
AIM Enterprise Platform Software
IBM z/Transaction Processing Facility Enterprise Edition 1.1

Any reference to future plans are for planning purposes only. IBM reserves the right to change those plans at its discretion. Any reliance on such a
disclosure is solely at your own risk. IBM makes no commitment to provide additional information in the future.

© 2013 IBM Corporation

z/TPF V1.1

2013 TPF Users Group

Title: z/TPF Debugger Education

Joshua Wisniewski
Ongoing TPF Education

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Agenda
• What’s new in the realm of debugger education?

• Education resources and links
• Debugger education articles

• Problem diagnosis
• Custom communication packages
• Determining code path
• Hints and Tips
• Starting the debugger effectively

• Q & A

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

What’s new in the realm of debugger education?
• A new set of practical education articles have been written.

• They focus on how to use debugger features together to solve
problems.

• They also focus on the lesser known or hard to find features.

• A sample of this content will be the main focus this presentation.

• The list of the new articles is available on the next slide.

• A new set of appendices have been added to the z/TPF Application
Modernization using Standard and Open Middleware Redbook

• They focus on step by step examples of how to use debugger
features. These appendices are applicable to anyone new to the
TPF Toolkit or wanting to learn about a variety of features.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Education resources and Links
• The following resources focus on how to use debugger features

together to solve problems and on lesser known features.

• http://www-01.ibm.com/software/htp/tpf/. See the Fast links
section on the lower left side. Select Tools -> z/TPF Debugger
and then view the contents of the education material table.
• developerworks.com article

• Debugging Entry Control Blocks created by custom
communication packages on z/TPF

• Debugger education articles
• Determining code path
• Starting the debugger effectively
• Problem diagnosis
• Hints and Tips

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Education resources and Links
• These resources are a good source for seeing step by step usage:

• http://www-01.ibm.com/software/htp/tpf/. See the Fast links section on
the lower left side. Select Tools -> z/TPF Debugger and then view the
contents of the education material table.

• z/TPF Application Modernization using Standard and Open
Middleware Redbook
• There are several appendices with step by step demonstrations of

building and loading an application in the TPF Toolkit, Web Services
features, Debugger, Code Coverage Tool, Performance Analyzer,
Dump viewer, Trace Log and etc.

• Debugger Demo Movie
• This demo movie was created several years ago to highlight the

function that was available at that time. Even though this movie is
out of date, the education delivered in this format has been found to
be very useful and the core function described continues to exist.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Education resources and Links
• These existing resources are a good source learn what functionality exists.

• http://www-01.ibm.com/software/htp/tpf/. See the Fast links section on the
lower left side.
• TPFUG presentations – select TPFUG Presentations. A debugger and

TPF Toolkit update is often provided at each TPFUG to announce new
features, provide education and so on. These presentations are usually
given in the TPF Toolkit Task Force or the Development Tools
Subcommittee.

• The Debugger User's Guide – select TPF Family Libraries -> Open
Current Information Center -> z/TPF PUT -> Library -> Debugger User’s
Guide.

• TPF Toolkit help that is found in the Help menu also provides information
regarding the features that are available. Select the Help menu -> Help
contents. Then select Debugging TPF Applications, Analyzing Code
Coverage of TPF Applications, or Analyzing Performance of TPF
Applications.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Problem diagnosis
• Topics

• Dump viewer

• Debugging stack corruption

• Debugging heap corruption

• Debugging infinite loops

• Debugging memory leaks

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Dump viewer
• The dump viewer is a debugger like interface to view the contents of a dump.

• The dump viewer is especially useful for C/C++ code with the ability to use
the variables view to see all C/C++ variables at a glance. You can click
through the stack frames and see C/C++ variables on previous stack
frames.

• The dump viewer provides the ability to apply XML maps in the memory
views of given data areas to make it easier to read the data in the memory
of the application.

• Most debugger views will work as normal such as the SW00SR view,
DETAC view, DECB view, TPF malloc view and so on, which could be
difficult or impossible to view in a traditional z/TPF dump.

• Enter ZASER DUMPON DBUG to collect dump viewer dumps.
• The user exit UDDC_debuggerDumpCaptureUserExit in cdbaux.cpp allows

you to capture additional data areas.
• These dumps are portable for viewing from z/TPF system to z/TPF system

because the program attribute table (PAT) entries, database definition
(DBDEFs), and so on are completely copied to the dump file.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Dump viewer
• The ECB trace can tell you what the ECB was doing recently. It

will show you the macros and functions called as well as
parameters passed in and values returned. The ECB trace is
available while viewing dumps through the debug console
command ECBTrace. A variety of other debug console
commands are available.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Dump viewer

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging stack corruption
• The following techniques apply to both the debugger and

dump viewer.
• Click through the stack frames in the debug view and see what the

local variable values are in the Variables view. You may notice that
a character array containing a valid string appears to pour over into
other variables in your stack. This can be an indication that your
application is mishandling that string variable.

• As you click through the stack frames, the properties view will show
you details about that stack frame (size, address, etc).

• You can also see the contents of the stack frame. Right click on a
stack frame and choose map memory element to open an XML
map of the stack frame in the memory. View picture on the next
slide.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging stack corruption

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging stack corruption

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging stack corruption
• A couple things to take notice of in the stack frame:

• Register 14 (R14) is the typical return address register in the z/TPF
system. However, if R14 points into CPS0, it is likely a C/C++ cross
module call and the return address is found in CRET.

• A bad back chain pointer (BCH) often indicates that the application is
overwriting the stack by way of a memcpy, MVC, and so on.

• This tip works frequently. Look at the stack contents rendered in EBCDIC
or ASCII for a text string. Try doing a grep for that string in your
application code. sprintf and similar functions are often the cause of stack
corruption and this approach has been used to solve many of these types
of dumps.

• Another approach is to examine the contents of the entry control block
(ECB) trace for function and macro parameters and return values that
point into the stack address range as they may be the cause of the stack
corruption.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging stack corruption
• If you are using the debugger and know that a particular stack

address will become corrupted (such as the back chain pointer
or a variable such as i), you can use the watch breakpoint
support to stop the debugger when the change occurs.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging stack corruption
• Enter an address as 0x1234,

a pointer expression or & of
the variable such as &port.

• The debugger will stop at the
source line/instruction after
the source line/instruction that
modified the storage.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging stack corruption

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging heap corruption
• A CTL-75 is a dump indicating that heap (malloc) corruption has

occurred.

• In z/TPF this dump is typically issued when the 0xFFFFFFFF
FFFFFFFF fence field immediately following an allocated malloc
block is corrupted.

• However, this detection for the CTL-75 dump occurs when the
malloc block is freed.

• CTL-75 dumps occur in the control program and as a result, you
can not run the debugger to the dumping location or use register
by system error for these dumps.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging heap corruption
• The TPF Malloc view can be used to locate corruption of malloc

blocks.

• If the corruption column is shown in the Malloc view, the
corruption detection will be performed. Malloc entries that are
corrupted will appear in the changed pane at all times, as shown
on the next slide.

• One thing to note, using corruption detection in the TPF Malloc
view may impact debugger performance.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging heap corruption

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging heap corruption
• While the TPF malloc view is a great way to learn about your

malloc blocks and effectively shows you what corruption has
occurred, it cannot indicate when that corruption occurred.

• The perform heap check on stop feature tells the debugger to
detect any heap corruption whenever the execution of the
application is stopped.

• When heap corruption is detected, a pop up window is displayed
indicating that corruption has been detected.

• However, the user must step or run the application such that the
application is periodically stopping.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging heap corruption
• To turn on the perform heap check on stop feature, right click

in the stack frame and choose perform heap check on stop.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging heap corruption
• When corruption is detected, as in this case where a step into

each line occurred, a pop up appears like this:

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging heap corruption
• CTL-75 dumps occur in the control program and as a result, you

cannot run the debugger to the dumping location or use register by
system error for these dumps.

• However, if your heap corruption is writing past the fence (a typical
case) you can use the heapcheck system feature in conjunction with
the debugger to quickly locate the problem code.

• Heapcheck mode causes every malloc to use at least one 4 K frame,
the malloc area with the fence is located at the end of the 4 K frame,
and the next 4 K frame is invalidated.

• When the application writes past the fence in corrupting the malloc
buffer, the application will start to write over the invalid frame and an
OPR-4 will occur. The application must write beyond the fence
because overwriting the fence is not enough to cause the OPR-4.

• As a result, you can debug the application, clear the breakpoints, and
run to the OPR-4. Or you can register the OPR-4 in the system error
registration.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging infinite loops
• CTL-10 dumps occur in the control program and as a result the

debugger cannot stop the application at the location of the error.

• The debugger attempts to do infinite loop detection.

• However, the application must periodically stop in order for the
debugger to perform its detection. This is because the debugger
attempts to allow the application to run as fast as possible to
provide the optimal debugging experience. As a result, the
infinite loop detection cannot occur without you setting
breakpoints or stepping of some sort.

• The debugger attempts to make you aware of dumps that occur
when the application dumps.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging infinite loops

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging infinite loops
• Use ZDMAP to determine as low of an address as possible and

as high of an address as possible. Doing a ZDMAP a-XXXX
where XXXX is the address in R15 may be a good way to
narrow in on a module to create breakpoints around. Notice that
the value in R15 in the figure above falls into the range of QDB0
in the figure below.

• This gives us an address range of: 409A1AC50 to 409A1AC50
+ AAE4 (409A25734). Now start the debugger on your
application and use these two addresses to create address
breakpoints.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging infinite loops

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging infinite loops
• Infinite loop detection is controlled by a time out that you can

set. The default setting is 30 seconds. You can use the
TPFTimeout debug console command to shorten the time you
will need to wait.

• Next push the resume button and wait the specified number of
seconds. A pop up will appear indicating that a possible CTL-10
has been found as shown on the next slide.

• The debugger will show you the current stopping location for you
to investigate. You can continue to debug as normal or press
the resume button to run to the next possible infinite loop
detection point.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging infinite loops

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging memory leaks
• The z/TPF debugger provides a few features to help identify

memory leaks in the application. However they do require that
you do some investigating because the debugger cannot
determine when a malloc block is no longer used.

• The ECBHEAP debug console command allows you to gather
information regarding the use of heap by the application.

• The ECBHEAP STATS debug console command shows how
much memory is in use and what types of memory is in use. In
the slide that follows, notice that no 64 bit memory is in use.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging memory leaks

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging memory leaks

• The ECBHEAP CNTS [sortcnt]
debug console command
provides the counts of all
malloc entries based on size.
It can sort based on size or
based on the number of
malloc entries of a given size.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging memory leaks
• One way to use this feature is to step over a function, perform

some action, and so on and then look at the ECBHEap counts to
see what has changed. Make note of what memory sizes are
not getting freed. Use the TPF malloc view to choose a given
size entry and use the selected block pane to know what code is
allocating malloc of that size.

• Another thing to look at is which part of the application is using
the largest blocks of memory. Use the malloc view to examine
the malloc blocks further (for example sort the malloc view data
by size and Look at largest blocks)

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Custom communication packages
• Topics

• Using tpf_flag_for_debug

• Using CDBX_DebuggerTBTRegistrationTerminalUserExit

• Using tpf_flag_for_debug and
CDBX_DebuggerTBTRegistrationTerminalUserExit together

• User defined registration: The ultimate solution

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Custom communication packages: Intro
• When a user registers by LNIATA, IP address, or LU, TPF

marks ECBs as candidates for trace by terminal debugging.

• If those candidate ECBs enter the registered program, function
or etc, a debugger session is started.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Custom communication packages: Intro
• If you implemented a custom communication package (TN3270,

inter-processor communications, etc), it is possible that the
ECBs in your system will not be marked as candidates for trace
by terminal debugging.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Using tpf_flag_for_debug
• tpf_flag_for_debug is a system service that allows your custom

communication package to mark ECBs as candidates for trace
by terminal debugging.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Using CDBX_DebuggerTBTRegistrationTerminalUserExit
• This user exit is in the routine that marks ECBs as candidates

for trace by terminal debugging. It allows you to inspect the
ECB and provide a custom terminal to the debugger.

• For example, if you
have implemented
TN3270 support, this
user exit could return
an LNIATA for an ECB
created by your
package such that the
debugger user can
register for trace by
terminal by LNIATA.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Using tpf_flag_for_debug and
CDBX_DebuggerTBTRegistrationTerminalUserExit together
• Using these two features together allows your custom

communications package to call to mark the ECB as a candidate
for debugging and allows you to specify the terminal to use.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

User defined registration: The ultimate solution
• This feature allows you to start the debugger virtually anywhere in your

application under the conditions you define.

• For example, the user could register: their ID, a transaction type, a
transaction identifier, and etc to debug only the ECB they need to debug.

• See the developerworks article, the redbook or the debugger user’s guide for
an example implementation.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

User defined registration: The ultimate solution
• Define conditions to test

• Modify the file <TPF Toolkit install dir>\Config\TPFSHARE\Debug
Registration\customDebugRegTypes.xml to
• define the names of the conditions (parameters) to be tested
• define the name of the registration type
• define the registration type id

• Restart the TPF Toolkit

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

User defined
registration:
The ultimate solution
• The names of the

conditions will be
shown to the user with
a text box for the user
to provide the
comparison value.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

User defined registration: The ultimate solution
• Define where to test the conditions: The next thing that you need to do

is to modify your application to call the test program with the conditions in
your application to be tested against the comparison values registered by
the user. C/C++ and Assembler interfaces are provided.

• The first line of this block of code uses the performance-sensitive
macro tpf_UserDefRegTypPerfCheck to see whether a given user-
defined registration type is actively registered on the system. Because
the user-defined registration code is contained within a block that is
encapsulated by the performance-sensitive macro, this code can be
left in your production-level code for test points that can be used in the
future.

• Now define an instance of the tpf_UserDefRegTypStruct structure and
populate it with the registration type ID, a resolving function (in this
example, we'll just use the user exit provided), and the comparison
values to be passed as parameters.

• Lastly, you call tpf_UserDefRegTypHandler.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

User defined registration: The ultimate solution
• Build and load your application.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

User defined registration: The ultimate solution
• Define how to test the conditions

• Implement the code that performs the test of the conditions, for
example in the user exit code cdbxud.c. It can be defined in
assembler, in other code locations and etc.

• The contents of the UDRT_ptr (the state of the executing ECB) are
compared to the contents of tbu_entry (the comparison values
registered by the user as stored in the debugger registration
entries).

• Notice that you can compare the registered variable against the
values in the ECB, system or etc.

• The parameters are passed as void pointers so that your code must
know how to interpret the comparison values, such as using
functions like atoi, sscanf, and etc.

• Set rc to true to tell the debugger to start.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

User defined registration: The ultimate solution
• Build and load your code that tests the conditions.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

User defined registration: The ultimate solution
• Using user-defined registration

• Register your user-defined debugger registration entry as you
would for other registration types and then run your application.

• When the debugger is notified by your condition-testing code
(cdbxud.c) that a debugger session should be started, the
debugger will stop the application at the next line of code following
the code snippet in your application that passed in the state of the
application.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

User defined registration: The ultimate solution

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

User defined registration: The ultimate solution
• Example Uses

• Thousands of ECBs might be started per second in a given
program (CRETC, network traffic, etc), and you might need to
debug only one specific ECB (for example, the one ECB out of a
thousand with 0 on data level 1).

• Perhaps your system has a proprietary communication package
that requires the user to register multiple pieces of information.

• Maybe you need to debug a particular location in code where a set
of conditions occur, such as a single entry point transaction
application where a query is performed on a particular account
number.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

User defined registration: The ultimate solution
• APAR PJ36059

• PUT6

• TPF Toolkit Level v3.4.3

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Determining code path
• Topics

• Using trace log and the code coverage tool together

• Debugger: stop on all functions and high level breakpoints

• Debugger: ECB Summary view, animated step into, execute
shortcuts

• Debugger: optimized debugging vs non-optimized debugging

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Using trace log and the code coverage tool together
• A trace log is an integrated macro and function trace that

provides you parameter values, return values, macro call details
and the path through the application code at a high level.

• The code coverage tool allows you to see what source lines,
macros and instructions your application has executed. The
code coverage tool gives you lower level detail allowing you to
infer code path.

• Using trace log and the code coverage tool together can help
you better understand the code path of your application.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Using trace log and the code coverage tool together
1. Register and start code coverage for your application.

2. Register the debugger for the entry point of your application.

3. If necessary, change the number of trace log sessions allowed
on your system with ZASER TRLOG-X

4. Start your application, the debugger starts.

5. Turn on trace log

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Using trace log and the code coverage tool together
6. Click the resume button to run your

application to completion.

7. Double click the report file created in
the Files subsystem (GUI FTP interface
to the file system on TPF)

8. The report file opens in the editor
window showing you the trace log
contents. The default view shows you
functions and macros called in an
indented fashion to show the call stack.
See next slide.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Using trace log and the code coverage tool together

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Using trace log and the code coverage tool together
9. Examine the function/macro parameters and return values,

search or filter the results in an LPEX editor view, press the
analyze button to see statistics about what macros were used,
memory allocation, segments entered and etc, and generally
understand the overall path of execution of your application.

10.Stop and save the code coverage session and run source
analysis.

11.Use the code coverage view to navigate to modules, objects,
functions and source files of interest. Examine the execution
statistics.

12.Examine the source lines or instructions executed. See next
slide.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Using trace log and the code coverage tool together

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Using trace log and the code coverage tool together
• Use this methodology to...

• learn about the code path of an application you don’t know.

• learn why your code fix did not work properly. For example, was
your new code even executed?

• determine the best place to start a debugger session.

• understand deviations between two slightly different situations.
For example, run both scenarios separately as described above,
use the code coverage comparison tool to identify where the
paths deviate, and then use trace log to see parameters and
return values to understand why the deviation occurred.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugger: stop on all functions and high level breakpoints
• You can use debugger features such as stop on all functions

and high level breakpoints to understand the execution path of
your code.

1. Register the debugger for the entry point of your application

2. Set up stop on all functions and/or other high level
breakpoints.

3. Use the resume button to run from location to location to
understand the path of execution of your application.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugger: stop on all functions, high level breakpoints, etc
• Stop on all function entries behaves as if you set a breakpoint

at every C/C++ function entry point (including TMSPC and
PRLGC) and BAL external entry points.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugger: stop on all functions, high level breakpoints, etc
• Load breakpoints stop the execution of your ECB at the entry

point of a module the first time it is called. Such as specifying *
for the module.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugger: stop on all functions, high level breakpoints, etc
• Macro and Macro group breakpoints stop on the execution of

macros. Macro groups such as ENTER (all ENTxC and
BACKC), DFALL (all TPFDF) and ALLSVC may be particularly
useful in this capacity.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugger: ECB Summary view, animated step into, execute shortcuts
• Suppose the code path of your application is less important to

the debugging of a problem than the current state of the ECB,
such as in debugging a recursive program.

1. Minimize the editor view.
2. Arrange other views to view the state of the application at a

glance such as the ECB Summary view, SW00SR view,
DECB view, variables view or etc. Ensure the debug view is
visible.

3. Use stop on all functions and high level breakpoints
previously discussed and watch the state of the application
change. Or use execute shortcut keys to execute the
application manually. Or use animated step into to walk
through your application step by step automatically. Or use
step debug to debug a small set of applications.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugger: ECB Summary view, animated step into, execute shortcuts
• ECB Summary and the animated step button for automatic stepping.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugger: ECB Summary view, animated step into, execute shortcuts

• TPF Toolkit provides short cut keys to issue execute actions
without clicking buttons which can help you to focus on the state
of your application:
• F5 – Step into

• F6 – Step over

• F7 – Step return

• F8 – Resume

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugger: ECB Summary view, animated step into, execute shortcuts

• step debug is a feature that allows you to limit your debugging
to a list of specified modules.

1. In the debug console, use the step debug set command to set up
the list of programs to limit the application stopping

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugger: ECB Summary view, animated step into, execute shortcuts
2. Toggle on the step debug (step filters) button on

3. Now use the step into button. It will only stop in the modules listed in the
step debug list or stop at any breakpoints that you’ve set.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugger: ECB Summary view, animated step into, execute shortcuts

• IMPORTANT NOTE: make sure you toggle off the step debug
(step filters) button when you are finished. The setting of the
step debug (step filters) button setting is saved. A pop up box
warns you the first time you press the step into button and it is
behaving as step debug. Do not ignore this warning! Many
users have thought the debugger was broken when they
simply forgot to turn this step debug feature off.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugger: optimized debugging vs non-optimized debugging
• The features used to determine code path can be used to debug

optimized code with or without debug information loaded.

• Once you have a high level view of your application, you can
begin to use other debugger features to narrow in on the source
of your problem.

• As you narrow in on the area of the problem, rebuild those
segments –O0 and load the code with debug information to have
an ideal debugging experience with all available variables and
linear code execution when stepping.

• Assembler code does not need to be rebuilt, just load debug
information. You can also use the Remote Debug Information
feature to have the debugger automatically load the debug
information for you.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Hints and Tips
• Topics

• What code am I debugging?

• Debugger performance

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

What code am I debugging?
• The stack view can be used to see the loadset for each module

on the stack.

• The stack view also shows the compiler options for each object.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

What code am I debugging?
• On the z/TPF system, use the ZDDBG DISPLAY DBGINFO-

prog command to see what debug information is available on
the system for a specific module. The loadset name is provided
so you can ensure that your code has debug information.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

What code am I debugging?
• Click on a stack frame and look at the properties view to see the

compile time and other information.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugger performance
• Set up your Edit Source Lookup to perform well:

• Choose TPF project (limit the definition of project filters to a small set of
files) or Remote folder since they are known to perform better.

• Do not specify root directories (such as /ztpf/).

• Specify directories as close to source as possible.

• Specify as few paths as possible.

• Do not search for multiple matches unless it is absolutely needed. This
feature will search all directories and sub-directories on all paths for the
matching file name and present a list of all matches to the user.

• Do not search subfolders. Select the folders where your source exists
explicitly.

• If network performance is a drastic issue, copy source code to a local
location on the hard drive, remove all network paths and set the path to
this single local location. This will give the best performance in locating
files but introduces source file synchronization issues.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugger performance
• Open fewer debugger views.
• Give focus to views with static data (breakpoints, monitors,

modules, etc) to hide more dynamic views.
• Hide complex or costly views until you need them.

• Variables view if lots of variables are present.
• SW00SR view
• ECB Summary view
• TPF Malloc view (hide the corruption detection column)

• Limit the use of labor intensive features such as perform
heapcheck on stop.

• Turn off hover expression evaluation: from the preference option
Window menu->Preferences->Run/Debug->Compiled Debug-
>Allow hover evaluation checkbox.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugger performance
• Define remote debug information directories well.

• Specify as few paths as possible

• Specify a small timeout value. If FTP must timeout on each system
and path and the timeout value is set significantly high, the user
may need to wait a long time for the timeout to occur for each
system and path (accumulating to a long wait time).

• If the network is performing poorly, load debug information by way
of the loaders instead of relying on the remote debug information
feature. Or use debugging techniques that do not require debug
information to be loaded.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Starting the debugger effectively
• Topics

• Understand your application

• Debugging the right ECB

• Registration types

• Tips for registering on shared test systems

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Understand your application
• The answer to the following questions determines how you must register the

debugger to debug the right ECB.
• How is my ECB started? Is this ECB started by a CREMC, CRETC,

TPF_fork, SWISC CREATE or so on? Is this ECB started by a
pthread_create? Or is this ECB started from a communications terminal
such as an incoming message on an LNIATA, IP or LU.

• How does my application behave? Does it create ECBs such as CREMC
and so on? Does it create threads? Are there events, LOCKCs, signals,
waiting for user input (ZPAGE), waiting for responses from another
system, and so on?

• What part of my application do I need to debug? Does it call global
constructors? Is a library malfunctioning or is the mainline path? Is a
system function or macro not returning the expected result?

• Where is the right spot in my application to start debugging such that I'm
close to the cause of the problem?

• Maybe you don't know your application in this level of detail. Do you know
a main entry point name, a library used, or so on?

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Debugging the right ECB
• The z/TPF debugger is an ECB centric debugger meaning that

the ECB is debugged regardless of which code that ECB
executes.

• As you think about starting the z/TPF debugger, always be
thinking in terms of catching the right ECB that will execute the
code you need to debug.

• Use the determining code path functionality to understand the
application.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Registration types
• The second key to starting the debugger effectively is knowing

what features the debugger has, how to use them, and what the
limitations are in order to catch the right ECB.
• Register by program name – 4 char module name (wild cards are

supported).
• Register by function name – First execution of a function (wild

cards are supported).
• Register by SVC – First execution of a macro.
• Register by system error – start the debugger on an application

dump.
• Register by CTEST – start the debugger where ever CTEST is

coded in your application.
• Register by user defined registration – start the debugger where

ever you want under the conditions you define and register.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Registration types
• Most types of registration provide the following options.

• TPF terminal – acts as a filter in that only the ECBs with a matching
terminal will be candidates for debugging. To debug created ECBs
(CRETC, CREMC, etc), you must register with LNIATA as *.

• Conditional registration – acts as a filter in that only ECBs that meet the
condition (register or ECB contents) will be candidates for debugging.

• Trace created entries – indicates to the debugger that you are interested
in debugging ECBs that will be created from the initial parent ECB you
debug in independent debugger sessions.

• Trace global variable initialization – allows you to debug global
constructors and other initialization functions.

• Debugging threaded applications – trace created entries is not necessary.
All threads created are immediately stopped. Each thread is controlled
independent of all other threads. Key is to click on a thread in the debug view
and then perform your desired action.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Tips for registering on shared test systems
• Registering on a shared test system can present a number of

challenges.

• You must define a registration entry such that you do not debug
someone else's application.

• You must start your application such that it is not debugged by
someone else's registration entry.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Tips for registering on shared test systems
• Use the trace by terminal feature by specifying a TPF Terminal instead of

using * for the LNIATA when registering the debugger and have the traffic of
each individual started from a different LNIATA.

• Use conditional registration to differentiate ECB from ECB. For example test
against a unique value in the ECB such as EBROUT or so on.

• User Defined Registration can work well for these situations. You can define
a field to test to be the ID of a user and as part of your application traffic
embed the ID of the user in the ECB so that you can test against it.

• Every registration type allows you to pass in a user token. As part of your
application traffic embed the ID of the user in the ECB. And every registration
trace by program type of registration calls user exit UCCDBTS in cusr.cpy for
verification that a debugger session can be started on that ECB. In
UCCDBTS you can code a test to compare the user token in the IPROG entry
to the ID of the user embedded in the application. Or instead of embedding
the ID of the user in the application, you can equate the user token passed in
on the registration entry with the IP address or another user unique feature in
ECB. You can do a very similar sort of user token comparison for trace by
terminal in the tpf_terminal_user_exit in cdbuxt.c.

• Use selective activation. The debugger will work in selectively activated
programs without making any accommodations.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Tips for registering on shared test systems
• Another common problem in debugging on a shared test system

is debugging code that someone else loaded. While the
debugger cannot know if you are debugging the right code, it
does show you which loadset your code was loaded in the
debug view in each stack frame. If something is not behaving
properly, confirm that you are debugging your code.

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Q & A

© 2013 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1
TPF Users Group – Spring 2013

Trademarks
• IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many

jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM
trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

• (Include any special attribution statements as required – see Trademark guidelines on https://w3-
03.ibm.com/chq/legal/lis.nsf/lawdoc/5A84050DEC58FE31852576850074BB32?OpenDocument#Developing%20the%20Special%20Non-
IBM%20Tr)

Notes
• Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a

controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the
amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance
ratios stated here.

• All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers
have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will
vary depending on individual customer configurations and conditions.

• This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document
in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for
information on the product or services available in your area.

• All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and
objectives only.

• Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM
has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

• Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your
geography.

• This presentation and the claims outlined in it were reviewed for compliance with US law. Adaptations of these claims for use in other
geographies must be reviewed by the local country counsel for compliance with local laws.

