

Debugging the right ECB

* The z/TPF debugger is an ECB centric debugger meaning that
the ECB is debugged regardless of which code that ECB
executes.

* As you think about starting the z/TPF debugger, always be
thinking in terms of catching the right ECB that will execute the
code you need to debug.

* Use the determining code path functionality to understand the
application.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Registration types

* The second key to starting the debugger effectively is knowing
what features the debugger has, how to use them, and what the
limitations are in order to catch the right ECB.

* Register by program name — 4 char module name (wild cards are
supported).

* Register by function name — First execution of a function (wild
cards are supported).

» Register by SVC — First execution of a macro.

* Register by system error — start the debugger on an application
dump.

* Register by CTEST — start the debugger where ever CTEST is
coded in your application.

* Register by user defined registration — start the debugger where
ever you want under the conditions you define and register.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Registration types

* Most types of registration provide the following options.

* TPF terminal — acts as a filter in that only the ECBs with a matching
terminal will be candidates for debugging. To debug created ECBs
(CRETC, CREMC, etc), you must register with LNIATA as *.

« Conditional registration — acts as a filter in that only ECBs that meet the
condition (register or ECB contents) will be candidates for debugging.

» Trace created entries — indicates to the debugger that you are interested
iIn debugging ECBs that will be created from the initial parent ECB you
debug in independent debugger sessions.

» Trace global variable initialization — allows you to debug global
constructors and other initialization functions.

* Debugging threaded applications — trace created entries is not necessary.
All threads created are immediately stopped. Each thread is controlled
iIndependent of all other threads. Key is to click on a thread in the debug view
and then perform your desired action.

arprise Platform:Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Tips for registering on shared test systems

» Registering on a shared test system can present a number of
challenges.

* You must define a registration entry such that you do not debug
someone else's application.

* You must start your application such that it is not debugged by
someone else's registration entry.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Tips for reqgistering on shared test systems

« Use the trace by terminal feature by specifying a TPF Terminal instead of
using * for the LNIATA when registering the debugger and have the traffic of
each individual started from a different LNIATA.

» Use conditional registration to differentiate ECB from ECB. For example test
against a unique value in the ECB such as EBROUT or so on.

« User Defined Registration can work well for these situations. You can define
a field to test to be the ID of a user and as part of your application traffic
embed the ID of the user in the ECB so that you can test against it.

* Every registration type allows you to pass in a user token. As part of your
application traffic embed the ID of the user in the ECB. And every registration
trace by program type of registration calls user exit UCCDBTS in cusr.cpy for
verification that a debugger session can be started on that ECB. In
UCCDBTS you can code a test to compare the user token in the IPROG entry
to the ID of the user embedded in the application. Or instead of embedding
the ID of the user in the application, you can equate the user token passed in
on the registration entry with the IP address or another user unique feature in
ECB. You can do a very similar sort of user token comparison for trace by
terminal in the tpf_terminal_user_exit in cdbuxt.c.

+ Use selective activation. The debugger will work in selectively activated
programs without making any accommaodations.

drprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPFE Users Group - Spring 2013 | © 2013 IBM Corporation

IBM Software Group -
Tips for reqgistering on shared test systems

» Another common problem in debugging on a shared test system
IS debugging code that someone else loaded. While the
debugger cannot know if you are debugging the right code, it
does show you which loadset your code was loaded in the
debug view in each stack frame. If something is not behaving
properly, confirm that you are debugging your code.

Fspebug 3B | Rk £T Ok 0] @ T | By BB R T

Eiﬂﬂlﬁﬂﬂq-:hﬂ[lnmﬂﬁgﬁmtEDetn@Eﬁsﬂn]
EuFHatﬁ:n-n ZTPF Connection: tpfosa1h89.pok.ibm.com: 1481
. - uﬁﬂreadTF-FTrread 10309000 (Stopped)
= Execution Pt. : : 0x000000009E 1DBFCA

----- = QDBO : qdb0.0 -00 g2 : QDBO | BEBEE |
----- E invokeDriver : cvzz.o 03 g2 @
22 CVZZ : ovzz.o 03 g2:C

------ .E Process: 10309000 Program: QDBO

arprise Platform:Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 | © 2013 IBM Corporation

IBM Software Group -

Q&A

AIM Ente|rprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

IBM Software Group -

Trademarks

« IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

* (Include any special attribution statements as required — see Trademark guidelines on https://w3-
03.ibm.cor)n/chq/legal/lis.nsf/lawdoc/5A84050DEC58FE31852576850074B832?OpenDocument#DeveIoping%20the%208pecial%20Non-
IBM%20Tr

Notes

« Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a
controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the
amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.
Therefore, r(ljohassurance can be given that an individual user will achieve throughput improvements equivalent to the performance
ratios stated here.

» All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers
have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will
vary depending on individual customer configurations and conditions.

» This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document
in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for
information on the product or services available in your area.

* All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and
objectives only.

* Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM
has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

» Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your
geography.

» This presentation and the claims outlined in it were reviewed for compliance with US law. Adaptations of these claims for use in other
geographies must be reviewed by the local country counsel for compliance with local laws.

AIM Entelrprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1

TPE Users Group = Spring 2013 © 2013 IBM Corporation

