
AIM Enterprise Platform Software
IBM z/Transaction Processing Facility Enterprise Edition 1.1.0

Any reference to future plans are for planning purposes only. IBM reserves the right to change those plans at its discretion. Any reliance on such a
disclosure is solely at your own risk. IBM makes no commitment to provide additional information in the future.

© 2011 IBM Corporation

z/TPF V1.1

Migrating C and C++
Programs Above The Bar

Edwin van de Grift
TPF Services & Education
edwinvandegrift@us.ibm.com

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Introduction

• The bar in this presentation refers to the 2GB bar.

• After migrating from TPF41 to z/TPF, your C and C++
programs likely reside BELOW the bar

• In the 31-bit Core Resident Program Area (CRPA)

• This presentation discusses aspects of moving these C and
C++ programs ABOVE the bar

• To the 64-bit Core Resident Program Area

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Program Allocation

• Assembler (BAL) programs – unless rewritten as part of the
z/TPF effort – MUST reside below the bar
• 31-bit Assembler can only execute in the 31-bit Core Resident

Program Area

• C and C++ programs can reside either below or above the
bar
• 64-bit Assembler can execute in BOTH Core Resident

Program Areas
• Most z/TPF customers have forced C and C++ programs to

reside below the bar, as a safety precaution

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Storage Layout

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

• Remove the following linker option for the C/C++
program(s):
• -defsym CGCC_31BIT=0

• Set in MakeTPF as follows:
• LDFLAGS_$(APP) := -Xlinker --defsym -Xlinker CGCC_31BIT=0

• Consideration: Make sure the size of the 64-bit
Core Resident Program Areas is large enough

Loading a C/C++ Program Above the Bar

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Core Resident Program Areas: ZDCRP

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Passing Data Between Assembler and C/C++

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

What do we need to care about?

• When calling C/C++ from Assembler (BAL)
• The returned data

• When calling Assembler from C & C++
• The passed data

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

C/C++ interacting with C/C++

• Calling C/C++ from C/C++ is NEVER a problem

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Storage Types

• Traditional storage

• Stack storage

• Heap storage

• Constants, static & external variables

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Storage Types

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Storage Locations

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Traditional Storage

• Traditional storage resides below the bar

• No problem addressing traditional storage

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Stack Storage

• Stack storage resides below the bar

• No problem addressing stack storage

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Heap Storage

• Heap storage resides below the bar
• No problem addressing heap storage

• To use 64-bit heap storage, the C/C++ source must be
changed
• Requires different APIs, like malloc64(), realloc64(), et

cetera

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Constants, Static & External Variables

• All of these reside in the program, and thus above
the bar

• These CANNOT be addressed from 31-bit software

• Oftentimes use of static and external variables are
the result of lazy programming rather than
necessity

• You may not have to change anything
• “It depends.”

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Summarizing

• No problem:

• Traditional storage

• Stack storage

• Heap storage

• Possible Problem:

• Storage in C/C++
programs
• Constants
• Static data
• External data

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

No Problem or Possible Problem ?

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Don’t Panic!

• Keep in mind that pointers are ONLY a problem if they point
to:
• Constants
• Static variables
• External variables

• There still is NO problem if they point to:
• Traditional storage
• Stack storage
• Heap storage

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Two Basic Approaches

• Change the Assembler software
• So that the software can access 64-bit data

• May not be feasible, depending on:
• Quantity of software that needs access to the data

• Change the C/C++ software / Move the data
• So that 31-bit programs can access the data

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Change the C/C++ software / Move the data

• Two distinct scenarios, depending on data:

• Data is just that (data)
• Typically true in traditional TPF transactions

• Data contains pointers
• No easy way out
• Needs to be considered case by case

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Example 1

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Example 1 Considerations

• Pro
• No change in the C or C++ interface

• Con
• Heap storage ownership lies with the calling Assembler

program(s)

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Example 2 – Variation 1

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Example 2 – Variation 2

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Example 2 Considerations

• Pro
• No storage ownership issues

• Con
• C or C++ interface change
• May not be feasible if program called from many

Assembler programs
• Could consider writing a STUB to avoid having to update

many Assembler programs

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Summary

• Research:
• C/C++ Interfaces

• Assembler programs calling the C/C++ interfaces

• How is data passed from C/C++ to Assembler?

• How is data returned from C/C++ to Assembler?

• What are the contents of the data passed?

• Strategy:
• Change the C/C++ interface?

• Leave the C/C++ interface as is?

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

The End

“Sometimes you eat the bar, and sometimes,
well, he eats you.”

- The Stranger

© 2011 IBM Corporation

IBM Software Group

AIM Enterprise Platform Software IBM z/Transaction Processing Facility Enterprise Edition 1.1.0
TPF Users Group

Trademarks
• IBM is a trademarks of International Business Machines Corporation in the United States, other countries, or both.
• Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
• Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
• Intel, Intel Inside (logos), MMX, Celeron, Intel Centrino, Intel Xeon, Itanium, Pentium and Pentium III Xeon are trademarks or registered trademarks of

Intel Corporation or its subsidiaries in the United States, other countries, or both.
• UNIX is a registered trademark of The Open Group in the United States and other countries.
• Linux is a trademark of Linus Torvalds in the United States, other countries, or both.
• Other company, product, or service names may be trademarks or service marks of others.

• Notes
• Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled

environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in
the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an
individual user will achieve throughput improvements equivalent to the performance ratios stated here.

• All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM
products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual
customer configurations and conditions.

• This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other
countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or
services available in your area.

• All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

• Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested
those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of
non-IBM products should be addressed to the suppliers of those products.

• Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

• This presentation and the claims outlined in it were reviewed for compliance with US law. Adaptations of these claims for use in other geographies
must be reviewed by the local country counsel for compliance with local laws.

	Migrating C and C++ �Programs Above The Bar
	Introduction
	Program Allocation
	Storage Layout
	Loading a C/C++ Program Above the Bar
	Core Resident Program Areas: ZDCRP
	Passing Data Between Assembler and C/C++
	What do we need to care about?
	C/C++ interacting with C/C++
	Storage Types
	Storage Types
	Storage Locations
	Traditional Storage
	Stack Storage
	Heap Storage
	Constants, Static & External Variables
	Summarizing
	No Problem or Possible Problem ?
	Don’t Panic!
	Two Basic Approaches
	Change the C/C++ software / Move the data
	Example 1
	Example 1 Considerations	
	Example 2 – Variation 1
	Example 2 – Variation 2
	Example 2 Considerations	
	Summary
	The End
	Trademarks

